
Machine learning regularization for the minimum volume formula
of toric Calabi-Yau 3-folds

Eugene Choi 1,* and Rak-Kyeong Seong 1,2,†

1Department of Mathematical Sciences, Ulsan National Institute of Science and Technology,
50 UNIST-gil, Ulsan 44919, South Korea

2Department of Physics, Ulsan National Institute of Science and Technology,
50 UNIST-gil, Ulsan 44919, South Korea

(Received 31 October 2023; accepted 31 January 2024; published 23 February 2024)

We present a collection of explicit formulas for the minimum volume of Sasaki-Einstein 5-manifolds.
The cone over these 5-manifolds is a toric Calabi-Yau 3-fold. These toric Calabi-Yau 3-folds are associated
with an infinite class of 4d N ¼ 1 supersymmetric gauge theories, which are realized as world volume
theories of D3-branes probing the toric Calabi-Yau 3-folds. Under the AdS=CFT correspondence, the
minimum volume of the Sasaki-Einstein base is inversely proportional to the central charge of the
corresponding 4d N ¼ 1 superconformal field theories. The presented formulas for the minimum volume
are in terms of geometric invariants of the toric Calabi-Yau 3-folds. These explicit results are derived by
implementing machine learning regularization techniques that advance beyond previous applications of
machine learning for determining the minimum volume. Moreover, the use of machine learning
regularization allows us to present interpretable and explainable formulas for the minimum volume.
Our work confirms that, even for extensive sets of toric Calabi-Yau 3-folds, the proposed formulas
approximate the minimum volume with remarkable accuracy.
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I. INTRODUCTION

Since the introduction of machine learning techniques
in [1–13] for studying problems that occur in the context of
string theory, machine learning—both supervised [14–20]
and unsupervised [21–24]—has led to a variety of appli-
cations in string theory. A problem that appeared particu-
larly suited for machine learning in 2017 [2] was the
problem of identifying a formula for the minimum volume
of Sasaki-Einstein 5-manifolds [25,26]. The cone over
these Sasaki-Einstein 5-manifolds is a toric Calabi-Yau
3-fold [27,28]. Given that there are infinitely many toric
Calabi-Yau 3-folds with corresponding Sasaki-Einstein
5-manifolds and that there is an infinite class of 4d
N ¼ 1 supersymmetric gauge theories associated to them
via string theory [29–36], this beautiful correspondence
between geometry and gauge theory was identified in [2]
as an ideal test bed for introducing machine learning for
string theory.

These 4d N ¼ 1 supersymmetric gauge theories corre-
sponding to toric Calabi-Yau 3-folds are realized as world-
volume theories of D3-branes probing the Calabi-Yau
singularities. Via the AdS=CFT correspondence [37–39],
the minimum volume of the Sasaki-Einstein 5-manifolds is
related to the maximized a-function [40–42] that gives the
central charges of the corresponding 4d N ¼ 1 super-
conformal field theories [43,44]. The proposal in [2] was
that machine learning techniques can be used to give a
formula of the minimum volume in terms of features taken
from the toric diagramof the corresponding toricCalabi-Yau
3-folds. Such a formula would significantly simplify the
computation of theminimum volume, which conventionally
is computed by minimizing the volume function obtained
from the equivariant index [25,26] or Hilbert series of the
toric Calabi-Yau 3-fold [45–47].
In [2], we made use of multiple linear regression [48–52]

and a combination of a regression model and a convolu-
tional neural network (CNN) [53–56] to learn the minimum
volume for toric Calabi-Yau 3-folds. As it is often the case
for supervised machine learning [57,58], the models lacked
interpretability and explainability, achieving high accura-
cies in estimating the minimum volume with giving only
little insight into the mathematical structure and physical
origin of the estimating formula.
In this work, we aim to highlight the pivotal role of

regularization techniques in machine learning [58,59].
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We demonstrate that employing regularized machine learn-
ing models can effectively address the limitations inherent
in supervised machine learning, especially for problems
that appear in string theory and, more broadly, for problems
at the intersection of mathematics and physics. While the
primary objective of regularization in machine learning is
to prevent overfitting, certain versions of it can be
employed to eliminate model parameters, echoing the spirit
of regularization in quantum field theory.
By focusing on least absolute shrinkage and selection

operator (Lasso) regularization [60] for polynomial and
logarithmic regression models, we identify several candi-
date formulas for the minimum volume of Sasaki-Einstein
5-manifolds corresponding to toric Calabi-Yau 3-folds. The
discovered formulas depend either on three or six param-
eters that come from features of the corresponding toric
diagrams [27,28]; convex lattice polygons on Z2 that
characterize uniquely the associated toric Calabi-Yau
3-fold. Compared to the extremely large number of
parameters in the regression and CNN models used in
our previous work in [2], the formulas obtained in this
study are both presentable, interpretable, and most impor-
tantly reusable for the computation of the minimum volume
for toric Calabi-Yau 3-folds.

II. CALABI-YAU 3-FOLDS AND
QUIVER GAUGE THEORIES

In this work, we concentrate on noncompact toric Calabi-
Yau 3-foldsX . These geometries can be considered as cones
over Sasaki-Einstein 5-manifolds Y5 [37–39,61–64]. The
toric Calabi-Yau 3-folds are fully characterized by convex
lattice polygons Δ on Z2 known as toric diagrams [27,28].
The associated Calabi-Yau singularities can be probed by
D3-branes whose worldvolume theories form a class of 4d
N ¼ 1 supersymmetric gauge theories [29–36].
This class of 4d N ¼ 1 supersymmetric gauge theories

can be represented in terms of a T-dual type IIB brane
configuration known as a brane tiling [65–67]. Table I
summarizes the type IIB brane configuration. Brane tilings
can be illustrated in terms of bipartite graphs on a 2-torus T2

[68,69] and encapsulate both the field theory information
and the information about the associated toric Calabi-Yau
geometry. Figure 1 shows an example of a brane tiling and its
associated toric Calabi-Yau 3-fold, which is in this case the
cone over the zeroth Hirzebruch surface F0 [35,38,70,71].

The mesonic moduli spaces [45,46,72,73] formed by the
mesonic gauge invariant operators of these 4d N ¼ 1
supersymmetric gauge theories with Uð1Þ gauge groups
is precisely the associated toricCalabi-Yau3-folds.When all
the gauge groups of the 4d N ¼ 1 supersymmetric gauge
theory areUðNÞ, then the mesonic moduli space is given by
the Nth symmetric product of the toric Calabi-Yau 3-fold.
The gravity dual of the 4d world volume theories is type

IIB string theory on AdS5 × Y5, where Y5 is the Sasaki-
Einstein 5-manifold that forms the base of the associated
toric Calabi-Yau 3-fold [37–39,61–64]. These 4d N ¼ 1
supersymmetric gauge theories are known to flow at low
energies to a superconformal fixed point. Under a pro-
cedure known as a-maximization [40–42], the supercon-
formal R-charges of the 4d theory are determined. This
procedure involves the maximization of the trial a-charge,
which takes the form

aðR;Y5Þ ¼
3

32
ð3TrR3 − TrRÞ: ð2:1Þ

The maximization procedure gives the value of the central
charge of the superconformal field theory at the conformal
fixed point.
Under the AdS=CFT correspondence [37–39], the cen-

tral charge is directly related to the minimized volume of
the corresponding Sasaki-Einstein 5-manifold Y5 [43,44].
We have

aðR;Y5Þ ¼
π3N2

4VðR;Y5Þ
; ð2:2Þ

where the R-charges R and as a result the volume function
VðR;Y5Þ can be expressed in terms of Reeb vector
components bi of the corresponding Sasaki-Einstein
5-manifold [25,26]. We can reverse the statement saying
that computing the minimum volume,

Vmin ¼ minbiVðbi;Y5Þ; ð2:3Þ

is equivalent to obtaining the maximum value of the central
charge aðR;Y5Þ. This correspondence is true for all 4d
theories living on a stack of N D3-branes probing toric

(a) (b)

FIG. 1. (a) The brane tiling for the second phase of the zeroth
Hirzebruch surface F0, and (b) its corresponding toric diagram
[35,38,70,71].

TABLE I. Type IIB brane configuration for brane tilings, where
Σ∶ Pðx; yÞ ¼ 0 refers to the holomorphic curve defined by the
corresponding toric Calabi-Yau 3-fold and the Newton poly-
nomial Pðx; yÞ of the associated toric diagram Δ [83,84].

0 1 2 3 4 5 6 7 8 9

D5 ✗ ✗ ✗ ✗ · ✗ · ✗ · ·
NS5 ✗ ✗ ✗ ✗ —Σ— · ·
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Calabi-Yau 3-folds and has been checked extensively in
various examples [40–42].
In this work, we will focus on the toric Calabi-Yau

3-folds and the corresponding Sasaki-Einstein 5-manifold
Y5, with particular emphasis on the minimum volume Vmin
of the Sasaki-Einstein 5-manifolds Y5. Building on the
pioneering work of [2], this work proposes the use of more
advanced machine learning techniques. In particular, we
introduce machine learning regularization by using
the Lasso method [60] in order to identify an explicit
formula for the minimum volume Vmin for Sasaki-Einstein
5-manifolds Y5. We expect to be able to write the minimum
volume formula in terms of features obtained from the toric
diagram of the corresponding toric Calabi-Yau 3-folds. The
use of machine learning regularization allows us to elimi-
nate parameters, reducing the necessary parameters for the
volume formula to a manageable amount that is interpret-
able, presentable and reusable.
Before discussing these machine learning techniques, let

us first review in the following section the computation of
the volume functions for toric Calabi-Yau 3-folds using
Hilbert series.

III. HILBERT SERIES AND
CALABI-YAU VOLUMES

Given X as a cone over a projective variety X, where X is
realized as an affine variety in C, the Hilbert series [45,46]
is the generating function for the dimension of the graded
pieces of the coordinate ring

C½x1;…; xk�=hfii; ð3:1Þ
where fi are the defining polynomials of X. Accordingly,
the Hilbert series takes the general form

gðt;XÞ ¼
X∞
i¼0

dimCðXiÞti: ð3:2Þ

For 4d N ¼ 1 supersymmetric gauge theories given by
brane tilings [65–67], we have an associated toric
Calabi-Yau 3-fold X , which becomes the mesonic moduli
space [45,46,72,73] of the 4d N ¼ 1 supersymmetric
gauge theory when the gauge groups are all Uð1Þ. The
corresponding Hilbert series is the generating function of
mesonic gauge invariant operators that form the mesonic
moduli space. For the purpose of the remaining discussion,
we will consider the 4d N ¼ 1 supersymmetric gauge
theories given by brane tilings as Abelian theories with
Uð1Þ gauge groups.
Following the forward algorithm for brane tilings [35],

we can use gauged linear sigma model (GLSM) fields [72]
given by perfect matchings pα [65,66] of the brane tilings
in order to express the mesonic moduli space of the Abelian
4d N ¼ 1 supersymmetric gauge theory as the following
symplectic quotient:

X ¼ IrrF ♭==QD ¼ ðC½pα�==QFÞ==QD; ð3:3Þ

where IrrF ♭ is the largest irreducible component, also
known as the coherent component, of the master space
F ♭ [74–76] of the 4dN ¼ 1 supersymmetric gauge theory.
The master space is the spectrum of the coordinate ring
generated by the chiral fields encoded in pα and quotiented
by the F-term relations encoded in QF. In Eq. (3.3), QF is
the F-term charge matrix summarizing the Uð1Þ charges
originating from the F-terms, and QD is the D-term charge
matrix which summarizes the Uð1Þ gauge charges on
perfect matchings pα.
Following the symplectic quotient description of the

mesonic moduli space in Eq. (3.3), the Hilbert series can be
obtained by solving the Molien integral [77],

gðyα;XÞ ¼
Yc−2
i¼1

I
jzij¼1

dzi
2πizi

Yc
α¼1

1

1 − yα
Q

c−3
j¼1 z

ðQtÞjα
j

; ð3:4Þ

where c is the number of perfect matchings in the brane
tiling and Qt ¼ ðQF;QDÞ is the total charge matrix.
References [25,26] showed that the same Hilbert

series can be obtained directly from the toric diagram Δ
of the toric Calabi-Yau 3-fold X . Given that the toric
diagram Δ is a convex lattice polygon on Z2 with an ideal
triangulation T ðΔÞ into unit subtriangles Δi ∈ T ðΔÞ, the
Hilbert series of the corresponding toric Calabi-Yau 3-fold
X can be written as

gðti;XÞ ¼
Xr

i¼1

Yn
j¼1

1

ð1 − tui;jÞ ; ð3:5Þ

where i ¼ 1;…; r is the index for the r unit triangles
Δi ∈ T ðΔÞ, and j ¼ 1, 2, 3 is the index for the three
boundary edges of each unit triangle Δi. For each boundary
edge ej ∈Δi, we have a three-dimensional outer normal
vector ui;j whose components are assigned the following
product of fugacities,

tui;j ¼
Y3
a

t
ui;jðaÞ
a ; ð3:6Þ

where ui;jðaÞ indicates the ath component of ui;j. We note
that ui;j is a three-dimensional vector because the defining
vertices of Δ and Δi are all on a plane at height z ¼ 1 such
that their coordinates are of the form ðx; y; 1Þ. As a result,
the vectors ui;j corresponding to edge ej ∈Δj are normal to
the three-dimensional surface given by the vectors con-
necting the origin (0, 0, 0) to the two bounding vertices
of ej ∈Δj.
It is important to note that the fugacities t1, t2, t3 in

Eq. (3.6) relate to the components of normal vectors ui;j,
and therefore depend on the triangulation and the particular
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instance in a given GLð2;ZÞ toric orbit of a toric diagram
on the z ¼ 1 plane. In comparison, the fugacities yα in
Eq. (3.4) refer to the GLSM fields pα given by perfect
matchings of the corresponding brane tiling. Since perfect
matchings can be mapped directly to chiral fields in the 4d
N ¼ 1 supersymmetric gauge theory, the fugacities yα in
Eq. (3.4) can be mapped to fugacities counting global
symmetry charges carried by chiral fields in the 4d theory.
Because both Hilbert series from Eq. (3.4) and Eq. (3.5)
refer to the same toric Calabi-Yau 3-fold X , there exists a
fugacity map between yα and t1, t2, t3 that identifies the two
Hilbert series with each other.
For the rest of the discussion, let us consider Hilbert

series for toric Calabi-Yau 3-folds X that are in terms of
fugacities t1, t2, t3 corresponding to coordinates of the
normal vectors ui;j ∈Z3 of the toric diagram Δ. Given the
Hilbert series gðti;XÞ, we can obtain the volume function
[25,26] of the Sasaki-Einstein 5-manifold Y5 using,

Vðbi;Y5Þ ¼ lim
μ→0

μ3gðti ¼ exp½−μbi�;XÞ; ð3:7Þ

where bi are the Reeb vector components with i ¼ 1;…3.
We note that the Reeb vector b ¼ ðb1; b2; b3Þ is always in
the interior of the toric diagram Δ and can be chosen such
that one of its components is set to

b3 ¼ 3; ð3:8Þ

for toric Calabi-Yau 3-folds X . We further note that the
limit in Eq. (3.7) takes the leading order in μ in the
expansion for gðti ¼ exp½−μbi�;XÞ, which is shown to
refer to the volume of the Sasaki-Einstein base Y5

in [25,26].
Let us consider in the following paragraph an example of

the computation of the volume function in terms of Reeb
vector components bi for the Sasaki-Einstein base of the
cone over the zeroth Hirzebruch surface F0 [35,38,70,71].

A. Example: F0

The toric diagram, its triangulation and the outer normal
vectors ui;j for the cone over the zeroth Hirzebruch surface
F0 [35,38,70,71] are shown in Fig. 2(a). The cone over the
zeroth Hirzebruch surface F0 is an interesting toric Calabi-
Yau 3-fold because it has two distinct corresponding 4d
N ¼ 1 supersymmetric gauge theories represented by two
distinct brane tilings that are related by Seiberg duality
[35,78,79]. One of the brane tilings is shown in Fig. 1.
Using the outer normal vectors ui;j for each of the four

unit subtriangles Δi of the toric diagram for F0 in Fig. 2(b),
we can use Eq. (3.5) to write down the Hilbert series,

gðti;F0Þ ¼
1

ð1 − t1Þð1 − t−12 Þð1 − t−11 t2t−13 Þ
þ 1

ð1 − t−11 Þð1 − t−12 Þð1 − t1t2t−13 Þ
þ 1

ð1 − t1Þð1 − t2Þð1 − t−11 t−12 t−13 Þ
þ 1

ð1 − t−11 Þð1 − t2Þð1 − t1t−12 t−13 Þ : ð3:9Þ

Using the limit in Eq. (3.7), we can derive the volume
function of the Sasaki-Einstein base directly from the
Hilbert series as follows:

Vðbi;F0Þ

¼ 24

ðb1−b2−3Þðb1−b2þ3Þðb1þb2−3Þðb1þb2þ3Þ ;

ð3:10Þ

where b3 ¼ 3. When we find the global minimum of the
volume function Vðbi;F0Þ, we obtain

Vmin ¼ minbiVðbi;F0Þ ¼
8

27
≃ 0.29630; ð3:11Þ

up to five decimal points, which occurs at critical Reeb
vector components b�1 ¼ b�2 ¼ 0. In the remainder of this
work, we will maintain a precision level of five decimal
points for all numerical measurements.

IV. FEATURES OF TORIC DIAGRAMS
AND REGRESSION

The aim of this work is to identify an expression for the
minimum volume Vmin of Sasaki-Einstein 5-manifolds Y5

in terms of parameters that we know from the correspond-
ing toric Calabi-Yau 3-folds X . We refer to these para-
meters as features, denoted as xa, of the toric Calabi-Yau
3-fold X .

(a) (b)

FIG. 2. (a) The triangulated toric diagram for the zeroth
Hirzebruch surface F0, and (b) the corresponding normal vectors
ui;j for each unit triangle Δi in the triangulation.
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Assuming that we have Nx features xa for a given toric
Calabi-Yau 3-fold, the proposal in [2] states that we can
write down a candidate linear function for the inverse
minimum volume in terms of these features as follows:

1=V̂minðxjaÞ≡ ŷj ¼ β0 þ
XNx

a¼1

βax
j
a; ð4:1Þ

where β0 and βa are real coefficients, and j labels the
particular toric Calabi-Yau 3-foldX j with its corresponding
toric diagram Δj ∈Z2.
Let us refer to the inverse of the actual minimum volume

obtained by volume minimization as 1=Vj
min ≡ yj for a

given toric Calabi-Yau 3-fold X j. If for a set S of N ¼ jSj
toric Calabi-Yau 3-folds X j, we know the actual minimum
volumes Vj

min via volume minimization, then we can
calculate the following residual sum of squares of the
difference between the inverses of the actual and the
expected minimum volumes for the entire set S,

L ¼ 1

2N

XN¼jSj

j¼1

ðyj − ŷjÞ2

¼ 1

2N

XN
j¼1

�
1=Vj

min − β0 −
XNx

a¼1

βax
j
a

�2

: ð4:2Þ

Here, L can be considered as a loss function [80] that
evaluates the performance of the candidate function for the
minimum volume in Eq. (4.1). In multiple linear regression
[48–52], as initially proposed in [2], the optimization task is
to minimize the loss function in Eq. (4.2) for a given dataset
S of toric Calabi-Yau 3-folds,

argminβ0;βaL: ð4:3Þ

In [2], multiple linear regression was used to obtain a
candidate minimum volume function using the following
feature set:

xja ∈ ff1; f2; f3; f1f2; f1f3;…; f21; f
2
2; f

2
3gj; ð4:4Þ

where

f1 ¼ I; f2 ¼ E; f3 ¼ V; ð4:5Þ

corresponding respectively to the number of internal lattice
points in Δj, the number of boundary lattice points in Δj,
and the number of vertices that form the extremal corner
points in Δj, for a given toric Calabi-Yau 3-fold X j. Under
Pick’s theorem [81], these features are related as follows:

A ¼ I þ E=2 − 1; ð4:6Þ

where A is the area of the toric diagram Δ, with the area of
the smallest unit triangle in Z2 having A ¼ 1=2.
With a dataset S of N ¼ 15, 147 toric Calabi-Yau

3-folds, the work in [2] showed that the candidate linear
function in Eq. (4.1) with features given by Eq. (4.4) is able
to estimate the inverse minimum volume with an expected
percentage relative error of 2.2%. In this work, we expand
upon the accomplishments of [2] by introducing novel
features that describe toric Calabi-Yau 3-folds, augmenting
the datasets for toric Calabi-Yau 3-folds, and applying
machine learning techniques incorporating regularization.
These improvements are designed to address some of the
shortcomings of the work in [2] as well as give explicit
interpretable formulas for the minimum volume for toric
Calabi-Yau 3-folds.

A. New features

We introduce several new features that describe a
toric Calabi-Yau 3-fold and are obtained from the corre-
sponding toric diagram Δ. By defining the n-enlarged toric
diagram as

Δn ¼ fnv ¼ ðnx; nyÞjv ¼ ðx; yÞ∈Δg; ð4:7Þ

where n∈Zþ and v ¼ ðx; yÞ∈Z2 are the coordinates of
the vertices in the original toric diagram Δ. We note that
Δ1 ¼ Δ and Fig. 3 shows as an example the 2-enlarged
toric diagram Δ2 for the cone over dP1 These n-enlarged
toric diagrams Δn also appeared in [82] for the study of
Hodge numbers of Calabi-Yau manifolds that are con-
structed as hypersurfaces in toric varieties given by Δ.
Using the n-enlarged toric diagram Δj

n for a given toric
Calabi-Yau 3-fold X j, we can now refer to the area ofΔn as
An, the number of internal lattice points of Δn as In, and the
number of boundary lattice points in Δn as En. We further
note that the number of vertices Vn corresponding to
extremal corner points in Δn is the same for V in Δ for
all n, i.e., Vn ¼ V.
In our work, we use features of a toric Calabi-Yau

3-fold X j that are composed from members of the follow-
ing set:

fA; V; E; Ingj; ð4:8Þ

(a) (b)

FIG. 3. (a) The toric diagram Δ1 for the cone over dP1, and
(b) the corresponding 2-enlarged toric diagram Δ2 with n ¼ 2.
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where n ¼ 1;…; 7. These are defined through the
corresponding toric diagram Δj and its corresponding
n-enlarged toric diagram Δj

n. Through the application of
machine learning regularization, our objective is to differ-
entiate between features that contribute to the expression
for the minimum volume associated with a toric Calabi-Yau
3-fold and those that do not.

B. New sets of toric Calabi-Yau 3-folds

The aim of this work is to make use of machine learning
with regularization in order to identify an interpretable
formula that accurately estimates the minimum volume of
Sasaki-Einstein 5-manifolds corresponding to toric Calabi-
Yau 3-folds. The interpretability of the minimum volume
formula is achieved by the lowest possible number of
features on which the formula depends on. In order to train
such a regularized machine learning model, we establish
four sets Sm of toric Calabi-Yau 3-folds X j, for which the
corresponding minimum volumes are known. These sets
Sm are summarized in Table II and are defined as follows:

(i) S1a: This set consists of toric Calabi-Yau 3-folds
whose toric diagrams fit into a 5 × 5 lattice box in
Z2 as illustrated in Fig. 4(a). This set contains a
certain degree of redundancy given that convex
lattice polygons related by a GLð2;ZÞ transforma-
tion on their vertices refer to the same toric Calabi-
Yau 3-fold. Accordingly, we restrict ourselves to

toric diagrams Δj that give unique combinations of
the form ð1=Vj

min; V
j; Ej; IjÞ. This results in a data-

set of jS1aj ¼ 15; 327 distinct toric diagrams with
unique inverse minimum volumes 1=Vj

min up to six
decimal points.

(ii) S1b: The second set consists of toric Calabi-Yau
3-folds whose toric diagrams fit inside a circle
centered at the origin (0, 0) on the Z2 lattice with
radius r ¼ 3.5 as illustrated in Fig. 4(b). By impos-
ing the condition that we want GLð2;ZÞ-distinct
toric diagrams Δj with unique combinations of the
form ð1=Vj

min; V
j; Ej; IjÞ, we obtain jS1bj ¼ 31; 324

toric diagram for this set.
(iii) S2a: For this set, we choose randomly 300,000

toric diagrams that fit into a 30 × 30 lattice box in
Z2. By imposing the condition that the toric dia-
grams Δj have unique combinations of the form
ð1=Vj

min; V
j; Ej; IjÞ, we obtain jS2aj ¼ 202; 015

toric diagram for this set.
(iv) S2b: For this set, we choose randomly 300,000 toric

diagrams that fit into a circle centered at the
origin (0, 0) on the Z2 lattice with radius r ¼ 15.
By imposing the condition that the toric diagrams
Δj have unique combinations of the form
ð1=Vj

min; V
j; Ej; IjÞ, we obtain jS2bj ¼ 201; 895

toric diagram for this set.
The distribution of inverse minimum volumes 1=Vmin
for the above sets of toric diagrams is illustrated together

with the mean inverse minimum volume ȳ ¼ h1=Vmini ¼
1

jSmj
PjSmj

j¼1 1=V
j
min in Fig. 5. In the following sections, we

make use of regularized machine learning in order to
identify functions that optimally estimate the inverse
minimum volume 1=Vmin in each of the above datasets.

C. Feature analysis with principal component analysis

If we restrict ourselves to features of the form fðfjuÞaðfjvÞb
j1 ≤ aþ b ≤ 2; a; b∈Zþg with fju ∈ fA; V; E; Ingj, where
n ¼ 1;…; 7, we obtain a collection of 65 dimensional
feature vectors for each of the datasets Sm. The relative
statistical relevance of these features can be measured by
obtaining the eigenvector components of the covariance
matrix using a principal component analysis (PCA) of the
feature vectors for each dataset Sm. Focusing on the first
principal component, which captures a relative variance of
approximately 9% for each of the datasets, the square
components of the corresponding eigenvector measure
the relative relevance of the associated feature towards this
principal component. Table III shows these values for the
features of the form ðfjuÞaðfjvÞb according to the four
datasets Sm. We see from this analysis that feature combi-
nations involving V and E have statistically the lowest
relevance. In the following work, we propose the use of

(a) (b)

FIG. 4. (a) Toric diagrams in datasets S1a and S2a are con-
strained by a nx × ny lattice box inZ2, whereas (b) toric diagrams
in datasets S1b and S2b are constrained by a circle of radius r with
the center at ð0; 0Þ∈Z2.

TABLE II. For training the machine learning models, we make
use of 4 sets Sm of toric diagrams with different sizes jSmj.
Set Description jSmj
S1a All polytopes 5 × 5 lattice box 15,327
S1b All polytopes r ¼ 3.5 circle 31,324
S2a Selected polytopes 30 × 30 lattice box 202,015
S2b Selected polytopes r ¼ 15 circle 201,895
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machine learning regularization as an alternative scheme of
feature selection for the minimum volume of toric Calabi-
Yau 3-folds.

D. Machine learning models and regularization

In order to obtain a function for the minimum volume of
Sasaki-Einstein 5-manifolds corresponding to toric Calabi-
Yau 3-folds in terms of features obtained from the corre-
sponding toric diagrams, we make use of the following
machine learning models:

(i) Polynomial regression (PR). We make use of poly-
nomial regression [85], where the relationship be-
tween the feature variables xja and the predicted
variable ŷj, is given by

ŷj ¼ β0 þ
XNx

a¼1

βax
j
a; ð4:9Þ

where β0 and βa are real coefficients, Nx is the
number of features, and j labels the particular sample

in the data set that is used to train this machine
learning model. In our case, the data set consists of
toricCalabi-Yau 3-foldsX j, where the corresponding
minimum volume Vj

min is given by y ¼ 1=Vj
min.

Here we note that the features xja are taken from
the set fðfjuÞaðfjvÞbj1 ≤ aþ b ≤ 2; a; b∈Zþg with
fju ∈ fA; V; E; Ingj, where n ¼ 1;…; 7.

(ii) Logarithmic regression (LR). We make use of
logarithmic regression [85] in order to help linearize
relationships between features xja that are potentially
multiplicative in their contribution towards the
predicted variable ŷj. To be more precise, we make
use of a log-log model where we log-transform both
the predicted variable ŷj and the features xja. The
predicted variable is then given by

logðŷjÞ ¼ β0 þ
XNx

a¼1

βa logðxjaÞ; ð4:10Þ

TABLE III. Principal component analysis of feature vectors with components of the form ðfjuÞaðfjvÞb with 1 ≤ aþ b ≤ 2, a; b∈Zþ

and fju ∈ fA; V; E; Ingj, where n ¼ 1;…; 7. For each feature, we show the square value of the corresponding component of the first
eigenvector of the PCA covariance matrix, which measures relative relevance (in %) of the feature with respect to the first principal
component. The first principal component has a relative variance of approximately 9% for each of the datasets S1a, S1b, S2a and S2b.

Dataset A V E I I2 I3 I4 I5 I6 I7 A2 AV AE AI AI2 AI3 AI4 AI5 AI6 AI7 V2 VE

S1a 1.685 0.511 0.661 1.505 1.638 1.662 1.671 1.675 1.677 1.679 1.710 1.448 1.348 1.664 1.702 1.707 1.709 1.709 1.709 1.710 0.489 0.862
S1b 1.672 0.789 0.362 1.549 1.636 1.654 1.660 1.664 1.666 1.667 1.701 1.542 1.302 1.655 1.687 1.693 1.696 1.697 1.698 1.699 0.782 0.746
S2a 1.730 0.422 0.167 1.716 1.724 1.726 1.727 1.728 1.728 1.729 1.795 1.637 0.884 1.787 1.791 1.792 1.793 1.793 1.794 1.794 0.420 0.324
S2b 1.731 0.430 0.163 1.717 1.724 1.727 1.728 1.728 1.729 1.729 1.794 1.637 0.886 1.787 1.791 1.792 1.792 1.793 1.793 1.793 0.427 0.320

Dataset VI VI2 VI3 VI4 VI5 VI6 VI7 E2 EI EI2 EI3 EI4 EI5 EI6 EI7 I2 II2 II3 II4 II5 II6 II7

S1a 1.417 1.456 1.457 1.456 1.455 1.455 1.454 0.638 1.566 1.456 1.419 1.401 1.390 1.383 1.378 1.534 1.616 1.635 1.644 1.648 1.651 1.653
S1b 1.564 1.566 1.560 1.557 1.554 1.552 1.551 0.333 1.541 1.427 1.386 1.365 1.352 1.344 1.338 1.568 1.620 1.633 1.639 1.642 1.645 1.646
S2a 1.633 1.636 1.636 1.636 1.636 1.636 1.636 0.161 0.920 0.902 0.896 0.893 0.891 0.890 0.889 1.779 1.783 1.785 1.785 1.786 1.786 1.786
S2b 1.634 1.636 1.636 1.637 1.637 1.637 1.637 0.155 0.922 0.904 0.898 0.895 0.894 0.892 0.891 1.779 1.783 1.784 1.785 1.785 1.786 1.786

Dataset I22 I2I3 I2I4 I2I5 I2I6 I2I7 I23 I3I4 I3I5 I3I6 I3I7 I24 I4I5 I4I6 I4I7 I25 I5I6 I5I7 I26 I6I7 I27
S1a 1.675 1.687 1.692 1.694 1.696 1.697 1.696 1.700 1.702 1.703 1.704 1.703 1.704 1.705 1.706 1.706 1.707 1.707 1.707 1.708 1.708
S1b 1.662 1.672 1.676 1.679 1.680 1.681 1.681 1.685 1.687 1.688 1.689 1.688 1.690 1.691 1.692 1.692 1.693 1.694 1.694 1.695 1.695
S2a 1.788 1.789 1.789 1.790 1.790 1.790 1.790 1.791 1.791 1.791 1.791 1.791 1.792 1.792 1.792 1.792 1.792 1.792 1.792 1.793 1.793
S2b 1.787 1.788 1.789 1.789 1.789 1.790 1.789 1.790 1.790 1.791 1.791 1.791 1.791 1.791 1.791 1.791 1.792 1.792 1.792 1.792 1.792

(a) (b) (c) (d)

FIG. 5. The distribution of expected minimum volumes y ¼ 1=Vmin for the datasets (a) S1a, (b) S1b, (c) S2a, and (c) S2b. The mean
expected value ȳ is indicated by a white line. The histograms for values of y ¼ 1=Vmin are obtained for bin sizes Δy with the number of
toric diagrams in binh given by NðbinhÞ.
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where β0 and βa are real coefficients, and Nx is the
number of log-transformed features of the form
logðxjaÞ. The label j corresponds to a particular
toric Calabi-Yau 3-fold X j whose corresponding
minimum volume Vj

min is given by yj ¼ 1=Vj
min.

Here we note that the log-transformed features
of the form logðxjaÞ are taken from the set
fðlogðfjuÞÞaðlogðfjvÞÞbj1≤aþb≤2;a;b∈Zþg with
fju ∈ fA; V; E; Ingj, where n ¼ 3;…; 7. Here, we do
not make use of I1 and I2.

When we introduce regularization [58,59] into polynomial
regression and logarithmic regression, we minimize the
following loss function between the predicted variable ŷj

and the expected variable y,

L ¼ 1

2N

XN
j¼1

ðyj − ŷjÞ2 þ ΔL; ð4:11Þ

where ΔL is the regularization term in the loss function.
The loss function in Eq. (4.11) is iteratively minimized
during the optimization process and we set for all following
computations the maximum number of iterative steps to be
Nmax ¼ 10; 000. The precise form of the regularization
term in the loss function as well as the different regulari-
zation schemes in machine learning are discussed in the
following section.

V. LEAST ABSOLUTE SHRINKAGE AND
SELECTION OPERATOR (LASSO) AND

REGULARIZATION

Lasso [60] is a machine learning regularization technique
primarily employed to prevent overfitting in supervised
machine learning. However, it can also be utilized for
feature selection. In our work, the overarching goal in
employing Lasso is to introduce a machine learning model
capable of delivering optimal predictions for the minimum
volume for toric Calabi-Yau 3-folds while using the fewest
features from the training dataset. For problems such as the
one considered in this work, it is quintessential to be able to
obtain formulas with a small number of parameters. As a
result, using Lasso is particularly suited for discovering
new mathematical formulas such as the one aimed for in
this work for the minimum volume for toric Calabi-Yau
3-folds.
In the following section, we give a brief overview of

several regularization schemes including Lasso in the
context of supervised machine learning for the minimum
volume formula for toric Calabi-Yau 3-folds.

A. Regularization

Regularization in machine learning is a technique
usually used to avoid overfitting the dataset during model
training. This is done by adding a penalty term in the loss

function. The introduction of the added regularization term
ΔL, resulting in an updated loss function of the form,

Lþ ΔL; ð5:1Þ

serves the purpose of constraining the possible parameter
values within the supervised machine learning model. In
the case of multiple linear regression as first introduced
in [2] and reviewed in Sec. IV, these parameters would be
the real coefficients β0 and βa in the candidate linear
function in Eq. (4.1) for the expected minimum volume
given by ŷj ¼ 1=V̂j

min. By restricting the values for these
parameters, regularization effectively makes it harder for
the supervised machine learning model to give a candidate
function for the minimum volume Vmin with many terms in
the function. This prevents the machine learning model to
overfit the dataset of minimized volumes for toric Calabi-
Yau 3-folds.
Let us review the following three regularization schemes:
(i) L1 Regularization (Lasso). This regularization

scheme [60] adds the following linear regularization
term to the loss function of the regression model,

ΔLL1 ¼ α
XNx

a¼1

jβaj; ð5:2Þ

where βa are the real parameters of the regression
model. α is a real regularization parameter. Increas-
ing the value of α has the effect of increasing the
strength of the L1 regularization.

(ii) L2 Regularization (Ridge). Another regularization
scheme is known as Ridge regularization or L2
regularization [86]. It adds the following quadratic
regularization term to the loss function of the
regression model,

ΔLL2 ¼ α
XNx

a¼1

β2a; ð5:3Þ

where βa are the real parameters of the regression
model and α is again the real regularization
parameter.

(iii) Elastic net (L1 and L2). Elastic net [87] is a
combination of L1 (Lasso) and L2 (Ridge) regu-
larization and adds the following regularization
terms to the loss function,

ΔLL1;L2 ¼ α1
XNx

a¼1

jβaj þ α2
XNx

a¼1

β2a; ð5:4Þ

where α1 and α2 are relative real regularization
parameters that regulate the proportion of L1 regu-
larization and L2 regularization in this regularization
scheme.
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Amongst these regularization schemes in supervised
machine learning, we are going to mainly focus on
Lasso and L1 regularization for the remainder of this work.
While all three regularization schemes share the common
goal of constraining the range of values for the model
parameters βa, it is noteworthy that only Lasso possesses
the unique property of inducing sparsity among the model
parameters, resulting in the complete elimination of certain
parameters during the training process.
There are several arguments why Lasso enables the

complete elimination of some of the model parameters and
the corresponding features in the candidate function for the
minimum volume Vmin for toric Calabi-Yau 3-folds. In
order to illustrate this, let us consider the case with Nx ¼ 2

features xj1 and xj2, for which the L1 and L2 regularization
terms take respectively the following form,

ΔLL1 ¼ αðjβ1j þ jβ2jÞ; ΔLL2 ¼ αðβ21 þ β22Þ: ð5:5Þ

If we assume that under optimization, the regularization
terms reach a value ΔLL1 ¼ ϵ and ΔLL2 ¼ ϵ for α > 0
and ϵ∈R, we can draw the parametric plots for the two
regularization terms as shown in Fig. 6 [58]. We can see
from the plots in Fig. 6 that for L1 regularization, the
minimum of the total loss function is more likely achieved
when one of the two parameters β1 or β2 approaches 0. This
is in part due to the absolute values taken for the parameters
in the linear L1 regularization term.
As a result, Lasso regularization is particularly suited for

feature selection and parameter elimination in regression
models. In our work, we employ L1 regularization to derive
a formula for the minimum volume Vmin of Sasaki-Einstein
5-manifolds corresponding to toric Calabi-Yau 3-folds that
is interpretable, presentable and reusable.

VI. CANDIDATES FOR MINIMUM VOLUME
FUNCTIONS

In this work, our aim is to apply Lasso regularization in
order to identify explicit formulas for the minimum volume
for toric Calabi-Yau 3-folds. By doing so, our aim is to
maximize the accuracy of the formulas that we find while
minimizing the number of parameters the formulas depend
on, making them interpretable and readily presentable.

A. Parameter sparsity vs accuracy

Like in all regression problems, we introduce as a
measure of how well the model fits the observed data
using the R2-score [58,85] given by

R2 ¼ 1 −
Sres
Stot

; ð6:1Þ

where the residual sum of squares Sres is given by

Sres ¼
XN
j¼1

ðyj − ŷjÞ2 ð6:2Þ

and the total sum of squares Stot is given by

Stot ¼
XN
j¼1

ðyj − ȳÞ2: ð6:3Þ

Here, ŷj denotes the predicted value for the minimum
volume Vj

min given by yj ¼ 1=Vj
min, whereas ȳ denotes the

mean of the expected values yj.
We recall that the optimization problem for the L1-

regularized regression model is to minimize the loss
function Lþ ΔLL1 with the L1 regularization term. As
we discussed in the sections above, this optimization
problem focuses on minimizing the mean squared error
with a penalty for nonzero coefficients βaðαÞ, which
depends on the regularization parameter α.
Here, we note that there is an additional optimization

problem regarding the maximization of the R2-score in
Eq. (6.1) and the minimization of the number NβaðαÞ of
nonzero coefficients βaðαÞ. We can formulate this addi-
tional optimization problem as follows:

max
α

�
R2ðαÞ − λ

NβaðαÞ
Nx

�
; ð6:4Þ

where 0 < NβaðαÞ ≤ Nx, and the values of the coefficients
βaðαÞ and the R2ðαÞ-score all depend on the regularization
parameter α: λ is a positive hyperparameter that regulates
how much we value sparsity of feature coefficients βaðαÞ
over the accuracy of the estimate given by R2ðαÞ.

(a) (b)

FIG. 6. Parametric plots for β1 and β2 for a 2-parameter
model [58]. (a) In L1 regularization (Lasso), the minimum of
the regularized loss function minðLþ ΔLÞ is more likely to be
located when one of the parameters vanishes, in comparison to
the case (b) in L2 regularization (Ridge) where the minimum of
the regularized loss function minðLþ ΔLÞ is equally more likely
located at nonzero values of the parameters. This illustrates that
L1 regularization is more suited in eliminating parameters under
optimization.
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B. Candidate formulas

The candidate formulas for the minimum volume for
toric Calabi-Yau 3-folds are identified by an optimal
regularization parameter α� that maximizes the R2-score
of the candidate formula and minimizes the number of
nonzero coefficients NβaðαÞ corresponding to features in the
chosen regression model. In order to identify the optimal
regularization parameter α� for the optimization problem in
Eq. (6.4), we search for α� in a given fixed range for α as
specified in Figs. 7 and 8. We do the search for the optimal
regularization parameter α� for all four datasets in Table II
for both L1-regularized polynomial regression and
L1-regularized logarithmic regression as discussed in
Secs. IVandV. The chosenL1-regularized regressionmodels
are trained for a particular value of the regularization
parameter α under a fixed randomly chosen 80% training
and 20% testing data split, where the correspondingR2-score
depending on α is obtained from the testing data.
Figure 7 shows respectively for datasets S1a and S2a plots

for the L1 regularization parameter α for polynomial
regression against standardized coefficients β̄aðαÞ, against
the number of nonzero coefficients NβaðαÞ, and against
the R2-score. Here, the standardized coefficients β̄aðαÞ are
obtained when the training is conducted over normalized

features x̄a. When the training is completed for a specific
value of α, the candidate formula for the minimum volume
given by y ¼ 1=Vmin is obtained by reversing the normali-
zation on the features, giving us the coefficients βaðαÞ of
the candidate formula. We also have Fig. 8 which shows
respectively for datasets S1a and S2a plots for the L1
regularization parameter α for logarithmic regression
against the standardized coefficients β̄aðαÞ, the number
of nonzero coefficients NβaðαÞ and the R2-score. Similar
plots can also be obtained for datasets S1b and S2b for both
L1-regularized polynomial regression and L1-regularized
logarithmic regression.
Overall, the plots illustrate that the identified optimal

regularization parameters α� minimize the number of non-
zero coefficients NβaðαÞ in the formula estimating the mini-
mum volume given by y ¼ 1=Vmin, as well as maximize the
accuracy of the formulas measured by the R2-score.
Tables IV and V summarize respectively the most optimal
candidate formulas for the minimum volume given by
y ¼ 1=Vmin under L1-regularized polynomial regression
and L1-regularized logarithmic regression for the four data-
sets in Table II, with the corresponding optimal regulariza-
tion parameters α�, the corresponding number of nonzero
coefficients NβaðαÞ and the R2-score.

(a) (b) (c)

(d) (e) (f)

FIG. 7. The L1 (Lasso) regularization parameter α for polynomial regression on dataset S1a (15,327 toric diagrams in 5 × 5 lattice box)
against (a) the standardized coefficients β̄aðαÞ, (b) the number of nonzero coefficientsNβaðαÞ, and (c) the corresponding R

2ðαÞ-score. The
optimal regularization parameter α� was found in the range α ¼ 10−4;…; 101 by taking steps of Δα ≃ 1.12202. We also have the L1
(Lasso) regularization parameter α for polynomial regression on dataset S2a (202,015 random toric diagrams in 30 × 30 lattice box)
against (c) the standardized coefficients β̄aðαÞ, (d) the number of nonzero coefficients NβaðαÞ, and (e) the corresponding R2ðαÞ-score.
The optimal regularization parameter α� was found in the range α ¼ 10−4;…; 103 by taking steps of Δα ≃ 1.17490.
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A closer look reveals that for all models, the identified
optimal regularization parameters α� results in formulas
that approximate the minimum volume y ¼ 1=Vmin
extremely well for all the datasets S1a, S1b, S2a, and S2b.
Overall, the L1-regularized logarithmic regression
models seem to give more accurate results than the L1-
regularized polynomial regression models with NβaðαÞ ≤ 6

over all datasets. In particular, L1-regularized logarithmic
regression models trained on datasets S2a and S2b have
R2-scores above 0.99, which is exceptionally high.

Having a closer look at explicit examples of toric Calabi-
Yau 3-folds in the datasets reveals however that the perfor-
mances of the regularized regression models can vary
between different toric Calabi-Yau 3-folds. For example,
focusing on the L1-regularized logarithmic regression mod-
els trained on S1a and S1b, we observe that the minimum
volumes given by 1=ŷLR1a and 1=ŷLR1b in Table V perform
differently for toric diagrams with smaller areas A compared
to toric diagrams with larger areas A as illustrated in Fig. 9.
Similar observations can be made for the L1-regularized

(a) (b) (c)

(d) (e) (f)

FIG. 8. The L1 (Lasso) regularization parameter α for logarithmic regression on dataset S1a (15,327 toric diagrams in 5 × 5 lattice box)
against (a) the standardized coefficients β̄aðαÞ, (b) the number of nonzero coefficientsNβaðαÞ, and (c) the corresponding R

2ðαÞ-score. The
optimal regularization parameter α� was found in the range α ¼ 10−4;…; 101 by taking steps of Δα ≃ 1.12202. We also have the L1
(Lasso) regularization parameter α for logarithmic regression on dataset S2a (202,015 random toric diagrams in 30 × 30 lattice box)
against (c) the standardized coefficients β̄aðαÞ, (d) the number of nonzero coefficientsNβaðαÞ, and (e) the corresponding R

2ðαÞ-score. The
optimal regularization parameter α� was found in the range α ¼ 10−4;…; 103 by taking steps of Δα ≃ 1.17490.

TABLE IV. Optimal candidate formulas for the minimum volume for toric Calabi-Yau 3-folds given by y ¼
1=Vmin and obtained under L1 (Lasso) regularized polynomial regression (PR) on datasets S1a, S1b, S2a, and S2b. For
each optimal candidate formula, we give the optimal regularization parameter α� that maximizes the corresponding
R2-score and minimizes the number of nonzero coefficients Nβa in the formula.

Dataset y ¼ 1=Vmin α� Nβaðα�Þ R2ðα�Þ
S1a ŷPR1a ¼ 1.28837A − 0.71753V þ 0.07208I2 þ 5.18969 0.03548 3 0.98354
S1b ŷPR1b ¼ 1.36089A − 0.61041V þ 0.15561I þ 5.31028 0.01995 3 0.98697
S2a ŷPR2a ¼ 1.61574A − 19.35740V þ 0.06419I þ 101.58972 0.97724 3 0.98743
S2b ŷPR2b ¼ 1.61494A − 19.42096V þ 0.06494I þ 101.84952 0.97724 3 0.98740
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logarithmic regression models trained on S2a and S2b as well
as the L1-regularized polynomial regression models.
In summary,we can calculate the expected relative percen-

tage errors E½ϵ� of the predicted minimum volumes given by
1=ŷ and the corresponding standard deviations σ½ϵ� for the
L1-regularized logarithmic regression models as follows:

E½ϵLR1a � ¼ 2.158%; σ½ϵLR1a � ¼ 1.696%;

E½ϵLR1b � ¼ 1.884%; σ½ϵLR1b � ¼ 1.545%;

E½ϵLR2a � ¼ 3.577%; σ½ϵLR2a � ¼ 2.396%;

E½ϵLR2b � ¼ 3.579%; σ½ϵLR2b � ¼ 2.399%: ð6:5Þ

TABLE V. Optimal candidate formulas for the minimum volume for toric Calabi-Yau 3-folds given by y ¼ 1=Vmin and obtained under
L1 (Lasso) regularized logarithmic regression on datasets S1a, S1b, S2a and S2b. For each optimal candidate formula, we give the optimal
regularization parameter α� that maximizes the corresponding R2-score and minimizes the number of nonzero coefficients Nβa in the
formula.

Dataset y ¼ 1=Vmin α� Nβaðα�Þ R2ðα�Þ
S1a ŷLR1a ¼ 1.97348A0.77011V−0.21355I0.087963 I0.027224 I0.002025 e0.00923ðlog I3Þ2 0.00045 6 0.98932
S1b ŷLR1b ¼ 1.75668A0.74154V−0.182009E0.00050I0.164513 I0.006794 e0.00447ðlog I3Þ2 0.00032 6 0.98992
S2a ŷLR2a ¼ 2.50772A0.95411V−0.21992I0.028673

0.00112 3 0.99281
S2b ŷLR2b ¼ 2.51288A0.95322V−0.21970I0.028983

0.00112 3 0.99297

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 9. The L1-regularized logarithmic regression models trained on datasets S1a and S1b perform better on toric diagrams with larger
areas A [see selection in (e)–(h)] than for toric diagrams with smaller areas A [see selection in (a)–(d)]. The performance is measure by
the relative percentage error ϵð1=ŷÞ of the predicted minimum volume given by 1=ŷ. The R2-scores for the L1-regularized logarithmic
regression models trained on datasets S1a and S1b are R2ðyLR1a Þ ¼ 0.98932 and R2ðyLR1b Þ ¼ 0.98992, respectively.
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We note that the models trained on S2a and S2b have a larger
expected relative percentage error than the ones trained on
S1a and S1b. This is partly due to the fact that S2a and S2b
contain randomly selected toric diagrams in a 30 × 30 lattice
box in Z2 and r ¼ 15 circle, respectively, whereas S1a and
S1b contain the full set of toric diagrams in a 5 × 5 lattice box
in Z2 and r ¼ 3.5 circle, respectively, as defined in Table II.
We also note that the R2-scores of the L1-regularized

logarithmic regression models in Table V,

R2ðyLR1a Þ ¼ 0.98932; R2ðyLR1b Þ ¼ 0.98992;

R2ðyLR2a Þ ¼ 0.99281; R2ðyLR2b Þ ¼ 0.99297; ð6:6Þ

are overall very high and close to 1. Compared to the
expected relative percentage errors in Eq. (6.5), which
measure how far off predictions of the minimum volume
given by 1=ŷ are, the R2-score is a measure of the accuracy
of the trained regression model. It quantifies the proportion
of the variation in y ¼ 1=Vmin that can be predicted using
the features selected from the corresponding toric diagrams
of the toric Calabi-Yau 3-folds.

VII. DISCUSSIONS AND CONCLUSIONS

With this work, we demonstrated that employing
regularization in machine learning models can effectively
address the limitations posed by supervised machine
learning techniques applied to problems that occur
in the context of string theory. In particular, we have
shown that the minimum volume Vmin for Sasaki-Einstein
5-manifolds corresponding to toric Calabi-Yau 3-folds can
be expressed by just 3 features of the associated toric
diagrams Δ with an R2-score ≥ 0.98. These three features
are the area A of Δ, the number of vertices V in Δ, and the
number of internal points in the factor n ¼ 3 enlarged toric
diagram Δ3.
The simultaneous maximization of the R2-score and the

minimization of the number surviving parameters in the

candidate function for y ¼ 1=Vmin by varying the regu-
larization strength given by the regularization parameter α,
the proposed regularized regression models in this work
give far more presentable, interpretable and explainable
results than our previous work in [2]. Above all, as
suggested in Fig. 9, the candidate formulas for the mini-
mum volumes of toric Calabi-Yau 3-folds obtained in this
study are concise enough to facilitate the examination of
why some toric Calabi-Yau 3-folds are associated with
minimum volumes that are more challenging to predict than
those of certain other toric Calabi-Yau 3-folds. We plan to
report on these investigations in the near future. We foresee
that the application of regularization schemes to other
supervised machine learning applications in string theory
will open up equally promising research opportunities in
the future.
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