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We investigate entanglement degradation in the vicinity of a quantum corrected black hole. We consider
a biprtite system (Alice-Rob) with Alice freely falling (radially) into the event horizon of a quantum
corrected black hole and Rob being in the vicinity of the event horizon of the black hole. We consider a
maximally entangled state (in the Fock basis) and start with the basic assumption that Rob is an uniformly
accelerated observer. We then give a pedagogical analysis of the relation involving the Minkowski vaccum
state and Rindler number states. Following the analogy given in Martín-Martínez et al. [Phys. Rev. D 82,
064006 (2010)], we establish the relation between the Hartle-Hawking vacuum state and Boulware and
anti-Bouware number states from the Minkowski-Rindler relation. We then write down the quantum
corrected black hole metric by making use of the near horizon approximation in an appropriate form. Next,
we obtain the analytical forms of logarithmic negativity and mutual information and plot as a function of
Rob’s distance from the r ¼ 0 point. We observe that the entanglement degradation slows down because of
the structural change in the lapse function of the metric via the incorporation of quantum gravity corrections
in the Schwarzschild black hole. It is crucial to understand that any modified gravity theories that changes
the metric structure results in a different rate of degradation of the entanglement. At the horizon radius, the
entanglement degradation is always complete irrespective of the underlying theory. This observation may
lead to the identification of the signature of modified gravity theories in a future generation of advanced
observational scenarios. Such a modification can come from higher curvature corrections, higher
dimensional gravity theories, quantum gravity corrections, etc. We can also interpret this effect as a
noisy quantum channel with an operator sum representation of a completely positive and trace preserving
map. We then finally obtain the entanglement fidelity using this operator sum representation.
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I. INTRODUCTION

Our day to day classical information theory is restricted
to a binary system where we can make use of 0 and 1 as
measures of information stored or communicated. With
the advent of quantum mechanics in the first quarter of
twentieth century, the idea of a quantum version of the
classical information theory came as a by-product of
the quantum superposition principle. This new branch of
physics was later named as quantum information theory.
The relativistic generalization of quantum information
theory, which involves general relativity, quantum field
theory and quantum information theory, is also known as

relativistic quantum information theory. The study of
quantum correlations in case of a noninertial perspective
is a very interesting sector in the genre of relativistic quan-
tum information technology [1–22]. In several of these
works, the case of an entangled bipartite system was
investigated when one of the observer was uniformly
accelerated. The idea was to transport the stationary state
to the Rindler space in order to truly investigate the effect of
acceleration. In all of these cases, the entangled states
were taken as Fock states and instead of entanglement
between spins, entanglement between number states were
considered. In [4], the generic Alice-Rob picture in the
Minkowski-Rindler background was transferred to the black
hole picture for bosonic fields. This studywas inadequate in a
sense that the Rindler horizon and the event horizon of a
Schwarzschild black hole are very different in nature. The
Rindler horizon can only be perceived by an accelerated
observer whereas the event horizon exists for all observers.
To deal with this problem, in [20], a one to one correspon-
dence was observed among different vacuums from both the
Minkowski and curved spacetimes. The system consists of
two observers, Alice and Rob. Alice is freely falling into the
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event horizon of a Schwarzschild black hole, and Rob is at a
fixed radial distance just outside the event horizon of the
black hole. Both Alice and Rob are observing a bipartite
quantum state, and the state is maximally entangled for
the freely falling observer. Rob sees a degradation in the state
due to the Hawking effect. In their analysis, it was shown that
the major interesting entanglement behaviors are observed
in the vicinity of the event horizon. In case of the black hole
picture when the observer is on the event horizon of the
black hole, it imitates the infinite acceleration case in the
Rindler spacetime.
In our analysis, we shall consider Alice to be freely

falling into the event horizon of a quantum corrected black
hole and Rob to be at a fixed distance just outside the event
horizon of the same. Our main motivation behind this
analysis is to investigate the effects of modification of the
lapse function infused via the “asymptotic safety approach”
to quantum gravity on entanglement degradation. One
can also investigate the same for any modified theories
of gravity. For example, one can consider higher curvature
corrections in the Einstein-Hilbert action as well as any
higher dimensional gravity theories. The line element of the
quantum corrected black hole spacetime following from a
renormalization group approach of gravity is given by [23]

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dΩ2; ð1Þ

where

fðrÞ ¼ 1 −
2GðrÞM

r
; ð2Þ

with

GðrÞ ¼ G
1þ ω̃G

r2
: ð3Þ

Throughout our analysis, we have used ℏ ¼ c ¼ 1. The
metric structure, given above, originates from the well-
known “asymptotic safety approach” to quantum gravity.
This formalism revolves around an effective average action
and by taking into consideration all loop effects, this effective
action describes all gravitational phenomenon [24–27]. This
action satisfies a renormalization group equation, which
results in the flow of the Newton’s gravitational constant as a
function of this scale. Using the flow of the Newton’s
gravitational constant, the metric in Eq. (1) was obtained
where the constant ω̃ carries quantum gravity corrections to
the black hole geometry as a result of this renormalization
group approach.
At first, we have used the near horizon approximation to

probe any static spherically symmetric black hole metric
in the well-known Rindler form, and following the analysis
in [20], we have then obtained three unique timelike Killing
vectors. The positive frequency modes associated with

these Killing vectors let one define three unique vacuum
states (Hartle-Hawking, Boulware, and anti-Boulware).
Finally, one can obtain the relation between the Hartle-
Hawking vacuum state and Boulware—anti-Boulware
Fock space basis. Using this relation, we then calculate
the logarithmic negativity and mutual information for the
reduced density matrix (where all the anti-Boulware states
have been traced out). For the next part of our analysis, we
have used the formalism in [22] and shown that the
entanglement degradation due to the Hawking effect can
be described via a quantum channel with a completely
positive and trace preserving (CPTP) map. We then finally
compute the entanglement fidelity to investigate how the
quantum channel preserves the initial entanglement
between the two parties of the bipartite state. It is important
to note that we have considered only bosonic field modes in
our analysis.
The construction of the paper goes as follows. In Sec. II,

we give a brief preview of the Alice-Rob system and obtain
the relation between the Minkowski vacuum and Rindler
Fock state basis. In Sec. III, we express a static spherically
symmetric black hole in the Rindler form and obtain the
analogy between several vacuum states. In Sec. IV, we
obtain the analytical forms of the logarithmic negativity and
mutual information for a quantum corrected black hole and
plotted against the distance of the observer from the r ¼ 0
point. In Sec. V, we investigate the entire process as a
quantum channel with a CPTPmap and obtain the analytical
form of the entanglement fidelity for a quantum corrected
black hole. Finally, we conclude our analysis in Sec. VI.

II. MINKOWSKI-RINDLER IDENTIFICATION:
A BRIEF REVIEW

In this section, we start by providing a detailed and
pedagogical derivation of the expression connecting
Minkowski vacuum state and the product of two mode
squeezed states of the Rindler vacuum [4]. The Rindler
coordinate system is the one describing an uniformly
accelerated observer. The Minkowski coordinates in
3þ 1- spacetime dimensions is given by ft; x; y; zg, and
the Rindler coordinates are denoted by ft̄; x̄; ȳ; z̄g. In region
I (right Rindler wedge), we can express the Minkowski
coordinates, in terms of the Rindler coordinates as

t ¼ z̄ sinh at̄; x ¼ x̄; y ¼ ȳ; z ¼ z̄ cosh at̄; ð4Þ

and in region IV (left Rindler wedge),

t ¼ −z̄ sinh at̄; x ¼ x̄; y ¼ ȳ; z ¼ −z̄ cosh at̄: ð5Þ

In order to interconnect, the coordinate transformation
between the two coordinate systems, we have considered
that the observer is uniformly accelerating in the z direction
only with an uniform acceleration a. In order to proceed
further, we now come down to a 1þ 1-dimensional
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analysis involving ðt; zÞ coordinates only. The massless
Klein-Gordon equation for a scalar field in the Minkowski
background reads

∂μ∂
μϕðt; zÞ ¼ 0 ⇒ ð∂2t − ∂

2
zÞϕðt; zÞ ¼ 0: ð6Þ

In order to define the normalization constant, we need to
write down the Lorentz invariant inner product, which is
given by

ðϕ1;ϕ2Þ ¼ −i
Z
Σ
dΣμð−ϕ�

1∂μϕ2 þ ϕ2∂μϕ
�
1Þ; ð7Þ

where Σ is a spacelike hypersurface. Now for a constant
time hypersurface, we can simplify the above inner product
in the following form (in 1þ 1-dimensions):

ðϕ1;ϕ2Þ ¼ −i
Z
z
dzð−ϕ�

1∂tϕ2 þ ϕ2∂tϕ
�
1Þ: ð8Þ

Using a separation of variables method, we can obtain a
solution of the Klein-Gordon equation [Eq. (6)] and write
down the analytical forms of the Minkowski field modes as

uMk ðt; zÞ ¼ N ðkÞe−iωtþiωz; ð9Þ

where ω ¼ k when the speed of light is set equal to unity
andN ðkÞð¼ N ωÞ is a real and undetermined normalization
constant. We shall nowmake use of Eq. (8) to determine the
undetermined normalization constant given by

ðuMk ; uMk0 Þ ¼ −i
Z

∞

−∞
dz
h
−uMk

�
∂tu

M
k0 þ uMk0 ∂tu

M
k

�
i

⇒ δðω − ω0Þ ¼ 2πðωþ ω0ÞN ωN ω0δðω − ω0Þ
¼ 4πωN 2

ωδðω − ω0Þ

⇒ N ω ¼ 1ffiffiffiffiffiffiffiffiffi
4πω

p : ð10Þ

Using the above form of the normalization constant, we can
finally write down the Minkowski mode solution as

uMk ðt; zÞ ¼ 1ffiffiffiffiffiffiffiffiffi
4πω

p e−iωtþiωz: ð11Þ

Next, we shall be calculating the Rindler modes in region I.
We start by obtaining the Klein-Gordon equation in Rindler
coordinates. To do this, we write down the relations among
the partial derivatives corresponding to Minkowski and
Rindler coordinates,

∂t ¼
∂t̄
∂t
∂t̄ þ

∂z̄
∂t

∂z̄

¼ 1

az̄
cosh at̄∂t̄ − sinh at̄∂z̄; ð12Þ

∂z ¼
∂t̄
∂z

∂t̄ þ
∂z̄
∂z

∂z̄

¼ −
1

az̄
sinh at̄∂t̄ þ coshat̄∂z̄: ð13Þ

Using Eqs. (12) and (13) back in Eq. (6), we obtain the
Klein-Gordon equation in the Rindler spacetime to be

ð∂2t − ∂
2
zÞϕðt; zÞ ¼

1

a2z̄2
ð∂2t̄ − a2∂2ln z̄Þϕðt̄; z̄Þ ¼ 0: ð14Þ

Solving Eq. (14) and making use of the inner product
definition [Eq. (8)], we obtain the Rindler mode solution in
region I to be

uRI
k;� ¼ 1ffiffiffiffiffiffiffiffiffi

4πω
p e−iωt̄�iω

a ln z̄: ð15Þ

In this analysis, we shall be mainly considering the uRI
k;þ

mode solutions. In terms of the Minkowski coordinates, the
Rindler mode solution in Eq. (15) reads

uRI
k;� ¼

ffiffiffiffiffiffiffiffiffi
a

4πω

r �
z ∓ t
lω

��iω
a ¼ 1ffiffiffiffiffiffiffiffiffi

4πΩ
p

�
z ∓ t
lΩ

��iΩ ≡ uIΩ;�;

ð16Þ

where Ω ð¼ ω
aÞ is a dimensionless constant, lω ¼ lΩ has

dimension of length in natural units, and uIΩ;þ denotes field
modes, which are propagating to the right direction along
lines of constant z − t. Similarly, the Rindler mode sol-
utions in region IV reads

uRIV
k;� ¼ 1ffiffiffiffiffiffiffiffiffi

4πΩ
p

��t − z
lΩ

�∓iΩ ≡ uIVΩ;�: ð17Þ

As we shall mainly be considering the right moving modes,
we shall be omitting the plus sign while writing down the
mode solutions.
One can now do a second quantization of the classical

field ϕ that satisfies the Klein-Gordon equation given by
□ϕ̂ ¼ 0. In terms of the Minkowski mode solutions and the
corresponding creation and annihilation operators, we can
write down the quantized scalar field as

ϕ̂ ¼
Z

dkðuMk ðt; zÞâk;M þ uMk
�ðt; zÞâ†k;MÞ; ð18Þ

where the creation and annihilation operators satisfy the
following commutation relation

½âk;M; â†k0;M� ¼ δðk − k0Þ: ð19Þ

The action of the annihilation operator on the vacuum state
corresponding to a fixed field mode is defined as
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âk;Mj0ikM ¼ 0; ð20Þ

and the total Minkowski vacuum state is defined as a
product of all the individual vacuum states corresponding
to each field modes as

j0iM ¼
Y
k

j0ikM: ð21Þ

It is important to note that the mode solutions in regions I
and IV provide a complete set of orthonormal solutions. As
a result, one can express the field ϕ̂ in terms of the Rindler
mode solutions as

ϕ̂ ¼
Z

dΩðuIΩâΩ;I þ uIΩ
�â†Ω;I þ uIVΩ âΩ;IV þ uIVΩ

�â†Ω;IVÞ;

ð22Þ

where the creation and the annihilation operators act on the
vacuum states of the two Rindler wedges, respectively, as

âΩ;I ⊗ 1IV j0I; 0IVi ¼ ðâΩ;Ij0IiÞ⊗ ð1IV j0IViÞ ¼ 0; ð23Þ

1I ⊗ âΩ;IV j0I; 0IVi ¼ ð1Ij0IiÞ⊗ ðâΩ;IV j0IViÞ ¼ 0: ð24Þ

It is to be noted that region I and region IV are causally
disconnected, and as a result, it is possible to write down
the following commutation relations:

½âΩ;I ; â†Ω0;I� ¼ ½âΩ;IV; â†Ω0;IV � ¼ δðΩ −Ω0Þ; ð25Þ

½âΩ;I; âΩ0;I� ¼ ½â†Ω;I ; â†Ω0;I� ¼ ½âΩ;I ; â†Ω0;IV � ¼ 0; ð26Þ

½âΩ;IV; âΩ0;IV � ¼ ½â†Ω;IV; â†Ω0;IV � ¼ ½â†Ω;I ; âΩ0;IV � ¼ 0: ð27Þ

We now need to express the creation and annihilation
operators of the Minkowski states in terms of the creation
and annihilation operators of the Rindler states. Before
proceeding with this analysis, we need to remember that the
mode solutions uMk satisfies the following relation with
respect to the inner product defined in Eq. (8) as

ðuMk ; uMk0 Þ ¼ δðk − k0Þ; ðuMk ; uMk0
�Þ ¼ 0: ð28Þ

Taking the inner product of ϕ̂ (for the decomposition of ϕ̂
in terms of Minkowski field modes) with uMk0 , we obtain the
following relation:

ðuMk0 ; ϕ̂Þ ¼
Z

dkððuMk0 ; uMk Þâk;M þ ðuMk0 ; uMk �Þâ†k;MÞ

¼
Z

dkδðk − k0Þâk;M
¼ âk0;M: ð29Þ

It is now possible to substitute the mode expansion of ϕ̂
from Eq. (22) in the left-hand side of the above equation,
and we can recast Eq. (29) in the following form:

âk;M ¼
Z

dΩððuMk ; uIΩÞâΩ;I þ ðuMk ; uIΩ
�Þâ†Ω;I

þ ðuMk ; uIVΩ ÞâΩ;IV þ ðuMk ; uIVΩ
�Þâ†Ω;IVÞ: ð30Þ

We shall now evaluate all of the four inner products in the
above equation. Applying the definition of the inner
product, the first inner product turns out to be

ðuMk ; uIΩÞ ¼ −i
Z

dzðuMk �
∂tuIΩ þ uIΩ∂tu

M
k

�Þ

¼ 1

4πliΩΩ
ffiffiffiffiffiffiffi
ωΩ

p
Z

dzðΩðz − tÞiΩ−1

þ ωðz − tÞiΩÞe−iωðz−tÞ: ð31Þ

We shall now make a change of coordinates given by
z − t ¼ ζ and in the Rindler wedge I, ðz − tÞ > 0. Hence, ζ
will range from 0 to ∞. We can recast Eq. (31) in the
following form:

ðuMk ; uIΩÞ ¼
1

4πliΩΩ
ffiffiffiffiffiffiffi
ωΩ

p
Z

∞

0

dζðΩζiΩ−1 þ ωζiΩÞe−iωζ

¼ ΩðiωÞ−iΩ
2πliΩΩ

ffiffiffiffiffiffiffi
ωΩ

p Γ½iΩ�

¼ ΩðilΩωÞ−iΩ
2π

ffiffiffiffiffiffiffi
ωΩ

p
ffiffiffiffi
π

Ω

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

eπΩ − e−πΩ

r
ei arg½Γ½iΩ��

¼ 1ffiffiffiffiffiffiffiffiffi
2πω

p ðlΩe−
ϕ
ΩωÞ−iΩ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πΩ
p

¼ 1ffiffiffiffiffiffiffiffiffi
2πω

p ðlωÞ−iΩ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πΩ

p ; ð32Þ

where ϕ≡ Arg½Γ½iΩ��, l≡ lΩe−
ϕ
Ω, and ðiÞ−iΩ ¼

ðeiπ
2 Þ−iΩ ¼ e

πΩ
2 . The next inner product of uMk with uIΩ

�

is given as follows:

ðuMk ; uIΩ
�Þ ¼ −

1ffiffiffiffiffiffiffiffiffi
2πω

p ðlωÞiΩ e−πΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πΩ

p : ð33Þ

The final two inner products have the forms given by

ðuMk ; uIVΩ Þ ¼ 1ffiffiffiffiffiffiffiffiffi
2πω

p ðlωÞiΩ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πΩ

p ; ð34Þ

ðuMk ; uIVΩ
�Þ ¼ −

1ffiffiffiffiffiffiffiffiffi
2πω

p ðlωÞ−iΩ e−πΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πΩ

p : ð35Þ

With a new redefinition e−πΩ ≡ tanh rΩ, we can recast
Eq. (30) as
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âk;M ¼
Z

∞

0

dΩðαRω;Ω�ðcosh rΩâΩ;I − sinh rΩâ
†
Ω;IVÞ

þ αLω;Ω
�ð− sinh rΩâ

†
Ω;I þ cosh rΩâΩ;IVÞÞ; ð36Þ

where αRω;Ω
� ¼ 1ffiffiffiffiffiffi

2πω
p ðlωÞ−iΩ and αLω;Ω

� ¼ 1ffiffiffiffiffiffi
2πω

p ðlωÞiΩ are

the Bogoliubov coefficients.
We can now express the right and left moving Unruh

annihilation operators as

âRΩ ¼ cosh rΩâΩ;I − sinh rΩâ
†
Ω;IV; ð37Þ

âLΩ ¼ − sinh rΩâ
†
Ω;I þ cosh rΩâΩ;IV: ð38Þ

The Bogoliubov coefficients in the context of Minkowski-
Rindler transformations has been calculated in a plethora of
literatures [28–34]. By means of Eqs. (37) and (38), we can
indeed reexpress the Minkowski annihilation operator in
Eq. (36) as

âk;M ¼
Z

∞

0

dΩðαRω;Ω�âRΩ þ αLω;Ω
�âLΩÞ: ð39Þ

It is important to note from Eq. (39) that the Minkowski
annihilation operator can be expressed as a combination of
the Unruh annihilation operators only. As a result, the
Unruh annihilation operator will annihilate the Minkowski
vacuum as well. Hence, we can write down the following
relation:

âω;Mj0iM ¼ âRΩj0iM ¼ âLΩj0iM ¼ 0: ð40Þ

From Eq. (40), it is straightforward to conclude that the
Minkowski vacuum and Unruh vacuum are identical,
which can be represented in the following form:

j0iM ¼ j0iU ¼
Y
Ω
j0iΩU; ð41Þ

where j0iΩU is the Unruh vacuum corresponding to an
individual field mode with frequency Ω.
Now, we take an ansatz given by

j0iΩU ¼
X
n

fΩðnÞjniΩI ⊗ jniΩIV; ð42Þ

where fΩðnÞ is an unknown normalization factor, depen-
dent on the dimensionless numberΩ. Before acting with âRΩ
on the both sides of Eq. (42), we need to express âRΩ
rigorously as

âRΩ ¼ cosh rΩâΩ;I ⊗ 1IV − sinh rΩ1I ⊗ â†Ω;IV: ð43Þ

Action of âRΩ from Eq. (43) on the both sides of Eq. (42) is
given by

0 ¼ âRΩj0iΩU ¼
X
n

fΩðnÞðcosh rΩâΩ;IjniΩI ⊗ jniΩIV

− sinh rΩjniΩI â†Ω;IV jniΩIVÞ
¼

X
n

fΩðnÞðcosh rΩ
ffiffiffi
n

p jn − 1iΩI ⊗ jniΩIV

− sinh rΩ
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jniΩI ⊗ jnþ 1iΩIVÞ: ð44Þ

We now act with Ω
I hmj⊗ Ω

IVhm0j from the left in the above
equation, and we can then recast Eq. (44) as

0 ¼
X
n

fΩðnÞðcosh rΩ
ffiffiffi
n

p Ω
I hmjn − 1iΩI Ω

IVhm0jniΩIV

− sinh rΩ
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
Ω
I hmjniΩI Ω

IVhm0jnþ 1iΩIVÞ
¼

X
n

fΩðnÞðcosh rΩ
ffiffiffi
n

p
δm;n−1δm0;n

− sinh rΩ
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
δm;nδm0;nþ1Þ

¼ ðfΩðm0Þ cosh rΩ − fΩðm0 − 1Þ sinh rΩÞ
ffiffiffiffiffi
m0p

δm0;mþ1:

ð45Þ

From Eq. (45), we can write down a recursion relation in
fΩðnÞ as follows:

fΩðnÞ ¼ tanhn rΩfΩð0Þ: ð46Þ

We need to determine the constant fΩð0Þ by imposing the
normalization condition of j0iΩU as follows:

1 ¼ Ω
Uh0j0iΩU

¼ f2Ωð0Þ
X
n;m

ðtanh rΩÞnþmΩ
I hmjniΩI Ω

IVhmjniΩIV

¼ f2Ωð0Þ
X
n

tanh2nrΩ

¼ f2Ωð0Þcosh2rΩ
⇒ fΩð0Þ ¼

1

cosh rΩ
: ð47Þ

Using the form of fΩðnÞ and fΩð0Þ from Eqs. (46) and
(47), we can recast Eq. (42) as

j0iΩU ¼ 1

cosh rΩ

X
n

tanhn rΩjniΩI jniΩIV; ð48Þ

where for simplicity, we have omitted the tensor product
sign. The Unruh vacuum state and the Minkowski vacuum
state coincides; hence, from Eq. (48), we can write down
the following relation:

j0ikM ¼ 1

cosh rΩ

X
n

tanhn rΩjniΩI jniΩIV : ð49Þ
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We shall also need to calculate the first excited state
corresponding to the single mode Minkowski vacuum
state. As the Minkowski and Unruh states can be
mapped with one another, we start by calculating the
first excited state in the Unruh vacuum corresponding to
a single mode only. The complete Unruh raising
operator is given by a linear combination of the raising
operators corresponding to the left and right moving
Unruh modes as follows:

âΩ†U ¼ ALâ
L†
Ω þARâ

R†
Ω ; ð50Þ

where jALj2 þ jARj2 ¼ 1. A very convenient choice is to
take AR ¼ 1 and AL ¼ 0. We can hence write down
the first excited state by using the operator action
of âΩ†U on j0iΩU along with the determination of an
appropriate normalization constant (following the earlier
procedure) as

j1iΩU ¼ j1ikM ¼
X
n

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p

cosh2 rΩ
tanhn rΩjnþ 1iΩI jniΩIV: ð51Þ

With Eqs. (49) and (51) in hand, we can now move
towards the analysis of entangled Fock states in a
curved background.

III. NEAR HORIZON ANALYSIS AND THE
RINDLER-KRUSKAL IDENTIFICATION

In this section, we shall consider the quantum corrected
black hole geometry and apply the near horizon approxi-
mation to recast the metric in a form which will help us to
use the usual quantum information theoretic wisdom to
analyze the entanglement degradation for a maximally
entangled state on this black hole geometry. In this section,
we shall follow the analysis used in [20].
The line element for a static spherically symmetric black

hole geometry with a lapse function fðrÞ in 3þ 1-space-
time dimensions is given by

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dΩ2; ð52Þ

where we have used the f−;þ;þ;þg signature for the
metric. We shall now make use of the near horizon
approximation and write down the lapse function in the
following form:

fðrÞ ≃ ðr − rþÞf0ðrþÞ; ð53Þ

where rþ is the event horizon radius of the black hole. We
now make a change of coordinates given by

ζ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r − rþ
f0ðrþÞ

r
⇒ r − rþ ¼ ζ2

4
f0ðrþÞ: ð54Þ

Using Eqs. (53) and (54), we can recast the line element
in Eq. (52) in the following form (in 1þ 1-spacetime
dimensions):

ds2 ¼ −
ζ2f02ðrþÞ

4
dt2 þ dζ2: ð55Þ

In terms of the surface gravity κ ¼ f0ðrþÞ
2

, we can recast the
above equation in the following form:

ds2 ¼ −κ2ζ2dt2 þ dζ2: ð56Þ

We now consider an observer sitting at a distance r where
the proper time of the observer is denoted by τ. We can then
write down the following relation:

−dτ2 ¼ −fðrÞjr¼rdt
2 þ 1

fðrÞ
����
r¼r

dr2 ¼ −fðrÞdt2

or;
dt
dτ

¼ 1ffiffiffiffiffiffiffiffiffiffi
fðrÞp ⇒ t ¼ τffiffiffiffiffiffiffiffiffiffi

fðrÞp : ð57Þ

In terms of the proper time τ, we can recast Eq. (56) as
follows:

ds2 ¼ −
κ2ζ2

fðrÞ dτ
2 þ dζ2: ð58Þ

Now the value of the proper acceleration for an accelerated
observer at some r is defined as

a ¼ ffiffiffiffiffiffiffiffiffiffi
aμaμ

p
; ð59Þ

where aμ ¼ ξβ

jξj∇βðξ
μ

jξjÞ gives the four acceleration with

vμ ¼ ξμ

jξj denoting the four velocity of the observer and

ξμ ¼ f1; 0; 0; 0g being a timelike Killing vector. It is now
straightforward to evaluate the four acceleration of the
observer,

aμ ¼
�
0;
1

2
∂rf; 0; 0

�
; aμ ¼ gκμaκ ¼

�
0;

1

2f
∂rf; 0; 0

�
:

ð60Þ

Using Eq. (60), we can obtain the proper acceleration of the
observer to be of the form,

aðrÞ ¼ ffiffiffiffiffiffiffiffiffiffi
aμaμ

p ¼ ∂rf

2
ffiffiffiffiffiffiffiffiffi
fðrÞp : ð61Þ

From Eq. (61), it is straightforward to infer that the accel-
eration becomes infinite when r ¼ rþ. In the near horizon
approximation, we can evaluate the following relation:

∂rfðrÞ ≃ ∂rððr − rþÞf0ðrþÞÞ ¼ f0ðrþÞ ¼ 2κ: ð62Þ
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Hence, we can write down the proper acceleration for an
observer sitting at a distance r from the r ¼ 0 point to be

a ¼ aðrÞ ¼ κffiffiffiffiffiffiffiffiffiffi
fðrÞp : ð63Þ

Using Eq. (63), we can recast Eq. (58) as

ds2 ¼ −a2ζ2dτ2 þ dζ2: ð64Þ

Equation (63) depicts the fact that any static spherically
symmetric black hole metric can be expressed in the Rindler
form by means of near horizon approximation, and the
constant acceleration in the Rindler case is now replaced by
the proper acceleration of an observer sitting at a fixed radial
distance outside but in the vicinity of the event horizon of the
black hole.
Our next aim is to define timelike vectors. We start by

writing down the null Kruskal-Szekeres coordinates as

u ¼ −
1

κ
e−κðt−

R
dr
fðrÞÞ; v ¼ 1

κ
eκðtþ

R
dr
fðrÞÞ: ð65Þ

Using Eq. (65), one can write down the radial part of the
black hole metric in the following form:

ds2 ¼ −fðrÞe−2κ
R

dr
fðrÞdudv: ð66Þ

Very near the horizon, Eq. (66) can be expressed as
(keeping only leading constant terms and setting the
integration constant to 1

2κ)

ds2 ≃ −e−1dudv: ð67Þ

This analysis shows (following [20]) that there are three
possible timelike Killing vectors. The first timelike Killing
vector is ∂t̄ ∝ ∂u þ ∂v, where this timelike vector is similar
to the timelike Killing vector in the Minkowski spacetime.
One can construct a vacuum state out of positive frequency
modes associated with this timelike Killing vector, and
this vacuum state is also known as the Hartle-Hawking
vacuum state. As a result of the analogy between the
Killing vectors, we can also claim that the Hartle-Hawking
vacuum state is analogous to the Minkowski vacuum state.
The Hawking-Hartle vacuum state is generally written as
j0iH and j0iH ↔ j0iM. The second Killing vector is ∂t, and
it is straightforward to obtain a relation in terms of the
fu;vg coordinate system as follows:

∂t ¼
∂u
∂t

∂

∂u
þ ∂v

∂t
∂

∂v

¼ ð−κÞ
�
−
1

κ
e−κðt−

R
dr
fðrÞÞ

	
∂

∂u
þ κ

�
1

κ
eκðtþ

dr
fðrÞÞ

	
∂

∂v

¼ −κðu∂u − v∂vÞ: ð68Þ

From the above calculation,we deduce that ∂t ∝ u∂u − v∂v.
∂t is a timelike Killing vector for any static spherically
symmetric black hole geometry, and the positive frequency
modes associatedwith this timelikeKilling vector results in a
vacuum state known as the Boulware vacuum state. The
Boulware vacuum state is denoted by j0iB and j0iB ↔ j0iI ,
which indicates the Boulware vacuum state is analogous
to the Rindler vacuum state in region I. Another timelike
Killing vector which can be defined is −∂t, and the positive
frequency modes associated with this time like Killing
vectors results in the j0iB̄, also known as the anti-
Boulware vacuum state. The anti-Boulware vacuum state
is analogous to j0iIV . From the analogy among the Hartle-
Hawking (Boulware, anti-Boulware) and Minkowski
(Rindler I, Rindler IV) vacuum states, we can rewrite
Eq. (49) in a static spherically black hole geometry as

j0iωi
H ¼ 1

cosh σωi

X
n

tanhn σωi
jniωi

B jniωi

B̄ ; ð69Þ

where j0iH ¼ ⊗jj0iωj

H and

tanh σωi
¼ e−

πωi
a ¼ exp

�
−
πωi

ffiffiffiffiffiffiffiffiffiffi
fðrÞp

κ

�
: ð70Þ

The above result comes from direct analogy with the
corresponding result in the Minkowski-Rindler scenario.
For a quantum corrected black hole metric, we can recast
Eq. (70) as

tanh σωi
¼ e

−
2πωiGMð1− 2GMr

r2þω̃G
ÞðGMþ

ffiffiffiffiffiffiffiffiffiffiffiffi
G2M2−ω̃G

p Þ2
G2M2þGM

ffiffiffiffiffiffiffiffiffiffiffiffi
G2M2−ω̃G

p
−ω̃G : ð71Þ

As ω̃ is a quantum gravity correction (which is very small),
we can recast Eq. (71) in a much simpler form given by

tanh σωi
≃ e

−4πωiGM
ffiffiffiffiffiffiffiffiffiffi
1−2GM

r

p ð1þ ω̃
4GM2þ ω̃G2M

r2ðr−2GMÞÞ: ð72Þ

For the quantum corrected black hole metric, we redefine the
σωi

term as rω̃;i. The one particle Hartle-Hawking state takes
the form given as (for a quantum corrected black hole)

j1iωi
H ¼ 1

cosh2 rω̃;i

X∞
n¼0

tanhn rω̃;i

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jnþ 1iωi
B jniωi

B̄ :

ð73Þ
With this background inplace,wewould now like to consider
a maximally entangled bipartite state in the basis of an
observer freely falling into the event horizon of a black hole.
Before writing this state we would like to recall that the
maximally entangled state in the Minkowski-Rindler analy-
sis takes the form [4,20],

jψi ¼ 1ffiffiffi
2

p ðj0iωi
A;Mj0iωi

R;M þ j1iωi
A;Mj1iωi

R;MÞ; ð74Þ
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where j0iωi
A;M denotes the single mode Minkowski vacuum

state for Alice and j0iωi
R;M denotes single mode Minkowski

vacuum state for Rob. With the analogy established earlier
between the flat spacetime case and the black hole scenario,
we know that j0iωi

M ↔ j0iωi
H . Hence, using this correspon-

dence, we can write down the maximally entangled bipartite
state in the basis of an observer freely falling into the event
horizon of a black hole as [20]

jψi ¼ 1ffiffiffi
2

p ðj0iωi
A;Hj0iωi

R;H þ j1iωi
A;Hj1iωi

R;HÞ: ð75Þ

The suffix “A” in the first part of the system (out of the two
subsystems) denotes freely falling Alice and the second
subsystem is for Rob, who is at a distance r near the event
horizon of the quantum corrected black hole. In Eq. (75), the
states corresponding to Alice (jiA;H) are the number states of
the scalar field theory in the Hartle-Hawking basis and the
Rob states (jiR;H) are the number states in the Hartle-
Hawking basis as well [20]. As the underlying theory is
that of scalar quantum electrodynamics, the number states
corresponds to the number of scalar photons with energy
equal to the angular frequency (according to the label of the
state) multiplied by the reduced Planck’s constant.

IV. LOGARITHMIC NEGATIVITY
AND MUTUAL INFORMATION

In this section, we shall obtain the logarithmic negativity
and mutual information corresponding to the maximally
entangled biparite state given in Eq. (75). Our main aim is to
do a side by side comparison for the case of a Schwarzschild
and a quantum corrected black hole to truly investigate
the effect of the change in the event horizon radius due
to the underlying quantum nature of the black hole.

Before proceeding further, it is important to note that
j0iA ↔ j0iH and j0iR for a fixed frequency value is des-
cribed by Eq. (69). Boulware and anti-Boulware states are
causally disconnected, and Rob is causally disconnected
from accessing the anti-Boulware states. As a result, we shall
be tracing over the anti-Boulware states which shall lead to a
mixed state. The reduced density matrix is given by

ρAR ¼
X∞
m¼0

B̄hmjψihψ jmiB̄

¼ 1

2cosh2rω̃;i

X∞
n¼0

tanh2nrω̃;i

�
j0 nih0 nj

þ
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p

coshrω̃;i
ðj1 nþ 1ih0 nj þ j0 nih1 nþ 1jÞ

þ nþ 1

cosh2rω̃;i
j1 nþ 1ih1 nþ 1j

	
: ð76Þ

We shall now make use of the partial transpose criteria [35]
which shall provide us with sufficient criteria for entangle-
ment. The fn; nþ 1g block of the reduced density matrix in
Eq. (76) is given by

�
1

2cosh2rω̃;i

�
2
66664
B0n
0n B0n

1n B0n
0nþ1 B0n

1nþ1

B1n
0n B1n

1n B1n
0nþ1 B1n

1nþ1

B0nþ1
0n B0nþ1

1n B0nþ1
0nþ1 jB0nþ1

1nþ1

B1nþ1
0n B1nþ1

1n B1nþ1
0nþ1 B1nþ1

1nþ1

3
77775; ð77Þ

where Bab
cd denotes the coefficient associated with the

jabihcdj state. After taking partial transpose of the matrix
in Eq. (77), we obtain the following matrix:

�
1

2cosh2rω̃;i

�
2
66666666664

B0n
0n B0n

1n B0n
0nþ1 B1n

0nþ1

B1n
0n B1n

1n B0n
1nþ1 B1n

1nþ1

B0nþ1
0n B1nþ1

0n B0nþ1
0nþ1 jB0nþ1

1nþ1

B0nþ1
1n B1nþ1

1n B1nþ1
0nþ1 B1nþ1

1nþ1

3
77777777775
: ð78Þ

The new matrix consisting of the boxed elements from Eq. (78) is given by

Pn;nþ1 ¼
tanh2n rω̃;i

2 cosh2 rω̃;i

2
64 n

sinh2 rω̃;i

ffiffiffiffiffiffiffi
nþ1

p
coshrω̃;iffiffiffiffiffiffiffi

nþ1
p
coshrω̃;i

tanh2 rω̃;i:

3
75: ð79Þ
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The eigenvalues of the Pn;nþ1 matrix are given as

ξn;� ¼ tanh2nrω̃;i

4cosh2rω̃;i

"�
tanh2rω̃;i þ

n
sinh2rω̃;i

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
tanh2rω̃;i þ

n
sinh2rω̃;i

�
2

þ 4

cosh2rω̃;i

s #
: ð80Þ

From Eq. (80), it is straightforward to infer that ξn;− < 0. The logarithmic negativity is obtained as [4]

NðρARÞ ¼ log2jjρTARjj

¼ log2

�
1þ

X∞
n¼0

ðjξn;−j − ξn;−Þ
	

¼ log2

�
1 − 2

X∞
n¼0

ξn;−

	

¼ log2

"
1þ

X∞
n¼0

tanh2nrω̃;i

2cosh2rω̃;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
tanh2rω̃;i þ

n
sinh2rω̃;i

�
2

þ 4

cosh2rω̃;i

s
−
X∞
n¼0

tanh2nrω̃;i

2cosh2rω̃;i

�
n

sinh2rω̃;i
þ tanh2rω̃;i

�#

¼ log2

"
1

2cosh2rω̃;i
þ
X∞
n¼0

tanh2nrω̃;i

2cosh2rω̃;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
tanh2rω̃;i þ

n
sinh2rω̃;i

�
2

þ 4

cosh2rω̃;i

s #

¼ log2

�
1

2cosh2rω̃;i
þ Λðrω̃;iÞ

	
; ð81Þ

where

Λðrω̃;iÞ ¼
X∞
n¼0

tanh2n rω̃;i

2 cosh2 rω̃;i

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
tanh2 rω̃;i þ

n
sinh2 rω̃;i

�
2

þ 4

cosh2 rω̃;i

s
:

ð82Þ

For an observer at infinite distance, aðr → ∞Þ ¼ 0 leading
to NðρARÞ ¼ 1. When the observer is on the event horizon
of the black hole then aðrþÞ → ∞ which is identical to the
condition rω̃;i → ∞. To obtain the value of the entangle-
ment negativity at this point, we need to truly investigate
the bound on the negativity value in this limit. It is
straightforward to obtain a bound on the summation term

in the above equation. We know that a2 þ b2 < ðaþ bÞ2,
and we can write down the following inequality:

Λðrω̃;iÞ<
X∞
n¼0

tanh2nrω̃;i

2cosh2rω̃;i

�
tanh2rω̃;iþ

n
sinh2rω̃;i

þ 2

coshrω̃;i

	

¼1

2

�
1þ 2

coshrω̃;i
þ tanh2rω̃;i

�
<1þ 1

coshrω̃;i
:

ð83Þ
Now in the rω̃;i → ∞ limit Λ goes to 1. Hence, in the
infinite acceleration case or when the observer is on the
event horizon of the black hole, the logarithmic negativity
becomes 0. In the ω̃ → 0 limit, rω̃;i → rSch:;i with “Sch.”
denotes the case for a Schwarzschild black hole. For the
next part of our analysis, we shall be denoting rω̃;i as Ri.
The logarithmic negativity from Eq. (81) can be expressed
in terms of Ri as

NðρARÞ ≃ log2

�
1

2cosh2Ri
ð1þ ω̃Kisinh2RiÞ þ

X∞
n¼0

tanh2nRi

2cosh2Ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
n

sinh2Ri
þ tanh2Ri

�
2

þ 4

cosh2Ri

s

×

�
1þ ω̃Ki

�
sinh2Ri − nþ

�
2tanh2Ri þ

�
n

sinh2Ri
þ tanh2Ri

��
n

sinh2Ri
þ n − tanh2Ri

		
��
n

sinh2Ri

þ tanh2Ri

�
2

þ 4

cosh2Ri

	��	
; ð84Þ
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where

Ki≡ 8πωiGM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2GM
r

r �
1

4GM2
þ G2M
r2ðr− 2GMÞ

	
: ð85Þ

Equation (84) is one of themain results in our paper. In order
to plot Fig. 1, we set G ¼ 0.1l2

0, M ¼ 1.0l−1
0 , ωi ¼ 1

π l
−1
0 ,

and ω̃ ¼ 0.9 with respect to some arbitrary length scale l0.
Here, the values are chosen in a manner such that the
quantum effects get amplified. From Fig. 1, we observe that
the negativity has a slower rate of decreasing than the
Schwarzschild black hole. Hence, if an observer finds out
that at the Schwarzschild radius the logarithmic negativity
does not drop to zero, then it will indicate towards the
existence of a modified gravity theory. The reason behind
such a slower rate of degradation is due to the change in the
event horizon radius of the black hole as a result of the
embedded quantum correction. In principle, just from an
observer’s perspective, it will be impossible to tell whether
this change in the rate of entanglement degradation is

because of underlying quantum gravity correction or any
other corrections to the Einstein-Hilbert action. Such cor-
rections can be incorporated by higher curvature corrections,
extra dimensional black holes, etc. It is also important to note
that the negativity goes to zero on the event horizon radius of
the black hole [the points for each curve where they meet on
theNðρARÞ ¼ 0 axis], which signifies that the states does not
possess any distillable entanglement anymore. It is impor-
tant to note that we have made use of Eq. (71) instead of
Eq. (72) to obtain Fig. 1 (and later Figs. 2 and 3).
Our next aim is to calculate the mutual information and

compare between the Shwarzschild and quantum corrected
case. The mutual information gives one the idea of the
total amount of correlation. The mutual information is
given by [4,36]

IðρARÞ ¼ SðρAÞ þ SðρRÞ − SðρARÞ; ð86Þ
where SðρÞ¼−trðρlog2ρÞ¼−

P
nρn;n log2ρn;n. In Eq. (86),

ρA denotes Alice’s density matrix while Rob’s states are
traced out. The values of the individual entropies can be
obtained as follows:

SðρAÞ ¼ 1; ð87Þ

SðρRÞ ¼ −
X∞
n¼0

tanh2nrω̃;i

2cosh2rω̃;i

�
1þ n

sinh2rω̃;i

�

× log2

�
1þ n

sinh2rω̃;i

	
; ð88Þ

SðρARÞ ¼ −
X∞
n¼0

tanh2nrω̃;i

2cosh2rω̃;i

�
1þ nþ 1

cosh2rω̃;i

�

× log2

�
1þ nþ 1

cosh2rω̃;i

	
: ð89Þ

Substituting Eqs. (87)–(89) in Eq. (86), we obtain the
following relation:

FIG. 2. Mutual information vs radial distance (of the observer)
plot for a Schwarzschild and quantum corrected black hole.

FIG. 3. Entanglement fidelity vs r plot for a Schwarzschild and
a quantum corrected black hole.

FIG. 1. Logarithmic negativity vs radial distance (of the
observer) plot for a Schwarzschild and quantum corrected
black hole.
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IðρARÞ ¼ 1−
X∞
n¼0

tanh2nrω̃;i

2cosh2rω̃;i

��
1þ n

sinh2rω̃;i

�
log2

�
1þ n

sinh2rω̃;i

	
−
�
1þ nþ 1

cosh2rω̃;i

�
log2

�
1þ nþ 1

cosh2rω̃;i

		

≃ 1−
X∞
n¼0

tanh2nRi

2cosh2Ri
ð1þ ω̃Kiðsinh2Ri − nÞÞ

��
1þ n

sinh2Ri

�
1þ ω̃Kið1þ sinh2RiÞ

��
log2

�
1þ n

sinh2Ri

× ð1þ ω̃Kið1þ sinh2RiÞÞ
	
−
�
1þ nþ 1

cosh2Ri
ð1þ ω̃Kisinh2RiÞ

�
log2

�
1þ nþ 1

cosh2Ri
ð1þ ω̃Kisinh2RiÞ

		
: ð90Þ

Equation (90) is also one of the main results in our paper.
We shall now investigate the entanglement degradation

for a quantum corrected black hole and compare it with that
of the Schwarzschild black hole. Using the same param-
eters as before, we plot mutual information vs r in Fig. 2. In
order to obtain Fig. 2, we have used the value of rω̃i

from
Eq. (71) (σωi

¼ rω̃i
in this equation) instead of Eq. (72). It

is straightforward to observe that the entanglement degra-
dation gets significant as the observer approaches the event
horizons of the respective black holes. It is again important
to notice that for the quantum corrected black the mutual
information degrades at a slower rate. When the mutual
information becomes 1, there are no distillable entangle-
ment left between the two states. As before such advanced
observations cannot indicate certainly towards quantum
gravity signatures but it does indicate towards modified
gravity theories if for the observer being at the
Schwarzschild radius, the mutual information does not
go to unity. This implies that the entanglement does not
degrade completely at the Schwarzschild radius. It is very
difficult to costruct such experimental scenarios where the
degradation in mutual information is directly observed, but
it may be possible to do the same in future with advanced
experimental setups. In the next section, we shall demon-
strate the entire setup as a quantum channel with a
completely positive and trace preserving map and try to
obtain the entanglement fidelity for the same channel.

V. NOISY QUANTUM CHANNEL
AND ENTANGLEMENT FIDELITY

We start with the initial density matrix (anti-Boulware
states traced out),

ρIAR ¼ jϕihϕj

¼ 1

2
ðj00ih00jþ j00ih11jþ j11ih00j þ j11ih11jÞ; ð91Þ

where jϕi ¼ 1ffiffi
2

p ðj00i þ j11iÞ. We need to construct a

map such that we obtain ρAR in Eq. (76) from the above
equation. We consider a map of the following form [37]:

ρAR ¼ EðρIARÞ ¼
X
n

Snρ
I
ARS

†
n ¼

X
n

SnjϕihϕjS†
n: ð92Þ

One can obtain the analytical form of Sn as

Sn ¼
1ffiffiffiffiffi
n!

p tanhn rω̃;i

coshrω̃;i
ðsechrω̃;iÞN̂A ⊗ ðâ†BÞn; ð93Þ

with N̂A being the number operator whose action is defined
on Alice’s Hilbert space (Hawking-Hartle states) and â†B
being the raising operator for the states measured by Rob
(Boulware states). Now the operator Sn is an operator of the
Hilbert space where the density matrix ρIAR is prepared.
Hence, the map E is a positive map [37,38]. It is also
straightforward to check that trðρIARÞ ¼ trðρARÞ. Hence, the
map E is a CPTP map. Our final aim is to investigate how
this quantum channel preserves the initial entanglement.
For this, we need to calculate entanglement fidelity given
by [37]

FE ¼
X∞
n¼0

tr½ρIARSn�tr½ρIARS†
n�: ð94Þ

The analytical forms of the two traces are given by

tr½ρIARSn� ¼
tanhnrω̃;i

2 coshrω̃;i

�
1þ

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p

coshrω̃;i

�
δn;0

¼ 1

2 coshrω̃;i

�
1þ 1

coshrω̃;i

�
δn;0

¼ tr½ρIARS†
n�: ð95Þ

Using Eq. (95) in Eq. (94), we obtain the entanglement
fidelity given by

FE ¼
X∞
n¼0

tr½ρIARSn�tr½ρIARS†
n�

¼
X∞
n¼0

tanh2nrω̃;i

4cosh2rω̃;i

�
1þ

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p

coshrω̃;i

�
2

ðδn;0Þ2

¼ 1

4cosh2rω̃;i

�
1þ 1

coshrω̃;i

�
2

≃ F Sch:
E

�
1þ ω̃Kisinh2Ri

�
1þ 1

1þ coshRi

��
: ð96Þ

where
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F Sch:
E ¼ 1

4 cosh2Ri

�
1þ 1

coshRi

�
2

ð97Þ

denotes the entanglement fidelity for a Schwarzschild
black hole. In Fig. 3, we plot the entanglement fidelity
vs the distance of the observer from r ¼ 0. It is important
to observe from Fig. 3 that near the event horizon of the
black hole (which depicts the infinite acceleration limit
in the flat spacetime case), the entanglement fidelity
approaches zero and the rate of degradation is slower for
the quantum corrected black hole (compared to the
Schwarzschild black hole), which shows a similar behavior
as shown by logarithmic negativity and mutual informa-
tion. It is important to note that the delayed nature of the
degradation of the information theoretical measures are
completely dependent upon the change in the event horizon
radius. As in the quantum corrected case, the event horizon
radius is smaller than that of the Schwarzschild radius, the
primary measures (logarithmic negativity, mutual informa-
tion, and entanglement fidelty) decay slowly than that of
the simple Schwarzschild case. It is therefore not quite
feasible to claim that the quantum gravity corrections are
the only reasons for such a delayed fall-off behavior from a
observer’s perspective. It does indicate that the underlying
theory is that of a modified general relativity theory.

VI. CONCLUSION

We investigate the phenomenon of entanglement deg-
radation for a quantum corrected black hole, in the vicinity
of the event horizon of the same. We observe that in the
near horizon approximation, it is possible to write down
any static and spherically symmetric metric in a Rindler
form, which helps later in identifying three timelike Killing
vectors and ultimately, in identifying the vacuum modes
and their analogy with the flat spacetime case. For the next
part of our analysis, we obtain the logarithmic negativity
for the quantum corrected black hole using the partial
transpose criterion of the reduced density matrix and
expressed it in terms of the Schwarzschild parameters.
Then we have plotted logarithmic negativity with respect to
the change in the position of the observer r for a quantum
corrected black hole and compared it with that of the
Schwarzshild black hole. We observe that the logarithmic
negativity asymptotically reaches unity when the observer
is sitting very far away from each of the black holes and
attains a zero value for an observer sitting on the event
horizon of the black hole. It is although important to note
that when the logarithmic negativity reaches zero value for

observer sitting at the event horizon radius of the
Schwarzschild black hole, it still would have been nonzero
if there are underlying quantum gravity corrections in the
black hole. One important thing to keep in mind is that the
logarithmic negativity being nonzero in the quantum
corrected case is a direct consequence of the event horizon
radius being smaller in this case than the Schwarzsdchild
radius. Hence, such an outcome does not guarantee an
embedded quantum correction from an observer’s perspec-
tive. It rather indicates towards the existence of a modified
gravity theory, which may have resulted in a smaller event
horizon radius than the Schwarzschild radius. For example,
it can be any gravity theory with higher curvature correc-
tions or theories with the existence of extra dimensions.
Next, we have calculated the mutual information for the
Alice-Rob bipartite state for the quantum corrected black
hole. We have then plotted the mutual information with
respect to r for both the black holes and observe that very
near the event horizon radius, mutual information drops
from 2 to very close to unity and reaches unity while the
observer is sitting on the event horizon of the black hole.
Similar to previous case the mutual information has a
slower rate of fall for the quantum corrected black hole. It
affirms that if a black hole has underlying quantum gravity
corrections (which is almost impossible to notice for any
observer) then even if the observer is at the Schwarzschild
radius there will still be some distillable entanglement left.
Again from an observational perspective, it can not be
considered uniquely as a quantum gravity signature. But,
there is always a possibility that the correction has emerged
from an underlying quantum theory of gravity. Finally, we
consider the entire procedure as a quantum channel and
obtained a completely positive trace preserving map which
translates the initial stationary entangled state to a mixed
state in the black hole spacetime. We finally calculate the
entanglement fidelity to investigate how the quantum
channel preserves entanglement. We find out that the
entanglement fidelity degrades near the vicinity of the
event horizon of the black hole and as per the earlier cases
the rate of fall is slower in case of the quantum corrected
black hole. It is then important to conclude that quantum
gravity corrections reduces the event horizon of the black
hole than the Schwarzschild radius, which delays entan-
glement degradation. Our future plan involves doing a
rigorous calculation of the Bogoliubov coefficients and
obtain the Hawking-Hartle and Boulware vacuum con-
nection considering the effects of the curved background
rather by using an analogy.
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