PHYSICAL REVIEW D 109, 046009 (2024)

Superconformal interacting particles

Roberto Casalbuoni®” and Daniele Dominici

+

Department of Physics and Astronomy, University of Florence and INFN,
Via Sansone 1, 50019 Sesto Fiorentino, Florence, Italy

Joaquim Gomis

3

Departament de Fisica Quantica i Astrofisica and Institut de Ciéncies del Cosmos (ICCUB),
Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona, Spain

® (Received 21 December 2023; accepted 23 January 2024; published 15 February 2024)

The free massless superparticle is reanalyzed, in particular by performing the Gupta-Bleuler quantiza-
tion, using the first- and second-class constraints of the model, and obtaining as a result, the Weyl equation
for the spinorial component of the chiral superfield. Then we construct a superconformal model of two
interacting massless superparticles from the free case by the introduction of an invariant interaction. The
interaction introduces an effective mass for each particle by modifying the structure of fermionic
constraints, all becoming second class. The quantization of the model produces a bilocal chiral superfield.
We also generalize the model by considering a system of superconformal interacting particles and its

continuum limit.
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I. INTRODUCTION

The application of conformal invariance to classical
interacting relativistic particles has recently been studied
[1,2]. The motivation was to generalize the nonrelativistic
one-dimensional case, as for example the Calogero-Moser
rational model [3—-5], which describes N interacting particles
via two-body interactions. This model is very important in
the context of integrable models. The other example, always
in one dimension, is the conformal quantum mechanics [6].
Since there are also supersymmetric extensions of these
models [7-9], we generalize the model contained in [1] to a
superconformal one.

In this paper we have reanalyzed the free massless
superparticle and its superconformal symmetries [10—13].
The superinversion is an important tool to study the
superconformal special transformations and to build the
invariants [14,15].

As is well-known, the massless Lagrangian implies a
mixture of first-class and second-class fermionic con-
straints [13,16]. By using the light cone variables it is
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possible to disentangle the first- and second-class con-
straints in a noncovariant way and then perform the Gupta-
Bleuler quantization of the system; as a result we obtain the
Weyl equation for the spinorial component of the chiral
superfield.

Then we construct a superconformal model of two
interacting massless superparticles from the free case by
using the einbein formulation for the action. The con-
struction of the interaction term heavily uses the properties
of the variables under superinversion. The interaction term
is invariant under the diagonal superconformal group.

The interaction introduces an effective mass modifying
the structure of fermionic constraints, all fermionic con-
straints are second class. The quantization of the model
produces a bilocal chiral superfield.

We also generalize the model by considering a system of
superconformal particles with nearest neighbor interaction
and by studying its continuum limit.

The organization of the paper is as follows: In Sec. I we
first review the classical and quantum theory of the super-
conformal particle, in Sec. III we propose a superconformal
model for two interacting particles, in Sec. [V we generalize
itto a system of particles on a one-dimensional lattice and we
study its limit when the lattice spacing is sent to zero. In
Sec. V we give an outlook.

II. A SUPERCONFORMAL
RELATIVISTIC PARTICLE

In this section we study the Lagrangian and the
Hamiltonian formulation of a single superconformal
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relativistic particle [10-13] by analyzing the superconfor-
mal symmetries, the structure of the constraints and the
Gupta-Bleuler quantization of the model. In particular we
will show the appearance of the Weyl equation for the
spinorial component of the chiral superfield.

The superconformal invariant action for a massless
relativistic particle is given by

|
S:/er:/era)”a)ﬂ, (1)

where

do* s
W = —— =i + i6c"0 — i0c"0, (2)
dr
and e is a Lagrange multiplier. We supposetobeina D = 4
space-time with a flat metric ¢** = (-, +,+,+) and
we follow the spinor notations of the book of Wess and
Bagger [17]. In particular (o*),, = (=1,6"), (*)% =
ed/jeaﬁo;/} =(-1,-6"),i=1,2,3.
The Lagrangian L is invariant under the following
supersymmetry (SUSY) transformations:

50 = e, 50 =g,

Sx# = ifoe — i), de =0, (3)
where € and € are the SUSY parameters.

As in the case of conformal invariance, where invariance
under Poincaré, dilatations and inversion is sufficient to
ensure invariance under all the conformal group, also in the
case of the superconformal invariance, Poincaré, dilata-
tions, chiral

x—ox, O-e 220 0 /29, (4)
SUSY transformations and superinversion are enough to
guarantee the invariance under all the superconformal
group [14,15]. Therefore, in our case, we need only to
show that L is invariant under superinversion. The super-
inversion acts upon @* as follows:

" = A(x)* @, (5)
where [15]
1 X2 — 6262 x*x
A = _ ) v
(", x? + 60%6? <x2 +0%60* 4 x? 4+ 0%6°
Oc*Ox”
aer, 270 ) (6)

The matrix A(x) defining the superinversion satisfies the
relation

A(x)TgA(x) = Q*(x)n. (7)

By using this property we find

@? — Q% (x)a?, (8)
where
1
W)= o ee ©)

(for details see [15]). The Lagrangian L, in Eq. (1), is
superconformal invariant, assuming the following trans-
formation of the einbein under superinversion

e — Q%(x)e. (10)
By evaluating the momenta from the Lagrangian we get

oL 1 oL

H= — = —@H, I, =—=0, 11
P =0, T e” oe (11)
oL . _ oL
M,=——=—ip*6,,40% y=——=—i0"p'c,uy (12
00 p H 69(1 p e ( )
We therefore obtain the constraints
I, =0, (13)

and

D,=M,+ip"(6,0),=0,

The canonical Hamiltonian is

1
chneé+§ep2. (15)

The canonical Poisson brackets for boson and fermion
variables are given by

(W p=g¢v, (.00} ==&, {(,00}=-3, (16)

The stability of the primary constraints gives the secondary
constraint

p* =0, (17)
which is the mass-shell condition for a massless particle.

A. Analysis of the constraints and quantization

Let us now analyze the structure of the fermionic
constraints, in particular their first and second class
character. The Poisson brackets of D, and D, are given by

{Da,Dﬂ}:OZ{DavD/j}v {D(I’D&}:_Q’ipﬂayad’ (18)
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with

., B \/§p+ p12
D' Cuaa = ((plz)* \/Ep_>’ (19)

and where we have defined

Cx£p%). pP=pt-ip’. (20)

(
=—(p
V2
and * indicates complex conjugation. The matrix (19) has
zero determinant and its rank is one on the surface of the

constraint p? = 0. Therefore, we have two first-class and
two second-class constraints. The first-class constraints are

12 12
Dy=-Dy+—=——Dy=-II; +——1II,,
V2p~ V2p~
~ _ (pIZ)* B _ (p12)* _
D;i=-D;+ Ds=-1II; + ——11;, (21)
1 1 \/Ep_ 2 1 \/Ep_ 2
and we have
{Dy.D,} =0={D;.Di}, (22)
- p12P?
{D1,Di} = —2V2ip* — ivV21—
12 2 1212
p

where use has been made of the bosonic first-class constraint
2p*p~ =|p'|*. The second-class constraints are

D2 = H2 + l[(plz)*él + \/Ep_éz]v
Ds =T, +i[p"20, + V2p~0,), (24)
since
{D,.Ds} = —2iV2p~. (25)

The extended Hamiltonian includes the first class con-
straints I1,, p?, D, and D;

1 N 2
Hp =TLé +Sep® + mDy + i Di, (26)

where p; and ji; are arbitrary Grassmann multipliers.

Notice that there are two Grassmann constraints of first
class. This corresponds to the invariance of our action
under an additional local symmetry, the kappa symmetry
(see [18]). It is given by (k is an arbitrary time dependent
two-component anticommuting spinor)

oxt = %96"0 - pk — %ko - p6'o,

1. _ 1
Se =2ik0 —2i0k,  Sp* =0, (27)

where p* is given in Eq. (11).

The invariance of the model under the kappa symmetry
shows that only half of the Grassmann variables are
physical.

At this point one of the possibilities to develop the
quantum mechanics of the model is the standard procedure
that consists in computing the Dirac brackets and quantizing
with them. However, commutators of canonical operators
are in general modified by the presence of second-class
constraints by making cumbersome the quantization.

Instead of using Dirac brackets we can do the weak
quantization by using standard commutation relations
between canonical operators,

[1,.0%) = —is’, (28)

[¢4

[xy’pu]:l'g;w’ [Howgﬁ] :_iégts

and by imposing the first class constraints as the operatorial
conditions

p*l® >=0, (29)
D||®>=0, Dj|®>=0. (30)

For the second class constraints we use the Gupta-Bleuler
procedure in the following way:

Ds|®>=0, <®|D,=0 (31)
with p = —i0/x,. 1, = —id/00" and 1, = —id/0b". By
using Egs. (21) and (31), we have

Di|® >=0— Di|® >=0. (32)

So (0,0, x|®) is a chiral superfield ® = ®(6, y), where
Y = x* + i0c*6:

@(0,y) =

We still have to impose the first condition of Egs. (30). Let
us first change the basis from 6,8, x to 6,0, y:

P() +V20p(y) + °F(y).  (33)

d d -0 d d d
—=—+i(c"0),—, —=———1i(0c"),—, (34
aon g 1O g o 100N 34
d d
— = 35
ox*  oy? (35)
Therefore,

046009-3



CASALBUONI, DOMINICI, and GOMIS

PHYS. REV. D 109, 046009 (2024)

0 0 _ _

0 a0 i(V2pt0; + p'?0s),

0 0

prhe ﬁ—l(( p'2)*0; + V2p=05). (36)

The operator D; can be written as

. d p? 0 )
Dy =—-il—-——+ — . 37
l < 00,  \/2p= 00, (37)

We have therefore

0= D0(0.y) = ~i( o+ Lo o). (9

00, ' \/2p~ db,

which implies, for the superfield components, the equations
of motion

—pi () + 219_ ya(y) =0, (39)
F(y) = 0. (40)

Equation (39) can be rewritten as the Weyl equation,

prow(y) = 0. (41)
using
- V2p~  —pn
pro, = (_(pu)* ﬁp+>’ (42)

and in Eq. (41) p* = —id/dx, = —id/dy,.

III. TWO MASSLESS INTERACTING
SUPERPARTICLES

In order to construct the model, let us first consider the
case of two free massless superparticles:

1 1
L, = — ()% 4+ —(&")? 43
2 = (@ 5 (0h) (#3)
with
d)l; = x’; + ieidﬂéi - ieiaﬂéi, l - 1’ 27 (44)

where x, 0; are the space-time coordinates and Grassmann
variables of the two particles.

This Lagrangian is invariant under the two supercon-
formal groups acting on the variables of each particle.

Let us write the SUSY transformations as

501':61', 5@1‘:6'1‘

oxt = i0,0'¢; —ie;0"0;, Se;=0, i=1,2. (45)

In order to introduce the superconformal interactions,
following the bosonic case [1], let us define a space-time
relative variable:

=X — x —i6,0640, + 10,00, (46)
and the relative spinors
0p=0,-0,, 0,,=0,-0,. (47)

It is easily verified that x/,, 8, and 6, are invariant under
the SUSY transformations (45) with ¢; = ¢, = ¢, i.e., the
diagonal supersymmetry. The transformation properties of
these variables under superinversion are complicated.
Instead the quantity

d%z = x%z + 9%29%2 - Q(xl)Q(xz)d%z, (48)

is invariant up to a superconformal factor, or, using (9)

X+ 0502 > ——— (30, + 0% == (49

12 12712 (x%+6?%6’%)( 12 12 12) (X%—I—H%Q%) ( )
Equations (8) and (49) generalize the transformation
properties of &> and (x; — x,)? of the nonsupersymmetric

case [1],

1 1 1
X —>—45€2, (x1—x2)2—>—2(xl—xz)2—z- (50)
X X X5

In other words, the conformal factor 1/x? goes into the
superconformal factor Q(x) (9).

We are now in the position to write down a two
superconformal particle interactions. A possible super-
conformal model for two interacting superparticles is given
by the action,

€16y
S,= [ dtL,= [ dr 601+ a)2—|—4 z ) (51)

where d?, is given in Eq. (48). The transformation proper-
ties of the variables under dilatations are given by

oA, 0,5 2120,, ei— e, i=1,2. (52)

The SUSY transformations are contained in (45). Instead
under superinversions, Eq. (5), we have

)
0F
! = Qz(xi)a'),z,

046009-4



SUPERCONFORMAL INTERACTING PARTICLES

PHYS. REV. D 109, 046009 (2024)

and for the einbeins:
e; = Q*(x;)e;, i=1,2. (54)

The action S, is superconformal invariant.

In order to obtain the action in terms of the super-
configuration variables x*;, §; we compute the equation of
motion of the einbein variables e;

Ly _@p & fer 1 0

de; 2¢2 8\ e ds,

0L2 a)% (12 (4] 1

Pa__@ & [0 _ 55
de, 2e3 T3 e, d?, (55)

Solving these equations in e¢; and e, (the choice of the
minus signs is for later convenience)

1 a (ole\V* 1 a [(0lod\'* (56)
el 2w\ di, " e, 203\ d, ’

and substituting into Eq. (51) we obtain the action in the
superconfiguration space

.2 0N 1/4
Agzz—a/}h<i;h> . (57)
12

Notice that this action can be obtained from the bosonic
configuration action of [1]

)'CZ)'CZ 1/4
S, =—q [ de| —2 ) 58
? a/ T((xl—x2)4> 8)

by the supersymmetric substitution

i —df, (0 —x)? —dp,. (59)

A. Constraint analysis

In order to do the constraint analysis here we consider the
superconfiguration Lagrangian (57). The conjugated
momenta to x; are given by

,_ oL 1<w>/ o
. _

p . Bl A . 9,
diy,  2\d},) (@7)*
o\ 1/4
ps—‘?—L—l(%l)/%, (60)
Oy, 2 \dj, (@3)

from which we obtain the primary constraint

4

a
——=0. 61
16d1, (61)

¢ = pips —

The fermionic momenta are given by

dL, . -

II; = 5—91 = —ip;,0";,

_ oL

I, =—=2=-i0py,o’, i=12, (62)
00,

which imply four primary fermionic constraints

Di = Hi + l-piﬂgﬂéi = 0,
l_)i = I:[i =+ igipiﬂﬁﬂ = 0, = 1, 2. (63)
The Poisson brackets of the constraints (63) are

{D;.D;} ={Di.D}} =0, ij=12 (64)

and

{DHDJ} = _Zlﬁl/pl -0, l,J = 1,2 (65)

Furthermore we have

4

det|{D;,D;}| =16pip; = ij=12. (66)

a
xXiy + 03,0
The determinant of the matrix of the fermionic constraint
Poisson brackets given in Eq. (66) is different from zero,
unless one considers r;, — oo, and therefore the set of
constraints D;, D j is second class.

Notice that the presence of the interaction term modifies
the structure of the constraint algebra with respect to the
case of the free superconformal particle, giving a sort of
effective mass to the two superconformal particles; all
fermionic constraints D;, D ; becomes second class as for
the massive superparticle [11].

The Dirac Hamiltonian is given by

Hp =Ai¢ + ZﬂiDi + Zﬁibi’ (67)
i—12

i=12

and the stability of the primary constraints gives

0={p.Hp} = uf{d.Di}+> E{p.D;}. (68)

=12 i=12
0={D;,Hp} =MD, ¢} —a{D;,D;}, i=12, (69)
0= {DhHD} :ﬂ{Di,ﬁb} _ﬂi{Di’Di}’ i=12. (70)
By solving Egs. (69) and (70) for y; and ji; and substituting

in Eq. (68) we obtain the first-class Dirac Hamiltonian

Hy = 2|0+ 3 (D, 4D DY D,

i=12

D NCRGITN I RL A R

i=12
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In conclusion we have a first-class constraint

$=d+> {Di¢}{D;.D;}'D;

i=12

+ Z{Di’¢}{DivDi}_1Di (72)

i=12
and four second-class constraints

D Did’ l,j: 1,2 (73)

io»

Since in this case there is only one primary constraint that
generates worldline diffeomorphism, there is no kappa
symmetry.

B. Quantization

Quantization can be performed a la Gupta-Bleuler by
requiring the following operatorial conditions on the “ket”
vectors

dl®@>=0, Dj|®>=0 (74)
and the following ones on the “bra”:
< ®|D;, =0. (75)
Note that the solution to the se:cond one of E_lqs. (74) implies
that the bilocal field ®(x;, 8;, 0;) = (x;, 6;, 6;|®) is a bilocal
chiral superfield
®(x;,6;,0;) = ©(6;,y,), (76)
where
Vo=x +i0,6"0;, i=1,2. (77)
By using Eq. (74) we have
o>~ 9+ 3 (0. @)D D)0, [0 >=0. (73

=12
Note that (,77|(I> > is also a chiral superfield. Indeed
[Dier @] = 0 (79)
implies
D;yh|® >= 0. (80)
Chiral bilocal superfield can be expanded as
(6, i) = p(yi) + Oyi(yi) + ‘9?97 [ei"'F,w(y,-)ojéE
+ eaﬂcij(yi)} + 030501a(vi) + 0105224 (vi)
+ 0103 F (v:), (81)

and contains five scalars; ¢, C”, F, a 3-component anti-
symmetric tensor F,, and eight fermionic fields whoxt.

Wave equations for the component fields can be evalu-
ated by expanding Eq. (78) in series of Grassmann
variables 6;. For the scalar field ¢ one recovers the field
equation of the purely bosonic case [1], while for the
fermionic and the other bosonic fields additional terms are
present. This analysis is beyond the aim of the present
paper and deserves further studies.

IV. NEAREST-NEIGHBOR INTERACTIONS
AND CONTINUUM LIMIT

In this section we generalize the model by considering a
system of superconformal particles in which each particle
interacts with its nearest neighbors. In other words we
consider the N + 1 particles as an ordered set labeled by an
index i running from 1 to N + 1 on a one-dimensional
lattice with a lattice spacing denoted by a.

We assume the following action, containing only two-
body interactions of the type that we have already proposed
in Sec. III,

N+1 .2 2 N
0)[ a \/eieH_l

with
d%,wrl = xzz.i+l + ezz.mé’%,m (83)
and
xlil,iJrl :)Cl: —Xll-lJrl - i¢9,~0'”9,~+| +l.9i+10'ﬂ9i,
9i,i+1 = 95 _9i+17 éi,i+1 = éi - éi+1- (84)

Instead of considering a linear lattice one could identify
the two ends x; = xy, 1, and close the lattice to a circle. Let
us notice that the physical dimensions of the various
quantities appearing in this Lagrangian are [x] = [7] =
le] =2,[0) = 0] = £'/%,[a] = £°.

Here, we will not discuss this action but rather its
continuum limit. To this end, let us define a variable ¢
to identify the lattice points,

o;=1ia, i=1,...,N+1. (85)
In the continuum limit we have
1 ox* 00 00
;x’il,i—&-l i %+ 196"%— I%U’l@ = —w",
1 00
—0;; -—=-0 86
a i+l ™ oo ( )

and analogously for 9,-,,-“. Notice that @’ transforms under
superconformal inversion exactly as @, that is
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w/2

2 _ =
- 2+ )2

Q% (x)w'. (87)
Furthermore, the sum must be transformed as follows:
d - 1 / do. (88)

- a

The expression (82) becomes [assuming a = z/(N + 1) or
o to vary in the range (0,7)]

bia 1 @2
S—)—/dr/ do| 12O 7) |
0 ale(o,7)
In order to eliminate the divergence we redefine the einbein
field e(o,7) and the coupling a as

1 a® e(o,7
;zﬁaﬂ-<w

(90)

where the factor 1/2 has been chosen for later convenience.
Then, by denominating e and a as before, we obtain the
action in the continuum limit:

oo fu[ufen o) o

By varying the action with respect to e(c,7) we get

la? o 1
27 2 52)
or
e = 1 o (93)
. .

By substituting the expression of the einbein inside Eq. (91)
we get

p 3 2
S = —a/drA do\/%. (94)

Notice that the action is trivially conformal invariant, since
@’ and @'? transform in the same way under inversion. It is
also invariant under diffeomorphism in z but not in ¢. In
this paper we do not perform the constraint analysis and
their physical consequences.

V. OUTLOOK

For future investigations it would be interesting to
analyze several aspects that we did not consider in this
paper, starting, for example by a study of the equations of
motion for the components of the bilocal chiral superfield
and their solutions. It would also be interesting to compare
the results of the predictions of the weak and the reduced
space quantization. As already noted in the paper, another
subject which deserves further work is the analysis of the
constraints and their physical consequences in the con-
tinuum limit of the model. The study of the Killing equation
would be interesting to find if, by any chance, the model
contains some accidental symmetry. Finally, future inves-
tigations will be devoted to the Carroll and nonrelativistic
limits of the model.
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