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The asymptotic symmetry algebra of A" = 1 supergravity was recently constructed using the well-
known two-dimensional celestial conformal field (CFT) theory technique [A. Fotopoulos et al., J. High
Energy Phys. 09 (2020) 198]. In this paper, we extend the construction to the maximally supersymmetric
four-dimensional A = 8 supergravity theory in asymptotically flat spacetime and construct the extended
asymptotic symmetry algebra, which we call AV = 8 8bmg,. We use the celestial CFT technique to find the
appropriate currents for extensions of N' = 8 super-Poincaré and SU(8), R-symmetry current algebra on
the celestial sphere CS?. We generalize the definition of shadow transformations and show that there is no
infinite dimensional extension of the global SU(8), algebra in the theory.
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I. INTRODUCTION

The physical observables of a theory are encoded in the
symmetries of that theory. This makes the study of sym-
metries very important. Furthermore, it has been observed
thatin gauge and gravity theories, there is an enhancement of
symmetry at the boundaries. For asymptotic boundaries,
such enhanced symmetries are known as the asymptotic
symmetries. In four dimensions these asymptotic sym-
metries have been studied for both gauge and gravity
theories including the N' = 1 supergravity [1-7]. These
symmetries in the case of gravity and gauge theories are
popularly known as BMS (Bondi-Metzner-Sachs) and
large gauge symmetries, respectively [8—16]. More generic
asymptotic symmetries have been studied in Refs. [17,18].
These infinite dimensional asymptotic symmetries also have
experimental implications as in gauge and gravitational
memory effects which are classical observables [19-23].
Moreover, a deeper understanding of these symmetries
might help in understanding the black hole microscopics
[24-28]. This necessitates the computation and analysis of
asymptotic symmetries.

Another implication of the asymptotic symmetries is the
soft theorems. It has been shown that soft theorems are the
Ward identities of the asymptotic symmetries [12,15,29].
Let us discuss this relationship in a bit of detail. In general,
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every symmetry leads to constraints on physical observ-
ables such as the scattering amplitudes. Such constraints
are known as Ward identities. For the Ward identities of
asymptotic symmetries, we need to consider the amplitude
in the soft limit. The soft limit of the amplitude is defined
by taking the momenta of one or more external particles to
zero. Quite generally, under the soft limit, the amplitude
factorizes into a universal (soft) factor which contains the
divergent part of the amplitude times the amplitude without
the soft particle(s) insertions. This factorization is known as
the soft theorem!. In other words, soft theorems are the
Ward identities of asymptotic symmetries. The BMS and
large gauge symmetries lead to a soft graviton and a soft
photon theorem, respectively [16].

Another important limit of amplitudes is the collinear
limit in which the momenta of two external particles are
taken to be collinear. Again the amplitude factorizes into a
collinear factor containing the divergence times the ampli-
tude with the collinear particles replaced by another particle
[35]. The collinear limit of amplitude turns into an operator
product expansion (OPE) of conformal operators of the
celestial conformal field theory (CCFT) [36-39] as iden-
tical momentum directions correspond to the same operator
insertion points on the celestial sphere2 (which we denote
by CS?). An interesting fact is that the soft and collinear
limits of scattering amplitudes can be used to read off the
asymptotic symmetries in the context of CCFT [36,40]. It
turns out that to calculate the asymptotic symmetries of a

'Some progress on understanding of soft theorem in ads has
been made in Refs. [30-34].

*The celestial sphere is the Riemann sphere on the boundary of
the Minkowski space.
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theory, we need to probe the universal soft and collinear
sectors of the scattering amplitudes. This has been used to
reproduce the BMS algebra in [40,41] for pure gravity and
large gauge algebra for the Einstein Yang-Mills theory [42].
Recently, it has also been used to compute the N = 1
supersymmetric extension of the BMS algebra [3].

In this paper, we calculate the asymptotic symmetries of
the four-dimensional maximally supersymmetric N = 8
supergravity using the CCFT prescription. In celestial CFT
of supergravity, the stress tensor is generated by the shadow
transform of the soft graviton operator suitably modified to
obtain the correct OPE [41],3 while the supercurrent is
generated by the soft gravitino operator [3]. For N > 1, the
global symmetry algebra contains an additional R-sym-
metry, and hence naively one would expect that the
asymptotic algebra would contain an infinite dimensional
extension of the global R-symmetry algebra as well. It was
shown in [43] that for V' = 2, even for the U(1)"V subgroup
of the R-symmetry group U(N) which only scales the
supercharges, such an infinite dimensional extension is
mathematically inconsistent. For the present paper, we
study the celestial amplitudes of N' = 8 supergravity and
use the soft and collinear limits calculated in a companion
paper [44] to compute the Ward identities and the OPE of
conformal operators in the corresponding CCFT. We then
construct the stress tensor and the supercurrents of the
theory using the shadow transforms of soft graviton and
soft gravitino operators. Since the scalars and graviphotinos
do not have soft divergences (see [44]), we are left with
only soft graviphoton operators. The R-symmetry current
(if any) can then only be constructed using the soft
graviphoton operators. We construct the most general such
operator present in the CCFT and show that the operator is
trivial by requiring that the modes of this operator extend
the SU(8); R-symmetry algebra.

The paper is organized as follows: in Sec. II we set up our
notations and record some definitions and results about the
soft and collinear limits in the CCFT of N/ = 8 supergravity
used later in the paper. In Sec. III we construct the symmetry
currents and compute their OPEs. We also construct the
possible R-symmetry currents and show that the require-
ments of the R-symmetry extension make the current trivial.
Finally, in Sec. IV we list the full V' = 8 8bms, algebra. We
concludein Sec. V by summarising our results and emphasiz-
ing our future goals of the study. The appendixes contain the
OPEs of various conformal operators in the Mellin basis
computed from the results in [44] and a detailed calculation
of the OPE of the possible R-symmetry currents.

II. NOTATIONS AND PRELIMINARIES

In this section, we set up the notations for celestial
amplitudes and soft and collinear limits in supergravity.

3See Sec. III for more details.

A. Celestial amplitudes

Recall that helicity spinors are left- and right-handed
representations of the Lorentz group SO(1,3) ~ SL(2, C).
We denote the left- and right-handed helicity spinors by 4,
and 1%, respectively. A given null momentum p* can be
written as a bispinor

p'—ip?
0= p?

P’ +p?

ad:Gao‘z Y-
g nr <p1+ip2

) =29 (2.1)

where 64" = (1,0,,0,,0.). For real physical momentum,
the two spinors are related by complex conjugation
(A7) = Age

We now want to study scattering kinematics on the
celestial sphere. We use the Bondi coordinates (u, r, z,7)
on the Minkowski space where (z,Z) parametrizes the

celestial sphere CS? at null infinity. The Lorentz group
SL(2,C) acts on CS? as follows:
a b
< > eSL(2,0).
c d

_ az+b az+b
(z,2) .
A general null momentum vector p* can be parametrized as

cz+d’ ez+d

i
¢ =1+ z+2.-i(z-2). 1 - [z]).

2
where ¢ is a null vector, w is identified with the light cone
energy, and all the particles momenta are taken to be
outgoing. Under the Lorentz group, the four-momentum
transforms as a Lorentz vector p* > A% p”. This induces
the following transformation of @ and g*:

P = wg”,

> (cz+d)(cz + d)o,
g q" = (cz+d) N (cz+d)"'N)g.

In the bispinor notation, we can write the basic null
momentum vector g# as

w-are=(. 2)=( )0 o e

where ¢ = (1, 0,, 0,, 0,) are two-dimensional identity and
Pauli matrices. Further introducing the angle and square
notations for the left- and right-handed momentum spinors,
we have

= ol = | ) = vaar

(2.3)

) . (2.4)

p @(i) — Jalgl*

where we write

ar= (1) = (

—_—

a1l
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The inner product of momenta can then be written in terms
of the angle and square brackets of the corresponding
spinors which are now given by

(ij) = —y/wi®;z;). [ij] = yoio;zij,  (2.5)
where Zij = Zi — % Zij =Zi— Zj~

We can now Mellin transform the fields in the bulk to
get conformal primaries on the celestial sphere. The
massless conformal primary of conformal dimension A

is given by

o .
95 (X, 2.2) = / dwa®~! eFioaX=co
0

ATC(A

The conformal primaries for nontrivial spins are then given
by [3]

Vi r—12aX:2.2) = 0)a0y 1 (X, 2.2)

i1 p(X.2.2) =gt (X, 2.2),

Vi,if::H(X?ZvZ):elézﬂ:l(%r)gng:(X’Z??)?

+ _

H’Zf:ﬁ(x%z) = 6‘;:11 (4, r)VZj,:ffil (X.z,2),

+ _ _
W 3p(Xo2.2) =€ ((q.1Wy o1 (X, 2.2),

_ut _ _
V/ﬁf +3/2(X’ZvZ):€;:+1(qv'”) f,f—ﬂ/z(xvz’z)’ (2.7)
where the polarizations are given by

*|q] [rl5"]q)

IO, i i | VR o Lkl VR
= V2(rq) ! V2[gr]
with r as a vreference null vector and o/ =

(1,-0,,—0y,—0,). One can further define the inner prod-
uct of these conformal wave packets [3]. These conformal
wave packets are normalizable only when the conformal
dimension A belongs to the principle continuous series, that
is, A = 1 + i1 with A € R. In a scattering process, we take
all momenta to be outgoing. We now define celestial
amplitude or celestial correlator on CS* as the Mellin
transform of the amplitudes:

<H0A (207 > ( /dwnwn _1>5(4> (nNlenqn>

XAf]...fN(a)naZynZn)’ (2'9)

where A, . is the bulk amplitude with external particles
with helicities 7, ..., ¢,. The celestial correlators can be

shown to transform as a conformal correlator under
SL(2,C):

ﬂo az,+b az,+b
Sti\ ez, +d ez, +d

n=1
N B N
= H(C‘Zi + d)AH-fi <E‘Zl + d)Ai—f,' <H OAnfn (Zn,zn) > s
i=1 n=1
(2.10)
where

<j Z)eSL(z,C). (2.11)

B. OPEs of celestial operators
in V' =8 supergravity
Let {n4}5_, be the Grassmann coordinates on the
N = 8 superspace. We can package the on-shell degrees

of freedom in A = 8 supergravity in an on-shell superfield
defined as

¥(p.n)=H"(p) +naw’t(p) +14sGYE (p) +napcrt* (p)
+1a8cp PP (p) + 15y apc(p) + 1B Gy (p)
+it*wi (p) +iH ™ (p), (2.12)
where we have introduced the notation
1
Nay-a, = 1A - TIA,»
n!
ﬁAl“'An = €Al' ApBy-Bg_ "'7 1.8,
8
i=]]n (2.13)

The fields H* represent positive and negative helicity
gravitons, G and Gy, represent positive and negative
helicity graviphotons, y* and y represent positive and
negative helicity gravitinos, y4%¢ and y,,- represent
positive and negative helicity graviphotinos, and finally
®ABCD represent the real scalars. The superamplitude is
then defined by

M,{pin' b Apwn'}) = (Pi(pin') - Pul(pas ™).

(2.14)

This superfield can be Mellin transformed in the usual way
to obtain a celestial superfield on CS?, but it turns out that
the component fields will have the same conformal
dimension [46]. This is not appropriate to work with since
we want the component fields to have conformal
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dimensions according to their spin. Thus, we work with the
so-called quasi-on-shell superfield [46] defined as

Ya(z.2.n) = H{(2.2) + nawh (2. 2) + napGAP (2. 2)
+ 1apcx A€ (2.2) + Mapcp@APP(
+ ﬁABC)_(ABcA (Z, Z) + ﬁABGABA (Z, Z)

+ 1 Wan(z,2) +71H; (2, 2),

2,2)

(2.15)
J

where the components are the Mellin transforms of the
component fields of ¥(p, n), all with scaling dimension A
as defined in (2.7). The celestial correlator for the compo-
nent fields can then be defined as in (2.9). Using the
collinear limit of the bulk amplitude, the OPEs of the
celestial operators can be computed. To do this computa-
tion, we use the collinear limits computed in [44]. As an
example, we calculate the OPE of two graviton operators.
The celestial correlator is given by

<0A1.+20A2,+2 OA f ( / dCO CU )54 <ZCU q) 1+2 2+2 ,n)

< / dw;o; B 1/ da)l/ da)za)A' ! Az 1>

n C()2 Z
X54<Zwiqi+wpqp> L2 M, (p*2n),

i=3

2.16
W@y 212 ( )

where M,, is the bulk amplitude of component fields and we used the collinear limit

M, (1%2,272 ... n) =

P 2

a1 (P2, .0n). (2.17)

W17 212

Here p; = w;q;,i = 1, 2, the momenta along the collinear channel is p = p; + p, = w,q, with ®, = w; + ®,. Now we

use the following integral [46]:

/Ow da)za)zAz_lA doya™ ™ aahal, f(w,) = B(A, +a. A, +ﬁ)/0°° dw,wy ™ f(w)). (2.18)
where , = o) + @y, A, = Ay + Ay +a+ p+y, and
()L(y)
B(x,y) = 2.19
R 2.19)
is the Euler beta function. We get
212 e e Aj-1 Aj+A,-1
(Op, 4208, 42+ On,p,) = —B(A; = 1 A2—1)< / dw;o;’ / dw,wp' " )
12 i3 Jo 0
><54<Za) q,—l—a),,qp>M, 3,...,n)
Z
=2B(A; = 1,8, = 1)(Op 2, 1204, 0, Oa, ). (2.20)

212

This gives the OPE corresponding to the two positive
helicity graviton operators,

Op, 12(21,21)Op, 42(22,22)

4 i}
NiB(A — 1,8y = 1)Op 14, 42(22, 22)-

(2.21)

Similarly, for negative helicity gluon, we have the collinear
amplitude

):“)_?’Zﬁ

M, (172,272 .. :
W1y 212

w1 (P72 m). (2.22)

Hence, the OPE
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Oy, (215 ZI)OAZ,—Z(Z%ZZ)
Z _
~Z2B(A ~ 1,4, - 1Oy, 18, 42(22: 22)-

- (2.23)

The collinear limit of two opposite helicity gravitons is

3
w] Z
M, (1722723, . n) = —=—"BM, (p23,....n)
W@ 212
w% 212 +2
+ 5 _—M”_](p ,3,...,71),
WyW7 212

which gives us the OPE

On, 42(21,21)04, 2(22, 22)

Z _
=B(A; +3,4, - I)Z_ZOAﬁAz,—Z(ZZvZZ)
Z _
+B(A - 1,4, + 3)2_1§OA|+A2.+2(22’Z2)' (2.25)
1

One can calculate the OPEs of all other component fields in
a similar way using the collinear limits. The results are
listed in Appendix A.

C. Soft operators in N =8 supergravity

In the last section, we discussed the collinear limits of
amplitudes. In this section, we are looking at their soft
limits. As we know, soft momentum p — 0O can be written
as w, — 0 on the celestial sphere, and hence an amplitude
written in the celestial coordinates can be analyzed in the
soft limit of any of the external momenta. The result is a
soft theorem that expresses an n-point amplitude with soft
external momentum p in terms of an (n — 1)-point ampli-
tude along with a soft factor given by powers of a);l. The
various powers of w;l then correspond to leading, sub-
leading, subsubleading soft theorems, and so on. Let us first
define the celestial superamplitude as the Mellin transform
of superamplitude:

<H Oa, (20 Zpo 1 >

({1 oot} (50

x My({or, 21,201} (2.26)

{oy.zn.Zn. 1)),
where My({wy,z1,21.1'}, oo {on, zv. 2y, }) is the
superamplitude (2.14) written in the celestial basis. We
also denote it simply by My(1,2,...,N). The above
expression is identical to that of (2.9), with the explicit
incorporation of the Grassmann factors in the scattering
amplitudes.

One can now expand both sides of (2.26) in the
Grassmann parameter #; and compare the coefficients to
get the celestial amplitude of various component fields.
This has been used in Appendix B to calculate the celestial
correlator with a soft graviton and a soft gravitino. The
celestial correlator of the leading soft graviton operator is
given by

(162 ﬂ O, on 7))

n=1

; i i f Z))z <OA1 fl(Zl’Zl)

Ops1.6:(2is Zi)s -+ Opy oy (2ns Zn)) (2.27)
and

N

<7 HOA £, (Zns 2y >

lz;(; ; é ZZ))Z <OA| KI(ZI’ZI)

Oa1.4,(2i:Zi)5 -+ Onyey (2n:Z8))s (2.28)
where

Ji(z,2) = E_Q}(A = 1)O0x 12(z,2),

Ji(z.2) = iiir}(A —1)O04 5(z,7) (2.29)

are the A = 1 soft graviton operators and £€CS? is a
reference point. The celestial correlator of the subleading
soft graviton operator is

N
<J0 Z, Z HOA L Zn’Zn >
n=

N 7 =7 — —_

=) e )

X O (22 %) -+ 0),s (2.30)
and
<J0(Z’Z)H0Anb’n(zn7zn)>

n=1

R (emwE-z) o

=2 ) o) (% 2

X Ope(2i:Zi) -0, (2.31)
where

046010-5
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Jo(z,2) = ii_f)%AOAan(Z’ 7),

jo(Z, Z) = ii_r)r(l)AOA‘_2<Z, Z) (232)

are the A = 0 soft graviton operators and /; = # Jhy =
Al%’“p“ are the conformal weights of the operator O, 4 (z,Z).
The celestial correlator of the soft gravitino operator is

given by (cf. [3])

N
(Hatea T10% )

n=1

/ (E-z)(€-2)
- A,Z/ﬂl', i ¥ —1 i
2 e e
X (-0} (2 7)) (2.33)
and
_ N
<J1/2A(Z’ 2) H OZ’;,,,&;; (2 Zn)>
n=1
- Y F(A 6, 5, ) (=1)7 (z—z) (;i_ %)
i=1 l l (z-2) (E-2)
X (- O) Ly, (@0nZi) o), (2.34)
where
Jip(2.2) = lim (A - %) 0 1(z.2).
2 1
J1/24(2.27) = lim (A - 5) Ox34(2,2) (2.35)

are soft gravitino operators. Here the superscripts x;
indicate the R-symmetry index of the operator. We have
put the R-symmetry index x; as a superscript for brevity but
it can also be on subscript depending on the helicity of the
operator. Here the number of fermions preceding particle i,
o;=1if¢;eZ +% and O otherwise (see [3] for detailed
explanation).

As explained in Appendix B, the positive helicity
soft gravitino operator only acts on celestial operators
Oy 4 (z:,7;) with

£;€{=3/2.-1,-1/2,0,41/2,+1,43/2,+2},  (2.36)

while the negative helicity soft gravitino operator acts on
celestial operators O, ,.(z;,Z;) with

£ee{=2,-3/2,-1,-1/2,0,+1/2, +1,43/2}.  (2.37)

The factors f(A,;,*;.%}), f(A,£5,*;,%;) are the R-symmetry
factors that we can determine using the collinear limits given

above. From (2.33) and (2.34) it is clear that the first argument
of f is the R-symmetry index of the soft gravitino operator
itself, the second and third arguments are the helicity #; and R-
symmetry index x;, respectively, of the operator O*Ai,-.f,- which
the soft gravitino will act on. Last, the fourth argument will be
the R-symmetry index ; of the resultant operator. Similarly, it
goes for f. As an example, we can see from the OPE in
Eq. (A1) that when ¢; = —3, f(A,=3/2, B, ¥;) = &}. Since
the resulting particle # = —2 has no R-symmetry index, the *’
entry is empty.

The soft graviphoton limit can be calculated using the
OPEs of the graviphoton operator with various conformal
operators. These OPEs are listed in Appendix A. Soft limits
correspond to the values of scaling dimension A of the
graviphoton operator for which the beta functions appear-
ing in the OPEs have poles. From Appendix A we see that
the OPEs of the Lgraviphoton operator with various other
operators involve” B(A, x). Since B(A, *) has poles at all
nonpositive integer values of A, the leading soft limit of the
graviphoton operator is A — 0 and all other negative
integral values are subleading. In Sec. III B, we will need
the leading soft graviphoton limit.

Finally, as noted in [44], graviphotino and scalars are
trivial in the soft limit and hence do not correspond to any
global symmetry [3]. So we do not consider them further.

III. ASYMPTOTIC SYMMETRY GENERATORS
IN M =8 SUGRA

Let us first consider the obvious global symmetries of
N = 8 supergravity. The global symmetry algebra consists
of the Poincaré algebra and the N =8 supersymmetry
algebra, together called the A/ = 8 super-Poincaré algebra
and SU(8); R-symmetry algebra. At null infinity, we
expect to obtain infinite dimensional extensions of these
algebras. Following previous works [3,40,42], we can
easily construct the currents that extend the super-
Poincaré algebra, and we call this algebra the N =
8 gbmg, algebra. We start by constructing the currents
for the N’ = 8 3bms, algebra.

A. N =8 3bm3, algebra currents

The bm3, part of the N’ = 8 3bm3, algebra is known to
be generated [40] by the shadow transform of the A =0
graviton operator suitably modified as discussed below.
This is called the generator of superrotations, and the level
one descendant of the A = 1 graviton operator is called the
generator of supertranslations on the celestial sphere. Let us
define the shadow transforms T(z,z) and Ty(z,z) as

“The OPE of two graviphoton operators with opposite helicity
involves another term; see Eq. (A2). One of the terms in the OPE
vanishes depending on which of the two helicities of the
graviphoton we take to be soft. See Appendix C for such
calculations.
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31A o, 1 -
To(z,2) = ilg(l)g d=z z=2) On2(Z.7),
- 31A 1 -
Toed) = lim 3 [ ¢4 EogEOsa@ ). G

It has been argued in [41] that the above shadow transform
operator does not satisfy the usual OPE of a stress tensor. In
particular, the 7T, OPE has an extra term that does not
vanish as shown in [41] unless we modify the stress tensor
appropriately. The origin of the problem is the observation
that Ty(z) is not holomorphic:

_ 1 .-

0Ty = —563J0(z, 2). (3.2)
where J, is the A =0 soft graviton operator defined in
(2.32). Hence, the modified stress tensor can be defined as
follows:

1
Tmod = TO + 5636707 (33)

where

€7, = / * Tz W) (3.4)

20
with z as a reference point. Then it has been shown that the
modified stress tensor satisfies the correct 7,047 moqa OPE
[41]. From now on we omit the subscript “mod” and T, T
will denote the modified stress tensor. Using the soft limits
(2.27), (2.28), (2.30), and (2.31) and performing the same
calculations as in [40], we arrive at the OPE

_ h _
T(2)Op (W, W) = WOA,K(W, W)
1
+ 0,,On (W, W) + regular,
Z=w
_ _ h B
T(2)Opr(w. W) = mOA/(W’ w)
1
+ ——0;04a¢(w, W) + regular. (3.5)
=w

The supertranslations generator P(z), P(z) are defined as

P = 1m B Vo0, 10.2)

P = tim B0 0, (). (3.6)
For P(z) we have
P(2)Opp(w,w) = : _1 W(’)AH,K(W, w) + regular,  (3.7)

and similar OPEs hold for P(z) with conjugated poles.
These operators are related to the supertranslation generator
P(z,Zz), which is a primary field operator of conformal

weight (3,3). By contour integrals [40]
1
P(z) = ]{ dzP(z,7),
2ri
- 1
P(z) = ?{dzp(z 2). (3.8)
2ri
The supertranslation satisfies the OPE
P(2.2)0u (0,) = 1 Oy o0, )
4, 2)UA W, W T wio A+1.2\W
+ regular. (3.9)

The supercurrent for A/ =1 supersymmetry was con-
structed in [3]. We will see that the same construction
will give us the eight supercurrents for A" = 8 supersym-
metry. We thus define the supercurrents as the shadow
transform of the A = % gravitino operator:

_A—; 1 .
SA(Z) = lAl_rE]l . z/dZZ/(Z—Z/POA;A’_%(Z,’ Z/)y
2
$4(2) = lim I SECIEA N CR )

Note that the above operators are also not holomorphic
since

_ . 1
35(2.2) = Jim, (8= 3) 20, 4(2.0)

A—1/2
:62.71/2A(Z,Z) #0, (311)
where Jj54(z,Z) is the leading soft gravitino operator

defined in (2.35). One can modify it in a similar way as in
Eq. (3.3). Put

T
€7,,4(2:2) = / dwd jpa(w, W), (3.12)
20
where z, is a reference point and define
A 2 A
Smod S —d% Jl/z (313)

We emphasize that this modification is not required at the
quantum level since the OPEs of $* are as expected for a
supercurrent. So we continue to use the shadow transform
of the leading soft gravitino operator as the supercurrent
without any modification.

Following the calculations of [3], it is straightforward to
see that
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T(2)Sa(w) = % (SA_(:}))Z + a:i(:j) + regular,
T(z)8%(w) = §<Zsi(f_v))2 + O;i(w) +regular.  (3.14)

and the OPEs TS5 and TS, are regular. These OPEs
confirm the conformal weights of S, and S, as (3,0) and

{Sp(2). $4(2)}: = :Sp(2)54(2) + $4(2)Sp(2):

= 53P(z.2). (3.15)

Using the gravitino soft limit (2.33) and (2.34) and the
leading graviton limits (2.27) and (2.28) and following the

. . 5
(0%) respectively. We now want to show that calculations in [3], we get

-1

[(W—IZ> 22z

Mz

< H(’) z,,,zn>—5‘§

(0% (@ Z) )

I
w

N
_ 1 1
A, C;, %, %, —1/2, %, %" O i
;ﬂ )F(B.£;—1/ e T ACIEIRE)
6;+0; 1 1 *: -
+ 2 (NS (A s ) (B o) ——— e (- Oy (20T s
ij=3 l ]

i#]

OA/+2f+2(Zj’Zj)“'>’ (3.16)

|
of that hard particle (left implicit for generality), and the
fourth argument is the resulting R-symmetry index of the
hard particle after the soft limit is taken (again left implicit
for generality). The notation for f is similar. It is under-
stood that if the spins do not belong to the required range
specified in (B15) and (B16), then f, f = 0. Similarly

where the factors f(A, Z;, *;, *}), f(B, Lk, *1) are the R-
symmetry factors that appear on taking the soft or collinear
limit depending on the spins and helicities of the soft and
collinear particles. In this notation, the first argument of f is
the R-symmetry index of the positive helicity soft gravitino,
the second argument is the spin (and helicity) of one of the
hard® particles, the third argument is the R-symmetry index

N N
o N _ 1 7—2; 1 1 1 1 . B
(3 @300 [Tk ez ) =04 D[t it s 0 (aE) )

Z—Z; —WZ—Z; T—=Z;W—1Z;

1 1 N .
(o Ol 22 )

N
Z‘]_C(B,f”*l,*i)f(A l’ﬂ + 1/2’ z’ )

=3 W—2;2—Z;

1 1 _
- Z )GlJro-jf(B Lﬂu i z)f(Avfﬁ *jv */) — Z»Z - Z < OA! +2f+ (Z[,Zi), Y
,] 3 ! J

i#]

OA/+2f L(z:2) ) (3.17)

Thus, the anticommutator is

>Note that we do not separate the operators in the correlator according to their spins £, £¢ unlike [3] since there is an overlap in the
ranges of the two spins. So in the correlators in this calculation, the spins are assumed to be arbitrary.

That is, not soft.
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<<SA<z>sB<w> Sz

HO z,,,zn >

_5Ai|: 1 Z—Z,'+ 1 1
- Bz (w—2)22-%, z-wZi-—7Z

1 1
+ O Zi) e
T—Zw— Zi:| ( A,-+l,f,-(z i) )

1

N — —
1 z—7; 1
+ & o +
BZ{(W—Z)zz—zi T-wz—gz

= F(A i ) (B = 172,50, %)

i=3

N
= FB ik (AL A+ 1/2, 5%

i=3

1
|6 O am) )

w—

11 i
(- Of e, (zinZi) )

Z—Z,'V_V—Z,'

11 iy )
<. .. OA:«I»IfL(Zl’ Zl) .. .>.

3.18
w—ziZ—Z,- ( )

Here in the last terms in Eqgs. (3.16) and (3.17) we have relative signs; hence, both terms cancel. One can notice that the
relative sign is due to the action of S and § on different clusters for i < j and i > j in both terms. Then we see that the

normal ordered current : {Sz(z),S4(z)}: satisfies

< {Ss(2) HO zn,zn)>

N

’%

Zf(A fl’ *l’ *l

Zf(B fw *iy ¥

We now show that for any ¢;, R-symmetry factors in the
last two sums reduce to 4. Let us start with £; = +2 in
which case *;,*;” is empty. Moreover, in this case
f(B,+2, *,,*1) =0 so that we only have one term to
analyze. From the OPEs in Appendix A, we see that x;, = A
and

FA 42 ) f(B.43/2, %, _

= 8304 1142(2i Z)-

)On,+1.42(2i Zi)
(3.20)

The case ¢; = +% is more interesting. Suppose *; = C;

then from the OPEs, we can easily see that ; = AC for the
second term and x; is empty for the last term. We then have

F(AA3/2.CoHF(BAL 4L, 3ol )

2‘5[ OA]-H +32(2:24) (3.21)
and similarly
J(B,+3/2,C)f(A 42, %" O 1y 132(2i:Z:)
= 5304, 11 +3/2(2020)- (3.22)

O, (20 Z) )

1 1 "
B.Z.—1/2, %, *; S __.O*,.‘ AREE
DI /2, %] >Z—ZiZ—Zi< At (ZinZi) o)
DFA L+ 12w —— L0 (7)),
Z—Z,‘Z—Z,' it

(3.19)

|
We can clearly see that the sum of the last two terms is

simply 6305 |, 13,(2i,Z;)- The case £; = —3 is similar.

Let us now analyze the case #; = +1 in which case
x; = CD. We get

F(AA+1,CD ) F(B.+1/2. 5, %) OY | 5(2:. %)
= J(B.+1/2.4. ACD)OYE, || (21.%)
A ,~ACD —
=38, 05" 1 (2. %). (3.23)

Similarly,

f(B.+1,CD. ) f(A,+3/2, %, z)O*Ai,.+1,+3/2(Zi,Zi)
= 2165 O 1 (2.2, (3.24)

which finally implies
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1
365 0P = 2155 OPM = 2 [(510°P — 5307C)
+ (650P4 — 6504P)
+ (8RONC — 5ROCA)]
— 550PA 4 5pOCA
= 530D, (3.25)
The case #; = —1 is similar. The same calculation as in

¢; = 1 recurs for the cases £; = 1/2, 0.
These calculations simplify the OPE (3.19). We get

< {S5(2),54(2)}: H(’) z,,,z,1>

= Zz_z P (- OF j1e(zin2i) ). (3.26)
i=3 !
In particular,
4 1 1
HS5(2), 5 @)} 0 (0. 8) =B ———— Oy ()
+regular. (3.27)

Comparing this OPE with (3.9) readily implies the desired
result

SA(2)} = 84P(z,2).

{Sz(2), (3.28)

B. Possible R-symmetry current

Recall that R-symmetry acts on supercharges Q4 and
Qi A=1,...,8, by multiplying a unitary matrix U € U(8).
This means that the supercharges transform in the funda-
mental representation of the R-symmetry group. At the
level of Lie algebra, we can identify the R-symmetry group
as simply 8u(8) @ u(1) since U(8) = (SU(8)xU(1))/Zs.
Thus, we can label the generators of R-symmetry to be T4
and R, where T4 are generators of the fundamental
representation of SU(8) satisfying the 8u(8) algebra:

3,751 = 5475 -

55T, (3.29)

and R is the generator of the scaling U(1). A suitable matrix
representation for the generators is [47]

1
(T = opoh —gopd5. (330

T4 acts on the supercharges as

[T5. 05] = (T5)5Qa

[Tg, Qac] = _(Tg)lc)QaD- (3-31)

We now want to construct a current Gz (z,zZ) whose modes
will extend the generators Tg. As will be shown in Sec. IV,
the modes of the supercurrents S,,S4 will extend the
supercharges. Since the OPE of currents directly translates
to the commutator of their modes within radial quantiza-
tion, our currents must satisfy the OPE:

Gi(2,2)Sc(w) ~ ((z — w) singularity) (T3)2Sp(w),
—((z — w) singularity) (74)5SP(w).
(3.32)

Note that S, and $* are holomorphic and antiholomorphic
currents, respectively; this imposes the condition that the
singularities in (3.32) be holomorphic and antiholomor-
phic, respectively. As will be shown in Sec. IV, non-
holomorphic [holomorphic] singularity in the OPE of
Gy (z,Z) with S¢(w) [S€(w)] results in nonsensical algebra.
This requirement will be crucial.

The only conformal operator we are left with is the
graviphoton operator. Moreover, the leading soft gravipho-
ton operator corresponds to A = 0 as can be inferred from
the poles of the beta function in the OPEs of graviphoton
operators with other operators that are summarized in
Appendix A. It is clear that we must consider the order
independent graviphoton double soft limit with opposite
helicity, which is their normal ordered commutator (since
they are bosonic). Since it contains the factor 525, as can be
seen from the collinear limits, this can be manipulated
properly to obtain the SU(8) generators. Here we consider
the most general integral transform corresponding to
negative and positive helicity soft graviphotons, respec-
tively, as

1 1
=1 - -
Gap(2,2) lim— == Z,)bOABA (2.7,
_ A 1 1
GP(z,z)=lim— [ d*7 , O 4
CO=ing | 4 ey e )
(3.33)

One can easily see that we can recover the usual shadow
transformation [48] by taking specific values of a and b.
The operators Oap_; and OF2 | have conformal weights
(=1.%) and (3, —1), respectively. Hence, the scaling trans-
formation reveals the conformal weights of the currents
Gyp and GP to be (a—3,b—1) and (b'—3.d -3),
respectively. Let us start with the OPE of our new currents
G4 and G°P with any conformal primary operators,
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N
<GAB(Z’ ?> H O*A”,,f” (va Zn)>
n=2

A, 1 1 N
hm e d2 O - ) Z O*n n» _n
A / (Z ) =z, < B, -1(21.21) H A”f”(z Z )>

n=2

1 1 1 21— 2y “ -
:;/dzzl( _ [Zf (A, B, f”*”’*”)z <"'OA,,,K,1+1(Z"’Z")>:|’ (3.34)

z2—-21)"(2-17)) - Zn

where f(A, B, ¢}, ,, *),) contains the R-symmetry index of the operators in the correlation function that appears on taking
the collinear limit. We used the fact that lim,_o AB(A, *) = 1. Now we use two basic integrals (see [49] for proof):

1 1 (z1—-%) 1
d’z — I~ = C,(A,B — :
/ "e-a) E-2)f u-g ( )(ZJ_Z)A(ZJ'_Z)B_S_]
1 1 (z1 —2z;)° 1 1
d*z ——— — )~ = C,(A,B) —, 3.33)
/ -2t @ —a)f a-g (Z =2 (z;—2)f! (
where
(—1)S+A+B(—ﬂ')s!
C,(A,B) = . 3.36
(4. B) (-B+1)(-B+2)---(=B+s+1) ( )
Now performing the shadow integral for n # 1 and s = 1,
1 1 71—2 1 1
d? ~=Ci(b,a . 3.37
R ey ey e O e 237

We have

N N
1 1 * _
<GAB 2,2 H Zm Zn > = Zf(A’B fl’*l’*l)cl (b’ a) - A a—2 < ’ 'OA!,-,f,-Jrl(Zi’ Zi)>' (338)
i=2 (zi—2)°(zi—2)

n=2
1
2 b
0, +%,—|—l}. This can be verified from the beta function singularities in the OPEs in Appendix A. Similarly, we can
have the OPE for antiholomorphic current GE® which act on the conformal primaries with helicities restricted in the range
£ne{=1,-3,0,43,+1,+3,+2},

Here the helicities of the conformal operators inside the correlator are restricted to £, € {—2,—%,—1,—

N N
i} . ; 1 1 v .
<GCD<z,z>H0Aﬂ . <zn,zn>> =N F(C.D. 4 ) O ) —— (O, (@) (339)
n=2 e n=2 (Z” - Z) (Z” - Z)a "
Here we can pair ¢/ with £ = ¢’ + 1. Hence, we can write the OPEs as
Gan(2)O) (0, ) ~ F(A, B, %, #)C (b, @) — 1 (2. )
W7W ~ ) El E) b} 5a 4 w
AB\Z)VA ¢ 1 (W—Z)b(W—Z) AL
1 1

GP(2)0f p(w, w) ~F(C,D, ¢, %, +)C, (b, d)

o e Ohe ). (3.40)

1. The composite current

To construct a suitable current for R-symmetry, we need to use double soft limits of the graviphoton operators. As is well
known, the double soft limit of opposite helicity operators depends on the order of the soft limit. For this reason, as in [42]
we consider the following operator:

B (2. 2w, W) = Gup(2) GP (W) = GP(W)Gap(z) = [Gp(z), GP(W)]. (3.41)
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To construct a local operator, one needs to consider the normal order of this operator evaluated at z = w,z = Z. We thus
define

G4 (2.2) = G5 (2.2:2.2) = 1Gap(2) GP(2) = GP ()G (2): = :[Gap(2). GP ()] (3.42)

We show in Appendix C that subject to the requirement of the R-symmetry current explained above (3.32), the current
G52 (z,7) satisfies the following OPE:

N
<g§g(z 1104z, (@2 >( Dttt ey (b,a)Cy (V. a') | f(A B}k, %)) F(C.D. €+ 1%, %))
n=3

1 1 * _ *7 _ N —
( )a+b 2(Z Z )a+b_2<OA33,f3(Z3’ZS)..'OAj,fj(Zj’Zj)”.OAN,KN(ZN’ZN)>
—J(C.D.E;. 5. %) [(A.B.£; = 1,5 %)
1 1 *3 _ *;/ — * -
X(Z_Z.)“Urb_z(Z—Z-)aer’—z<OA3,K3(Z37Z3)"'OA,-,I,’,<Zj7Zj)'”OAA}/V,KN(ZN’ZN» . (3.43)
J J

In particular,
(_1)a+b+a’+b’c (b a)cl(b/ al)
(z — w)att=2(z = yp)d+b=2

-1 a+b+a’+h’c b,a)C b/
Qg (2.2 )Oi+‘( )Négg( (Z) W)aer 2((2 _a))al+(b’

G55 (z. Z)OEA,—%(W’ W) ~ =85 OEA,—%(W’ w),

)Oi (v, ), (3.44)

where we used the fact that for the gravitino operator, the R-symmetry factor in the double soft limit is —é/fg. Indeed,

Z-Zl _
1OABEA (lezl)-

AlimOAl Oapa, -1 (2, Z)OE,A (Zl Z) =
1= -
fE=r,A=a, B=b,C=c, D=4d, then

w =7

O, a-3(21,21).
% r,A.g(l 1)

AlirBOAZOZi“ (W’ "_V) Oabr;A,—%(Zl ’ Zl) = _5ZZ w—

In all other cases, one can check from the collinear limit in Appendix A that the R-symmetry factor is =855 . Let us construct
a new current as a linear combination of our previous currents as follows:

(Gg) (2.2 ( 5%2 b5(2.2) %‘ng Fp(z.2 ) (3.45)
Using the definition of generalized Kronecker delta
Gy =y sign(0)sy -5y (3.46)
cES,
we see that
8
Zagg =-755. > oG =165, (3.47)
E=1 E=1

This gives us the OPE
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(G3)5 (2.2)Opa 5(w. ) ~

(_1)a+b+a’+b’cl (b, a)C] (b’, a’)

(Z _ w)“*b’_z(z _ V—V)a/+b—2

(_1>a+b+a’+b’cl (b, a)Cl (b', a/)

(Tg)gODA,—%(W’ w),

(G55 (2.2)0%

A,+%<W’ W)~ =

(Z _ W)a’+b—2(

e (w, ). (3.48)
Z—w)

Hence, GS is a candidate which can extend the R-symmetry algebra. But we see an immediate problem. The OPE of G§ with

supercurrents Sp(w), SE(W) is given by

1

~ . A ) I
(G5)5 (2.2)Sp(w) ~ (Tf)glAlml—z (=D C (boa)C (V' )

; T

1 1

1
X d2Z 7 7 O _3\Z ,Z

and

AL T

(3.49)

_1
(G9)5 (2. 2)8* (W) ~ —(T§)Rlim 27z (=1 Cy (b, a)Cy (V)

1 1

1
x [ d* ; = 0% (21, %1)-
/ < (=213 (2= 2,)7 02 (z = 7,)e V2 A.+%(Z1 21)

The requirement (3.32) forces @’ + b —2 = 0 in (3.49) and
(3.50). But then in view of (C11) we get

a+b—-2=0 and d+b-2=0 (3.51)
and conclude that the OPE is trivial:
(GS)5(2.2)Sp(w) ~ regular,
(G$)P(z2,7)SB(w) ~ regular (3.52)

IV. THE N =8 3bm3, ALGEBRA

Let us now find the asymptotic symmetries of the theory.
The usual symmetry currents in the theory are the stress
tensors T(z) and 7(Z), which are the superrotation gen-
erators, and P(z, Z), which is the supertranslation generator.
The modes of these currents generate the bmg, algebra as
described in [40]. As usual the generators of bmg, are the
modes of 7(z),T(z), and P(z,Z). Let us expand these
currents in modes:

T(z) = ZL,,Z‘”‘Z, T(z) = Zl:nZ‘"‘z; (4.1)
nez nez
P(z2)= Y P,z (42)
nmezZ

As discussed in [40], the modes P, i,
from the modes of the current P(z) or P(Z). If we write

1 can be obtained

(3.50)
=2

|
P()=) P,z P(2)=) P,y (43)

nez mez
then
Pn_%’_% = Pn_L, P_%’m_% = Pm_l, (4.4)
and
! = = | [ (=
Pyt = wm £ 1) dww" T (w), P, 1]
1 -
_ +1
T ]é dow N TOw), Py ] (45)
These modes satisfy the usual bmg, algebra:
[Lm’Ln] = (m - n)Lern7 [I:mal:n] = (m - n)l_‘erm
1 - 1
L P = En_k Puiss  [LusPul= En_l Py,
(4.6)

where m,n€Z and k,l€Z + 1. In addition, an infinite
dimensional extension of the N' = 1 supersymmetry alge-
bra was constructed in [3]. The supercurrent was shown to
be the shadow transform of the gravitino operator. In our
theory, we have eight supercurrents S*(z) and their anti-
holomorphic counterpart S, (z). The OPEs (3.14) show that
S4(z) and S,(Z) are conformal primaries of dimensions
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(3,0) and (0,3), respectively. Consequently, if we expand
the supercurrents as

(SA) . 1 1
SA(Z): Z] ZkJr%k’ with (SA>k:2_m%dZZk+ZSA(Z>’
kGZ"ri
FE=3 S im st= L f dzzEH84(z),  (4.7)
lez+} Narl b 2qi o

then we can write the commutator of these modes with the
Virasoro generators as

n

O ) [ N EARED

_ _ n _
oS3 =0 (LS = (5-m)Sh @)

The operator relation (3.15) gives the anticommutator

- 1
{(S5)ys S} = 84Pwrs mon€zZ+5.  (49)

Let us now discuss the requirement of (anti)holomorphicity
of the singularity in (3.32). Suppose (G4)$(z.Z) has

conformal weights’ (h,k). Then we can expand the
current as
(gB Z { gB D}mnz_m h——n h (410)
nme”Z
with

(@S = ﬁ f d: f Az (A (2 7).

(4.11)
Suppose we had an OPE of the form®
PA 1 1 A\C
(G3)5(2.2)Sc(w) ~ = (Tp)pSc(w).  (4.12)

I—wZ-—

One can readily check that this would give us the
commutator

[( ~Ig)lc)}mnv (SC)k]

This is nonsensical since we do not have any w dependence
on the left-hand side. Similarly, one can justify the second
part of (3.32). So we conclude that the N =8 8bms,

= W(TE)5{Schni- (4.13)

"The scaling dimensions of (G3)$(z, z) can be calculated from
those of Gap, GP. Ttis (a +b' —2,a' + b —2).

Exactly the same argument works if we have higher power
singularities.

algebra does not contain the extension of global
R-symmetry algebra. The final algebra is then given by
[Lms Ln] = (m - n)Lerm []:ma I:n] =

1
[L,.Py]= (5" —k) Pk

(m - n)l_‘erm

1
Ln’PkI = (En_l)Pan’

n _
117 SA = (E ) m+n’ [an (SA)m] = O’
[Lna SA] 07 [an Sﬁz] = <g - m) S':}wrn’
{(S8)m>Sn} = 65Pun- (4.14)

V. CONCLUSION

In this paper, we have used the CCFT technique to
compute the asymptotic symmetry algebra of N =8
supergravity in asymptotically flat spacetime. The crucial
part of our result is the nonextension of the global SU(8),
R-symmetry algebra. The purely mathematical consider-
ations [43] for N' =2 theory suggests that the infinite-
dimensional extension of R-symmetry is fraught with
mathematical inconsistencies. Here, performing a direct
asymptotic symmetry analysis of the supergravity theory
using the CCFT prescription, we have confirmed that
indeed supergravity does not result in such an extension.
The rest of the symmetry algebra is as expected and is
presented in (4.14).

It is instructive to note that our results are consistent with
the usual expectation of symmetry enhancement at the
boundary for gauge symmetries. In the case of ordinary
gravity and minimal supergravity theories, the correspond-
ing symmetries are local in nature, and hence, they have a
natural infinite extension at the boundary. For extended
supergravity, the R-symmetry is primarily a global sym-
metry, and in our study, we find that the symmetry group is
not extended at the asymptotic boundary. In the CCFT
language, this result comes from the regularity of the OPEs
between the R-symmetry charges and the supersymmetry,
which signifies the absence of collinear divergences. It
would be nice to check the fate of R-symmetry in the
context of gauged supergravity theories (where the
R-symmetries are also local) by performing a direct
asymptotic symmetry analysis of those theories. On the
other hand, global noncompact symmetries, such as trans-
lation, also have a local counterpart in the theory of
dynamical gravity, and hence, it does get an infinite
extension at the asymptotic null boundary.

Let us end the paper with relevant open problems. In the
seminal work of Hawking ef al. [51] the importance of the
infinite number of soft hairs in the context of black hole
microscopics was discussed. The study was further taken
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forward in [50-54] and beautifully reviewed in [16]. They
emphasized the importance of symmetry enhancements at
the future horizon H™ of the black holes and how both the
hypersurfaces’ H* and Z* carry information of conserved
charges that are in turn important for understanding black
hole microscopics. The study of the present paper indicates
that the asymptotic soft hairs of the supergravity theories
will not have distinct infinite R-charges; rather, they will
only carry the global fixed number of R-charges. An
interesting question that remains to be studied is the effect,
if any, of these R-charges at the horizon and finally their
importance in the black hole microscopics. We hope to
return to this question in the future.
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APPENDIX A: OPEs OF COMPONENT FIELDS

Using (2.18), we can extract the rest of the OPEs from
the collinear singularities of the amplitudes calculated in
[44]. In the following, the zero, one, two, three, and four
index operators are, respectively, graviton, gravitino, grav-
iphoton, graviphotino, and scalar operators.

1. Same spin OPEs

_ z
OIZ].+%(Z17 Zl)0i2.+3(Z2 Z2) ~ ﬁB (Al

212

- -y 21
O‘:l*%(zl » <1 )OBAZ,—%(ZZ,ZZ) ~ ?12 5B (

1 1 _
i 5) OR%, a1 (22, Zz) :

1 5
5 A + >OA,+A7 —2(12722)

z 5 1 _
+2254B (AI +5.4, ——) OA1+A2,+2(12712)v (A1)
212 2 2
Og?,ﬂ(zhzl)og +1(22 Zz) ~ EB(Aly AZ)OA fA O(Zz, Zz)
_ _ Z
Og?,+1(ZIvZI)OCD;A2,—l (Zz.Zz) ~ —5AB Lli (Al Ay + 2)0A1+A7 -2(127 Zz)
1
Z _
+ iB(AI +2,8,)O4 1 a,,4+2(22s Zz)] : (A2)
In the following, the notation is a, b, c,...€{1,2,3,4} and r,s,1,... € {5,6,7,8}. See [44] for details.
Ooars Obt erstu IthlezB A 1 A 1 O =
A, +1(21511) A +1(Zz Z) ~ e 1 T3 8213 cdit+2,-1(22: 22 |+
Z 1 _
(ers-’—I (Zl’ ZI)OA i (Zz Z, ) et e adeZZ B(Al + = > Az + )Oud;A1+A2,—1 (Zz, Zz) s
oOrst 7 Y(ab erstu abcdzl2 A 1 A 1 O >
A +1(21111) A +1(22 )~ 1 1t 752 +5 2 wdis+,,-1(22: 22 )
ars = = rsSvw sa le 3 1
OAI,JF%(ZD 21)Opruza, -1(22.22) ~ €™ ™' 5 le Bl Ay += 5 Ay 3 Oa 1+8,42(22: 22
Z12 3 _
+—B|( A + Ay 45 )Onia,2(22:22 ) |5 (A3)
212 2 2 b

9T+ denotes the future null horizon.
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- Z Z
O%L78(21.21) O%M(20.2,) ~ €2l B(A; + 1,4, + 1) L‘i
1

2. Different spins

— — 212 1 —
OA]’+2(ZI, ZI)O’ZZ’%(ZZQ) ~ EB <A1 - 1, Az - E) 021+A2_+%(22’ Z2)7

— — 212 5 —
0A1,+2(Z1vZ1>OA;A2,—%(Z2,Z2)NaB<A1 LA+ )OAA1+A2 (22, 22),

Op,42(21,21) 0% L1 (22.22) NZ—UB<A —LA)O0 4, 11(22. %)

Op,42(21.21)Oupia, -1(22.22) NZ_B(A = 1,85 +2)Oyp.p,48,-1(22: 22)
12

0A1.+2(Zlazl)OAb +1(22 ) NZ12B<A1 1Ay + >OZbLA2’+%(Zz,Zz),

— — 212 —
OA,,+2(Z1,Zl)OZIZf+%(Zz.Zz)NZ—B<A1 LA, + )C')ZbiA (22 2),

12
_ 212 3 _
OA1$+2(ZI’Z1)OabcA2 —f(Zz Z) N—Z—B Ay - 1,A2+§ Oabc;A|+A2,—%(ZZ’Z2)’
12

_ _ Z
OA].Jrz(Z],Z])OﬁigD(ZZZQ) N%B(A — 1 Az + 1)OA +A, O(Zz, ZQ)
12

— _ Z12 1 _
021,%(21,Zl)oﬁgﬂ(zz,zz) o <A1 3 AZ)OIZ,EA (2 2),

_ _ Z 1
0’21,%(217 21)Opcn,-1(22.22) ~ 2!5f ZEB (A1 3 Az) Ocpia,+a,-1(22: 22),

_ 1 1 1 _
021,+%(217 21) 0% +1(Zz %) ~ 2_123 (Al 52t 5) OXPCR, 0(22.%2).

A - - 212 1 3
Oy, 2(21:20)Opcpay 4(22.72) ~3 =B Ay = 5. 8 +

212 2

A+ 212

_ _ Z 1 ~
021,+%(ZlvZl)OBCDEAz,()(ZZ’ZZ) 3'5[ zz (Al _§7A2 * 1>OCDE];A|+A2,—§(Z2’ZZ)’

1 z 1
b = d = tu nabed <12 =
04, 41 (21 11)02;+%(Z2,Zz) ~oy e =B A Ay + 2 Osnca+8,-4(22: 22):

3! 212

) B 212 3 -
Oﬁlﬁﬂ (ZI,ZI)OCDE;AZ.—%(ZZZZ) ~ _5AB ZLB (Al’ Ar + )OE Ar+4,, —-(ZZ’ Z);

1 _
(’)Ab 4 (z1, Z1)OCA‘1’3(ZQ %) ~€e™Me adeZuB(Al’ Ay + l)otu;A1+Az,—1(Zz’ Z2),

_ d _ 1 _
0% 1(21.2) 05 (22.7) ~ —€Cdef€“bghz—l23(A1, By + 1)Ogia 1,-1(22. 22),

046010-16

212 _
Op 4a,42(22.%2) + . Op4a,-2(22:22) |-
12

—) 5fBOCDJ;A1+A2,—1 (22.22),

_ _ 1 4 1
oA %(11,Z1)O§§€E(Zz, )~ —gé‘ABCDEFGHﬁB<A1 - 57A2 + )OFGH A, +8,.-4(22: 22),

(A4)

(A6)

(A7)

(A8)

(A9)

(A10)

(Al1)

(A12)

(A13)
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Z 1
Oabr (Z],Z])OZ‘?(Y)(ZLZQ) ~ erslueabcdﬁB<Al + 5, A2 + 1>OM;A1+A2,—%(Z2’22)’

212
_ _ 42 1 _
Ozbr_p(zlv ZI)OZSZ%(ZZ,Z2) ~ _erstueathZ_ZB <A1 + E , A2 + 1) Od;Aﬁ-Az,—%(ZZ’ Z2>. (A14)

Similarly, all other OPEs can be extracted from the amplitudes given in [44].

APPENDIX B: SOFT GRAVITON AND SOFT GRAVITINO OPERATORS

We will use the soft limit of the superamplitude and then perform an expansion in the Grassmann odd coordinate of the
superspace to obtain the soft graviton and gravitino limits in an amplitude.

The leading and subleading soft factors in a superamplitude corresponding to w;l and a)g were calculated in [44] using
double copy relations. Here we only present relevant results and refer the readers to [44] for further details. In the celestial
basis, the leading soft factor is given by

. .. w—>01 2 1.i Zzll . .
My j=1,4j+1,... sz,,z,,[ T s (nf)]MN,( Lj—1.j+1,..). (Bl)

w; = JIJZ_]I Zj—l]l
i#]

One can now get the soft limit in terms of the celestial superamplitude in a straightforward way. We have

N © N
n=1 J k=1

711

el [y
(I 31 [ do = (tim o> )3 (3 1
= H dw,wy A dwjd_wj(A:lej )5 ;wqu o My(1,....,n,....N).
" [y
(B2)
Using the fact that
d (. A d
oy (m ™) = Go-0(@)) = e, (B3)

where 6(w) is the Heaviside step function, we see that the integral on @; on the right-hand side gives us

N N N
— = A=) 5(4) i .
<” lAhr_r)ll(A 1)On (25 Zpo 1" > (H/da)nwn )6 (Az;a)qu>£r_r)10wj/\/llv(l, won,...,N).  (B4)
n#j

]

Using the soft limit (B1) we get

u 220 7 ul
— i l .
= E a),»{ é Sall é i }( / dwy, a)Ak 1)5(4)<E a)qu>/\/lN_1(1,...,z,...,N)
Zi-1,5%i 75 Zﬂ 1

= 1
i =L i It

" (22 22 1i%j
} : j—1i%ji i“Jji A1 ; Z .
= { é + é 58 / da)ka) k= / da)w 5 [ ) MN 1( ,...,N)
o1 \Zj-1%5i <o iZji n=1 0
7 I bt ni =
n 2 =
Zi_1:3i Z Z; .
o Jj—1,i%ji J—Li%ji o8 — —
- § { 2 +—2 2 ( )}<OA1(217Z17’11)7---’OA[+1(Zini7’7[)’"'>‘
o o oL
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The super-Ward identity that we get from the conformally supersoft theorem is

il 7—7. —7.)? — 7)) (Fv —7.)?
(J1(2.2.m)O0a, (z1.20.0") -+ Op, (2n 2o 1)) = Z {g _ ?; ((ZZIIVV _Zzl))z + E; _ ?; ((ng _Zzl))z 58(’7)}

X <OA] (Z] V20, 771), sy OA:‘“ (Z,', Zi 77i), sy OAN(ZN’ N 77N)>’ (BS)
where
Ji(z,z,n) = lim(A = 1)Ox(z,2.n)

isthe A — 1 soft operator. In the above soft factor, we chose the reference vector for polarization of the soft particle to be the
momentum vector of the nth particle. We leave this reference vector arbitrary, which corresponds to a point £ € CS?. The
super-Ward identity then takes the form

(6208 (o, 70') -+ O, (ew ) = D { 2 E 2 lema) @ Z_f’zcsS(n)}

i=1 t

X OA] (Z1, 21,771), sy OAHrl (Zi, Zi,ﬂi), sy OAN(ZN,ZN,ﬂN»- (B6)

When we expand both sides in the Grassmann variables 5 and compare coefficients, we get the Ward identity for the soft
graviton operator:

[\S}

<11 (2.2 [] Oa,e, (zn,z,,)> =X EZ - ?; (é__zzi))z (Oae(20:21)s 00 Onn (205 Zi)s o Oy (2vZn)) - (BT)

<31(Zv Z) H On, .z, (2ns Zn)> = Z E; : ;@ (ég__zzl)z (Oa,0,(21:21)s 000 On1.6,(20:Zi) s -0 Ony oy (2ns Zv))s - (BS)

n=1

where
Ji(z.2) = E{H(A = 1)04 42(2.2). Ji(z.2) = E_IH(A —1)04 »(z.2) (B9)

are the A = 1 soft graviton operators. The subleading soft factor was also calculated in [44]. It turns out that it is the same as
the subleading soft factor for positive and negative helicity gravitons in pure gravity [45]. We then write the super-Ward
identity following the calculations in [55]:

(Jo(2.2.1)O4, (2. 2.7") - - Op, (2. 2o 1Y)

_ N zZ=-zZ)&=-z),,. . _ (z—2)(E-7%)
= Z{(Z—Zi) (é—Z) ((Z—Zi)az,- —2/’1,') -‘r—mWéS(”)((z_zi)()Zi —2/’11-)}

1
X (On,(21:21:1")s oo On (2022011 )s o Oay (2 2w 1Y), (B10)

where

Jo(z,2,n) = imA[O) 15(2,2) + 8° (1) Os (2, 2)]
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only contains the A = 0 soft graviton operators. This immediately gives us the subleading soft graviton limit:

N N (= -
_ _ — I - Z,‘) _ _ = _
JO(Z, Z) On r (Zm Zn)> = ((Z - Zi)a’,- - 2hi><' o OA-.K’-(Zi’ Zi) o > (Bll)
< 1;[1 v (=) (£-2) ;
and
(060 [[Os. ez ) =S E=BE=D (=20, =200 Os ez ). (B12)
n=1 i=1
where
Jo(z,2) = EI%AOA.+2(Z’Z)’ Jo(z.2) = EH})AOA.—z(Z,Z) (B13)
are the A = 0 soft graviton operators and ; = ‘ Land h; = " % are the conformal weights of the operator O, r.(2.2).

Next, we move on to the soft gravitino operator The leadlng soft gravitino limit for superamplitudes is given by

{pin'}s o Apn. ™)), (B14)

MNJrl(l//?-&-’{plv’/ll}’ ""{pNv

i=1
where r is the reference vector corresponding to point & € CS?. The negative helicity soft gravitino limit can be obtained by

conjugating the soft factor. We can expand both sides in ' and get the soft theorem in terms of component fields. Note that
because of d/d, , the soft gravitino operator changes the spin of the particle £; — £{ = ¢; — % Thus, we can only have

(7
¢;e{-3/2,-1,-1/2,0,+1/2,+1,+3/2,+2}. (B15)
For negative helicity gravitino £ — ¢; and clearly

£ee{=2,-3/2,-1,-1/2,0,+1/2, +1,43/2}. (B16)

The explicit soft theorem in terms of celestial amplitudes is given by

N - —
. “ o (2-Z) (E—2) " _
<J?/2(Z’Z) HOA”,fn Zn’zn > Zf ft’*t’*z ( 1) ! é _i) (g_zz) < "OA#%,/;,-(Z:"Z:') o > (B17)

and
<71 oz z)ﬁo* (2.2 >:ZN: (5 t) (=) GV EZT) oy (Big)
/ > 11 A, L5 \%ns n - i i % (Z—Zi) (5_2) A\ ’
where
1
1/2(Z Z) = hm(A—E)O‘Z %( z), J1/24(2,2) —IAIT(A—E)OA—EA(Z ?) (B19)

are the soft gravitino operators.
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APPENDIX C: OPE OF THE COMPOSITE CURRENT G{?(z.2)
We begin by calculating the OPEs GG. We have'

N
3 . . AA 1 1 1 1
<GAB(Z,Z)GCD(W,W)H(’)A"f”(zn,zn)> = lim 122/d2z1 —

n=3 A T (z=2)" (Z=2)" (W =2)" (w—2,)"
N
X <OABA|,—I(ZleI (22,2 HO 2. (Zns Zn > (C1)
n=3

By taking the soft limit of the first operator A; — 0,

<G 2)GP (w l_N[O ( > lim 22 [ 2 /d2 ! ! ! !
ZnaZn) ) = im —= Z Z
A L%a.e, 802 | C T a2 ) (B= )P (=) (w—22)”

Z1—2 . . -
S [—551?_ - <OA2,+2(Z2,Z2)HOan” (vazn)>
n=3

71— 22

N
21—Z2 * - * -
Y 0.8.03.58) L O, .31 -0 16150 o) )|
J=

(C2)
Now doing the first integral using (3.35), we get
N
A 1 1
Gap(2)GP (W) | | OF 4 (20> Zn > = lim—2/dzz , ,
< sl g fue,{ 8,20 7 P —2)7 (w—2)0
N
x |=6S2C,(b,a <(’) 2,2 Oy 4 (2.2 >
R feererer  CNRCES) | S OES
+ZN:f(A B.Z;. %}, %})Ci(b. a) : a2 = 1—b
= (zj—2)"7(z;-2)
(O e 7) O 1 (52 Ol o) )| (©3)

We now use the collinear limits of the graviton operator with other fields in the first term and take the conformally soft limit
A, — 0 in the second term. The first term becomes

, Az/ 1 1 1 il
lim —= [ d?z . . [ -5§8C,(b,a <(9 7,2 Z,,,Z,, >]
A0 T : (W—12)" (w—2,)0 1(b.a) (2 —2)"2(z,—2)f \ 2 (e 1;[3
1 1 1

(W—2)" (w—129)% (22 —2)* (22— 2)"

N S
Z Zj %3 *; — £ —
X ZB(Az — 1L f(A) 2= . (04, 6,(23.23) - OF p (21, %) - Ol o (2. Zn))

A,
= —852C,(b,a) hmO;/dzzz

i—3 22 — %
1 1 1 1
= —6PC,(b,a /dzz ; - -
R A e i e L P T
N _
Z(l - f(4; )) Gz <O*A3 r(23,23) - OF £ (20,2) - OF 4 (2w, Zw))s (C4)
i=3 l

Since there is also overlap as there is in the case of soft gravitino currents in Sec. Il A, we do not separate the operators in the
correlator according to their spins £, #” and keep the spins to be arbitrary here as well.
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where we used
Jim A,B(A2 = 1. f(A) = 1= f(A).
In the second term in (C3) now we can take the A, — 0 limit,

N 1

A, 1 1 1
lim — A, B. ¢}, d? , ;
i, 23S0 B ) ey | P ey

- */' - -
X <ng,+1 (22:22) -+ OA]jfjJrl (Zj’ Zj) Tt O*AA,/\,,KN(ZN’ )

1 1 1
=— A B, ¢, %, % C,D,¢;+ 1, «NC,(b,a
ﬂ;f( VAR j)f( J Jj j) l( )(Zj Z)a 2<Z _Z)h
1 1 2 —7; !
2 J *3 j - * -
. /d “ (W=2)" (W—12)" 22— 2 <0A? & (23,23) - OAj-fj(Zf’ Zj) OApz/va(ZN’ Zv))
1 1
+=Y f(A,B,¢;,%;,%)f(C,D,¢;,*;,%))C,(b,a) —
”23 VERUVARGY 1 ( zj— Z) 2 (Z _ Z)b
") 1 1 22 _Zi *; - *i - * N -
d"zp =) (w=2)" 22— 2 (- OAjfj+1 (2.2)) OAi,fi—l(Zi7 Zi) OAN,fN(ZNs Zn))
1 1

F(AB. ¢, %, %) f(C.D.¢; + 1,%,,«/)C, (V. d)

Il
.MZ

j:3 s Y ]5 j ) ]a j (Z] —Z)u ) (Z _ Z)
1 1 «
x O 7)) O 7O .z
(z,- S G =) 5 (O0%,0,(23.23) - OF £ (2. %)) - OF) 4, (2n:Zw))
1 1
+ (A,B,C;,*;,x* C.D.,?¢;, %, %;)Ci(b,a)C
;f AR j)f( ) l( ) 1( )(Zj_Z)a Q(Z _Z)
1 1 .

(- OAI,,f,H(Zjv Zj) T O*Ai,f,»—l(ziv Zi) O*AA;V,KN(ZNv Zn))- (Cs)

X / !
(zi =w)? (z; —w)* 2

Combining the two integrals we get

1 1 1
G O ns<n _5CDC b, /d2 d '
< 45(2,2)G WW)H (a2 > ba) =) w=2) (2 -2) (32 —2)

N - .
XD (= (M) 22X (05, (232 O, (20:72) O (2o 2w)
t:v3 1
+;f(A B.£;.x;. %) [(C.D.¢;+1.% +1)C, (b.d') T
1 1 X _ *! _ " -
X(z,-— =) (0%, ¢,(23.23) - Of 4, (2.2)) - OF, ¢, (2v.Zn))
+2N3f(ABf ¥ ) F(C.D. 1%, %)Cy (b.a)C,(b.d) ! !
= b i) (D, a) (D, d (Zj_z)a—Z(zj_Z>b
1 1 !

X

_ o - -
”OA]j.fjJrl (2j.2)) Op e (2i,2i) - O*AA,/\,,KN(ZN’ZN»'

G =)
(o)
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Here when we take the normal order of this composite current, we only need to care about the nonsingular terms in the
above OPE. The nonsingular term in the integral above can be obtained by taking z — w limit in the integral. The integral
can then be evaluated as

1 1 1 1 70— Z; z=w 1 1 70— 7
dZZ - L -1 aer—Z/dZZ . . l
/ PW=-2) w-2) (-2 (-2 -z = G-2) P (z—2) -z

1
(Zi _ Z)a’+b—2 (Zi _ Z)u+h’—2 )

=(=1)"**Ci(a+b' -2,d +b)

Hence,

N
< Gup(2.2)GP(2,2) HO”M Zn> Zn >

n=3
(_1)a+b+l N
= 52C|(b.a)Cla+ b —2.a' + b)) (1-
g i=3
1 1

T g O 0 B Ol 202 O o)

N
+Zf (A,B,C;,*;, % )f(C D.¢;+1 */, *”)Cl(b,a)Cl(b/,a/)(_])wara’er’
=3

L AR AR LA
1 1 3 _ *’,’ _ *y —
x (z—z ')aer’—Z (z— Z~)“/+b‘2 <OA3.f3 (23,23) OA,,K,(Z./" Zj) OAN,KN(ZNv Zn))
J J
N 1 1
+ Y SAB. ) x %) F(C.D. roxi, %) Ci (b, a) Oy (B ) (= 1)+ Gy
s (Z - Zj) (Z - Z.f)
i#]
1 1 *; _ *; _ *y _
x (z— Z‘)b’ (z— Z)a'_z (- OA,-,/,-H(ZJ" Zj) T OA,»,K,»—I(ZZ" i) OAN,KN(ZN7ZN)>' (C7)
Similarly, we have
. N
(:66.96un(2.2): ][ 0% on2))
n=3
(_1)a’+b’+l N
= féggcl (b.d)C(d +b-2.a+b)> (1-
i=3
1 1 *3 = *i = *N =
) (z;i = Z)Hb’_z (zi = Z)a’+b—2 <OAa,f3 (23,23) - OA,,/,- (zi2i) - OAN,KN (zv>Zn))
N
+ ) F(C.D. %K) F(AB € — 1w <) Cy (B d) Cy (b, a) (= 1) b ra+b
=3
1 1 *3 = */// = *N =
X (i—z .)a,+b_2 - Z~)”“’/'2 <OA3,,;3 (23,23) "+ OAi,f/(Z,i’ Zj) OAN_KN(ZNv Zv))
J
/ 1 1
+Zf (C.D. €)% #) [ (A B, €1 xis¥)Ci (b, @) Cy (b, ) (= 1) 0 s 7
= zZ-2) % (z—2)
1 1 *; _ *: - £3% -
X (o On1(2:2) Ok g1 (20 %) - O g, (2 Zw))- (C8)

(z-2z)" (z—z)*2

We have the correlator of the normalized current with any conformal primary as
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N N
. -1 a+b 1 1
(6586 ATTO% . onin) )= =058 Y- (1= 1A [T Culba)Cla b/ =200 40) s
w3 i=3 T (zi—2) (zi-2)
X (O} £,(23.23) O4 »(20.%0) - O, 2, (2w Zw))
(_l)a'-‘rb/ 1 1
———C,(V,d)Ci(d +b=2,a+V ; ;
e i )Ci( )<Zi_z)a+b—2<zi_2)a+b—2

X (0%, ,(23:23) - Of 4 (20.Zi) - O 4. (ZN’ZN)>:|

+ (=1)a+b+d 4 C (b,a)Cy (P, a') {f(A,B,fj,*j,*})f(C,D,fj + 1, %)
1 1 "

- * - -
X (- z,-)“*”/‘z (z— Z,-)“/“"z <0233,f3 (z3,23) OAJ,-,f, (Zj7zj) T OZL,L&N (zn-2n))

—J(C.D.C;. 5. %) f(A.B.£;— 1., %))
1 1 *

<y Oha i) 0L 4 (62) - Oh w2 |- (©9)

(Z—Zj Z—Zj

The last term in both (C7) and (C8) cancels when we take the commutator. Now in the above OPE, we can see that the first
term which has the graviton soft limits does not satisfy our requirement explained in (3.32). Hence, we require that the two
terms in the first expression be the same so that they cancel once we take the commutator. This is equivalent to the
requirement

C\(b,d)C\(d +b=2,a+)(=1)"""=C(b,a)Ci(a+b —2,d + b)(=1)4* (C10)
and
a+b-2=a+b -2 (C11)
Now in (C10) by substituting the explicit expression from (3.36) we have
(—d=b+1)(=d =b+2)(—a+1)(—a+2)=(=d + 1)(=d +2)(—a—=b'+ 1)(—=a =D +2).
which after using (C11) gives
(ma+1)(—a+2)=(—=d +1)(—=d +2), (C12)
which clearly has solutions. Hence, the correlator corresponding to this normal order current is

N
<g§£<z,z> [[ox.. <zn,zn>> — (=) C (b,a)Cy (B !) | F(A B4 F(C.DL 5+ 14 4)
n=3

1 1 _ ! _ -
* (z— Zj)Hb/_z (z— Zj)w+b—2 <O*A;3f3 (23,23) OAJ,-J’,- (2j,2)) - OZZMN (zn.2Zn))

—J(C.D.E;. 5. %) f(A.B.£;— 1., )
1 1

(Z _ Zj)a’-rb—z (

X

7—z;)etv=2 (08, 4,(23.23) OK,,f,@p@) - OF 4 (zwsZv)) |- (C13)
J
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