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We construct noncommutative theories with the Moyal-Weyl product in the double field theory (DFT)
framework. We deform the infinitesimal generalized diffeomorphisms and the Leibniz rule in a consistent
way. The prescription requires a generalized star metric, which can be thought of as the fundamental double
metric, in order to construct the action. Finally we use the generalized scalar field dynamics and the
generalized scalar field-perfect fluid correspondence to construct the generalized energy-momentum tensor
of a perfect fluid in the noncommutative double geometry. The present formalism paves the way to the
study of string cosmologies scenarios including the Moyal-Weyl product in a T-duality invariant way.

DOI: 10.1103/PhysRevD.109.046014

I. INTRODUCTION

T-duality is an exact symmetry of closed string theory [1]
which establishes that toroidal backgrounds Td related
via the noncompact group Oðd; d; ZÞ are physically equiv-
alent. When one compactifies the low-energy limit of
string theory considering Kaluza-Klein compactifications,
the continuous form of the duality group, Oðd; d; RÞ,
appears as a symmetry. Interestingly enough, the effect
of T-duality is producing a noncommutative [2–14] relation
in the commutator of the target coordinates and/or its dual
coordinates [15–16]. This effect can be thought of as a
central extension of the zero-mode operator algebra, an
effect set by the string length scale even in cases where the
backgrounds are trivial.
At the effective level (supergravity level) it is possible to

construct commutative theories where the T-duality group
appears as a symmetry before compactification by doubling
the geometry and (re)writing all the fundamental fields and
parameters via multiplets of the duality group. This frame-
work is known as double field theory (DFT) [17–24]. One
interesting aspect about DFT is the existence of a strong
constraint or section condition which can be performed in
order to get rid of the extra coordinates required by
OðD;D;RÞ invariance, where D ¼ nþ d and n is the
dimension of the external space. Applying the strong
constraint only on the external coordinates it is possible

to arrive to a hybrid theory with an n-dimensional exterior
space-time and a d-dimensional double internal space [25].
While this is a promising formulation constructed on an
arbitrary double internal space, the formulation is purely
classical. While this setup can be used to effectively describe
theories and its duals, the relation between noncommuta-
tivity and gravity has been studied in the double geometry.
Another missing ingredient in this type of formulation is the
possibility that both the external and internal backgrounds
are partially/fully non-Riemannian [26–32].
If we focus on a model which could be reduced to the

Einstein-Hilbert action, one possibility is to define a
noncommutative geometry considering that the commuta-
tor of the coordinates is given by [33]

½xμ; xν� ¼ iθμν; ð1Þ
with θ a generic antisymmetric tensor which is also used to
defined an algebra Aθ through the following star product,

f ⋆ gðxÞ ¼ e
i
2
θρσ ∂

∂xρ⊗
∂

∂yσfðxÞ ⊗ gðyÞjy→x; ð2Þ
μ ¼ 1;…; D − 1. In this work we will focus on the θ ¼
const: case (Moyal-Weyl product), where Lorentz invari-
ance is broken from the very beginning [34]. Since the
ordinary relation

gμν ⋆ gνρ ¼ δρμ þOðθÞ; ð3Þ
receives θ-corrections, one is forced to construct an inverse
metric compatible with the star product, g⋆μν, which satisfies

gμν ⋆ g⋆νρ ¼ δρμ: ð4Þ
While the natural expectation is to deform both sym-

metries and action using the star product, the natural
proposal
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δξvμ ¼ ξν ⋆ ∂νvμ − ∂νξ
μ ⋆ vν ð5Þ

does not satisfy closure

½δξ1 ; δξ2 � ¼ δξ21 : ð6Þ

In [35], the authors keep diffeomorphism transforma-
tions untouched (with a modification to the Leibniz rule)
and they define a consistent action as

S ¼
Z

dDx
ffiffiffiffiffiffiffi
−g

p
⋆ Rþ cc ¼

Z
dDx

ffiffiffiffiffiffi
−g

p
RþOðθ2Þ; ð7Þ

where both the determinant of the metric and the Ricci
scalar contain θ-contributions [33] and the c.c. (complex
conjugate) terms guarantee that the action is real. Therefore
the previous action is invariant under infinitesimal diffeo-
morphisms, paying the cost of deforming the Leibniz
rule [35]. In this work we deform the transformation rules
using a generic commutative and associative product, so the
Leibniz rule is consistently modified but the action remains
unchanged. Moreover, the closure of the transformations is
also fulfilled. For clarity’s sake, we present our main results
in the following part.

A. Main results

Our formulation consists of a systematic procedure to
construct θ-deformed theories and we mainly focus on
the DFT framework. In this work we provide a simple way
to generalize this construction defining the notion of DFT1

on noncommutative double spaces.
We start by considering the noncommutative relation at

the level of double coordinates,

½XM; XN � ¼ iθMN; ð8Þ

where M ¼ 0;…; 2D − 1. We define the generalized star
metric through

H⋆
MP ⋆ H⋆PN ¼ δNM; ð9Þ

since there is a notion of an inverse metric in DFT. The
generalized star metric can be expanded in powers of θ as

H⋆PN ¼ HPN −
i
4
HPRθQS

∂QHRT∂SHTN þOðθ2Þ: ð10Þ

Moreover, we consider this new metric as the fundamental
field of the theory, so the construction of the noncommu-
tative version of the DFT projectors is given by

P⋆
MN ¼ 1

2
ðηMN −H⋆

MNÞ and P̄⋆
MN ¼ 1

2
ðηMN þH⋆

MNÞ;
ð11Þ

which satisfy the following properties:

P̄⋆
MQ ⋆ P̄⋆Q

N ¼ P̄⋆
MN; ð12Þ

P⋆
MQ ⋆ P⋆Q

N ¼ P⋆
MN;

P⋆
MQ ⋆ P̄⋆Q

N ¼ P̄⋆
MQ ⋆ P⋆Q

N ¼ 0: ð13Þ

Mimicking the procedure given in [44], we define a
connection ΓMNP and a covariant Riemann tensor as

RMNKL ¼ RMNKL þ RKLMN þ ΓQMN ⋆ ΓQ
KL; ð14Þ

RMNKL ¼ 2∂½MΓN�KL þ 2Γ½MjQL ⋆ ΓN�KQ: ð15Þ

The action is given by

Z
d2DX e−2d ⋆ P⋆MN ⋆ P⋆QR ⋆ RMQNR þ c:c: ð16Þ

Finally, we have checked that the inclusion of matter
through a generalized and massless scalar field is also
consistent with our formalism

Lmatter½H;Φ� ¼ 1

2
∂MΦ ⋆ H⋆MN ⋆ ∂NΦ − VðΦÞ; ð17Þ

which is compatible with the free scalar action to all orders
in θ after parametrization and imposing the strong con-
straint. We consider the generalized perfect fluid-scalar
field correspondence in order to construct the generalized
energy-momentum tensor,

T MN ¼ 4½P̄⋆
½MjK ⋆ P⋆

N�L�ð
ffiffiffiffiffiffiffiffiffiffiffiffi
ẽþ p̃

p
UM ⋆

ffiffiffiffiffiffiffiffiffiffiffiffi
ẽþ p̃

p
UNÞ

−
1

2
ηMN

ffiffiffiffiffiffiffiffiffiffiffiffi
ẽþ p̃

p
UP ⋆ H⋆PQ ⋆

ffiffiffiffiffiffiffiffiffiffiffiffi
ẽþ p̃

p
UQ; ð18Þ

with UM a generalized velocity [45] and ẽ, p̃ the gener-
alized energy density and pressure respectively. The pre-
vious tensor can be used in order to construct the
generalized Einstein equation for these geometries, which
pave the way to the study of noncommutativity string
cosmologies in a T-duality invariant way.

II. NONCOMMUTATIVE GEOMETRY
WITH MOYAL-WEYL PRODUCT

A. Symmetry transformations

The algebra Aθ is based on the relation,

½xμ; xν� ¼ iθμν; ð19Þ
1See [36–38] for pedagogical reviews and [39–43] for related

works.
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with θμν constant and real. This algebra can be realized on
the linear spaceF of complex functions fðxÞ of commuting
variables: The elements of the algebra Aθ are represented
by functions of the commuting variables fðxÞ, their product
by the Moyal-Weyl star product, i.e.,

f ⋆ gðxÞ ¼ e
i
2
θρσ ∂

∂xρ⊗
∂

∂yσfðxÞ ⊗ gðyÞjy→x: ð20Þ

The ⋆-derivative, ∂⋆μ f ≔ ∂μf, satisfies

∂μxρ ¼ δρμ; ð21Þ

and the usual product rule with respect to the ⋆-product
(from now on we use the standard notation for the star
derivative),

∂μðf ⋆ gÞ ¼ ð∂μfÞ ⋆ gþ f ⋆ ð∂μgÞ: ð22Þ

Finally let us construct the Leibniz rule. It is possible to
define the infinitesimal diffeomorphisms in the following
form for scalars fields:

δ̂ξϕ ¼ X⋆
ξ ⊳ ϕ; ð23Þ

and for vector fields,

δ̂ξVμ ¼ X⋆
ξ ⊳ Vμ þ X⋆

ð∂ρξμÞ ⊳ Vρ: ð24Þ

The operators X⋆
ξ and X⋆

ð∂μξλÞ are given by

X⋆
ξ ¼

X∞
n¼0

1

n!

�
−
i
2

�
n
θρ1σ1…θρnσnð∂ρ1…∂ρnξ

λÞ

⋆ ∂
⋆
σ1…∂

⋆
σn∂

⋆
λ ;

X⋆
ð∂μξλÞ ¼

X∞
n¼0

1

n!

�
−
i
2

�
n
θρ1σ1…θρnσnð∂ρ1…∂ρn∂μξ

λÞ

⋆ ∂
⋆
σ1…∂

⋆
σn :

The deformed Leibniz rule takes the following form:

X⋆
ξ ⊳ ðf ⋆ gÞ ¼ μ⋆fe−i

2
θρσ∂⋆ρ⊗∂

⋆
σ ðX⋆

ξ ⊗ 1

þ 1 ⊗ X⋆
ξ Þe

i
2
θρσ∂⋆ρ⊗∂

⋆
σ ⊳ ðf ⊗ gÞg: ð25Þ

So far we have reviewed the basis of noncommutativity
in flat space. It proves illustrative to focus first on the
physics of a free massless scalar field in noncommutative
geometry. The action in this case is given by

Sϕ ¼ 1

2

Z
dDx∂μϕ ⋆ ∂

μϕ; ð26Þ

where the indices are contracted with a flat inverse
metric ημν.

From the previous Lagrangian, it is simple to observe
that the terms created for the θ-expansion are even and real.
Moreover, in this case the squared contribution is a total
derivative due to the constant and antisymmetric nature of
θ. The most interesting point here is that the ϕ-field is no
longer a scalar field when the star transformations are
expanded. Therefore, we can analyze covariance with
respect to the star product or with respect to the ordinary
product. While ϕ is a scalar for the former, for the latter its
transformation is noncovariant. However, it is straightfor-
ward to prove that the action (26) is invariant. In these
geometries, Lorentz invariance is broken from the very
beginning. For instance, taking a four-dimensional mani-
fold, if the only nonvanishing component of θμν is the
θ12-component then Lorentz boosts in the 3-direction and
rotations in the 1–2 plane are still preserved as are trans-
lations in any direction.
In the next section we will review the basic steps to

generalize these concepts to the gravitational case.

B. Noncommutative gravity

For more general scenarios we need the notion of a
covariant derivative. The introduction of this operator
follows as in the commutative case, in the sense that we
introduce a connection Γρ

μν in order to define the covariant
derivative as

∇μVν ≔ ∂μVν − Γρ
μν ⋆ Vρ: ð27Þ

The metric of a noncommutative gμν is defined as a
symmetric tensor under infinitesimal diffeomorphisms, and
its inverse g⋆μν is constructed such that

gμν ⋆ g⋆νρ ¼ δρμ: ð28Þ

Therefore g⋆μν is not symmetric and the noncovariant
contributions compensate the noncovariant terms arising
from the star product,

g⋆μν ¼ gμν −
i
2
gμξθρσ∂ρgξϵ∂σgϵν þOðθ2Þ: ð29Þ

Using the previous metrics it is possible to determine the
torsionless star Levi-Civita connection, defined as

Γσ
νβ ¼

1

2
Γγνβ ⋆ g⋆γσ ¼ 1

2
ð∂νgβγ þ ∂βgνγ − ∂γgνβÞ ⋆ g⋆γσ;

ð30Þ

while the Riemann tensor is given by

Rμνσ
ρ ¼ 2∂½μΓ

ρ
ν�σ þ 2Γρ

κ½μ ⋆ Γκ
ν�σ: ð31Þ

From the previous expression we can extract the Ricci
scalar for the noncommutative geometries as
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R ¼ g⋆μν ⋆ Rνσμ
σ; ð32Þ

which transforms as a scalar. Finally, the action can be
defined as

S ¼
Z

dDx
ffiffiffiffiffiffiffi
−g

p
⋆ Rþ c:c:; ð33Þ

where the determinant of the metric also includes star
contributions [35].

III. DOUBLE FIELD THEORY:
THE COMMUTATIVE CASE

The geometry of DFT is based on a double space
equipped with ηMN , an invariant metric of OðD;DÞ and
a dynamical metric, the generalized metric HMN . The
indices M;N;… are in the fundamental representation of
the duality group and are raised and lowered with ηMN and
ηMN , respectively. The generalized metric HMN encodes
the bosonic tensors of the universal NS-NS sector of
string theory, namely, a metric tensor gμν and a b-field
bμν. This metric is a tensor underOðD;DÞ transformations.
Infinitesimal OðD;DÞ-transformations acting on an arbi-
trary double vector read,

δhVM ¼ VNhNM; ð34Þ

where h∈OðD;DÞ is an arbitrary parameter. Another
symmetry of the theory is given by generalized diffeo-
morphisms, generated infinitesimally by ξM through the
generalized Lie derivative, defined by

LξVM ¼ ξN∂NVM þ ð∂MξN − ∂
NξMÞVN; ð35Þ

where VM is an arbitrary generalized vector. The closure of
the gauge transformations

½δξ1 ; δξ2 � ¼ δξ21 ; ð36Þ

is given by the C-bracket

ξM12ðXÞ ¼ ξP1
∂ξM2
∂XP −

1

2
ξP1

∂ξ2P
∂XM

− ð1 ↔ 2Þ: ð37Þ

The DFT Jacobiator is not trivial (but it is given by a
trivial parameter) and therefore the algebraic structure
of DFT is given by an L∞-algebra with a nontrivial l3
product [46–49], which measures the failure of the Jacobi
identity in the double geometry.
On the other hand, the generalized metric is an element

of OðD;DÞ and therefore satisfies

HMPHPN ¼ δNM: ð38Þ

Using both DFT metrics one can construct the DFT
projectors in the following way:

PMN ¼ 1

2
ðηMN −HMNÞ; P̄MN ¼ 1

2
ðηMN þHMNÞ: ð39Þ

The previous projectors satisfy

P̄MQP̄Q
N ¼ P̄MN; PMQPQ

N ¼ PMN;

PMQP̄Q
N ¼ P̄MQPQ

N ¼ 0: ð40Þ

One of the purposes of DFT is to define a theory manifestly
invariant under OðD;DÞ, which is a symmetry of string
theory. Because of that, all the DFT fields and parameters
areOðD;DÞmultiplets or group-invariant objects. Since the
dimension of the fundamental representation of OðD;DÞ is
2D, the coordinates of DFT are XM ¼ ðxμ; x̃μÞ. The coor-
dinates x̃μ are known as the dual coordinates and are taken
away imposing the strong constraint,

∂Mð∂MVÞ ¼ ð∂MVÞð∂MWÞ ¼ 0; ð41Þ

where V and W can be products of arbitrary generalized
fields or parameters. Solving the previous constraint
with ∂̃

μ ¼ 0, the components of the fields of DFT depend
only on xμ. The parametrization of the invariant metric is
given by

ηMN ¼
�

0 δμν

δνμ 0

�
; ð42Þ

while the parametrization of thegeneralizedmetric is givenby

HMN ¼
�

gμν −gμσbσν
bμσgσν gμν − bμσgσρbρν

�
; ð43Þ

where bμν is the Kalb-Ramond field. It is straightforward to
check that the previous parametrization satisfies (38).
The action of DFT is constructed from the following

Lagrangian:

L ¼ 1

8
HMN

∂MHKL
∂NHKL −

1

2
HMN

∂NHKL
∂LHMK

þ 4HMN
∂M∂Ndþ 4∂MHMN

∂Nd

− 4HMN
∂Md∂Nd − ∂M∂NHMN; ð44Þ

where d is known as the generalized dilaton and it is
parametrized as ∂νd ¼ ∂νϕ − 1

4
gσρ∂νgσρ. The full action is

given by S ¼ R
e−2dLd2DX and after parametrization and

using the strong constraint, the resulting action coincides
with the low energy limit of the universal NS-NS sector of
string theory up to total derivatives,

S¼
Z

ddXe−2ϕ
ffiffiffi
g

p �
Rþ 4∂μϕ∂

μϕ−
1

12
HμνρHμνρ

�
; ð45Þ

where Hμνρ ¼ 3∂½μbνρ� is the curvature of the Kalb-
Ramond field.
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IV. NONCOMMUTATIVE DOUBLE
FIELD THEORY

A. Vacuum fields and action

The fundamental noncommutative relation between
double coordinates is defined as

½XM; XN � ¼ iθMN ð46Þ

with θMN an OðD;DÞ real multiplet. This algebra can be
realized on the linear spaceF of complex functions FðxÞ of
commuting variables: The elements of the algebra Aθ are
represented by functions of the commuting variables FðXÞ,
their product by the Moyal-Weyl star product, i.e.,

F ⋆ GðXÞ ¼ e
i
2
θPQ ∂

∂XP
⊗ ∂

∂yQFðXÞ ⊗ GðYÞjY→X; ð47Þ

where θPQ is constant.
The previous product reproduces the ordinary star

product if

∂

∂XP θ
PQ ∂

∂yQ

����
Y→X

→
∂

∂xρ
θρσ

∂

∂yσ

����
y→x

; ð48Þ

and therefore the relevant component of θMN is given by
M ¼μ and N ¼ν due to the strong constraint.
On the other hand, the ⋆-derivatives satisfies

∂MXP ¼ δPM; ð49Þ

and the usual product rule with respect to the ⋆-product,

∂MðF ⋆ GÞ ¼ ð∂MFÞ ⋆ Gþ F ⋆ ð∂MGÞ: ð50Þ

We impose a deformed Leibniz rule considering that the
generalized transformations can be defined as

δ̂ξΦ ¼ X⋆
ξ ⊳ Φ; ð51Þ

for a generalizied scalar field and

δ̂ξVM ¼ X⋆
ξ ⊳ VM þ X⋆

ð∂PξMÞ ⊳ VP − X⋆
ð∂PξMÞ ⊳ VP; ð52Þ

for a generalized vector field.
The generalized metric for noncommutative DFT is

given by

HMN ¼
�

gμν −gμσbσν
bμσgσν gμν − bμσgσρbρν

�
; ð53Þ

and we define the generalized star metric through

H⋆
MP ⋆ H⋆PN ¼ δNM; ð54Þ

which reduces to the condition (38) for θ ¼ 0. The H⋆PN

metric now contains its own noncovariant θ-expansion as

H⋆PN ¼ HPN −
i
4
HPRθQS

∂QHRT∂SHTN þOðθ2Þ: ð55Þ

The covariant derivative acting on a generic double
vector is defined as

∇MVN ¼ ∂MVN − ΓMN
P ⋆ VP; ð56Þ

where we have introduced a generalized affine connection
ΓMN

P whose transformation properties must compensate
the failure of the partial derivative of a tensor to transform
covariantly under generalized diffeomorphisms.
We can now demand some properties on the connection,

namely:
(i) Compatibility with ηMN :

∇MηNP ¼ 0; ð57Þ

and then the generalized affine connection is anti-
symmetric in its last two indices, i.e.,

ΓMNP ¼ −ΓMPN: ð58Þ

(ii) Compatibility with H⋆
MN :

∇MH⋆
NP ¼ 0: ð59Þ

In order to discuss this item, it is convenient to
define the star projectors,

P⋆
MN ¼ 1

2
ðηMN −H⋆

MNÞ;

P̄⋆
MN ¼ 1

2
ðηMN þH⋆

MNÞ; ð60Þ

which satisfy the following properties:

P̄⋆
MQ ⋆ P̄⋆Q

N ¼ P̄⋆
MN;

P⋆
MQ ⋆ P⋆Q

N ¼ P⋆
MN; ð61Þ

P⋆
MQ ⋆ P̄⋆Q

N ¼ P̄⋆
MQ ⋆ P⋆Q

N ¼ 0;

P̄⋆
MN þ P⋆

MN ¼ ηMN: ð62Þ

The projections ΓMNP and ΓMNP remain undeter-
mined after imposing ∇MP⋆

NP ¼ 0 and ∇MP̄⋆
NP ¼ 0

as in the noncommutative case.
(iii) Vanishing torsion:

Γ½MNP� ¼
1

3
TMNP ¼ 0: ð63Þ

Let us observe that the generalized torsion TMNP is
antisymmetric in all its indices and transforms as a
tensor (unlike Γ½MN�P).
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The noncommutative version of the DFT Lagrangian is
given by the following scalar,

R ¼ P⋆MNP⋆QR ⋆ RMQNR; ð64Þ

where

RMNKL ¼ RMNKL þ RKLMN þ ΓQMN ⋆ ΓQ
KL ð65Þ

RMNKL ¼ 2∂½MΓN�KL þ 2Γ½MjQL ⋆ ΓN�KQ; ð66Þ

while the full action can be written as

S ¼
Z

d2DXe−2d ⋆ Rþ c:c:; ð67Þ

where e−2d ¼ e−2ϕ
ffiffiffi
g

p
. On the other hand the components

of the generalized star metric can be easily computed order
by order. For example, the first order contributions are
given by

H⋆ρν ¼ gρν −
i
4
θμσ∂μgτλ∂σgντgρλ −

i
4
θμσ∂μbτλ∂σbξδgντgρξgλδ þOðθ2Þ; ð68Þ

H⋆ρ
ν ¼ −gραbαν −

i
4
θμσ∂μgτλ∂σgτξbνξgρλ −

i
4
θμσ∂μbντ∂σgτρ

−
i
4
θμσ∂μbτλ∂σgνξgρτgλξ −

i
4
θμσ∂μbτλ∂σbξδbναgρτgλξgδα þOðθ2Þ; ð69Þ

H⋆
ρν ¼ gρν − bραgαβbβν −

i
4
θμσ∂μgτλ∂σgτξbνξbρχgλχ þ

i
4
θμσ∂μbντ∂σgλξbρχgτλgξχ

þ i
4
θμσ∂μbτλ∂σgνξbρχgτξgλχ −

i
4
θμσ∂μbτλ∂σbξχbνδbραgτξgλδgχα −

i
4
θμσ∂μbτρ∂σgτξbνξ

þ i
4
θμσ∂μbντ∂σbλρgτλ þ

i
4
θμσ∂μgντ∂σgτλgρλ þ

i
4
θμσ∂μbτλ∂σgτξbνχgρξgλχ þOðθ2Þ: ð70Þ

So far we have presented the construction of the vacuum
Lagrangian in terms of the fundamental degrees of free-
dom, namely, the generalized dilaton and the generalized
star metric. In the next part we will briefly discuss the
inclusion of matter using a generalized scalar field.

B. Inclusion of matter

Now we focus on an OðD;DÞ invariant free scalar field
Φ coupled to the background content of a noncommutative
DFT. For simplicity we consider the massless case, the
parametrization of which is given by the ordinary scalar
field ϕ. The matter Lagrangian is given by

Lmatter½H;Φ� ¼ 1

2
∂MΦ ⋆ H⋆MN ⋆ ∂NΦ − VðΦÞ: ð71Þ

To first order in θ, the generalized star metricH⋆μν contains a
b-field contribution. However, it is easy to see that the term
depending on the b-field vanishes because of the symmetric
contraction given by the derivatives of the scalar field. This
effect happens order by order and we recover Eq. (26)
exactly. The inclusion of scalar field dynamics in double
noncommutative geometry is very promising because of the
correspondence between these dynamics and the dynamics
of a perfect fluid (see for example [50–51]), the latter also
studied in noncommutative scenarios [52–54]. Imposing the
generalized version of the correspondence given by

UM ¼ ∂MΦffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j∂PΦ ⋆ H⋆PQ ⋆ ∂QΦj

q ; ð72Þ

p̃ ¼ −
1

2
∂PΦ ⋆ H⋆PQ ⋆ ∂QΦ − VðΦÞ; ð73Þ

ẽþ p̃ ¼ j∂PΦ ⋆ H⋆PQ ⋆ ∂QΦj; ð74Þ

in the energy-momentum tensor of the generalized scalar
field,

T MN ¼ ηMNLm þ 4P̄⋆
½MK ⋆ P⋆

N�L

�
δLm

δP⋆
KL

−
δLm

δP̄⋆
KL

�
;

we find that the generalized energy-momentum tensor for a
perfect fluid coupled to the noncommutative double geom-
etry is given by

T MN ¼ 4P̄⋆
½MjK ⋆ P⋆

N�Lð
ffiffiffiffiffiffiffiffiffiffiffiffi
ẽþ p̃

p
UM ⋆

ffiffiffiffiffiffiffiffiffiffiffiffi
ẽþ p̃

p
UNÞ

−
1

2
ηMN

ffiffiffiffiffiffiffiffiffiffiffiffi
ẽþ p̃

p
UP ⋆ H⋆PQ ⋆

ffiffiffiffiffiffiffiffiffiffiffiffi
ẽþ p̃

p
UQ: ð75Þ

The previous generalized energy-momentum tensor
describes statistical matter (perfect fluid dynamics) in the
double geometry, and contains a tower of higher-derivative
terms related to the θ contributions. This object can be used
in the RHS of the generalized Einstein equation, which in
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turn corresponds with the EOM of H⋆
MN . We leave this

issue for future work.

V. DISCUSSION AND OUTLOOK

In this work we have extended the DFT construction in
order to include noncommutative effects through a Moyal-
Weyl product. We have deformed generalized diffeomor-
phism transformations in a consistent way; expanding
explicitly the θ-contributions gives the transformation rules
of the fundamental fields. We expect θ ∝ ℏ, and therefore
the symmetries are preserved at the classical level. We
catalog here the main differences between our construction
and the standard (or classical) construction of DFT:

(i) The fundamental fields of the theory are given by the
generalized star metric and the generalized dilaton.
While both fields might have their own θ-expansion,
the former has to include contributions in order to
guarantee Eq. (54).

(ii) The projectors P⋆ and P̄⋆ are no longer symmetric
due to the θ-expansion of the generalized star metric.
This is similar to the antisymmetric deformation of the
inverse metric in the noncommutative GR context.

(iii) Both the duality transformations and the generalized
diffeomorphisms are deformed, and as such they
introduce noncovariant terms in the action from the
point of view of ordinary DFT. Since the b-field is
part of the components of the generalized star-
metric, the Abelian gauge transformations are not
preserved when θ ≠ 0.

(iv) The construction of (53) can be done considering the
generalized frame formalism of DFT [55–56]. In that
case, the form of (53) remains the same, but gμν¼
eμa⋆eνaþeνa⋆eμa and gμν¼eμa⋆eνaþeνa⋆eμa.
This means that HMN might contain its own
θ-expansion.

We finish this section discussing some future directions:
(i) Covariant deformations: While the present analysis

is based on a deformation of the generalized sym-
metries from the point of view of the commutative
DFT, one can try to preserve the covariance of the
star product using the covariant derivative as [34]

F ⋆ GðXÞ ¼ e
i
2
θ∇X⊗∇YFðXÞ ⊗ GðYÞjY→X: ð76Þ

The main difficulty of these kinds of deformations is
that on the one hand the resulting product is not
associative anymore and, on the other hand, one

has the problem of the undetermined connection
ΓMNP. However it would be interesting to study if
these undetermined projections vanish from the
resulting action.

(ii) L∞ structure and Hopf algebras: The L∞ structure of
DFT is well-known [44] in the commutative case.
Extending these studies to include the noncommu-
tative case might be adequate to find straightforward
generalizations to braided symmetries [57] from the
L∞ algebra [58–61]. Furthermore, from the rewrit-
ing of the diffeomorphisms in the double geometry
given in (52) it is possible to study generalizations of
the standard Hopf algebra from a T-duality invariant
perspective [33].

(iii) α0-corrections: The terms produced by the ∘- and
⋆-product expansion are higher-derivative correc-
tions. In case of covariant deformations, these
terms could be related to the structure of higher-
derivative corrections of DFT (see [62] for a review)
as in [63–65]. Exploring the interplay between
noncommutativity and covariant higher correc-
tions might be an alternative way of avoiding some
present obstructions of the double geometry as
noticed in [66].

(iv) Non-Riemannian geometries: One possibility is to
extend our formalism in order to describe non-
Riemannian geometries such as stringy Newton-
Cartan geometry [67–68]. This means that the
generalized metric now is parametrized considering
an ðn; n̄Þ decomposition as in [26–27]. Since
T-duality along the longitudinal direction of this
theory describes a relativistic string theory on a
Lorentzian geometry with a compact light-like
isometry [69–70], it is to be expected to find within
a DFT a universal encoding of both Riemannian and
non-Riemannian geometries.
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