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In this study, we construct a 1þ 1-dimensional, relativistic, free, complex scalar quantum field theory on
the noncommutative spacetime known as lightlike κ-Minkowski. The associated κ-Poincaré quantum group
of isometries is triangular, and its quantum R matrix enables the definition of a braided algebra of N points
that retains κ-Poincaré invariance. Leveraging our recent findings, we can now represent the generators of
the deformed oscillator algebra as nonlinear redefinitions of undeformed oscillators, which are nonlocal in
momentum space. The deformations manifest at the multiparticle level, as the one-particle states are
identical to the undeformed ones. We successfully introduce a covariant and involutive deformed flip
operator using the R matrix. The corresponding deformed (anti)symmetrization operators are covariant and
idempotent, allowing for a well-posed definition of multiparticle states, a result long sought in quantum
field theory on κ-Minkowski. We find that P and T are not symmetries of the theory, although PT (and
hence CPT) is. We conclude by noticing that identical particles appear distinguishable in the new theory,
and discuss the fate of the Pauli exclusion principle in this setting.
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I. INTRODUCTION

Quantum field theory (QFT) on noncommutative space-
times has been studied for decades [1–3]. The initial
motivations came from the desire to regularize the ultra-
violet divergences of quantum electrodynamics [4],
together with the intuition that quantum theory might
require spacetime itself to be quantized in some sense.
This proposal entails some serious interpretational chal-
lenges, as the smooth topology of spacetime would have to
be replaced by something new. The discussion of these
issues echoes the debate that followed the introduction of
quantization conditions on phase-space orbits by Bohr [5].
The idea of describing quantum phase space as a non-
smooth, “pointless” geometry remained in the back burner
until the development of the theory of von Neumann
algebras, which represented the birth of noncommutative
geometry [6]. The commutative C�-algebras of functions
on a topological manifold have been shown to completely
characterize the topology of the manifold [7,8]. Replacing
this algebra with a noncommutative algebra leads to the

modern notion of a noncommutative geometry [6]. The tools
of classical differential topology and Riemannian geometry
are insufficient to describe objects that lack the notion of
infinitesimal points, so the study of the properties of
these noncommutative spaces requires a purely algebraic
formulation. Connes, Woronowicz, and Drinfel’d general-
ized the notion of a differential structure to the noncommu-
tative setting [9–11], which led to the definition of gauge
theories on a large class of noncommutative spaces. The
“noncommutative Standard Model” of Connes, Lott and
Chamseddine [12,13] allows to unify the Standard Model
fields with the Higgs boson as well as the gravitational field
as an effective description of a “quasicommutative” geom-
etry. This model has been extensively studied for decades,
and, although so far it has not been possible to deduce
unambiguous predictions of some Standard Model param-
eters that wouldmake themodel falsifiable, it still represents
today a possible avenue toward unification.
The main motivation for a noncommutative structure of

spacetime comes from quantum gravity. Already at the
effective level of QFT coupled to classical general rela-
tivity, it can be shown that the Planck length, lP ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gℏ=c3

p
, represents a limit to the localizability of

fields [14]. Rather than attacking frontally the full problem
of quantum gravity, one could incorporate these restrictions
to locality in effective models that feature uncertainty
relations among some noncommutative “coordinate” oper-
ators. A compelling evidence that such a “noncommutative
QFT” could be a realistic, intermediate level of description
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between commutative QFT and the full quantum theory of
gravity comes from the only model of quantum gravity that
is well-understood as a QFT: 2þ 1-dimensional general
relativity. This theory lacks local propagating degrees of
freedom (gravitons) and can be therefore quantized with
topological QFT methods. Coupling the theory to matter
and integrating away the gravitational degrees of free-
dom gives rise to an effective theory of matter propagating
on a noncommutative spacetime [15,16]. The Planck scale
in this model ends up playing the role of a scale of
noncommutativity.
Further evidence for spacetime noncommutativity as an

effective description comes from string theory, in which the
intrinsic length scale of strings has been conjectured to
prevent probing arbitrarily small distances [17]. Moreover,
a connection between string theory and noncommutative
geometry was found by Witten in the context of interacting
bosonic open strings [18], and later with Seiberg, with the
identification of a regime in which the string dynamics is
described by a gauge theory on a noncommutative space
[19]. Models of noncommutative QFT inspired by the
Seiberg–Witten one (so-called θ-Moyal-type spacetimes)
have been extensively studied in their own right [1], and a
1þ 1-dimensional toy model of this kind, studied by
Grosse and Wulkenhaar [20], was proven to be finite at
all energy. This is the only known example of an interacting
QFT that is well-defined at all scales, and realizes Snyder’s
original dream of keeping the divergences of QFT under
control via noncommutativity. Notice that the Seiberg–
Witten model [19] relies on a tensor B-field taking an
expectation value in the vacuum and providing a Lorentz-
breaking preferred background frame with respect to which
the noncommutativity of coordinates is specified. This, of
course, raises the question of the destiny of Lorentz
invariance in noncommutative QFT, which becomes par-
ticularly pressing in view of the stringent constraints
available today on Lorentz invariance violations [21,22].
Beyond the need to evade these constraints, we would also
like to establish whether spacetime noncommutativity can
be compatible with relativistic invariance, which is a
question of great interest in itself. That the minimal lengths
appearing in quantum gravity might not imply Lorentz
invariance violation has been long conjectured. In loop
quantum gravity, it has been argued that the discreteness of
the spectra of geometric operators like the area is analogous
to what happens in quantum mechanics with the angular
momentum operator [23]: one can have a rotationally
symmetric state of nonzero spin, which of course is
impossible in classical mechanics. In quantum mechanics,
these rotationally invariant states appear the same to all
observers, because, although upon measurement they get
nonzero spins along one direction, this happens with a
spherically symmetric probability distribution, and the
symmetry is only broken upon choosing a direction in
space and realizing a projective measurement.

In this paper, we are interested in conjectured field
theories that deform, rather than break, Poincaré invariance.
In a theory of this type, the scale of noncommutativity
would represent a second relativistic scale, on par with the
speed of light c, which appears the same to all observers.
This would be a concrete realization of the principle of
doubly special relativity conjectured more than two dec-
ades ago by Amelino-Camelia [24]. In such a theory, the
transformation rules between inertial observers are changed
in such a way that not only the speed of light, but also a new
length/energy scale appears the same to all observers. The
existence of deformed-Poincaré-invariant QFTs has long
been conjectured, and models that may qualify as such have
been studied extensively for decades, encountering severe
conceptual and technical difficulties. The main reason to
believe that such theories exist comes again from non-
commutative geometry: there are many examples of non-
commutative homogeneous spaces, which are invariant
under quantum group symmetries [25,26]. These are
generalizations of the notion of a Lie group, in which
the algebra of functions on the group is noncommutative,
and the transformation parameters become fuzzy, just like
the coordinates of the space. Deforming the Poincaré group
into a quantum group depending on an invariant length
scale seems therefore to be a concrete realization of the
Doubly Special Relativity principle mentioned above [27].
We now have a few candidates for a noncommutative
Minkowski spacetime, invariant under a quantum Poincaré
group [27–29], however the debate on how to build a QFT
on such spaces in such a way that Poincaré invariance is
preserved is still open. In the case of θ-Moyal-type non-
commutative spacetimes, the standard techniques used to
derive QFT predictions from the theory is to introduce a
star product, which is an infinite-dimensional representa-
tion of the noncommutative product between coordinates
on a space of commutative functions. Then the noncom-
mutative action of a field theory can be written as a
nonlocal action in terms of commutative fields. The non-
locality is due to the fact that the action depends on
derivatives of all orders of the commutative fields.
Treating such an action as a commutative one, one gets
correlation functions that depend on the noncommutativity
parameters in an apparently Lorentz-violating way. This
seems at odds with the existence of quantum group
deformations of the Poincaré group that leave the
θ-Moyal-type noncommutative spacetime (and the corre-
sponding QFT actions) invariant [30–33]. Solutions have
been proposed, that require a distinction between active and
passive transformations [34–36]. In [37,38], a different
approach was proposed, that involves a more careful
treatment of the concept of multilocal functions. In the
commutative case, these are simply functions from several
points on the spacetime manifold onto the complex or real
numbers, and in terms of the (commutative) algebra of
functions on the manifold, they can be simply formulated
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as elements of tensor products of copies of the same algebra
of functions. In the noncommutative setting, taking simply
the tensor product fails to produce a covariant structure: in
other words, assuming that the coordinates of different
points commute with each other is not covariant under the
quantum group Poincaré transformations. Fortunately,
mathematicians found a generalization of the concept of
tensor product, called braiding [25], which allows one to
identify a noncommutative algebra of N-points that is
invariant under the relevant quantum group. In [37,38],
this structure was used to define the Wightman functions of
a noncommutative QFT in a consistent way. Interestingly,
the difference between noncommutative coordinates of
different points belong to a commutative subalgebra of
the braided N-point algebra, so that the N-point functions
of the theory are commutative and admit a simple inter-
pretation as correlation functions in perfect analogy to
commutative QFT. There have been various attempts to
produce testable predictions of QFT on the θ-Moyal
spacetime, including some conjectured violations of the
Pauli exclusion principle [39–41]. The original approach to
θ-Moyal braided QFT suggests that the theory is equivalent
to the commutative one, at least at the perturbative level
[42]. More recent approaches [43–47], based on Oeckl’s
algebraic definition of braided QFT [48,49], find that
N-point functions for N > 3 are indeed deformed [46],
although the one-loop self-energy of a λϕ4 theory is not.
The approach of [43–47] works for any quantum group
deformation of the Poincaré group that can be expressed as
a twist, and therefore applies, in principle, to the case
studied in the present paper. It would be interesting to
compare that approach with ours.
Recently, some of us developed a similar construction for

QFT on a different noncommutative spacetime [50,51],
finding a rich and previously unnoticed level of complexity.
The noncommutative geometry in question is the so-called
“lightlike” κ-Minkowski spacetime, symmetric under the
“lightlike” κ-Poincaré quantum group [52–54]. This model
has great interest for physics, because its noncommutativity
parameter has the dimensions of a length (unlike the θ-
Moyal models whose parameter is an area), which suggests
that it might capture the first order in an expansion in
powers of the Planck length of an effective theory of fields
on a quantum-gravitational background. A closely related
noncommutative spacetime (the so-called “timelike”
version of κ-Minkowski) has been studied for decades
[55–80], and many efforts went into building a consistent
QFT on it [81–96]. A lot of progress has been made on the
problem, although much work remains to be done, and a
fully satisfactory QFT, both from the interpretational and
the technical/mathematical point of view, remains elusive.
In our first paper [50], the covariant braided N-point

algebra for a general parametrization of κ-Minkowski-like
noncommutative spacetimes was constructed, and it was
proven that its associativity is only compatible with the

lightlike model. In fact, the structure constants of the
coordinate algebra of this class of spacetimes are usually
expressed in terms of four parameters forming a vector
(conventionally called vμ), and the braiding construction
turned out to be possible only if said vector is lightlike (or
null), hence the name of the model. Furthermore, the
coordinate differences between different points (and there-
fore all N-point functions) were shown to be commutative,
just like in the work of Wess and Fiore [37,38]. In [50],
a proposal for a covariant Pauli-Jordan function was put
forward, however a technical obstacle prevented us from
defining general Lorentz-invariant N-point functions.
Namely, the momentum space of the theory was not closed
under Lorentz transformations, which practically meant
that certain momentum space integrals would have a
Lorentz-breaking upper bound related to the deformation
energy scale. Thanks to a recent observation [97], this
problem of the nonclosure of momentum space under
Lorentz transformations can be solved by enlarging the
basis of noncommutative functions that are used in the
Fourier expansion of fields, to plane waves that include a
constant complex contribution to the frequency. This allows
one to “double” momentum space into two halves that are
connected to each other by Lorentz transformations, and
together, are globally Lorentz invariant. This observation
was used in the recent work [51] to define a free complex
scalar field theory consistently (using covariant quantiza-
tion based on a Pauli-Jordan function), and derive the
associated deformed construction and annihilation operator
algebra. Unfortunately, this algebra turned out to be
extremely complicated, due to the presence of the addi-
tional region of momentum space, which, together with the
mass shell, splits the commutator of two creation/annihi-
lation operators into no less than twenty cases which need
to be listed separately.
In this paper, we build upon the results of [50,51], and

find a substantial simplification for the oscillator algebra.
We are able to find a simple representation for our
deformed creation and annihilation operators that can be
expressed in one line, and is based on infinite nonlinear
combinations of standard creation and annihilation oper-
ators. Such representation makes the unwieldy algebra of
[51] treatable, and allows us to begin drawing some
physical conclusions from the theory. First, the one-particle
sector is completely undeformed and coincide with that of a
commutative free complex scalar QFT. Second, the charge
conjugation operator is undeformed and Poincaré covari-
ant. This was not the case in other approaches to QFT on
κ-Minkowski (in the case of timelike vμ) [97]. In particular,
the recent [98] shows that the charge conjugation operator
sends a one-particle state into a one-antiparticle state with
different momentum. This phenomenon is not present in
our model. Regarding P and T symmetries, these are not
symmetries of the commutation relations between coor-
dinates, and this fact manifests itself already at the level of
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the one-particle sector: we are not able to introduce a P or a
T operator that acts on the oscillator algebra or on the Fock
space in the desired way. This, however, does not prevent
PT symmetry from being realized: thanks to the antili-
nearity of the T operator, both the coordinate commutation
relations and the free field theory can be shown to be
PT-invariant. Having C and PT, the CPT invariance of the
model is also guaranteed.
The nontriviality of the model manifests itself all in the

multiparticle sector. Already at the level of two particles
one sees that the total momentum depends nonlinearly on
the momenta of the two particles, and the action of Lorentz
transformations on two momenta becomes nonlinear and
mixes the components of the momenta of the two particles
(something dubbed “backreaction” in previous works
[75,99]). Finally, we are able to introduce a “braided flip
operator” that exchanges the momenta of two particles in a
nonlinear way, which possesses all the properties that such
an operator should: it is Lorentz covariant and is an
involution (its square is the identity operator). This operator
can be used to define symmetric and antisymmetric states,
which are necessary to define the Fock space of bosonic
and fermionic fields. Recent work by another group [100]
showed that, in the case of the “timelike” κ-Minkowski
spacetime, such a flip operator does not exist. The next best
things are either non-Lorentz-covariant at all orders, or are
not involutive [101–104], which means that one can build
an infinite tower of two-particle states that all share the
same total momentum. The conclusion of the authors
of [100] is that the very notion of identical particles, and
(anti)symmetrized multiparticle states loses meaning.
These results do not apply to the model considered in
the present paper, as our flip operator is both involutive and
Lorentz-covariant. This allows us to introduce a well-
defined notion of multiparticle states, which is something
that has eluded studies of QFT on κ-Minkowski for
decades. The deformed multiparticle states allow for a
revision of the classical concepts of indistinguishability of
identical particles and of the Pauli exclusion principle. We
find that, given enough precision, particles of the same
species which are described by a deformed (anti)symmetric
state can be distinguished by an experiment measuring their
momenta. Moreover, the class of states prohibited by the
Pauli exclusion principle is instead allowed in this setting,
while another class of states not excluded by the standard
principle is instead prohibited.

II. NONCOMMUTATIVE GEOMETRY
OF LIGHTLIKE κ-MINKOWSKI

A. The lightlike κ-Minkowski spacetime
and the κ-Poincaré quantum group

The dþ 1-dimensional κ-Minkowski noncommutative
space-time is defined by commutations relations among
coordinates of the form

½xμ; xν� ¼ i
κ
ðvμxν − vνxμÞ; μ ¼ 0; 1;…; d; ð1Þ

where κ is a deformation parameter with the dimensions of
energy (in natural units c ¼ ℏ ¼ 1), and vμ is a set of four
real parameters. The algebra of functions on Minkowski
space-time is hence deformed into a noncommutative
algebraA, generated by xμ and the identity 1, and equipped
with a noncommutative product defined by (1). One can
introduce a (commutative) arbitrary constant metric tensor
gμν, and require that it is preserved by a quantum group of
symmetries, which also leaves the commutation relations
(1) invariant. One obtains different quantum groups
depending on the relationship between the parameters vμ

and the metric gμν. If the parameters form a lightlike/null
vector, i.e., vμvνgμν ¼ 0, one obtains a triangular Hopf
algebra [25], which is the best-behaved case (see below).
This quantum group has been discovered in [52–54]. The
spacelike case has been discussed in [105,106], while the
timelike one, first introduced in [55,57,107], is by far
the most studied one. The appeal of the timelike case is that,
superficially, the algebra (1) appears spatially isotropic, and
indeed it is invariant under commutative/undeformed spa-
tial rotations. At an early time of investigation of the
physics of quantum groups, when some phenomenological
consequences were being conjectured, undeformed spatial
isotropy seemed compelling, because before clarifying the
difference between symmetry breaking and symmetry
deformations, a nonisotropic model could be feared to
be incompatible with very basic observations of the
isotropy of empty space [108]. At the present stage of
understanding of the model, these worries result
unfounded. Of course (1) cannot be invariant under the
full Lorentz (or Poincaré) group, unless one replaces the
group with a quantum group, as we will show momentarily.
In this case, whether the commutators (1) appear spatially
isotropic or not is an irrelevant point: the only way this
affects the theory is that there is a basis for the quantum
Poincaré algebra of invariance of (1) in which the rota-
tion generators appear “more commutative/undeformed”
(specifically: their coproducts are primitive). This does not
have any real consequences, because, as we are about to
show, there is a sense in which, for any choice of vμ, the
κ-Poincaré group has a Lorentz subgroup that is commu-
tative/undeformed, and all the noncommutativity is rel-
egated to the translations, which act on the Lorentz group in
a nontrivial way. For these reasons, we do not find any
valid reason to prefer a particular choice of vμ vector, at
this stage.
In developing field theories on the noncommutative

space-time (1), the notion of N-point functions is essential.
These can be defined starting from the braided tensor
product algebra A⊗̃N , which deforms the standard tensor
product of N copies of A by introducing nontrivial
commutation relations between the coordinates of different
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points, like ½xμa; xνb� ≠ 0, with a, b referring to different
copies of A. Details of this construction can be found
in [50,51], where it was also shown that the κ-Poincaré
invariance of theA⊗̃N commutation relations, together with
the imposition of the Jacobi rule, selects only vμ such
that gμνvμvν ¼ 0.
Therefore, from now on (and as done in [50,51]), we will

restrict our attention to the lightlike κ-Minkowski non-
commutative space-time, which in 1þ 1 dimensions is
characterized by the commutation relations

½xþ; x−� ¼ 2i
κ
x−; x� ¼ x0 � x1: ð2Þ

In the following, we will work in units in which κ ¼ 1.
The symmetries of (2) are expressed in terms of the κ-

Poincaré quantum group, denoted by Cκ½ISOð1; 1Þ�. This
notation characterizes κ-Poincaré as a noncommutative
deformation of the Hopf algebra Cκ½ISOð1; 1Þ� of complex
functions on the Poincaré group ISOð1; 1Þ. The algebra
sector reads [109] (all greek indices run in the set fþ;−g)

½Λμ
ν;Λρ

σ� ¼ 0; ½aμ; aν� ¼ iðvμaν − vνaμÞ
½aγ;Λμ

ν� ¼ i½ðΛμ
αvα − vμÞΛγ

ν þ ðΛα
νgαβ − gνβÞvβgμγ�

Λμ
αΛν

βgαβ ¼ gμν; Λρ
μΛσ

νgρσ ¼ gμν; ð3Þ
where

vμ ¼ ð2; 0Þ; gμν ¼
�
0 1

1 0

�
⇒ gμνvμvν ¼ 0: ð4Þ

The coproduct Δ, antipode S and counit ϵ, which codify
information on the quantum group product, inversion and
identity are undeformed, and their expressions are given by

Δ½Λμ
ν� ¼ Λμ

α ⊗ Λα
ν; Δ½aμ� ¼ Λμ

ν ⊗ aν þ aμ ⊗ 1

S½Λμ
ν� ¼ ðΛ−1Þμν; S½aμ� ¼ −ðΛ−1Þμνaν;

ϵ½Λμ
ν� ¼ δμν ; ϵ½aμ� ¼ 0: ð5Þ

The Poincaré transformations of spacetime coordinates
can be understood in terms of a left coaction operator
·0∶ A → Cκ½ISOð1; 1Þ� ⊗ A. We will write this coaction in
the following compact way:

x0μ ¼ Λμ
νxν þ aμ; ð6Þ

where the product on the right-hand side is understood as
the tensor product Λμ

ν ⊗ xν þ aμ ⊗ 1. In this notation, it is
understood that ½Λμ

ν; xρ� ¼ ½aμ; xν� ¼ 0. It is easy to check
that, given the coordinate transformation (6) and the
commutation rules (3), the commutator (2) is left invariant,
in the sense that

½x0þ; x0−� ¼ 2ix0−; ð7Þ

and the commutation relations appear identical to all
inertial observers. The symmetries can also be described
in terms of the dual Hopf algebra Uκ½isoð1; 1Þ�, which can
be thought of as a noncommutative deformation of the
universal enveloping algebra U½isoð1; 1Þ� of the Poincaré
Lie algebra isoð1; 1Þ. To extract the relevant structures of
Uκ½isoð1; 1Þ�, we apply a finite transformation on non-
commutative plane waves, with a given ordering, and
extract the action of the generators of the algebra by
evaluating the first order of the transformation rules of
plane waves. In this calculation and throughout the manu-
script, we choose to work with the xþ to-the-right ordering,
and a transformed plane wave can be written as

eik−x
0−
eikþx

0þ
; ð8Þ

where x0−, x0þ can be read off from (6) and kμ ∈C.1 From
the last line of (3), specified by (4), the Lorentz part of the
transformation can be parametrized by a single operator τ,
as follows:

Λμ
ν ¼

�
eτ 0

0 e−τ

�
: ð9Þ

From commutators (3), it is possible to show that

½aþ; τ� ¼ 2iðeτ − 1Þ; ½a−; τ� ¼ 0: ð10Þ

Using relations (10) and techniques developed in [50], we
can write (8) as

eik−e
−τx−e

i
2
log½1þeτðe2kþ−1Þ�xþeik−a−eikþaþ : ð11Þ

Focusing on the Lorentz sector of the transformation, we
want to write

eik−e
−τx−e

i
2
log½1þeτðe2kþ−1Þ�xþ

≈ ð1þ iτN ⊳Þeik−x−eikþxþ þOðτ2Þ; ð12Þ

where N is the boost operator in Uκ½isoð1; 1Þ� and ⊳ is a
left action ⊳ ∶Uκ½isoð1; 1Þ� ⊗ A → A. Expanding the
left-hand side at first order in τ, one finds

eik−e
−τx−e

i
2
log½1þeτðe2kþ−1Þ�xþ

≈ð1−iτx−k−Þeik−x−
�
1þiτxþ

�
1−e−2kþ

2

��
eikþx

þ
: ð13Þ

1Here and in the following, we consider ordered exponentials of
the noncommutative coordinates with both real and complex
parameters. The properties of the exponentials do not depend
whether the parameters are real of complex, in general. For the sake
of simplicity,wewill refer to these functions asplanewaves, even if
the parameter has an imaginary component (see Sec. III A).
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This can be understood as a nonlinear deformation of the
action of the standard boost operator on a commutative
plane-wave which is then mapped to a noncommutative one
with a given ordering (in this case xþ to the right), by means
of a Weyl map Ω∶ C½R2� → A [110], defined as (kx is a
shorthand for kμxμ):

ΩðeikxÞ ¼ eik−x
−
eikþx

þ
: ð14Þ

The action of the boost operator N can thus be written as

N⊳ΩðeikxÞ¼Ω
��

ðix−∂−Þþxþ
�
1−e2i∂þ

2

��
eikx

�
: ð15Þ

By inspecting the translation sector of the transformation,
the action of the P̃� generators can be defined as

P̃� ⊳ ΩðeikxÞ ¼ Ωð−i∂�eikxÞ ¼ k�ΩðeikxÞ ð16Þ

Using expressions (15) and (16) and applying the gener-
ators in succession on a single plane waves, one finds the
commutators:

½N; P̃þ� ¼ i

�
1 − e−2P̃þ

2

�
½N; P̃−� ¼ −iP̃−; ð17Þ

which can be easily shown to satisfy the Jacobi identities.
The coproducts encode the deviation from the Leibniz rule,
and are found by applying the generators on products of
plane waves. The antipode is obtained by acting on
“inverse” plane waves, i.e. plane waves which multiplied
by their standard counterpart give the identity. The counit
codifies the action of the generators on plane waves with
k ¼ 0.

Δ½P̃þ�¼ P̃þ⊗1þ1⊗ P̃þ; Δ½P̃−�¼ P̃−⊗1þe−2P̃þ ⊗ P̃−

Δ½N�¼N⊗1þe−2P̃þ ⊗N; S½N�¼−Ne2P̃þ ;

S½P̃−�¼−P̃−e2P̃þ S½P̃þ�¼−P̃þ;

ϵ½N�¼ ϵ½P̃þ�¼ ϵ½P̃−�¼0: ð18Þ

The procedures outlined above define a Hopf algebra: all its
axioms are satisfied, including the compatibility rules with
the commutators (17) (i.e., the homomorphism property of
Δ, S, and ϵ). The structures thus obtained define the
lightlike κ-Poincaré Hopf algebra in the so-called bicross-
product basis (characterized by momenta which close a
Hopf subalgebra [54,58]). In particular, expressions (15)
and (16) define the infinite-dimensional representation of
Uκ½isoð1; 1Þ� in the bicrossproduct basis.

The mass Casimir element of this algebra is

C ¼ 1

2
P̃−ðe2P̃þ − 1Þ: ð19Þ

The action of the Weyl map is also useful to define
generic noncommutative functions in A, by means of a
noncommutative Fourier transform

fðxÞ ¼
Z

d2k f̃ðkÞΩðeikxÞ: ð20Þ

For such generic functions, a κ-Poincaré transformation can
bewritten as (id is the identity map, and the dots indicate all
higher order monomials in the transformation parameters,
with a given, specified ordering: in this case, τ is chosen to
be to the right of aþ, which is, in turn, to the right of a−):

fðx0Þ ¼ eia
−⊗P̃−eia

þ⊗P̃þeiτ⊗Nðid ⊗⊳ÞfðxÞ
¼ 1 ⊗ fðxÞ þ iaμ ⊗ P̃μ ⊳ fðxÞ
þ iτ ⊗ N ⊳ fðxÞ þ… ð21Þ

with P̃μ; N ∈Uκ½isoð1; 1Þ� and the left action on coordi-
nates is easily read from (15) and (16),

P̃μ ⊳ xν ¼ −iδμν; N ⊳ x� ¼ �ix�: ð22Þ

A peculiarity of the κ-lightlike Hopf algebra, which will
prove to be useful in characterizing the physical results of
this work is the fact it is quasitriangular,2 i.e., it admits a
quantum R-matrix. It has been derived in [54,111,112], by
exploiting an isomorphism between CκðISOðd; 1ÞÞ and
Uκðisoðd; 1ÞÞ, where d ¼ 1, 2, 3. In 1þ 1 dimensions,
the expression of the R-matrix is given by

R ¼ e−2iP̃þ⊗Ne2iN⊗P̃þ ; ð23Þ

and in terms of it, relations (3), specified by (4) can bewritten
in a compact way as “RTT” relations, often used in the
quantumgroup literature [113]. Relations (22) define a three-
dimensional representation ρAB, with A; B ¼ fþ;−; 2g for
P̃μ; N acting on vectors of the form XA ≡ ðxμ; 1Þ:

ρðP̃þÞAB ¼

0
B@

0 0 −i
0 0 0

0 0 0

1
CA; ρðP̃−ÞAB ¼

0
B@

0 0 0

0 0 −i
0 0 0

1
CA;

ρðNÞAB ¼

0
B@

−i 0 0

0 þi 0

0 0 0

1
CA: ð24Þ

2In our specific case, a stronger condition holds: the R-matrix
is triangular, meaning that RBA

DCR
CD
EF ¼ δAEδ

B
F [111].
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By noticing that the ρðP̃�ÞAB matrices are nilpotent, (23)
reduces to:

R ¼ 1 ⊗ 1 − 2iP̃þ ⊗ N þ 2iN ⊗ P̃þ; ð25Þ

and by realizing the tensor product as the standardKronecker
product, in components we find

RAB
CD ¼ δACδ

B
D þ 2iðδAþδBþδ2CδþD − δAþδB−δ2Cδ

−
D

− δAþδBþδ
þ
Cδ

2
D þ δA−δ

Bþδ−Cδ
2
DÞ: ð26Þ

By defining

TA
B ¼

0
B@

Λþþ Λþ
− aþ

Λ−þ Λ−
− a−

0 0 1

1
CA ¼

0
B@

eτ 0 aþ

0 e−τ a−

0 0 1

1
CA; ð27Þ

one can explicitly verify that the expression

TA
CTB

DRDC
EF ¼ RBA

CDT
C
ETD

F; ð28Þ

reproduces the commutation relations (3). Moreover, the
commutation relations between coordinates can bewritten in
a compact way as

XAXB ¼ RBA
CDX

CXD: ð29Þ

Equivalently, these “RXX” relations can also beverifiedusing
the infinite-dimensional representation of Uκðisoðd; 1ÞÞ and
relations (22). For instance:

xþx− ¼ μ ∘ R ⊳ ðx− ⊗ xþÞ ¼ x−xþ þ 2i; ð30Þ

where μ∶ A ⊗ A → A is the noncommutative multiplica-
tion ofA. This deformed flip property can also be extended to
products of plane waves. Indeed, one can verify that

μ ∘ R ⊳ ½ΩðeiqxÞ ⊗ ΩðeikxÞ� ¼ ΩðeikxÞΩðeiqxÞ; ð31Þ

where k; q∈C2. As we will see in the subsequent sections,
the R-matrix proves to be a valuable instrument in switching
plane waves even in the braided tensor product algebra
introduced in [50,51], so that the task of covariant quantiza-
tion of the noncommutative scalar field becomes more
feasible.
In what follows, we will work in a different basis for

Uκ½isoð1; 1Þ�, which is connected to the bicrossproduct one
by a redefinition of the þ momentum, given by

Pþ ¼ 1

2
ðe2P̃þ − 1Þ: ð32Þ

The Uκ½isoð1; 1Þ� commutators are, in this basis, the
undeformed ones of the Poincaré algebra,

½N;Pþ� ¼ iPþ ½N;P−� ¼ −iP−: ð33Þ

All the nonlinearity is moved to the coproducts and the
antipodes, which now take the form

Δ½Pþ� ¼ Pþ ⊗ 1þ 1 ⊗ Pþ þ 2Pþ ⊗ Pþ;

SðPþÞ ¼ −
Pþ

1þ 2Pþ
;

Δ½P−� ¼ P− ⊗ 1þ 1 ⊗ P− −
2Pþ

1þ 2Pþ
⊗ P−;

SðP−Þ ¼ −P−ð1þ 2PþÞ;

Δ½N� ¼ N ⊗ 1þ 1 ⊗ N −
2Pþ

1þ 2Pþ
⊗ N;

SðNÞ ¼ −Nð1þ 2PþÞ; ð34Þ

while the counits remain all zero. The Casimir element in
these variables can be obtained by substituting (32) in (19)
and is undeformed:

C ¼ PþP−; ð35Þ

in agreement with the linearity of commutators (33).
Nonlinear transformations of the translation generators

lead to different bases for the Uκ½isoð1; 1Þ� Hopf algebra,
which, as we will see in the following, correspond to
different coordinate systems on momentum space.3 The
theory we are presenting in this paper has the aspiration of
being invariant under general coordinate transformations
on momentum space. This would imply that the physical
observables do not depend on the momentum coordinate
systems used in their prediction (see the discussion in
[114], Sec. II). The presence of such an invariance in our
theory is supported by the preliminary results in [51]
(Sec. 2.3), which show that the two-point functions of
the theory are the same regardless of the coordinate system
on momentum space that was used to calculate them.
Even in a generally covariant theory, certain situations

are better described by certain choices of coordinates, e.g.,
Cartesian coordinates in Minkowski space are preferred
because they transform covariantly under Lorentz trans-
formations. In our model, the choice of coordinates P� has
the same advantage: they transform in an undeformed
fashion under boosts. For this reason, we find it convenient
to work with them. As it turns out, plane waves are

3Notice that Hopf algebras are structures that are invariant
under general nonlinear changes of basis [26]. This is in stark
contrast with Lie algebras, which can only be meaningfully said
to be invariant under linear transformations of the basis. This
enlarged invariance is guaranteed by the additional structures like
coproduct, counit, and antipode. One can usually change the
commutators of a Hopf algebra to make them take almost any
desired form, but only at the cost of changing the coproducts, etc.
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eigenfunctions of the momenta, and the P� basis has the
following eigenvalues:

PþΩðeikxÞ ¼
1

2
ðe2kþ − 1ÞΩðeikxÞ

P−ΩðeikxÞ ¼ k−ΩðeikxÞ: ð36Þ

These relations inspire a redefinition of the momenta
appearing in the plane waves:

ξ− ¼ k−; ξþ ¼ 1

2
ðe2kþ − 1Þ;

⇒ ΩðeikxÞ ¼ eiξ−x
−
e

i
2
lnð1þ2ξþÞxþ ; ð37Þ

so that

P�ΩðeikxÞ ¼ P� ⊳ eiξ−x
−
e

i
2
lnð1þ2ξþÞxþ ¼ ξ�E½ξ�; ð38Þ

where we defined E½ξ�≡ eiξ−x
−
e

i
2
lnð1þ2ξþÞxþ . The algebraic

properties of noncommutative plane waves reflect the
nonlinear structure of momentum space. First of all, from
redefinition (37), we notice that the ξþ component of the
momentum is bounded from below, so that plane waves
E½ξ� only cover half of momentum space [50,51]. Products
of plane waves define the deformed composition law for
momentum (denoted by Δ) and the deformed inverse
momenta (denoted with S), which mimic the structures
of coproduct and antipode, respectively:

Δðξ; ηÞ ¼
�
ξ− þ η−

1þ 2ξþ
; ξþ þ ηþ þ 2ξþηþ

�

SðξÞ ¼
�
−ξ−ð1þ 2ξþÞ;−

ξþ
1þ 2ξþ

�
; ð39Þ

for ξ; η∈C2. The Hopf algebra properties then imply the
following consistency relations between composition law
and antipode, which can be checked explicitly using (39):

Δ½ξ;Δðη; χÞ� ¼ Δ½Δðξ; ηÞ; χ� ¼ Δ½ξ; η; χ�;
Δ½ξ; SðξÞ� ¼ Δ½SðξÞ; ξ� ¼ 0;

S½Δðξ; ηÞ� ¼ Δ½SðηÞ; SðξÞ�; ð40Þ

for ξ; η; χ ∈C2. The first relation implies the associativity of
the composition law, the second the existence of a
momentum inverse, and the third codifies the antihomo-
morphism property of the antipode. The Casimir element
(35) defines mass-shells in momentum-space through the
constraint

m2 ¼ ξþξ−; ð41Þ

just as in the ordinary theory.

Later on, we will see that the set of operators Pþ; P−; N
can also be represented in terms of creation-annihilation
operators of standard quantum field theory, and their action
on well defined (multi)-particle states follows the Hopf
algebraic structures displayed above. Before diving into
such considerations, we review some of the basics elements
needed to construct a consistent quantum field theory on
the 1þ 1D lightlike κ-Minkowski quantum space-time,
following [50,51].

B. Braided N-point algebra and its representations

The construction of the 1þ 1D braided lightlike
κ-Minkowski algebra A⊗̃N was developed in [50]. The
defining commutation relations are given by

½xþa ;xþb � ¼ 2iðxþa − xþb Þ; ½xþa ;x−b � ¼ 2ix−b ; ½x−a ;x−b � ¼ 0;

ð42Þ

with a; b ¼ 1;…; N. These relations can equivalently be
written in terms of center of mass and relative coordinates:

xμcm ¼ 1

N

XN
a¼1

xμa yμa ¼ xμa − xμcm; ð43Þ

so that (42) becomes

½xþcm;x−cm� ¼ 2ix−cm; ½xþcm;y�a � ¼∓ 2iy�a ; ½x−cm;y�a � ¼ 0:

ð44Þ

It is easy to check that the coordinate differences Δxμab ≔
xμa − xνb are commutative (a feature also shared by the
braided tensor product of the θ-Moyal noncommutative
space-time [37]):

½Δxμab;Δxνcd� ¼ 0; a;b;c;d¼ 1;…;N and μ;ν¼þ;−:

ð45Þ

This, combined with the fact that κ-Poincaré invariant
N-point functions depend solely on coordinate differences
(proved in [50]), immediately tells us that κ-Poincaré
invariant N-point functions are commutative themselves.
This greatly simplifies the interpretation of the theory,
given that all physical information should be encoded in
N-point functions. Once again, commutation relations (42)
can be written in terms of an R-matrix [113] as

XA
aXB

b ¼ RBA
CDX

C
bX

D
a ; ð46Þ

where XA
a ¼ ðxμa; 1Þ, and the operators appearing in the

R-matrix act in the same way on the xμa coordinates
whatever the value of a.
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In [50], a representation for the center of mass and
relative coordinates has been found, and reads

x̂þcm ¼ 2ix−cm
∂

∂x−cm
þ iþ 2i

XN−1

a¼1

�
yþa

∂

∂yþa
− y−a

∂

∂y−a

�
;

x̂−cm ¼ x−cm; ŷþa ¼ yþa ; ŷ−a ¼ y−a ; ð47Þ

and is such that x�cm, y�a are Hermitian. For purposes which
shall be clear once we discuss noncommutative plane
waves in more detail, we will consider a more general,
one-parameter class of representations, given by

x̂þcm ¼ 2i

�
x−cm

∂

∂x−cm
þ s

�
þ 2i

XN−1

a¼1

�
yþa

∂

∂yþa
− y−a

∂

∂y−a

�
;

x̂−cm ¼ x−cm; ŷþa ¼ yþa ; ŷ−a ¼ y−a ; ð48Þ

where 0 < s < 1, and the Hermitian representation is
regained with s ¼ 1=2. When analyzing plane waves, in
the subsequent sections, it is useful to study the action of
operators of the type eitx

þ
cm on functions of the braided

tensor product algebra. Using (48), it is easy to check that,
for any complex t,

eitx̂
þ
cmfðx−cm;yþa ;y−a Þ¼ e−tafðe−2tx−cm;e2tyþa ;e−2ty−a Þ: ð49Þ

Then, exploiting the fact that

eitx
þ
a ¼ eitðx

þ
cmþyþa Þ ¼ eiðe

2t−1
2

Þyþa eitx
þ
cm ; ð50Þ

we obtain

e−
π
2
xþa ¼ eiðe

πi−1
2

Þyþa e−π
2
xþcm ¼ e−iy

þ
a e−

π
2
xþcm ; ð51Þ

so that

e−
π
2
x̂þa fðx−cm;yþa ;y−a Þ¼ e−iy

þ
a e−iπsfðe−iπx−cm;eiπyþa ;e−iπy−a Þ

¼ e−iπse−iy
þ
a fð−x−cm;−yþa ;−y−a Þ: ð52Þ

The square of this operator is then simply

e−πx̂
þ
a fðx−cm; yþa ; y−a Þ ¼ e−2iπsfðx−cm; yþa ; y−a Þ: ð53Þ

and thus

e−nπx
þ
a fðx−cm; yþa ; y−a Þ ¼ e−2iπsnfðx−cm; yþa ; y−a Þ: ð54Þ

Having introduced the one-parameter family of repre-
sentations (48), we would like to find a condition that fixes
the parameter s. This will be identified in the next section,
in order to eliminate a sign ambiguity that emerges when
introducing a certain type of noncommutative plane waves
(first introduced in [51,97]) that are necessary to ensure the

covariance of the theory. In the meantime, we need to
briefly discuss the Hermiticity/self-adjointness properties
of the N-point coordinate operators xμa. This will be
necessary, as later we will need to introduce an involution
that sends a noncommutative plane wave into its inverse,
which is necessary in order to discuss field theory. What we
would like is an involutive, antilinear antihomomorphism
which sends E½ξ� [from Eq. (38)] into E†½ξ� such that
E†½ξ�E½ξ� ¼ E½ξ�E†½ξ� ¼ 1. We start by defining a putative
operator � as the “naive” Hermitian conjugation on
operators, such that its action on x̂þcm is given by

ðx̂þcmÞ� ¼ x̂þcm þ 2ið2s − 1Þ; ð55Þ
where, as expected, we obtain that ðx̂þcmÞ� ¼ x̂þcm only when
s ¼ 1=2, which corresponds to the symmetric ordering for
the representation (48). We can now define † as the operator
that leaves x̂þcm invariant for any choice of s, ðx̂þcmÞ† ¼ x̂þcm,
so that its relation with � is simply given by

ðx̂þcmÞ† ¼ ðx̂þcmÞ� − 2ið2s − 1Þ ð56Þ
The ð·Þ� operator is the Hermitian conjugate with respect to
the standard inner product of L2ðR2N−1Þ:Z

R2N−1
ψφ dx−cmdy−1…dy−N−1dy

þ
1 …dyþN−1; ð57Þ

where ψ , ϕ are square-integrable functions onR2N−1. The †
operation is the Hermitian conjugate with respect to a
different inner product:Z
R2N−1

ðx−cmÞ2s−1ψ̄φdx−cmdy−1…dy−N−1dy
þ
1 …dyþN−1; ð58Þ

where, in this case, the space of functions that have a finite
norm is different from L2ðR2N−1Þ. For s > 1=2, it includes
L2ðR2N−1Þ, and also functions that diverge sufficiently
slowly in x−cm → 0. For s < 1=2, the space is smaller than
L2ðR2N−1Þ, as the functions need to go to zero sufficiently
fast at x−cm → 0. The fact that the representations of A and
the related braided algebras require different inner products
for the self-adjointness of the generators has been already
noticed in [61,62,115]. From now on, we will use the †
operator to conjugate plane waves.

III. BRAIDED LIGHTLIKE κ-DEFORMED QFT

A. Old and new-type noncommutative plane waves
and momentum space

We have introduced plane waves for a single copy of the
A in Sec. II A using the linear momentum parametrization.
As it will be relevant for what follows, we add a label
indicating in which copy of the braided tensor product
algebra A⊗̃N the plane wave is defined:

Ea½ξ� ¼ eiξ−x
−
a e

i
2
lnð1þ2ξþÞxþa : ð59Þ
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Under the involution that leaves xþ invariant, the above
transforms as

E†
a½ξ� ¼ Ea½SðξÞ�; ð60Þ

where SðξÞ is the antipode defined in (39), while the
product of two plane waves gives a composition law
compatible with the coproducts in (34):

Ea½ξ�Ea½η� ¼ Ea½Δðξ; ηÞ�: ð61Þ

The space-time coordinates x� close the Lie algebra (2)
of the affine group of the line, aff(1). Plane waves (59)
span the connected component of the identity of the
corresponding Lie group, Aff(1). This is just a semiplane
of 1þ 1-dimensional Minkowski space, bounded by a
straight line [50,51]. The boundary is given by the reality
constraint for the logarithm term, ξþ > −1=2. This implies
that such plane waves only cover half of the Minkowski
momentum space, an issue already pointed out in [50].
There, it was shown that a field theory built from plane
waves (59) spoils κ-Poincaré invariance. This can easily be
seen by considering a κ-Poincaré transformation of (59):

E0
a½ξ� ¼ eie

−τx−e
i
2
lnð1þ2eτξþÞxþeiξ−a−ei

2
lnð1þ2ξþÞaþ : ð62Þ

Notice that in this linear parametrization, the boost simply
acts as a dilation on ξ−; ξþ, given the linear structure of the
commutators (33). For any value of τ, a positive value of ξþ
remains positive, and we obtain a different group element
connected to the identity. When ξþ is negative, an exces-
sively large boost may result in eτξþ < −1=2, so that the
argument of the logarithm in (59) becomes negative and we
obtain a group element not connected to the identity, which
we can think of as a plane wave of the form (59) with a
complex argument. In [51], these “new type” plane waves
were identified as the missing piece of the puzzle needed to
construct a consistent κ-Poincaré invariant field theory.
Suppose we boost a plane wave of the form (59),

such that eτξþ < −1=2; then, the logarithm term can be
written as

ln½−j1þ 2eτξþj� ¼ iπ þ ln j1þ 2eτξþj þ 2nπi: ð63Þ

Focusing on the Lorentz transformation sector of (62):

eie
−τξ−x−a e

i
2
ln½−j1þ2eτξþj�xþa ¼ eie

−τξ−x−a e
i
2
ln j1þ2eτξþjxþa e−π

2
xþa e−nπx

þ
a :

ð64Þ

We now come to an issue not discussed in [51]. There,
using representation (47), a sign ambiguity emerges
in (64), due to the fact that e−nπx

þ
a ≡ ð−1Þn. In our novel

parametric representation (48), using the identification
e−nπx

þ
a ≡ e−2iπsn from (54) and (64) becomes

eie
−τξ−x−a e

i
2
ln½−j1þ2eτξþj�xþa ¼eie

−τξ−x−a e
i
2
lnj1þ2eτξþjxþa e−π

2
xþa e−2iπsn:

ð65Þ

To avoid the aforementioned sign ambiguity, we may
choose s ¼ 1. Notice that this implies that the coordinates
are only Hermitian with respect to the inner product (58).
Nevertheless, the physical quantities characterizing our
quantum field theory (two point functions) are not affected
by this choice. From now on, whenever we refer to the
(braided or not) κ-Minkowski coordinate algebra we
mean representation (48) with the choice s ¼ 1, and the
Hermitian conjugate operator † defined in Eq. (56). Having
solved the sign ambiguity, we have singled out one new
type plane wave, among the infinite possibilities arising
from crossing the momentum space boundary with a too
large boost:

Ea½ξ� → E
�
e−τξ−;

1

2
ln j1þ 2eτξþj

�
; ð66Þ

where, as in [51], we have defined

Ea½ξ� ≔ Ea½ξ�e−π
2
xþa ð67Þ

The properties of plane waves of the type (67) have
been discussed in detail in [51], in particular all the rules
to multiply these plane waves among each other and with
old-type plane waves, which are necessary for the dis-
cussion of QFT. For what follows, we recall that the on-
shell relation for this other half of momentum space is still
given by (41).

B. Covariant quantization and oscillator algebra

We expand a scalar field ϕðxaÞ in terms of old type and
new type plane waves, as outlined in [51].

ϕðxaÞ ¼
Z

d2ξδðξþξ− −m2Þϕ̃1ðξÞEa½ξ�

þ
Z

d2ηδðηþη− −m2Þϕ̃2ðηÞEa½η�: ð68Þ

Enforcing the on-shell constraints and recalling the ranges
of validity of expressions for both types of plane waves, the
field can be expressed as

ϕðxaÞ¼−
Z

0

−1=2

dξþ
2ξþ

ϕ̃1ðξþÞEa

�
m2

ξþ
;
1

2
lnð1þ2ξþÞ

�

þ
Z

∞

0

dξþ
2ξþ

ϕ̃1ðξþÞEa

�
m2

ξþ
;
1

2
lnð1þ2ξþÞ

�

−
Z

−1=2

−∞

dξþ
2ξþ

ϕ̃2ðξþÞEa

�
m2

ξþ
;
1

2
lnð1þ2ξþÞ

�
ð69Þ
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For convenience, let us introduce the shorthand notation

eaðξþÞ≔ exp

�
i
m2

ξþ
x−a

�
exp

�
i
2
lnð1þ 2ξþÞxþa

�
ξþ >−

1

2

ϵaðξþÞ≔ exp

�
i
m2

ξþ
x−a

�
exp

�
i
2
lnð1þ 2ξþÞxþa

�
ξþ <−

1

2

ð70Þ

for on-shell plane waves. Given expression (70), we have
e†aðξþÞ ¼ eaðSðξþÞÞ and ϵ†aðξþÞ ¼ ϵaðSðξþÞÞ. Hereafter,
we will only focus on on-shell plane waves. Therefore,
to further simplify the notation, we remove the þ subscript
from linear momentum and implicitly refer to the þ
component of momenta unless otherwise stated. We now
make a key observation regarding the antipode function
SðξÞ. We notice that S maps the ξ > 0 region into −1=2 <
ξ < 0 region and vice versa. The region ξ < −1=2 is
mapped onto itself via the application of S. This suggests
that, while the integral containing old type plane waves
may be customarily expanded in terms of both old type
plane waves and their Hermitian conjugates, for the integral
containing new type plane waves, only one between E and
E† is needed, otherwise one would be overcounting Fourier
modes. As a result, the field expansion (69) now reads

ϕðxaÞ ¼
Z

∞

0

dξ
2ξ

�
1

2ξþ 1
ϕ̃1ðSðξÞÞe†aðξÞ þ ϕ̃1ðξÞeaðξÞ

�

þ
Z

−1
2

−∞

dξ
2ξð1þ 2ξÞ ϕ̃2ðSðξÞÞϵ†aðξÞ ð71Þ

Taking inspiration from the undeformed QFT, we define8>><
>>:

ϕ̃1ðSðξÞÞ ¼ aðξÞ ξ > 0

ϕ̃1ðξÞ ¼ bðξÞ ξ > 0

ϕ̃2ðξÞ ¼ αðξÞ ξ < − 1
2
;

ð72Þ

where the bar indicates complex conjugation. Upon quan-
tization, aðξÞ will play the role of a particle annihilation
operator while b†ðξÞ will play the role of an antiparticle
construction operator. The newly introduced operator αðξÞ
is defined “across” the momentum space border and
introduces a relation between operators aðξÞ and b†ðξÞ
when the momenta involved are also across the border. The
expression for our scalar field is thus

ϕðxaÞ ¼
Z

∞

0

dξ
2ξ

�
1

2ξþ 1
aðξÞe†aðξÞ þ b̄ðξÞeaðξÞ

�

þ
Z

−1
2

−∞

dξ
2ξð1þ 2ξÞ αðξÞϵ

†
aðξÞ ð73Þ

We now promote the Fourier coefficients aðξÞ, bðξÞ, αðξÞ
and their complex conjugates to operators. The latter will

be indicated by the † symbol rather than the bar one.4 We
adopt a covariant quantization approach, using the Pauli-
Jordan function ΔPJðx1 − x2Þ, that is found to be equal to
the one employed in the commutative case [51]: one can
obtain it starting from the one found in [51] and performing
a change of variables to linear momentum. It reads:

ΔPJðx1 − x2Þ ¼ −
Z þ∞

0

dξ
2ξ

e1ðξÞe†2ðξÞ

þ
Z þ∞

0

dξ
2ξ

1

2ξþ 1
e†1ðξÞe2ðξÞ

−
Z

−1
2

−∞

dη
2η

ϵ1ðηÞϵ†2ðηÞ: ð74Þ

We are now equipped with all the ingredients needed to
quantize the scalar field (71), which we now denote as ϕ̂
and treat as an element of A ⊗ OðHÞ, where OðHÞ is the
set of operators acting on the (anti)particle Hilbert space.
The expression for ϕ̂ is

ϕ̂ðxaÞ ¼
Z

∞

0

dξ
2ξ

�
1

2ξþ 1
aðξÞe†aðξÞ þ b†ðξÞeaðξÞ

�

þ
Z

−1
2

−∞

dξ
2ξð1þ 2ξÞ αðξÞϵ

†
aðξÞ; ð75Þ

and the covariant quantization rules are

½ϕ̂ðx1Þ; ϕ̂†ðx2Þ� ¼ ΔPJðx1 − x2Þ;
½ϕ̂ðx1Þ; ϕ̂ðx2Þ� ¼ ½ϕ̂†ðx1Þ; ϕ̂†ðx2Þ� ¼ 0: ð76Þ

Commutators (76) then involve products of creation and
annihilation operators as well as products of noncommu-
tative plane waves. In performing these computations, we
must choose a specific ordering for the coordinate functions
belonging to different copies of A in the braided tensor
product algebra. Following [50,51], we order the non-
commutative plane waves products with the x2 variables to
the right. The general strategy to perform this calculation is
based on the fact that all plane waves, regardless of their
type, can be formally written as in (70), and they can be
exchanged by making use of the R-matrix. For any real
values of ξ, η, we have:

e2ðηÞe1ðξÞ ¼ μ ∘ R ⊳ e1ðξÞ ⊗ e2ðηÞ

¼ e1ðξþ 2ξηÞe2
�

η

1þ 2ξþ 4ξη

�
; ð77Þ

4Although we will indicate the Hermitian conjugates of these
operators with the usual † symbol, as is also the case with plane
waves, it is important to keep in mind that they act on different
Hilbert spaces.
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where R is defined in (23), and in linear momentum
variables reads

R ¼ e−i lnð1þ2PþÞ⊗NeiN⊗lnð1þ2PþÞ: ð78Þ
Whether the waves above are of old or new type depends on
the specific values of ξ, η considered. This leads to a
division of the commutation relations between creation and
annihilation in various regions of momentum space. The
resulting list of commutation relations is still rather
involved, but the overall picture is much simpler than
the one presented in [51], thanks to the linear momentum
redefinition. From the first commutator in (76), we obtain:

(i) In the region ξ∈ �0;þ∞½, η∈ �0; 1
4ξ ½

b†ðξÞbðηÞ − 1

1 − 4ξη
b
�
ηþ 2ξη

1 − 4ξη

�
b†
�
ξþ 2ξη

1 − 4ξη

�
¼ −2ξδðξ − ηÞ. ð79Þ

(ii) In the region ξ∈ �0;þ∞½, η∈ � 1
4ξ ;∞½

b†ðξÞbðηÞ þ 1

1 − 4ξη
α†
�
−
ηþ 2ξη

1þ 2η

�
α

�
−
ξþ 2ξη

1þ 2ξ

�
¼ −2ξδðξ − ηÞ. ð80Þ

(iii) In the region η∈ �0;þ∞½, ξ∈ �0;∞½

b†ðξÞa†ðηÞ ¼ 1þ 2η

1þ 2ηþ 2ξ
a†ðηþ 2ξηÞ

× b†
�

ξ

1þ 2ξþ 4ξη

�
ð81Þ

aðξÞbðηÞ ¼ 1þ 2ξ

1þ 2ξþ 4ξη
b

�
η

1þ 2ξþ 4ξη

�
× aðξþ 2ξηÞ ð82Þ

aðξÞa†ðηÞ− ð1þ2ξÞð1þ2ηÞ
1þ2ξþ2η

a†
�

η

1þ2ξ

�
a

�
ξ

1þ2η

�
¼ 2ηð1þ2ηÞδðξ−ηÞ. ð83Þ

(iv) In the region η∈ � −∞;− 1
2
½, ξ∈ � −∞;− 1

2
½

αðξÞα†ðηÞþð1þ2ξÞð1þ2ηÞ
1þ2ξþ2η

a†
�

η

1þ2ξ

�
a

�
ξ

1þ2η

�
¼2ηð1þ2ηÞδðξ−ηÞ. ð84Þ

(v) In the region η∈ � −∞;− 1
2
½, ξ∈ �0;∞½

b†ðξÞα†ðηÞ ¼ 1þ 2η

1þ 2ηþ 4ηξ
α†ðηþ 2ξηÞ

× a

�
−

ξ

1þ 2ηþ 2ξþ 4ξη

�
. ð85Þ

(vi) In the region η∈ �0;þ∞½, ξ∈ � −∞;− 1
2
½

αðξÞbðηÞ ¼ 1þ 2ξ

1þ 2ξþ 4ξη
a†
�
−

η

1þ 2ηþ 2ξþ 4ξη

�
× αðξþ 2ηξÞ. ð86Þ

(vii) In the region η∈ �0;− 1
2
− ξ½, ξ∈ � −∞;− 1

2
½

αðξÞa†ðηÞ ¼ ð1þ 2ηÞð1þ 2ξÞ
1þ 2ηþ 2ξ

b

�
−

η

1þ 2ηþ 2ξ

�

× α

�
ξ

1þ 2η

�
. ð87Þ

(viii) In the region η∈ � − 1
2
− ξ;∞½, ξ∈ � −∞;− 1

2
½

αðξÞa†ðηÞ ¼ −
ð1þ 2ηÞð1þ 2ξÞ

1þ 2ηþ 2ξ
α†
�

η

1þ 2ξ

�

× b†
�
−

ξ

1þ 2ξþ 2η

�
. ð88Þ

(ix) In the region η∈ � − 1
2
− ξ;− 1

2
½, ξ∈ �0;þ∞½

aðξÞα†ðηÞ ¼ −
ð1þ 2ηÞð1þ 2ξÞ

1þ 2ηþ 2ξ
b

�
−

η

1þ 2ηþ 2ξ

�

× α

�
ξ

1þ 2η

�
. ð89Þ

(x) In the region η∈ � −∞;− 1
2
− ξ½, ξ∈ �0;þ∞½

aðξÞα†ðηÞ ¼ ð1þ 2ηÞð1þ 2ξÞ
1þ 2ηþ 2ξ

α†
�

η

1þ 2ξ

�

× b†
�
−

ξ

1þ 2ξþ 2η

�
. ð90Þ

From the ½ϕ̂ðx1Þ; ϕ̂ðx2Þ� ¼ 0 commutator, the resulting
relations are:

(i) In the region η∈ �0;þ∞½, ξ∈ �0;∞½

b†ðξÞb†ðηÞ ¼ b†ðηþ 2ξηÞb†
�

ξ

1þ 2ηþ 4ξη

�
ð91Þ

aðξÞb†ðηÞ ¼ b†
�

η

1þ 2ξ

�
a

�
ξ

1þ 2η

�
ð92Þ

aðξÞaðηÞ ¼ a

�
η

1þ 2ξþ 4ξη

�
aðξþ 2ξηÞ. ð93Þ

(ii) In the region ξ∈ �0;þ∞½, η∈ �0; 1
4ξ ½

b†ðξÞaðηÞ ¼ a

�
ηþ 2ξη

1 − 4ξη

�
b†
�
ξþ 2ξη

1 − 4ξη

�
. ð94Þ
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(iii) In the region ξ∈ �0;þ∞½, η∈ � 1
4ξ ;∞½

b†ðξÞaðηÞ ¼ α

�
ηþ 2ξη

1 − 4ξη

�
α

�
−
ξþ 2ξη

1þ 2ξ

�
. ð95Þ

(iv) In the region ξ∈ �0;þ∞½, η∈ � −∞;− 1
2
½

b†ðξÞαðηÞ ¼ α

�
ηþ 2ξη

1 − 4ξη

�
a

�
−
ξþ 2ξη

1þ 2ξ

�
. ð96Þ

(v) In the region ξ∈ �0;þ∞½, η∈ � − 1þ2ξ
4ξ ;− 1

2
½

aðξÞαðηÞ ¼ α

�
η

1þ 2ξþ 4ξη

�
b†
�
−

ξþ 2ξη

1þ 2ξþ 4ξη

�
.

ð97Þ

(vi) In the region ξ∈ �0;þ∞½, η∈ � −∞;− 1þ2ξ
4ξ ½

aðξÞαðηÞ ¼ a

�
η

1þ 2ξþ 4ξη

�
αðξþ 2ηξÞ. ð98Þ

(vii) In the region ξ∈ � −∞;− 1
2
½, η∈ �0;− 1

2
− ξ½

αðξÞb†ðηÞ ¼ a

�
−

η

1þ 2ξþ 2η

�
α

�
ξ

1þ 2η

�
. ð99Þ

(viii) In the region ξ∈ � −∞;− 1
2
½, η∈ � − 1

2
− ξ;þ∞½

αðξÞb†ðηÞ ¼ α

�
−

η

1þ 2ξþ 2η

�
b†
�
−

ξ

1þ 2ηþ 2ξ

�
.

ð100Þ

(ix) In the region ξ∈ � −∞;− 1
2
½, η∈ �0;þ∞½

αðξÞaðηÞ ¼ b†
�
−

η

1þ 2ηþ 2ξþ 4ξη

�
αðξþ 2ξηÞ.

ð101Þ

(x) In the region ξ∈ � −∞;− 1
2
½, η∈ � −∞;− 1

2
½

αðξÞαðηÞ ¼ b†
�
−

η

1þ 2ξþ 2ηþ 4ηξ

�
aðξþ 2ηξÞ.

ð102Þ

Commutation relations for the ½ϕ̂†ðx1Þ; ϕ̂†ðx2Þ� ¼ 0 com-
mutator can be obtained by taking the Hermitian conjugate
of the commutators stemming from ½ϕ̂ðx1Þ; ϕ̂ðx2Þ� ¼ 0.

C. Representation of the deformed oscillator algebra

A useful technique employed in studies of quantum
field theories on noncommutative space-time is to represent
the creation and annihilation operators of the deformed

theory in terms of the ones of the standard theory [39,116].
We introduce operators c and c† which satisfy the stan-
dard bosonic commutation relations (in light cone coor-
dinates [117]):

½cðξÞ; c†ðηÞ� ¼ 2ξδðξ − ηÞ
½cðξÞ; cðηÞ� ¼ ½c†ðξÞ; c†ðηÞ� ¼ 0; ð103Þ

for any real value of ξ, η. These operators act on the usual
Fock space employed in quantum field theory. The vacuum
state j0i is annihilated by cðξÞ and c†ð−ξÞ, for ξ > 0. Then,
single particle states are defined as excitations of the
vacuum state as

c†ðξÞj0i ¼ jξiP ξ > 0; ð104Þ

while single antiparticle states are instead defined by

cð−ξÞj0i ¼ jξiAP ξ > 0: ð105Þ

This parametrization of the standard oscillator algebra
might not be familiar to the reader: it is a compact way
of expressing the bosonic algebra of a complex scalar field
in terms of a single infinite one-parameter set of operators.
This is possible because, when expressed in light cone
coordinates, the creation and annihilation operators for
particles and antiparticles depend on a single positive
parameter, ξ > 0, which is the light cone momentum
(Fig. 1). Instead of having different symbols for the particle
and antiparticle operators, we define cðξÞ on negative
values of ξ too, and identify cðξÞ for negative ξ with the
creation operator for the antiparticles. The corresponding
annihilation operators will be the Hermitian conjugates of
those. This choice just amounts to a relabeling of the

FIG. 1. The mass-shells (in red) in light cone coordinates are all
confined in the ξþ > 0, ξ− > 0 region.
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Fourier coefficients of our scalar fields, and makes the
notation more compact.
We recall the expressions for the Poincaré charges in

terms of these operators. The boost operator reads

N ¼ −i
Z

∞

0

dξ
2ξ

ξ

�
dc†ðξÞ
dξ

cðξÞ þ dcð−ξÞ
dξ

c†ð−ξÞ
�
; ð106Þ

while the translations generators are given by

Pþ ¼
Z

∞

0

dξ
2
ðc†ðξÞcðξÞ þ cð−ξÞc†ð−ξÞÞ;

P− ¼
Z

∞

0

m2
dξ
2ξ2

ðc†ðξÞcðξÞ þ cð−ξÞc†ð−ξÞÞ: ð107Þ

These generators close the standard Poincaré algebra given
that they are undeformed. Using (103) and (106), it is also
easy to show that

½N;cðξÞ� ¼−iξ
dcðξÞ
dξ

½N;c†ðξÞ� ¼−iξ
dc†ðξÞ
dξ

; ð108Þ

for every ξ, and hence

eixNcðξÞe−ixN ¼ cðexξÞ;
eixNc†ðξÞe−ixN ¼ c†ðexξÞ: ð109Þ

For what follows, it is convenient to introduce the short-
hand notation for the following finite boost transformation
with momentum-dependent rapidity:

ei lnð1þ2ξÞN ≔ Bξ: ð110Þ

It allows to write a representation for aðξÞ; b†ðξÞ in a
compact way, as follows (for ξ > 0)

aðξÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2SðξÞp BSðξÞcðξÞ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2SðξÞp cð−SðξÞÞBSðξÞ

b†ðξÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ2ξ

p cð−ξÞBξ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ2ξ
p BξcðSðξÞÞ

a†ðξÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2SðξÞp c†ðξÞBξ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2SðξÞp Bξc†ð−SðξÞÞ

bðξÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ2ξ

p BSðξÞc†ð−ξÞ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ2ξ
p c†ðSðξÞÞBSðξÞ:

ð111Þ

When ξ < −1=2, the commutators involving αðξÞ;α†ðξÞ
impose the constraints

αðξÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2SðξÞp BSðξÞcðξÞ ¼ aðξÞ ¼ b†ðSðξÞÞ

α†ðξÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2SðξÞp c†ðξÞBξ ¼ a†ðξÞ ¼ bðSðξÞÞ ð112Þ

which can be obtained by extending the definitions in (111)
to negative ξ. Notice that these constraints also identify aðξÞ
with b†ðSðξÞÞ, which is consistent with (111) and with the
commutative limit. Indeed, when κ → ∞, the momentum
space boundary ξ ¼ −κ=2 vanishes, so that a and b† are not
constrained anymore, as it should be in the commutative
quantum field theory of the complex scalar field.
The presence of the particular operator Bξ in these

representations is by no means incidental. It can be traced
back to the plane wave flip governed by the R-matrix (77),
which is explicitly dependent on N. When changing
variables in the integrals appearing in the covariant quan-
tization procedure, the braiding of the momenta in plane
waves is then reflected in the arguments of the creation and
annihilation operators. The deformed harmonic oscillator
algebra (112) is quite different from the one found in [118]
for θ-Moyal noncommutative quantum field theory. There,
the arguments of the creation and annihilation operators
are left untouched, but the commutation relations are
deformed by multiplication of a phase, dependent on
pμθ

μνqν, with p, q being the momenta involved and θμν

the antisymmetric matrix controlling the noncommutativity
between coordinates.
Having represented the deformed creation and annihi-

lation operators in terms of ordinary ones, we can now
define (anti)-particle states of the deformed theory mak-
ing use of the ordinary operators c, c† on the standard
Fock space.

D. 1-particle Fock state and C, P, T symmetries

We start by exploring the 1-particle states of the
deformed theory. They are elements of the 1-particle
Hilbert space H. From representations (111), it is imme-
diate to see the vacuum of the ordinary theory, j0i is also
annihilated by the annihilation operators of the deformed
theory

aðξÞj0i ¼ bðξÞj0i ¼ 0: ð113Þ

Single particle states are then defined as excitations of the
vacuum

a†ðξÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ξ

p j0i ¼ c†ðξÞBξj0i ¼ c†ðξÞj0i ¼ jξiP; ð114Þ

where we used the fact that Bξj0i ¼ j0i for every ξ and the
square root factor in the denominator guarantees normali-
zation. Single antiparticle states are instead given by

b†ðξÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2SðξÞp j0i ¼ cð−ξÞBξj0i ¼ cð−ξÞj0i ¼ jξiAP: ð115Þ

The single (anti)-particle states are thus identical to the ones
defined in the commutative quantum field theory. As a
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consequence of this, the action of the momentum operators
P� defined in (107) give the standard results

PþjξiP ¼ ξjξiP; PþjξiAP ¼ ξjξiAP;

P−jξiP ¼ m2

ξ
jξiP; P−jξiAP ¼ m2

ξ
jξiAP: ð116Þ

What about the αðξÞ operator? By letting it act on the
vacuum, it is easy to see that αðξÞj0i ¼ α†ðξÞj0i ¼ 0. So
we see that on the one-particle states, the αðξÞ leave no
observable trace.
We attempt to define the charge conjugation operator as

is ordinarily done in standard quantum field theory. We
require that

Cϕ̂ðx−; xþÞC−1 ¼ ϕ̂†ðx−; xþÞ: ð117Þ

Recalling the expression for the scalar field (73), the above
constraint yields, for ξ > 0

C
aðξÞ
1þ 2ξ

C−1 ¼ bðξÞ Cb†ðξÞC−1 ¼ a†ðξÞ
1þ 2ξ

; ð118Þ

while for ξ < −1=2, we have

C
αðξÞ
1þ 2ξ

C−1 ¼ −α†ðSðξÞÞ: ð119Þ

For single particle states, (118) yields simply

CjξiAP ¼ jξiP; ð120Þ

as is the case in the undeformed quantum field theory. As a
result, we can write the charge conjugation operator as

C ¼
Z

∞

0

dξ½c†ðξÞc†ð−ξÞ þ cðξÞcð−ξÞ�; ð121Þ

which is just the usual expression one obtains also in
commutative quantum field theory. Using the above and
representations (111) and (112) for the creation and
annihilation operators, properties (118) and (119) can be
explicitly verified.
A remark on the consequences of Eq. (121): as can be

seen from Eq. (116), the one-particle state and the one-
antiparticle state associated to it through the charge con-
jugation operator carry the same momentum. This departs
from what was recently found in the timelike κ-Minkowski
case in [98], where it appears that the charge conjugation
operator sends a one-particle state into a one-antiparticle
state with different momentum. This led to an interesting
phenomenology and the possibility of putting bounds to the
noncommutativity parameters only a few order of magni-
tude lower than the Planck energy [119,120]. Unfortunately,

these experimental bounds are irrelevant for the model
considered in this paper.
Regarding parity (P) and time revesal (T), in the

commutative case, in light cone coordinates, these oper-
ators are introduced as, respectively:

P∶ x� → x∓; T∶ x� → −x∓; ð122Þ

which are mapped to two involutive operators P and T
acting on the creation and annihilation operators, defined by

Pϕ̂ðx−; xþÞP−1 ¼ ϕ̂ðxþ; x−Þ;
T ϕ̂ðx−; xþÞT −1 ¼ ϕ̂ð−xþ;−x−Þ; ð123Þ

where the operator over the quantum field on the right
hand side of the action of the T operator is a complex
conjugate, as opposed to a Hermitian conjugate, as it acts
only on the plane waves in the Fourier expansion of the
fields, and leaves the construction and annihilation oper-
ators unchanged. It is necessary to compose the naïve time
reversal operator with this complex conjugate, thereby
making the operator antilinear, in order to have a well-
behaved transformation on the Fock space (the naïve
operator ϕ̂ðx−; xþÞ → ϕ̂ð−xþ;−x−Þ would be unaccept-
able, as it would end up annihilating all one-particle states
[121]). Replacing in the above the expansion of an on-shell
quantum field in creation and annihilation operators [i.e.,
the commutative equivalent of Eq. (73)], one gets the
following action of P and T :

PaðξÞP−1¼�a

�
m2

ξ

�
; PbðξÞP−1 ¼�b

�
m2

ξ

�
;

Pa†ðξÞP−1¼�a†
�
m2

ξ

�
; Pb†ðξþÞP−1¼�b†

�
m2

ξ

�
;

ð124Þ

and

T aðξÞT −1¼a

�
m2

ξ

�
; T bðξÞT −1¼b

�
m2

ξ

�
;

T a†ðξÞT −1¼a†
�
m2

ξ

�
; T b†ðξÞT −1¼b†

�
m2

ξ

�
: ð125Þ

Acting on the vacuum with the left- and right-hand sides of
the equations above, one gets:

PjξiP ¼ �
����m2

ξ

�
P
; PjξiAP ¼ �

����m2

ξ

�
AP
;

T jξiP ¼
����m2

ξ

�
P
; T jξiAP ¼

����m2

ξ

�
AP
; ð126Þ
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where the � sign depends on the parity of the particle and
the overall phase for the time-reversal was omitted since it
has no effect on our discussion.
One could imagine to extend this analysis to the non-

commutative case, exactly like what we did in Sec. III D for
the charge conjugation operator. However, an obstacle
immediately manifests itself: there is no sense in which
the coordinate commutation relations (2) can be invariant
under parity and time-reversal transformations. In the
noncommutative case, we have to choose what these
operators do to the noncommutative product between
coordinates: they may leave it unchanged, meaning that
they are homomorphisms for this product, or they may
exchange the product order, in which case they are
antihomomorphisms. This distinction is absent in the
commutative case, precisely because the products are
commutative. So, for consistency with the commutative
limit, we need a linear P operator and an antilinear T
operator, however we are free to choose either of them as
homomorphisms or antihomomorphisms. Regardless of
what we choose, since the commutation relations (2) have
x− on the right-hand side, an operator that sends x− to xþ
can never leave them invariant.
If we insist on introducing a P and a T operator as in

(123), acting on our on-shell noncommutative quantum
fields (73), then our on-shell plane waves are sent to off-
shell ones. For example, choosing P to be a homomorphism
one gets the following transformation rule for a non-
commutative plane wave:

e½ξ� → ei
m2

ξ x
þ
e

i
2
lnð1þ2ξÞx− ¼ e

i
2
lnð1þ2ξÞe−2

m2

ξ x−ei
m2

ξ x
þ
; ð127Þ

and the pair of momentum components that appear on the
right-hand side:

�
1

2
lnð1þ 2ξÞe−2m2

ξ ;
m2

ξ

�
; ð128Þ

does not satisfy the on-shell relation anymore. The same
happens for the other on-shell waves in the field expansion,
including those of “new type.” If we chose P to be an
antihomomorphism:

e½ξ� → e
i
2
lnð1þ2ξÞx−ei

m2

ξ x
þ
; ð129Þ

we end up with the following a pair of momentum
components:

�
1

2
lnð1þ 2ξÞ; m

2

ξ

�
; ð130Þ

which again does not satisfy the on-shell relation (the ξ−
and ξþ components are in the wrong order). Analogous

calculations can also be done for the time reversal operator
T , and still result in an off-shell plane wave.
This is just a manifestation of the noninvariance of the

basic commutation relations (2), which are the starting
point of the whole model. This theory is parity- and time-
reversal-breaking. However, the theory can still be said to
preserve combined PT invariance: if both P and T are
chosen to have the same behavior with respect to the
noncommutative product, i.e. they are both homomor-
phisms or antihomomorphisms, and P is assumed linear
while T is assumed antilinear, then the coordinate com-
mutation relations (2) turn our to be invariant. Such a PT
operator would leave also the on-shell plane waves e½ξ�
invariant, however the new-type waves could, in principle,
change: looking at Eq. (67), Ea½ξ� ¼ Ea½ξ�e−π

2
xþa , it is clear

that, an antilinear homomorphism like our PT operator
would leave Ea½ξ� invariant, while changing the e−

π
2
xþa term

into eþπ
2
xþa . This, however, is harmless, as we can easily

prove that e−
π
2
xþa ¼ eþπ

2
xþa in our representation, when acting

on functions of a single variable. Thus, the new-type plane
waves are also left invariant by PT.
It appears that PT transformations are still a symmetry of

our theory. In particular, PT acts like the identity on the
scalar field Fock space (this is true in the commutative case
too for spin-zero fields [121]). Finally,CPT is preserved too.

E. Braided flip operator and multiparticle states

We now begin exploring the multiparticle sector of the
theory. To get a feeling of the novelties introduced by our
noncommutative framework, let us start by focusing on two
particle states (the conclusions drawn will be analogous for
antiparticle states):

jξiP ⊗ jηiP ¼ a†ðξÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ξ

p j0i ⊗ a†ðηÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2η

p j0i; ð131Þ

which are elements of the tensor product of two copies of
the 1-particle Hilbert spaceH. The total momentum for this
two-particle state is obtained by acting with the coproducts
of the translation generators, as dictated by Hopf algebra
axioms when acting on the tensor product of its represen-
tation. To obtain the total þ component of the momentum,
we apply the coproduct (34) for Pþ,

Δ½Pþ�ðjξiP ⊗ jηiPÞ ¼ PþjξiP ⊗ jηiP þ jξiP ⊗ PþjηiP
þ 2PþjξiP ⊗ PþjηiP

¼ ðξþ ηþ 2ξηÞðjξiP ⊗ jηiPÞ
¼ Δ½ξ; η�þðjξiP ⊗ jηiPÞ; ð132Þ

where the Δ½ξ; η� operation for liner momentum was
defined in (39). In a similar fashion, we can calculate
the − component for the total momentum, yielding
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Δ½P−�ðjξiP⊗ jηiPÞ¼P−jξiP⊗ jηiPþjξiP⊗P−jηiP
−

2Pþ
1þ2Pþ

jξiP⊗P−jηiP

¼
�
m2

ξ
þm2

η
−

2ξ

1þ2ξ

m2

η

�
ðjξiP⊗ jηiPÞ

¼Δ½ξ;η�−ðjξiP⊗ jηiPÞ; ð133Þ

The same line of reasoning can be applied to antiparticle
states, obtaining the same results for the total momenta.
In ordinary quantum field theory, multiparticle states live

in symmetrized or antisymmetrized tensor-products of
single-particle states, which characterize the notion of
identical particles. The key ingredient is the ordinary flip
operator σ, which is an involutive operation on the tensor
product of Hilbert spaces of single particle states, where the
multiparticle states are defined. In general, an analogous
construction of the multiparticle Fock space is not so
straightforward for quantum field theories on noncommu-
tative space-time [100]. The main reason for this is that the
standard flip operation applied to a two-particle state yields
another two-particle state carrying different total momen-
tum, due to the noncommutative nature of the coproducts.
In our specific model, this simply follows from observ-
ing that

Δ½P−�ðjξiP ⊗ jηiPÞ ≠ Δ½P−�ðjηiP ⊗ jξiPÞ: ð134Þ

The way out of this impasse is to define a deformed
notion of particle exchange. This is possible, for example,
in noncommutative quantum field theory on the θ-Moyal
noncommutative space-time [37,39], due to the properties
of the twist operator, linked to the existence of an R-matrix
[122]. For the much-studied timelike κ-Minkowski case,
several works [100,101,103] have tried to identify a
braiding of single-particle states in order to construct a
deformed notion of symmetric and antisymmetric states.
These approaches all present some shortcomings: either the
braiding is not involutive, or it is not covariant when
constructing the theory at all orders in κ. The recent [100]
finds that, accepting a noninvolutive flip operator as the
physical one, the notion of identical particles has to be
abandoned. The lack of involutivity of the flip operator
leads, in fact, to an infinite tower of states characterized by
the same total momentum. In the present work, we find that
the κ-lightlike framework, although characterized by the
same non-Abelian momentum Lie-group structure as the
timelike case, admits a well-defined notion of identical
particles, thanks to the existence of the universal R-matrix.
Consider, for instance, the two-particle state defined as

R̃ðjξiP ⊗ jηiPÞ ¼ R ∘ σðjξiP ⊗ jηiPÞ
¼ RðjηiP ⊗ jξiPÞ; ð135Þ

i.e., we act with the flip operator σ, where σðjξiP ⊗ jηiPÞ ¼
jηiP ⊗ jξiP, and then with the R-matrix defined in (78). In
detail, we have

R̃ðjξiP⊗ jηiPÞ¼e−2ilnð1þ2PþÞ⊗Ne2iN⊗lnð1þ2PþÞðjηiP⊗ jξiPÞ
¼e−2ilnð1þ2PþÞ⊗NðBξjηiP⊗ jξiPÞ
¼ jηþ2ξηiP⊗BSðηþ2ξηÞjξiP
¼jηþ2ηξiP⊗

���� ξ

1þ2ηþ4ηξ

�
P
: ð136Þ

The structure of the new obtained two-particle states
mimics the structure of the Hermitian conjugate of com-
mutation relation (93), where the deformation emerges
from applying the R-matrix to exchange plane waves
upon performing covariant quantization, as discussed in
Sec. III B. By acting with the momentum coproducts (34),
it is now easy to check that

Δ½P��
�
jηþ 2ηξiP ⊗

���� ξ

1þ 2ηþ 4ηξ

�
P

�

¼ Δðξ; ηÞ�
�
jηþ 2ηξiP ⊗

���� ξ

1þ 2ηþ 4ηξ

�
P

�
; ð137Þ

so the deformed symmetric state (135) has the same total
momentum as (131), thus being a suitable candidate for our
construction of deformed (anti)symmetric states. It is also
easy to show that R̃ is an involutive operator, i.e., ðR̃2 ¼ 1Þ.
Indeed, repeating the same analysis as in (136), one can
show that

R̃

�
jηþ2ηξiP ⊗

���� ξ

1þ2ηþ4ηξ

�
P

�
¼ jξiP ⊗ jηiP: ð138Þ

This last property makes R̃ and ideal candidate for con-
structing a deformed symmetrization operator, useful in
defining deformed symmetric states in our field theory. We
are now ready to define the deformed symmetrization
operator:

Sþ ≔
1

2
ð1 ⊗ 1þ R̃Þ; ð139Þ

which is such that ðSþÞ2 ¼ Sþ, i.e., Sþ is idempotent.
Then, we can define deformed symmetric two-particle
states simply as

ffiffiffi
2

p
SþðjξiP ⊗ jηiPÞ; ð140Þ

where the
ffiffiffi
2

p
factor is introduced for normalization. In an

analogous way, we can define the antisymmetrization
operator S−:

S− ≔
1

2
ð1 ⊗ 1 − R̃Þ; ð141Þ
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which is also idempotent and can be used to define
antisymmetric multiparticle states.5

So far, we have shown that there exists an involutive
braiding that suggests the definition of deformed symmetric
two-particle states in lightlike κ-Minkowski quantum field
theory. We now show the covariance of such braiding, in
order to complete the picture.
A single particle state transforms under a finite boost of

parameter τ as

jξiP → eiτN jξiP ¼ jeτξiP ð142Þ

When acting on the tensor product of single-particle states,
the boost coproduct (34) needs to be taken into account. For
a finite transformation, using the commutation relations
(33), we can prove that

eiτΔ½N� ¼ eiτN⊗1ei lnð
ð1þ2PþÞeτ
1þ2eτPþ Þ⊗N . ð143Þ

For our two particle state (131), this yields

jξiP ⊗ jηiP → eiτN jξiP ⊗ ei lnð
ð1þ2ξÞeτ
1þ2ξeτ ÞN jηiP

¼ jeτξiP ⊗
���� ð1þ 2ξÞ
1þ 2eτξ

eτη

�
P
: ð144Þ

The deformed flipped state (136) is instead mapped into

jηþ 2ηξiP ⊗
���� ξ

1þ 2ηþ 4ηξ

�
P

→ jeτηð1þ 2ξÞiP ⊗
���� eτξ
1þ 2eτηð1þ 2ξÞ

�
P
: ð145Þ

Conversely, by first boosting the two-particle state (131)
and then flipping it with R̃, the result is

R̃

�
jeτξiP ⊗

���� ð1þ 2ξÞ
1þ 2eτξ

eτη

�
P

�

¼ jeτηð1þ 2ξÞiP ⊗
���� eτξ
1þ 2eτηð1þ 2ξÞ

�
P
; ð146Þ

which is identical to the right-hand side of (145). We have
thus proved that

R̃eiτΔ½N� ¼ eiτΔ½N�R̃: ð147Þ

Basically, our deformed flip operator R̃ commutes with
all the Hopf algebra generators P�; N, also given its

compatibility with the momenta coproducts shown above.
Therefore, relativistic covariance is guaranteed.

IV. PHYSICAL INTERPRETATION OF
DEFORMED MULTIPARTICLE STATES

A. On the indistinguishability of identical particles

In quantum mechanics, two particles of the same species
are described by a symmetric or antisymmetric state [123],
defined as

ffiffiffi
2

p �
1� σ

2

�
jpi ⊗ jqi ¼ jpi ⊗ jqi � jqi ⊗ jpiffiffiffi

2
p ; ð148Þ

where σ is the standard flip operator and p, q are the linear
momenta of the particles. Operationally, the indistinguish-
ability of the two particles may be understood as follows.
Suppose we have a calorimeter that can measure the energy
of one particle at a time, from which we can deduce the
corresponding momentum (we are in 1þ 1 dimensions).
According to state (148), the calorimeter can measure either
p or q. If our calorimeter measures momentum p, for
example, we have no way of knowing if the measured
particle is the one in the first or second place of the tensor
product. This indistinguishability simply follows from the
(anti)-symmetric property of the quantum mechanical state
describing the two-particle system. What happens then if
the two-particle state is instead defined by the deformed
(anti)-symmetrization operators S� in (139)? We reintro-
duce the dimensional parameter κ, for clarity. Consider a
decay process of an initial particle of mass M with
momentum Πμ ¼ ðΠ;M2=ΠÞ (in light-cone coordinates).
The particle decays into two identical particles of mass m
and momenta ξμ ¼ ðξ; m2=ξÞ, ημ ¼ ðη; m2=ηÞ. We will call
ξ the momentum of the particle that enters the coproduct
(39), in the deformed momentum conservation law, from
the left, while η is the label of the momentum on the right-
hand side of the coproduct. Notice that this labeling choice
has nothing to do with the placement of the particle
momenta in the tensor product, and has no physical
consequences: we could choose the opposite convention
and nothing would change in the calculations. The
deformed momentum conservation law dictates:

(Π ¼ ξþ ηþ 2ξη;

M2

Π ¼ m2

ξ þ
	
1 − 2ξ

κþ2ξ



m2

η ;
ð149Þ

the above two equations can be solved with respect to ξ and
η, and they have two solutions (recall that all the on-shell
momenta, Π, ξ and η are positive-definite):

ξ ¼ F1ðΠ;M;mÞ; η ¼ G1ðΠ;M;m; κÞ;
ξ ¼ F2ðΠ;M;mÞ; η ¼ G2ðΠ;M;m; κÞ; ð150Þ

5Although so far we only worked out the quantization of a
scalar field, we can already say something about fermionic fields
and their deformed Fock space, just by analyzing the general
properties of the R-matrix.
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where

F1ðΠ;M;mÞ ¼ Π
2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

M2

r �
; F2ðΠ;M;mÞ ¼ Π

2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

M2

r �
;

G1ðΠ;M;m; κÞ ¼ κΠðMðκ þ 2ΠÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − 4m2

p
− 4m2ΠþM2ðκ þ 2ΠÞÞ

8m2Π2 þ 2κM2ðκ þ 2ΠÞ ;

G2ðΠ;M;m; κÞ ¼ κΠð−Mðκ þ 2ΠÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − 4m2

p
− 4m2ΠþM2ðκ þ 2ΠÞÞ

8m2Π2 þ 2κM2ðκ þ 2ΠÞ : ð151Þ

If we choose the first solution, the final state will be the
following:

jψ1i ¼
ffiffiffi
2

p
SþðjF1i ⊗ jG1iÞ

¼ 1ffiffiffi
2

p ðjF1i ⊗ jG1i þ R̃½jF1i ⊗ jG1i�Þ; ð152Þ

while if we choose the second:

jψ2i ¼
ffiffiffi
2

p
SþðjF2i ⊗ jG2iÞ

¼ 1ffiffiffi
2

p ðjF2i ⊗ jG2i þ R̃½jF2i ⊗ jG2i�Þ: ð153Þ

However, as it turns out, the two states are identical. In fact,
it is possible to show that

R̃½jF1i ⊗ jG1i� ¼ jF2i ⊗ jG2i;
R̃½jF2i ⊗ jG2i� ¼ jF1i ⊗ jG1i; ð154Þ

implying jψ1i ¼ jψ2i, just like in the undeformed theory.
This is a nontrivial rigidity of the theory, consequence of
the Hopf-algebraic constraints that entail its relativistic
nature. The compatibility between the deformed momen-
tum composition law and the flip operator is what is behind
it. The final state, jψ1i ¼ jψ2i is proportional the sum of
the following two kets (at first order in κ−1):

jF1i⊗ jG1i¼ jF1i⊗
����F2−

2m2Π2

κM2
þOðκ−2Þ

�
;

R̃½jF1i⊗ jG1i� ¼ jF2i⊗
����F1−

2m2Π2

κM2
þOðκ−2Þ

�
: ð155Þ

The result is consistent with the commutative limit κ → ∞.
However, when the κ-deformation is switched on, the
qualitative features of this multiparticle state are completely
different from their undeformed counterpart. If the calo-
rimeter measures the momentum of one of the particles, we
can obtain one of the following four results:

Unflipped;Left∶
Π
2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4m2

M2

r �
;

Flipped;Left∶
Π
2

�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4m2

M2

r �
;

Flipped;Right∶
Π
2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4m2

M2

r �
−
2m2Π2

κM2
þOðκ−2Þ;

Unflipped;Right∶
Π
2

�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4m2

M2

r �
−
2m2Π2

κM2
þOðκ−2Þ;

ð156Þ

according to whether we are measuring the left- or right-
hand side of the tensor product of the unflipped state,
jF1i ⊗ jG1i, or of the flipped state, R̃½jF1i ⊗ jG1i�. In the
noncommutative theory, the four momenta (156) are all
different. Measuring the momentum of one particle allows
us to identify which side of the tensor product it came from,
and from which state (flipped or unflipped). Therefore,
there is a sense in which the indistinguishability of identical
particles is lost when the κ-deformation is taken into
account. There is no avoiding this if we want to construct
a relativistic theory. As already stressed in Sec. III E, a state
of the type (148) would not be covariant under the
κ-Poincaré transformations, which exhibit all their non-
trivial behavior on multiparticle states, given that the
coproduct is involved.

B. On the Pauli exclusion principle

We now explore the consequences of the deformed
permutation symmetry on the Pauli exclusion principle.
In standard quantum theory, a state describing two fermions
with the same quantum numbers is annihilated by the
undeformed antisymmetrizer:�

1 − σ

2

�
jξi ⊗ jξi ¼ 0: ð157Þ

This is the essence of the Pauli exclusion principle, which
has been confirmed in a variety of experiments searching
for classically prohibited transitions to states of the form

MULTIPARTICLE STATES IN BRAIDED LIGHTLIKE … PHYS. REV. D 109, 046011 (2024)

046011-19



jξi ⊗ jξi. It is then natural to ask what is the fate of the
Pauli exclusion principle in our κ-deformed framework.
Assuming that 2-fermion states are left invariant by S−,
what is the class of states annihilated by this operator? We
require that:

S−ðjξiP ⊗ jηiPÞ ¼ 0; ð158Þ

which uniquely selects the two particle states

jξiP ⊗ j−SðξÞiP ¼ jξiP ⊗ jξ=ð1þ 2ξÞiP: ð159Þ

The same holds for jη=ð1 − 2ηÞi ⊗ jηi, which is the same
state as (159), just parametrized with respect to the
momentum of the particle on the right hand side of the
tensor product. In the undeformed case, the solution ξ ¼ η
would have been selected, in agreement with (157). In light
of this reasoning, we can visualize the Pauli principle in a
simple manner. In the ðξ; ηÞ plane, which contains admis-
sible pairs of momenta that can be attributed to fermions,
the Pauli principle excludes a one-dimensional subset of the
ðξ; ηÞ plane: the pairs lying on a curve η ¼ fðξÞ. In the
commutative case, fðξÞ ¼ ξ (the bisector of the plane),
while the κ-deformed version is fðξÞ ¼ −SðξÞ (see Fig. 2).
Notice that our deformed identical-particles states are

Lorentz-covariant,

ΔðeiτNÞjξiP ⊗ j−SðξÞiP ¼ jeτξiP ⊗ j−SðeτξÞiP; ð160Þ

in the sense that identical-particles states are sent to boosted
identical-particles states by a Lorentz transformation. This
is due to the fact that the curve η ¼ −SðξÞ lays on an orbit
of the Lorentz group.

In light of the previous observations, we notice that the
state jξiP ⊗ jξiP is not annihilated by S−, contrary to the
commutative case. Notice, however, that this form of
the state is not preserved by Lorentz transformations: if
an observer attributes the same momentum ξ to two
particles, by the action of the finite boost generator
(143) on the state jξiP ⊗ jξiP, a boosted observer would
attribute different momenta to them:

jξiP ⊗ jξiP → jeτξiP ⊗
���� eτξð1þ 2ξÞ

1þ 2eτξ

�
P
; ð161Þ

with τ being the boost parameter.
The discussion above highlights the fact that, in our

model, states of the form jξiP ⊗ jξiP are not excluded by
the antisymmetrization operator, because they are not the
true “identical particle” states of the theory. This could
potentially lead to new physical phenomena, which could
be interpreted as departures from the Pauli exclusion
principle (PEP). Notice that the detection of a state of
the form jξiP ⊗ jξiP would not necessarily imply that the
PEP, and all of its physical consequences, is violated in our
theory: for example, it might well be the case that the theory
keeps forbidding more than two electrons to share the same
atomic orbital, in view of the aforementioned existence of
classes of states that are excluded by the antisymmetriza-
tion operator. At any rate, considering that there now are
stringent bounds on PEP violations [124–126], it would be
interesting to study the basic physical processes that are
tested by these experiments, within the context of our
theory, and investigate possible observable consequences
of noncommutativity. Notice that such modelization would
require significant further development of the theory (at the
very least, interacting QFTs with Dirac fields). Results
obtained through rudimentary/simplistic methodologies,
especially if they compromise Poincaré invariance, fall
short of the necessary rigor and hold no significance within
the context of our theoretical framework.

V. CONCLUSION

Building on our past results [50,51], we were able to
define a QFT on the κ-Minkowski noncommutative space-
time in the same spirit as [37,38]: the coordinates of N
different points cannot belong to the simple tensor product
algebra, otherwise it would not be κ-Poincaré covariant. One
needs to introduce a braiding, which requires a quantum R
matrix for the κ-Poincaré group. This exists only in the
lightlike case, i.e., when the commutators between the
coordinates (1) are described by a vector vμ that is lightlike,
or null, with respect to the metric gμν that is preserved by the
κ-Poincaré group (3).Within this framework, one can define
consistently covariant N-point functions, which are the
backbone of QFT. The striking advantage of the approach
of [37,38],which is shared by ourmodel, as proven in [50], is
that the translation-invariant combinations of different

FIG. 2. The þ-momentum space of momentum-pairs for two-
particle states, in units of κ. The dashed line represents the pairs
excluded by the undeformed Pauli exclusion principle. The thick
curve represents the pairs excluded by the deformed version of
the exclusion principle when noncommutativity is taken into
account. For large ξ, the curve saturates at κ=2, which is the
dotted asymptote in the plot.
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coordinates (i.e., the coordinate differences) are commuta-
tive, which implies that the N-point functions are all
commutative. This hugely simplifies the physical interpre-
tation of the theory, as we do not have to deal with
noncommutative correlation functions, whose meaning
would be rather obscure. A similar conceptual simplification
is achieved in many other approaches to noncommutative
QFT by using a star product, and defining a path integral
over commutative functions in which the action is turned
into a nonlocal, infinite-derivative functional of the fields.
Then, the correlation functions are commutative objects,
simply obtained as expectation values or functional varia-
tions of the partition function. However, there is no sense in
which these commutativeN-point functions can be invariant
under the quantum group of isometries of the noncommu-
tative spacetime they are supposed to live in. In our
approach, we have a way of writing commutative N-point
functionswhich are κ-Poincaré invariant, andwebelieve that
this is a key advantage of the approach based on braiding.As
shown in [37,38] in the case of θ-Moyal noncommutative
spacetimes, with the braided structures one can define aQFT
built upon the Wightman axioms, and the quantization of a
free complex scalar field can be performed with the
introduction of a covariant Pauli–Jordan function. In the
case of θ-Moyal spacetimes, the QFTs thus defined turned
out to be completely indistinguishable from their commu-
tative counterparts, as all the N-point functions of the free
theory, as well as the perturbative expansion of the N-point
functions of an interacting theory, turn out to be undeformed.
In our lightlike κ-Minkowski case, we find that, although the
Pauli-Jordan and two-point functions are undeformed, a
dependence on the deformation parameter appears at the
level of multiparticle states already in the free theory. The
momentum, boost and charge conjugation operators are
undeformed, however the creation and annihilation oper-
ators can be written, in a key advancement obtained in this
paper for the first time, as an infinite nonlinear combination
of undeformed creation and annihilation operators. The
deformed creation operators act in a trivial way on the
vacuum, and the one-particle sector looks undeformed.
However, as soon as we create more than one particle we
start seeing a dependence on the noncommutativity param-
eter: the momentum of two particles is a nonlinear combi-
nation of the two single-particle momenta. Theway that two
particle momenta boost under Lorentz transformations is
nonlinear and mixes the momenta of the two particles. We
can introduce a covariant and involutive flip operator, which
acts nonlinearly on the momenta of the two particles,
changing them in a more complicated way than simply

exchanging them. This flip is used to define two covariant
and idempotent symmetrization and antisimmetrization
operators, whose image is the Fock space of bosonic and,
respectively, fermionic fields. The situation is substantially
simpler compared to the attempts at defining a QFT on the
timelike κ-Minkowski spacetime: in this case, the absence of
a quantum R matrix makes it impossible to define a flip
operator that is both involutive and Lorentz-covariant
[100–104], which implies that the notion of identical
particles and (anti)symmetrized multiparticle states loses
meaning [100]. We proved that our theory is C-, PT-, and
CPT-invariant, however P and T symmetries do not hold
separately. This can already be seen at the level of the
coordinate commutation relations, which break P and T
symmetry. The theory allows for the existence of states
which are excluded by the Pauli principle in the classical
setting. This opens up the interesting phenomenological
opportunity of setting bounds on the model by experimen-
tal results searching for evidence of transitions into such
states.
The noncommutative QFT defined in [50,51] and com-

pleted here seems in healthy shape, and motivates interest
in several future research directions. The simplest one is to
write the N-point functions of the free theory for N larger
than two, to check whether they are undeformed too, or
perhaps the nontriviality of the multiparticle sector man-
ifests into a dependence of higher correlators on the
noncommutativity parameter. A further issue to consider
is that the model studied so far is in 1þ 1 spacetime
dimensions, and its generalization to 3þ 1 dimensions
seems straightforward, but it has not been worked out
explicitly and might yet hide some surprises. The next
natural step is to introduce an interaction, which is where
the theory has the highest chances of providing some
predictions that depart from standard QFT on commutative
Minkowski space. Further down the road, gauge theories
and fermions might be explored, and perhaps a possible
connection with CP violation in the Standard Model.
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