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The stringy realization of generalized symmetry operators involves wrapping “branes at infinity”. We
argue that in the case of continuous (as opposed to discrete) symmetries, the appropriate objects are
fluxbranes. We use this perspective to revisit the phase structure of Verlinde’s monopole, a proposed particle
satisfies the Bogomol'nyi-Prasad-Sommerfield (BPS) condition when gravity is decoupled, but is non-BPS
and metastable when gravity is switched on. Geometrically, this monopole is obtained from branes wrapped
on locally stable but globally trivial cycles of a compactification geometry. The fluxbrane picture allows us to
characterize electric (respectivelymagnetic) confinement (respectively screening) in the 4D theory as a result
of monopole decay. In the presence of the fluxbrane, this decay also creates lower-dimensional fluxbranes,
which in the field theory is interpreted as the creation of an additional topological field theory sector.
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I. INTRODUCTION

One of the exciting recent developments in the study of
quantum field theory (QFT) is the discovery that global
symmetries have an intrinsically topological character [1].
The key idea in this context is that symmetry operators are
topological, and their action on local (as well as extended)
operators is captured by an associated linking in the
spacetime. This point of view has lead to vast generaliza-
tions of the notion of symmetries in QFTs which are
collectively referred to as generalized global symmetries.
There is by now an extensive and growing literature, see,
e.g., [2] for a review.
In the specific context of QFTs realized via string

constructions, it was recently proposed that branes “at
infinity” can produce topological symmetry operators in a
localized QFT sector [3–5] (see also [6,7]). This comple-
ments the “defect group” perspective on higher symmetries
developed earlier [8–11].
Now, an advantage of working with a string construction

is that one can, in principle, reintroduce the effects of

gravity. Indeed, once gravity is included, such global
symmetries are either gauged or explicitly broken (see,
e.g., [12–15]), and the specific fate of any individual
symmetry likely depends on the details of a given UV
completion. The paradigm of local model building provides
a general approach to these issues (see, e.g., [16–24]). One
first begins by engineering a QFT of interest in the limit
where gravity is decoupled. This amounts to working on a
noncompact “internal” string background with localized
degrees of freedom. Switching on gravity involves embed-
ding this construction in a globally compact background.1

In this paper, we investigate these issues in the specific
context of continuous higher-form symmetries acting on a
monopole configuration introduced by Verlinde [29] in the
context of QFTs engineered via D3-branes probing a local
singularity of a Calabi-Yau threefold. The monopole is
Bogomol'nyi-Prasad-Sommerfield (BPS) and stable when
gravity is switched off, but is non-BPS and metastable with
gravity switched on.
At long distances, the QFT is a quiver gauge theory, and

a heavy monopole is obtained from a D3-brane wrapping a
noncompact 3-cycle in the internal geometry. There is a
corresponding flux tube which attaches to this monopole,
as obtained from a D3-brane wrapping a compact 2-cycle,
and in the limit where gravity is switched off, the
configuration is supersymmetric, and exactly stable. This
can be viewed as a 5-brane wrapping a local 2-cycle in the
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1For recent work on generalized symmetries in the context of
compact backgrounds, see, e.g., [25–28].
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internal geometry, and as such, it produces a domain wall
between a confining/deconfining phase.
Switching on gravity qualitatively changes the story. In a

compact geometry, it can happen that the local 2-cycle
supporting the flux tube is actually globally trivial. As
studied in [29] (for a related earlier construction see [30]),
this means the monopole is in fact metastable, and will
eventually “self-annihilate”.2 In geometric terms, the
monopole is better viewed as a puffed up 3-ball which
separates a deconfined/confined vacuum. As the unwrap-
ping occurs, the bubble expands, and eventually, there is a
transition to a confined Uð1Þð0Þelec gauge theory phase.
Indeed, as noted in [29], this can also be interpreted as
the formation of a nonzero monopole condensate.
Our aim in this paper is to study the generalized

symmetries which act on this monopole, first in the limit
where gravity is switched off, and then in the limit with
gravity switched on. When gravity is switched off, we
expand on the paradigm of the construction of generalized
symmetry operators using “branes at infinity” as presented
in [3–5]. We argue that the correct branes to wrap “at
infinity” are fluxbranes, and we determine the worldvolume
topological actions for these configurations. These natu-
rally act on defects charged under continuous higher-form
symmetries, as obtained from branes wrapped on free,
relative cycles (as opposed to torsional, relative cycles). We
use this perspective to track the deconfinement/confine-
ment transition of Verlinde’s configuration in an adiabatic
limit where gravity is switched on. When the boundary
of the 5-brane bubble collides with the fluxbrane, the
Hanany-Witten effect creates a fundamental flux 2-brane.
This effect parallels the creation of symmetry operators
observed field theoretically in [34,35] and from a top-down
perspective in [3,6,7].

II. SYMMETRY OPERATORS
FROM FLUXBRANES

We begin by studying the stringy realization of general-
ized global symmetry operators associated with continuous
higher-form symmetries, i.e., symmetry operators labeled
by a continuous parameter. These act on defects engineered
via branes wrapping free cycles. With this characterization
in hand, we then turn to an analysis of Verlinde’s monopole.
Let us now consider a QFT engineered from IIA or IIB

string theory on RD−1;1 × X, with noncompact internal
directions X of dimension 10 −D. The QFT is obtained
from a localized singularity in X which can involve the
profile of the metric, as well as additional degrees of
freedom such as spacetime filling branes.

The generalized global symmetry operators of such a
QFT are constructed by wrapping branes on cycles in the
asymptotic spatial boundary ∂X [5]. The defects furnish
representations of these symmetry operators and are con-
structed by wrapping q-branes on noncompact cycles with
AN asymptotic boundary in ∂X [8–11].
Recently, a proposal was made for the corresponding

symmetry operators which detect these defects [3–5], which
we now briefly review. At the level of the supergravity
theory, there is a natural operator we can introduce which
detects the corresponding field theory defect. Given a q-
brane, observe that it couples to a (qþ 1)-form potential.
There is a magnetic dual flux Fpþ2 which detects such
charged objects. The parameters q and p are related as

ðpþ 2Þ þ ðqþ 2Þ ¼ 10: ð2:1Þ

Observe that in the 10D spacetime, the q-brane naturally
links with the flux operator,

UηðYpþ2Þ ¼ exp

�
2πiη

Z
Ypþ2

Fpþ2 þ � � �
�
; ð2:2Þ

where the “...” indicates improvement terms which must be
included for self-consistency. Here, the value of the param-
eter η, as well as the specific type of symmetry, depends on
whether we are dealing with a continuous or discrete
generalized symmetry. In the latter case, one can show that
the symmetry operator of the D-dimensional QFT can be
interpreted as amagnetic dualp-branewrapped “at infinity”.
Geometrically, this brane links with the heavy defect both in
the spacetime as well as in the boundary geometry ∂X. On
the other hand, when the symmetry in question is continu-
ous, we shortly argue that the natural object in question is a
fluxbrane.
To motivate this proposal, let us begin by reviewing the

case of discrete/finite order symmetries. Consider wrapping
a p-brane and the electromagnetically dual q-brane on

Mpþ1−k × γk ⊂ RD−1;1 × ∂X;

Nq−l × Γlþ1 ⊂ RD−1;1 × ∂X; ð2:3Þ

respectively. We view the q-brane as generating a heavy
defect, and as we now explain, the p-brane as a symmetry
operator. We have pþ q ¼ 6 and γk ∈Hkð∂XÞ and
Γlþ1 ∈Hlþ1ðX; ∂XÞ=Hlþ1ðXÞ. The former constructs a
generalized symmetry operator3 which acts on defects of

2In a full compactification, there may end up being additional
decay channels, which can shorten the lifetime [31]. Nevertheless,
it is quite plausible that such decay rates can still be suppressed
relative to the string scale. For related string realizations of
metastable monopole configurations, see, for example, [32,33].

3A recurring subtlety in this procedure is that we should more
properly replace H� by some generalized homology theory E�
which, in principle, classifies the possible charges of the string
theory we are working in. See, for instance, Appendix A of [6]
which reviews the appearance of twisted K-theory as the gener-
alized (co)homology relevant for NS5 brane backgrounds. These
subtleties will not be relevant for the examples in this paper.
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dimension q − l constructed by the latter. The supports
Mpþ1−k and Nq−l link in RD−1;1, and therefore,

kþ l ¼ dimð∂XÞ − 1; ð2:4Þ

and whenever γk; ∂Γlþ1 are torsional cycles in ∂X, the
canonical linking pairing,

L∂X∶ TorHkð∂XÞ × TorHlð∂XÞ → Q=Z; ð2:5Þ

geometrizes the symmetry action [3–5]. The phase of this
symmetry action is then

exp ½2πi × lMN × L∂Xðγk; ∂Γlþ1Þ�; ð2:6Þ

where lMN denotes the Gauss-linking ofMpþ1−k with Nq−l
in RD−1;1.
Crucially, the above makes use of torsional cycles, but

the general idea [3–5] applies more broadly. We now
explain the case in which homology classes wrapped by
p-branes and q-branes are free. In this case, a charged
defect operator constructed from a q-brane wrapping Γlþ1

is labeled by an element in a free charge lattice, so we seek
to understand the stringy construction of the associated
[naively Uð1Þ] symmetry operators.
To begin, let us return to the supergravity operator of

line (2.2). Our proposal is that the symmetry operator is
realized by wrapping a fluxbrane along

Mpþ1−k × γkþ1 ⊂ RD−1;1 × ∂X; ð2:7Þ

where γkþ1 ∈Hfree
kþ1ð∂XÞ ≃Hkþ1ð∂XÞ=TorHkþ1ð∂XÞ.

A fluxbrane is a higher-dimensional analog of a flux tube
from QCD.4 In keeping with standard brane indexing con-
ventions, we refer to a flux (pþ 1)-brane as one which
couples to the curvature Fpþ2 and thus occupies pþ 2 total
spacetime directions. One can also construct fluxbranes as
soliton backgrounds in brane/antibrane pairs (see Appendix).
Fluxbranes have been studied in string theory before

(see, e.g., [37,38]), and they usually break supersymmetry
and are unstable against forming brane/antibrane pairs
(similar to a QCD flux tube being unstable to splitting
into quark/antiquark pairs). The dynamics of the fluxbrane
is immaterial for its use as a topological symmetry operator
because it is infinitely far away from the QFT degrees of
freedom and wrapping the fluxbrane on a formally infinite
volume cycle in ∂X suppresses decay processes.5

For free classes, the relevant canonical pairing is now the
intersection pairing,

ð:; :Þ
∂X∶ Hfree

kþ1ð∂XÞ ×Hfree
l ð∂XÞ → Z; ð2:8Þ

where kþ 1þ l ¼ dim ∂X. Flux (pþ 1)-branes canoni-
cally pair with q-branes sourcing the flux. The supports of
these two objects link in the product RD−1;1 × ∂X, rather
than individually in each factor, and the leading topological
term in the flux (pþ 1)-brane action isZ

Mpþ1−k×γkþ1

ðFpþ2 þ…Þ; ð2:9Þ

which precisely measures the number of q-branes wrapping
Nq−l × Γlþ1.
Self-consistency of the fluxbrane topological terms

requires additional improvement terms, as indicated by
the “...” in line (2.9). One way to argue for the appearance
of such terms is to observe that just as we can consider
a fluxbrane in isolation, it can also support lower-
dimensional fluxbranes. This is simply the analog of the
“branes within branes” observed for D-branes [39]. In the
present context, it is essentially forced because we must
allow for the totality of all possible stacked heavy defects
generated by wrapped q-branes, and their corresponding
symmetry operators. From a bottom up point of view, such
additional terms can be argued for from a corresponding
anomaly inflow analysis, and this in turn requires including
additional topological terms in the action. The topological
couplings we propose are essentially the minimal ones
compatible with other stringy considerations.
These additional topological terms are generalizations of

the Wess-Zumino terms on p-branes. To get a handle on

them, let Lðpþ1Þ
WZ ¼ Cpþ1 þ � � � be the Wess-Zumino

Lagrangian of a Dp-brane. The Dp-brane sources the termZ
Lðpþ1Þ
WZ ∧ d � Fpþ2 ¼ −ð−1Þpþ1

Z
dLðpþ1Þ

WZ ∧ �Fpþ2;

ð2:10Þ

in the corresponding 10D supergravity action. More pre-

cisely, weviewdLðpþ1Þ
WZ as the local expression for a (pþ 2)-

form which we can interpret as a generalized curvature

F ðpþ2Þ
WZ . With this, we also find that the topological sector of

the fluxbrane supports a Uð1Þ gauge field.6 Assuming that
the fluxbrane localizes on some submanifold Ypþ2 ⊂ ∂X in
the asymptotic boundary ∂X, we therefore have

�Fpþ2 ¼ ηδYpþ2
; ð2:11Þ

and with this the action, (2.9) is completed to
4They were introduced in a four-dimensional setting in the

Melvin universe [36].
5Similar observations were recently used in [7] to study

the role of various non-BPS branes as generalized symmetry
operators.

6It is important to stress that our considerations apply to the
topological sector of the fluxbrane. The full dynamics of a
fluxbrane are more challenging to characterize, but are also
irrelevant for the present analysis.
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Z
Mpþ1−k×γkþ1

ðFpþ2 þ…Þ ¼
Z
Mpþ1−k×γkþ1

F ðpþ2Þ
WZ ; ð2:12Þ

and the topological operator engineered using this is

UηðMpþ1−kÞ ¼ exp

�
2πiη

Z
Mpþ1−k×γkþ1

F ðpþ2Þ
WZ

�
: ð2:13Þ

As in [3–5], the terms beyond Cpþ1 in Lðpþ1Þ
WZ enrich the

fusion algebra generated byUηðMpþ1−kÞ from that of aUð1Þ
symmetry7 to a noninvertible symmetry.8 It may happen that
UηðMpþ1−kÞ is not gauge invariant when η is irrational
unless we extend the action in (2.13) to some higher-
dimensional manifold whose boundary is Mpþ1−k × γkþ1.
This subtlety will not play an important role in this work, but
we simply highlight that this is reminiscent of how non-
invertible symmetries constructed from Adler-Bell-Jackiw
anomalies can be made gauge invariant only if a certain
phase takes values inQ=Z rather thanR=Z [41,42].9We see
the same effect in the Appendix where the construction of
fluxbranes from higher-dimensional brane/antibrane pairs
only works in generality when η∈Q=Z. Similar remarks
hold for generating fluxbrane actions from WZ terms of
other types of branes in string/M-theory.
The appearance of fluxbranes as a way to engineer

symmetry operators is also quite natural in the framework
of differential cohomology. When defects and symmetry
operators are constructed via wrapped branes on torsional
classes, the correct cocycle to expand over the cycle

Nq−l × Γlþ1 is the class L̆ðpþ1Þ
WZ , the uplift of the Wess-

Zumino Lagrangian to differential cohomology [44]. This
gives a symmetry operator with

2πi
Z
Mpþ1−k×γk

ðF̆pþ2 þ…Þ; ð2:14Þ

in the exponent which parallels line (2.9) and leads
to an anomaly inflow formulation in the associated field
theory [3–6]. For free classes such as γkþ1, we need to
integrate over Mpþ1−k × γkþ1 in one higher dimension.
Hence, it is natural to view this as a topological term for a
fluxbrane in string theory.

III. VERLINDE’S MONOPOLE REVISITED

We now turn to the generalized symmetries acting on
Verlinde’s monopole, a metastable object which can have

an exponentially long lifetime relative to the string scale,
and which can have a mass which ranges from the string
scale down to the Oð100Þ TeV scale depending on the
details of the warping in the extra dimensions of a string
compactification. We begin in the limit where gravity is
switched off, and then turn to the implications of switching
on gravity.
To frame the discussion to follow, we now briefly

review Verlinde’s monopole configuration. We engineer
a 4D gauge theory on R3;1 by considering a stack of N
D3-branes probing X, a local Calabi-Yau singularity.
The main idea is that the probe D3-brane “fractionates”
and is instead replaced by various bound states of higher-
dimensional branes and antibranes wrapping 2-cycles
and 4-cycles in a resolution X̃ [45–47]. These states are
nevertheless mutually supersymmetric in the regime of
small volume. By working at strong string coupling, one
can also entertain various F-theory models, as obtained
from intersecting 7-branes wrapping various 4-cycles of the
geometry. In this case, one does not consider the collapsing
cycle limit, and moreover, one also relaxes the Calabi-Yau
condition on X.10 For ease of exposition, we focus on the
case of probe D3-branes, and also assume that X̃ is given by
K → S, the canonical bundle of a single Kähler surface S
which can be contracted to a point (i.e., it is Fano). That
said, the considerations we present generalize to many
other settings.
Coupling to gravity is accomplished by viewing X

as a local patch of a compact Calabi-Yau Y. The value
of Newton’s constant (in Einstein frame) is then set by
GNewton ∼ 1=VolðYÞ. The specific UV completion clearly
depends on these details, explicit examples in D3-brane
probe/F-theory models include those of Refs. [23,24,49].
We are interested in models with a Uð1Þð0Þelec gauge

symmetry which we refer to as “hypercharge” (since
this is where it often shows up in this context), though
clearly one can entertain more general models. The
subscript “elec” denotes the fact that we work in a global
realization of the theory in which the corresponding
electric degrees of freedom are light, and in which the
corresponding Wilson lines are part of the spectrum of line
operators. When there is no confusion, we suppress this
subscript.
In both local D3-brane probe models, as well as F-theory

models, the condition that this Uð1Þ remains massless
requires a specific geometric condition be met, namely, that
there is a 2-cycle α ⊂ H2ðSÞwhich is nontrivial in the local
resolution X̃, but which is trivial in Y.11 Doing so ensures

7The algebra for the invertible case would be the group ring
C½Uð1Þ�.

8See, e.g., [34,35,40].
9See also the work [43] which shows that several examples of

(exponentials of) integrals of supergravity page charges can only
be made gauge invariant when the phase of the exponent is
rational.

10Rather, the topological twist on the 7-branes leads to an
effective local Calabi-Yau geometry (see [22,48]).

11A simple example for F-theory models is to take S ¼ P1 × P1

andY ¼ P3. Letting σ1, σ2 denote theP1 classes ofH2ðSÞ, observe
that α ¼ σ1 − σ2 is trivial in Y. This follows trivially from the fact
that the homology ring of P3 is generated by the hyperplane class,
and P1 × P1 is specified by a quadric.
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that possible couplings of bulk RR-forms to local field
strengths are absent, thus preventing a mass via the
Stückelberg mechanism (see, e.g., [50] for a review of
this issue).
The essential idea in [29] is to now construct a

metastable configuration by exploiting the triviality of α
in the full geometry Y. From the perspective of the 4D
gauge theory, we consider a Uð1Þ monopole configuration,
as obtained by letting Q units of Fhyp flux thread an S2 in
the spacetime. Topologically, we introduce a 3-ball B of
radius R, and split the spatialR3 asR3nB and B. Integrating
Fhyp over this S2 specifies the total charge,

Z
B
dFhyp ¼

Z
S2
Fhyp ¼ Q: ð3:1Þ

The “core size” of the monopole is specified by the radius
of the 3-ball B. In the context of a string construction, there
is a natural (typically string scale) size for this object based
on balancing the internal and external tensions from
wrapped branes.
Indeed, from the perspective of the internal geo-

metry, we consider spacetime filling D5-branes wrapped
on the cycle α.12 In the D5-brane worldvolume, there
is a topological coupling Fhyp ∧ C4, and so switching on
Fhyp with Q units of flux can be interpreted as introducing
Q D3-branes wrapping α, and extending as a one-
dimensional effective string in the spacetime. The end of
the string is a heavy monopole, and this can be interpreted
as a D3-brane wrapping a 3-chain Γ with boundary ∂Γ ¼ α.
This 3-chain extends from the tip of the local geometry out
to “infinity”. See Fig. 1 for a depiction of the internal local/
global geometry.

A. Defects and symmetry operators

Since the 3-chain is noncompact, the resulting monopole
is really a heavy defect/line operator. This is in line with the
general stringy picture of engineering defects from wrap-
ping branes on noncompact cycles [8–11], and just as there,
we can study the states which cannot be screened by
dynamical states. Compared with the main examples
studied previously, our main focus is on factors of the
defect group which are not torsion; i.e., they involve copies
of Z, and so the Pontryagin dual defining the higher
symmetry is a continuous Uð1Þ.
Given a 1-form symmetry Uð1Þð1Þmag, there is a

corresponding topological symmetry operator which we
can obtain by integrating the RR 5-form flux over a
5-cycle which links with the 4-cycle wrapped by the
D3-brane on Rtime × Γ. This constructs a flux operator
which measures the D3-brane flux threaded through the
5-cycle [3–6,9]. The string construction suggests that we
should complete this operator into a fluxbrane as intro-
duced in (2.12). Concretely, we have in the context of
Verlinde’s monopole,

UηðΣ2Þ ¼ exp
�
2πiη

Z
Σ2×Λ3

F5 þ � � �
�
; ð3:2Þ

where we integrate over a 3-cycle Λ3 in ∂X which intersects
Γ out in ∂X, and where Σ2 links with the monopole line in
the 4D spacetime (see the left-hand side of Fig. 1).
The local profile for the heavy monopole, effective

string, and symmetry operator are obtained from filling
the following directions in the 10D spacetime:

0 1 2 3 4 5 6 7 8 9

Mono defect × × × ×

Mono string × × 0 × ×

Symm op × × ∞ × × ×

ð3:3Þ

where the directions “0, 1, 2, 3” are in the 4D spacetime, “4” is the radial direction of X (viewed as a cone over ∂X),
and “5, 6, 7, 8, 9” are directions of ∂X. The string terminated by the monopole wraps cycles in S, the zero section
of K → S, and as such, they sit at r ¼ 0. The symmetry operator sits at r ¼ ∞, and the heavy defect fills the radial
direction.
Summarizing, we have the fluxbrane symmetry operator (we leave the overall normalization in the path integral

implicit),

UηðΣ2Þ ¼
Z

DA1 exp

�
2πiη

Z
Σ2×Λ3

F5 þ F3 ∪ F 2 þ
1

2
F1 ∪ F 2 ∪ F 2

�
; ð3:4Þ

12In the explicit hypercharge model of [29], this is typically a bound state of branes and antibranes, but this complication plays no
significant role in what follows.
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labeled by η∈R=Z where F 2 ¼ F2 − B2, and F2 is the
field strength of the worldvolume gauge field A1. The Fi
with odd i denote the (pullback to the worldvolume) field
strengths of the RR supergravity background fields. We
have dropped a term involving the Euler class of Σ2 × Λ3.
To determine the structure of the symmetry operator

in the 4D QFT, we now turn to the reduction of our
topological terms on the cycle Λ3. To this end, we first
study in more detail the geometry of local 2-cycles in S and
how they lift to cycles in ∂X.

B. Dimensional reduction

To carry out the dimensional reduction of our symmetry
operator, let us consider the geometry of the setup more
closely. Since the noncompact Calabi-Yau X is just the
canonical bundle K → S, the boundary geometry is a circle
bundle,

S1 ↪ ∂X → S; FS ¼ ½K�; ð3:5Þ
whose curvature is the canonical class. As such, one can
use the Gysin sequence to track how local 2-cycles in S
embed in ∂X, as well as how they lift to 3-cycles upon
inclusion of the S1 bundle direction. With this, there is an
image of α “at infinity” which intersects Λ3,

Λ3 ∩∂X α∞ ¼ 1; ð3:6Þ
in the obvious notation. Indeed, Λ3 can be represented by
the circle bundle of a 2-cycle β of S. The main condition we
need to ensure is that β intersects α in S.
In more detail, the Gysin sequence,

…→Hnð∂XÞ→Hn−1ðSÞ⟶FS∧ Hnþ1ðSÞ→Hnþ1ð∂XÞ→…;

ð3:7Þ

produces two exact subsequences, cut out by H1ðSÞ ¼
H3ðSÞ ¼ 0,13 relating cocycles of the base with those of the
total space,

0 → H1ð∂XÞ → H0ðSÞ⟶FS∧H2ðSÞ → H2ð∂XÞ → 0;

0 → H3ð∂XÞ → H2ðSÞ⟶FS∧H4ðSÞ → H4ð∂XÞ → 0: ð3:8Þ

With this, we have the relations between base and boundary
cohomology,

H2ð∂XÞ ¼ H2ðSÞ=hFSi; H3ð∂XÞ ¼ H2ðSÞj⊥FS
: ð3:9Þ

The spaces ∂X and S are smooth, and by Poincaré duality,
we obtain an identification of 2-cycles and 3-cycles in ∂X
with (equivalences classes of) curves in S.
In particular, 3-cycles in H3ð∂XÞ ≅ H2ð∂XÞ have repre-

sentatives induced from an S1 fibration over a representa-
tive of the corresponding curve. The intersection pairing,

κ⊥∶ H2ð∂XÞ ×H3ð∂XÞ → Z; ð3:10Þ

used in (3.6), is therefore induced from κ, the intersection
form on S. On cohomology, we have an induced pairing
with components κij ¼ σi · σj. Here, the σi are a basis
for H2ðSÞ ≅ Zr, and r denotes the rank of the curve lattice
of S.
Let us evaluate the exact subsequences in (3.8). The

maps marked in (3.8) derive from the intersection form κij,
and we can expand the curvature of the circle bundle as

FIG. 1. Depiction of the local geometry used to engineer the metastable monopole. Locally, we have X as given by the canonical
bundle over a Kähler surface S. In this local surface S, we have a locally stable 2-cycle αwhich is the boundary of a noncompact 3-chain
Γ which extends along the radial direction of X to the boundary ∂X, where the image 2-cycle (under the Gysin sequence) is denoted as
α∞. In the full compact geometry Y, this 3-chain can unwind, so the resulting defect is only metastable. We have also indicated the
3-cycle Λ3 which intersects Γ at a point in ∂X. The internal cycle Λ3, when integrated against a 5-form topological term of the fluxbrane
results in a 2D TFT in the spacetime which detects the monopole defect.

13Recall that here we assume S is Fano.
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FS ¼
Xr
i¼1

nS;iσi; ð3:11Þ

with integers nS;i ∈Z. With this, the two nontrivial maps
above are

FS ∧ ∶ Z ≅ H0ðSÞ → H2ðSÞ ≅ Zr; 1 ↦ FS;

FS ∧ ∶ Zr ≅ H2ðSÞ → H4ðSÞ ≅ Z;

σ ¼ mjσj ↦ mjσj ∧ FS ¼ nS;imjκij: ð3:12Þ

We define g ¼ gcdiðnS;iÞ and find the cohomology groups,

Hnð∂XÞ ¼ fZ; 0;Zr−1 ⊕ Zg;Zr−1;Zg;Zg; ð3:13Þ

which via the universal coefficient theorem imply the
homology groups,

Hnð∂XÞ ¼ fZ;Zg;Zr−1;Zr−1 ⊕ Zg; 0;Zg: ð3:14Þ

In transitioning from cohomology to homology, the arrows
in (3.12) are reversed, and n-cycles of ∂X map onto
n-cycles of S. So, we now have maps Hnð∂XÞ → HnðXÞ ≅
HnðSÞ induced from the embedding ∂X → X lifted to
degree n in homology combined with deformation retrac-
tion along the radial direction to S.
Returning to our fluxbrane action, observe thatΛ3 is dual

to the 2-form u2;Λ which is such that

UηðΣ2Þ ¼
Z

DA1 exp

�
2πiη

Z
Σ2×∂X

u2;Λ ∪
�
F5 þ F3 ∪ F 2 þ

1

2
F1 ∪ F 2 ∪ F 2

��
: ð3:15Þ

We are now in position to perform the integral over the asymptotic boundary. The integral cohomology ring of ∂X is
generated by

1; u2;n; t2; u3;n; t4; vol∂X; ð3:16Þ

where 1 is the degree zero cocycles and vol∂X the degree five cocycle. Torsional, respectively free, classes of degree k are
denoted by tk, and uk;n, where n ¼ 1;…; r − 1. The integral over ∂X now proceeds via the expansions,

F5 ¼ Gð5Þ
5 ∪ 1þ Cð5Þ

3 ∪ t2 þ Gð5Þ
3;n ∪ u2;n þ Gð5Þ

2;n ∪ u3;n þ Cð5Þ
1 ∪ t4;

F3 ¼ Gð3Þ
3 ∪ 1þ Cð3Þ

1 ∪ t2 þ Gð3Þ
1;n ∪ u2;n þ Gð3Þ

0;n ∪ u3;n;

F1 ¼ Gð1Þ
1 ∪ 1;

F 2 ¼ Hð2Þ
2 ∪ 1þDð2Þ

0 ∪ t2 þHð2Þ
0 ∪ u2; ð3:17Þ

with which we find

UηðΣ2Þ ¼
Z

DA1 exp

�
2πiηλn

Z
Σ2

ðGð5Þ
2;n þ Gð3Þ

0;nF 2Þ
�
;

λn ¼
Z
∂X

u2;Λ ∪ u3;n ∈Z: ð3:18Þ

If we denote by βn ∈H2ðSÞj⊥FS
≅ H3ð∂XÞ the 2-cocycles

corresponding to u3;n and ½δ2�∈H2ðSÞ=hFSi ≅ H2ð∂XÞ
the equivalence class of 2-cocycles corresponding to
u2;Λ, then we can compute the intersection number
λn ¼ δ2 · βn as an intersection in the surface S. We can
now simplify further to

UηðΣ2Þ ¼ UðinvÞ
η ðΣ2ÞUðcondÞ

η ðΣ2Þ; ð3:19Þ

where we introduced the shorthand notation

UðinvÞ
η ðΣ2Þ ¼ exp

�
2πiηλn

Z
Σ2

Gð5Þ
2;n −Gð3Þ

0;nB2

�
;

UðcondÞ
η ðΣ2Þ ¼

Z
DA1 exp

�
2πiηλn

Z
Σ2

Gð3Þ
0;nF2

�
; ð3:20Þ

and UðcondÞ
η is a condensation operator14 from a 2-gauging

of a 3-form symmetry15 with background field Gð3Þ
0;n. The

condensation operator is a projection operator ðUðcondÞ
η Þ2 ¼

UðcondÞ
η (properly normalized) and trivially noninvertible on

its kernel.

C. TFT creation in the finite size limit

Summarizing our discussion up to this point, we have
considered some of the defects obtained in a class of QFTs

14See, e.g., [51].
15See [52].
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with gravity decoupled. In this limit, Verlinde’s monopole is
BPS, and we have argued that a flux 4-brane wrapped on a
three-cycle is the natural object which realizes the corre-
sponding topological symmetry operator. In the conformal
limit where all mass scales are either zero or infinite, the
monopole is formally infinite inmass and has a suitable delta
function support. Blowing up the collapsed 2-cycles induces
various mass scales in the QFT and allows the monopole to
pick up a finite mass and nonzero Compton wavelength. In
this case, the monopole has a core size, and so we can speak
of an “inside” and “outside” to the monopole configuration.
Outside, everything is just as before; the symmetry operator
engineered by the fluxbrane detects the 1-form symmetry
associated with the monopole line. Inside, however, we can
contract the symmetry operator to a point. This is just an
indication that we have broken the magnetic 1-form sym-
metry, and monopole condensation has occurred; namely,
electric degrees of freedom are now confined.
The contraction of the symmetry operator inside the core

of the monopole is not entirely trivial, however. As the flux
4-brane passes through the D5-brane, the linking configu-
ration of the two branes changes, and eventually, they
intersect along a spatial 2-sphere Σ2 before the D5-brane
encloses the symmetry operator. The flux 4-brane supports
a Uð1Þ gauge field with field strength F2 and by con-
struction couples to the bulk B2 field such that F2 − B2 is
gauge invariant; that is to say, F2 − B2 is a globally
well-defined 2-form on the flux 4-brane worldvolume.
Similarly, we have that the electromagnetic dual �F2 − C2

is a globally well-defined 2-form on the flux 4-brane.
Fundamentally, this observation is the starting point
for the famous Hanany-Witten brane creation effect [53]
and which we now find to equally well apply to fluxbrane
creation.16 Generally, when fluxbranes pass through
D-branes, a fluxbrane can be created.
Let us consider this fluxbrane creation process for

our D5-brane and flux 4-brane with worldvolume
WD5 ¼ Σ2 ×Rt × Γ and WF4 ¼ Σ2 × Λ3, respectively.
Here, the spatial sphere Σ2 ⊂ R3, albeit with distinct radii,
is shared, and the four-manifold Rt × Γ and three-mani-
fold Λ3 are disjoint and contained in the eight-manifold
M8 ¼ Rt × R≥0 × X. With this, the supports of the
D5-brane and flux 4-brane in M8 have the correct
dimensionality to link in M8. Here, R≥0 parametrizes
the spatial radius of the R3 appearing in the 10D setup
Rt ×R3 × X, see also (3.3).
Now, define the topological linking invariant,

LðWD5;WF4Þ ¼
Z
WF4

FRR
3

2π
; ð3:21Þ

measuring the 3-form flux FRR
3 sourced by the D5-brane

through WF4. We have

Z
WF4

FRR
3

2π
¼

Z
WF4

dðC2 − �F2 þ �F2Þ
2π

¼
Z
WF4

d � F2

2π
;

ð3:22Þ

where F2 is the Uð1Þ field strength of the flux 4-brane. We
apply Stokes’ theorem and use the fact that C2 − �F2 is a
2-form globally defined on the flux 4-brane. As in the
original Hanany-Witten effect, we conclude that sources
for d � F2 are created whenever the supportsWD5;WF4 are
moved across each other such that their linking
LðWD5;WF4Þ changes. These have the interpretation of
fundamental flux 2-branes (the fluxbranes associated
with fundamental strings) stretching between the
D5-brane and flux 4-brane. The 3D worldvolume of the
2-flux brane is Σ2 × I where I ⊂ R≥0 is some spatial,
radially running interval with end points on the D5-brane
and flux 4-brane. The action of the created fundamental
flux 2-brane is

−2πiη
Z
Σ2×I

H3: ð3:23Þ

This sort of finite size effect is inevitable when coupling to
gravity; see Fig. 3 for a depiction of the related symmetry
operator manipulations in this case.

D. Switching on gravity

Suppose that we now switch on gravity. In general, this
will depend on how we glue the local geometry X into a
compact model Y. This will in turn affect the structure of
the ensuing dynamics. One possibility is that the 2-cycle α
embeds nontrivially in H2ðYÞ. In this case, there is a stable
object associated with the corresponding flux tube.
The case of interest to us here is the opposite situation

where α is actually trivial.17 The monopole configuration
we have been describing is actually metastable: while α is
locally a minimal size 2-cycle, globally in Y it can
annihilate. As argued in [29], the decay rate depends on
the size of the 3-chain Γ used to unwind the cycle.18 While
this depends on many model dependent factors, it should
immediately be clear that this decay rate is exponentially

16The relevance of Hanany-Witten moves in brane creation of
condensation defects was noted in [3] and has also been recently
explored in [6,7].

17Geometries with this property are, for example, discussed
in [49] Concretely, one can consider a degree 18 hypersurface in
the weighted projective space WPð1; 1; 1; 6; 9Þ with singularities
that resolve to del Pezzo surfaces; see [54] for more details
on this particular example. For F-theory related examples, see,
e.g., [23,24] as well as [55].

18As mentioned in [29], we must necessarily turn on a fluxR
Γ H3 ¼ 1 so that as the D5 wrapping α unwinds along Γ, the
coupling

R
D5 B2 ∧ C4 makes the final D3 charge zero in the

confined phase.
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suppressed relative to the string scale.19 In terms of the
radial slicing of the conical geometry X, we can depict this
as a locally increasing volume VolðαÞ which eventually
drops to zero size once a “maximal size” is reached.20

From the perspective of the 4D spacetime, the dynamics
of this eventual annihilation involves an initial contraction,
and then expansion of the 3-ball with the monopole at its

core. Outside the expanding bubble, the Uð1Þð1Þmag is unbro-
ken, but inside it is broken, signaling the presence of

confinement of Uð1Þð0Þelec degrees of freedom (see Fig. 2).
This is all in accord with expectations from generalized

symmetries. First of all, in the global compactification
geometry, the fluxbrane supported “at infinity” on Λ3 will,
in general, now collapse to the tip of the cone. In this
collapsing process, the fluxbrane used to detect the
monopole will also pass into the core of the monopole,
in accord with our discussion of Sec. III C. The collapse is
not entirely trivial, since in the process of collapsing,
a topological field theory supported on a flux 2-brane will
be created via the Hanany-Witten brane creation effect; see
Fig. 3 for a depiction.

IV. SUMMARY AND FUTURE DIRECTIONS

In this paper, we have presented a general proposal for
how to engineer topological symmetry operators for
continuous symmetries via branes “wrapped at infinity”.
The end result can be summarized as interpreting the lift of
the WZ action of a p-brane in differential cohomology
as an “ordinary” (pþ 2)-form, integrated against the
worldvolume of a flux (pþ 1)-brane. We have used this
implementation to revisit the phase structure of Verlinde’s
metastable monopole and, in particular, have shown that
such constructions are also sensitive to finite size effects in
monopole configurations. In the remainder of this section,
we discuss a few natural generalizations.

FIG. 3. Left: The monopole is linked by the symmetry operator
UηðΣ2Þ. Right: After unwinding along ΓY , the monopole has
grown beyond Σ2 (dotted blue circle). When the flux 4-brane
passes through the D5-brane, the flux 2-brane F2 associated with
NSNS 3-form flux is created. It localizes on Σ2 × I with
boundaries on the D5-brane and the flux 4-brane; here, Σ2 × I
is the difference of two spatial 3-balls.

FIG. 2. Depiction of the monopole/flux tube configuration before and after switching on gravity, as indicated by the value of Newton’s
constantGN in the 4D model. In the limit where gravity is switched off (left), we have a heavy line operator as obtained from a D3-brane
wrapping a noncompact 3-chain Γ, and a stringlike flux tube obtained from wrapping a D3-brane on the compact 2-cycle α. There is a
corresponding symmetry operator obtained from integrating a 5-form over an internal 3-cycle, resulting in a codimension-two
topological 1-form symmetry operator UηðΣ2Þ which links with the heavy monopole line operator. When gravity is switched on (middle
and right), the infinitesimally small 3-ball defining the monopole begins to expand, which in the internal geometry signals the unwinding
of α in the full compact geometry Y. At early times t ≪ τmono below the lifetime of the monopole, this 3-ball is still surrounded by Σ2, but
at late times t ≫ τmono above the lifetime of the monopole, the ball has expanded, and the symmetry operator no longer surrounds a

monopole. In this limit, the Uð1Þð1Þmag is broken, and the electric degrees of freedom have become confined.

19In [29], the decay rate was estimated by considering the
bubble nucleation rate sourced by the D5-brane walls. This leads
to a formula of the general form Γmono ∼ exp ð− 27π2

2
T 4

E3 Þ where T
is proportional to the tension of the wall obtained from a
D5-brane wrapped on the 3-chain, and E is an energy density
set by the (stringy) volume of the 2-cycle.

20In addition to the decay channels considered in [31], one
could also imagine that the geometric moduli of Y itself might
dynamically adjust to “shorten” the size of the 3-chain. Such an
effect can be suppressed provided we have already stabilized
complex structure moduli using various fluxes. This can indeed
be arranged (see, e.g., [56,57]).
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We have mainly focused on the specific case of
Verlinde’s metastable monopole, where the interior region
exhibits full confinement of electric degrees of freedom.
One could also entertain an intermediate situation
where Uð1Þð0Þelec only partially confines, leaving a subgroup

Zn ⊂ Uð1Þð1Þmag unbroken. This occurs whenever the 2-cycle
α does not completely trivialize, rather n copies of α
trivialize as a 2-cycle in Y. Said differently, there only exists
a 3-chain Γ such that ∂Γ ¼ nα, and α is a degree n torsion
cycle in H2ðYÞ. Constructing explicit compact geometries
which realize this phenomenon would be quite interesting.
In the context of string constructions, it was recently

found that certain higher-group structures can also be
detected by suitable defects (see, e.g., [58,59]). These
analyses focused on QFTs with discrete higher-form
symmetries, but one could, in principle, look for examples
with continuous higher-form symmetries, where there are
sometimes nontrivial constraints (see, e.g., [60]). It would
be interesting to revisit these questions from the perspective
of the topological operators generated by fluxbranes.
Especially, once gravity is switched on, it is natural to

consider the fate of the metastable monopole when it is
thrown into a black hole. Tracking the ultimate fate of the
monopole, fluxbrane, and black hole in this setting would
likely be very instructive.
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APPENDIX: FLUXBRANES FROM
BRANE/ANTIBRANE PAIRS

In this Appendix, we show how flux (pþ 1)-branes
can be realized as soliton backgrounds of D-brane/anti-
D-brane pairs in Type II string theories. Consider first the
universal WZ Lagrangian on D-branes [61], viewed as a
(pþ 1)-form,

Lðpþ1Þ
WZ ¼ C ∧ eðF2−B2Þ ∧

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðRTÞ
AðRNÞ

s
; ðA1Þ

where the pullback of the bulk RR forms to the brane are
given by the formal sum C ¼ P

pþ1 Cpþ1 with pþ 1 even
for IIB and pþ 1 odd for IIA, and AðRTÞ;AðRNÞ denotes
the A-roof genus for the tangent and normal bundles.

Recall from line (2.13) that the action for a flux
(pþ 1)-brane with worldvolume Ypþ2 is

2πiη
Z
Ypþ2

F ðpþ2Þ
WZ ; ðA2Þ

where locally we have F ðpþ2Þ ¼ dLðpþ1Þ
WZ . The parameter

η∈R=Z characterizes its flux in the source equation,

�Fpþ2 ¼ ηδYpþ2
: ðA3Þ

We find that when η is rational η∈Q=Z, one can always
realize the flux (pþ 1)-brane from the following brane/
antibrane system,

�
Dðpþ 2Þ þDðpþ 2Þ�
þ �

N1 ×Dðpþ 4Þ þ N1 ×Dðpþ 4Þ�
þ �

N2 ×Dðpþ 6Þ þ N2 ×Dðpþ 6Þ�þ… ðA4Þ

where the worldvolumes of all branes/antibrane pairs of the
same dimension coincide, and they are nested, e.g.,

Xpþ3 ⊂ Xpþ5 ⊂ …: ðA5Þ

On Xpþ3, i.e., the worldvolume of the Dðpþ 2Þ and
Dðpþ 2Þ, the flux (pþ 1)-brane is sourced by a mono-
dromy for the Uð1Þ gauge field A on the system21 which is
localized if we take the singular connection,

A ¼ ηδYpþ2
; ðA6Þ

where δYpþ2
is oriented normal to Ypþ2 ⊂ Xpþ3 and therefore

a 1-form onXpþ3. However, this does not produce the correct
coefficients for the terms in (A2) which is why the other
brane/antibrane pairs are necessary. Along Xpþ5, i.e., the

worldvolume of the Dðpþ 4Þ and Dðpþ 4Þ, the flux
(pþ 1)-brane is characterized by a localized Chern-
Simons density,

CS3ðAÞ ¼ η1δYpþ2
; ðA7Þ

where similar to above A is a connection for diagonalUðN1Þ
inUðN1Þ ×UðN1Þ gauge theory onXpþ5. So as to not create
a flux (pþ 2)-brane, we must take a solution (A7) such that
TrA ¼ 0 which implies

21More specifically, on the brane/antibrane system there is a
Uð1Þ × Uð1Þ gauge theory (along with tachyonic bifundamen-
tals), and we always mean the ðþ1;−1Þ diagonal combination of
these Uð1Þ’s.
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η1 ¼
m
N1

; ðA8Þ

for some m∈Z since Chern-Simons integrals associated
to the Lie algebra suðN1Þ can only take such values.
If ðpþ 2Þ > 7 and η∈Q=Z, then we can tune N1 and η1
to reach theWZaction of the flux (pþ 1)-brane (A2),while if

ðpþ 2Þ ≤ 7 then we continue on to produce higher-
dimensional brane/antibrane pairs as indicated above.
A final comment is that since we are dealing with the

topological limit of a brane/antibrane system, there
is a natural formulation available in terms of connections
on supergroups; see [62] for additional discussion on
this point.
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