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Recent discoveries have highlighted the significance of replica wormholes in resolving the information
paradox and establishing the unitarity of black hole evaporation. In this paper, we propose the dissipative
Sachdev-Ye-Kitaev (SYK) model as a minimal quantum model that exhibits entanglement dynamics with
features qualitatively similar to replica wormholes. As a demonstration, we investigate the entanglement
growth of a pair of dissipative SYK models initialized in a thermofield double state. In the regime of large
N with weak dissipation, we observe a first-order entanglement transition characterized by a switch of the
dominant saddle point: from replica-diagonal solutions for short times to replica wormholelike off-diagonal
solutions for long times. Furthermore, we show that the signature of replica wormholes persists even at
moderate N ≲ 30 by using the Monte Carlo quantum trajectory method. Our work may pave the way for
explorations of replica wormhole physics in quantum simulators.
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I. INTRODUCTION

Recently, there has been growing interest in compre-
hending systems with nonunitary dynamics. Experimental
investigations into PT-symmetry breaking of non-
Hermitian Hamiltonians have been conducted in the field
of quantum optics [1] and cold atoms [2]. Additionally,
numerous theoretical predictions have been made, encom-
passing studies of information flow [3], non-Hermitian
superconductivity [4], and particle detectors [5]. Significant
progress has also been achieved on the role of dissipation in
quantum many-body dynamics [6–11], which unveils
enriched symmetry classes [12–15]. Moreover, the non-
unitarity can drive dynamical transitions when following
quantum trajectories [16–19] or maintaining access to
different environments [20,21].
Interestingly, the study of nonunitary dynamics is gain-

ing traction in a completely different field: quantum gravity.
On the one hand, this benefits from the existence of a
low-energy duality between the Sachdev-Ye-Kitaev (SYK)
model [22–25] and Jackiw-Teitelboim gravity [26–29],
which enables the study of black holes and wormholes
in concrete quantum systems [30–40]. On the other hand,
the coupling of black holes to an environment is naturally
connected with the so-called information paradox [41].

Recent advancements in resolving this paradox have led to
the identification of a new Ryu-Takayanagi surface [42–44],
which includes entanglement islands linked to complex
structures known as replica wormholes [45–47]. These
wormholes, central to our study, are conceptualized as
spacetime structures that connect different “replicas” of a
quantum system. They play a crucial role in resolving the
information paradox, suggesting that entanglement in quan-
tum gravity might be geometrically manifested as worm-
holes, leading to a first-order Page transition [48] in the
growth of entanglement. Remarkably, similar phenomena
have been observed in SYK models, particularly where the
environment is modeled as a Majorana chain [49].
With SYK-like models now implemented on quantum

simulation platforms [50,51], SYK systems coupled to
environments emerge as prime candidates for observing
replica wormholes. The SYK model characterized by its
chaotic dynamics and substantial entanglement mirrors the
intricate entanglement structures prevalent in black holes.
This parallel is drawn through its capacity to exhibit off-
diagonal replica structures [35,52]. However, existing
models integrating microscopic baths [49,53–55] pose
challenges for quantum simulations due to their demands
for additional logical qubits.

II. MODEL AND NOTIONS

We consider a pair of q-body SYK models with identical
internal couplings denoted by L and R. Each of them is
described by the Hamiltonian,
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H ¼
X

1≤i1<i2<…<iq≤N
iq=2Ji1i2…iqχi1χi2…χiq ; ð1Þ

where N is the number of Majoranas defined by
fχi; χjg ¼ δij, Ji1i2…iq are Gaussian-independent random
couplings with zero mean and variance hJ2i1i2…iq

idis ¼
ðq − 1Þ!J2=Nq−1, and i denotes the imaginary unit. The
single-sided SYK Hamiltonian H has 2N=2 eigenstates jni
with energies En. The full two-sided Hamiltonian of the
system can be represented as HS ¼ HL þHR ¼
H ⊗ I þ I ⊗ HT . The L-R systems are initially highly
entangled and prepared in a TFD state with inverse
temperature β in the form [56]

jΨðt ¼ 0Þi ¼ jTFDβi ¼ Z−1=2
β e−

β
4
ðHLþHRÞjIi; ð2Þ

where jIi is the maximally entangled state satisfying
χi;LjIi ¼ −iχi;RjIi [36,57]. The single SYK thermal parti-
tion function Zβ ¼ Trðe−βHÞ serves as the normalization.
The growth of entanglement has also been studied

in SYK-like systems [57–66], including in studies of
measurement-induced phase transitions [67–71]. How-
ever, most of these works focus on closed systems or
microscopic environment models. In this paper, we instead
consider a Markovian environment [37–39], which results
in the Lindbladian form of the density matrix PðtÞ time
evolution:

∂tP ¼ −i½HS;P� þ
XN
i

X
x¼L;R

�
Lx;iPL

†
x;i −

1

2

�
P;L†

x;iLx;i

��
;

ð3Þ

with jump operators LL;i ¼ ffiffiffi
μ

p
χL;i and LR;i ¼ ffiffiffi

μ
p

χR;i. The
coupling strength μ between the systems and their envi-
ronment is identical for all sites i.
The aim of this work is to study the dynamical

entanglement structure of this dissipative SYK model with
TFD initial states by calculating its second Rényi entropy

S ¼ −hln γidis, where γðtÞ ¼ TrðP2Þ
ðTrPÞ2 is called purity, and

h· · ·idis denotes an average over different realizations
of SYKs. For the sake of simplicity, we use an unnormal-
ized density matrix TrP ¼ Zβ. Because of the self-
averaging feature of the SYK model [25,52,72,73],
we compute annealed instead of quenched averages,
i.e., S ≈ − lnhγidis.

III. PATH INTEGRAL FOR PURITY

We use the Keldysh path integral formulation [74–76] to
evaluate the dynamics of the unnormalized purity TrðP2Þ.
We introduce two replicas, a and b. As a result, four distinct
time contours are needed, defined as uaþ, ua−, ubþ, and ub−,
which can be compactified in terms of a single time variable

u as illustrated in Fig. 1(c). As a result, TrðP2Þ reads
(see Appendix A for derivation)

TrðP2Þ ¼
Z

Dχ exp

(
−
Z
C
du

"
1

2

XN
i

χi∂uχi þ fðuÞH
#

þμ

Z
du
XN
i

X
η≠η0

χiðuaηÞχiðubη0 Þ − 2μNt

)
:

ð4Þ

The first line in the exponential represents the unitary
evolution where fðuÞ ¼ i;−i; 1 corresponds to forward
(þ), backward (−), and rotational (imaginary) evolution
contours, respectively. Meanwhile, the second line
describes the effect of the environment modeled by
nonunitary interactions between replicas on forward and
backward contours.
The next step is to integrate over disorder and express the

path integral in terms of the Green’s function Gðu; u0Þ ¼
1
N

P
i χiðuÞχiðu0Þ and the corresponding Lagrange

multiplier, Σðu; u0Þ [24]. After performing the average
over random couplings, standard SYK techniques lead

to hTr½PðtÞm�idis ¼ R
DGDΣe−S

ðmÞ
eff ½G;Σ�, as sketched in

Appendix A. In the large N limit, the saddle-point
approximation can be utilized. The final expression for
the large N second Rényi entropy is computed from the on-

shell G − Σ action S ¼ Sð2Þeff ½G;Σ� − 2Sð1Þeff ½G;Σ�, with G and
Σ the solutions of the corresponding Schwinger-Dyson
equations.

FIG. 1. (a) Illustration of the setup. L and R systems are
entangled without direct interaction between them. (b) Dynamical
phase diagram of the system. The x axis stands for real time in
units of 1=μ, and the y axis stands for the coupling strength μ in
unit of J. (c) Sketch of the purity calculation in replica a, b with
four time contours uaþ, ua−, ubþ, and ub− connected by the
Lindbladian coupling μ. (d) An example of a quantum trajectory
employed in the purity calculation at finite N.
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A. Large N numerics

Except in the large-q limit, the saddle-point equations
can only be solved numerically by discretizing each time
contour into N segments of length δt. Then, Gðu; u0Þ and
Σðu; u0Þ are computed by solving iteratively the resulting
discrete matrix equations as discussed in Appendix A. For
the initial state with βJ ¼ 0, there exist two distinct types of
saddle-point solutions forG: the replica diagonal in the a, b
space [left panel of Fig. 2(a)], and the replica off-diagonal
configuration [right panel of Fig. 2(a)]. At short times and
small μ=J, only the replica-diagonal solution is present. In
this region, Gab ≈ G0 ∝ δa;b and we find that the Rényi
entropy is given by 2μNt. The off-diagonal components
∼μt (see left panel of Fig. 2) are subleading at this moment.
This solution cannot dominate for t ≫ 1=μ because the
entropy would grow indefinitely, leading to the equivalent
issue of the information paradox in gravity [77]. Indeed, we
have identified (see Fig. 3) a Page time [μt ∼Oð1Þ], at
which the replica-off-diagonal, in the a, b space, solution
becomes dominant. This switch of saddles at the Page time
prevents the entropy from growing forever. Instead, as
depicted in Fig. 3(a), it saturates at N ln 2. This indicates
that the system, when thermalized to infinite temperature,
can be approximated as two independent SYK dots. For
detailed information, see Appendixes A and B. The short-
and long-time phases are clearly separated by a first-order
entanglement transition in the small μ=J regime. This late-
time saddle is very similar to the replica wormhole reported
in gravity [45,46].
On the other hand, the transition turns into a crossover

for large μ=J values. This phenomenon can be attributed

to the absence of a significant symmetry difference between
the two phases. For small μ=J, it is possible to distinguish
the two phases based on the magnitude of the off-diagonal
components, which are either large, of orderOð1Þ, or small,
of order Oðμ=JÞ. However, for large μ=J, the off-diagonal
components no longer exhibit such a difference, leading to
a hybridized and smooth behavior that results in a crossover
instead of a sharp transition. By examining the derivative
of the Rényi entropy, it becomes apparent that there is a
noticeable gap when μ < μc ≈ 0.156J, and the gap closes
when μ > μc; see Fig. 3(b) and its inset. These observations
hold true for the large βJ case as well; see Appendix A for a
detailed account.

B. Large-q analytical solution

In the large-q limit, it is possible to compute the Green’s
functions analytically [24]. We define scaled couplings
J 2 ¼ qJ2=2q−1, μ̂ ¼ qμ which are fixed in the large-q
limit. The Green’s functions are denoted by Gaa

ηη0 ≡
Gðuaη ; uaη0 Þ and Gab

ηη0 ≡Gðuaη ; ubη0 Þ, where η; η0 stands for

FIG. 2. (a) Large N, q ¼ 4 numerical Green’s function. Two
types of saddle-point solutions: replica-diagonal (left panel) vs
replica-off-diagonal (right panel) solutions with μ ¼ 0.01J.
(b) Large-q analytical results.

FIG. 3. (a) Large N Page curve for an initial βJ ¼ 0 TFD state,
with μ values ranging from 0.01J to 0.2J. (b) Derivative of Rényi
entropy with respect to time, i.e., 1

μN ∂tS. Inset: gap of 1
μN ∂tS at

Page time vs μ=J. A first-order entanglement transition at the
Page time is only observed for μ ≲ 0.156J. We set J ¼ 1 in all
numerical results.
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forward/backward �. The difference between the two time
arguments is Δu≡ u − u0. For simplicity, we focus again
on the βJ ¼ 0 case.
At short times μ̂t ≪ q, the contribution from finite μ is

perturbative. To leading order in μ̂=J , the Green’s function
within each replica can be approximated by the equili-

brium solution with μ̂ ¼ 0: Gaa
ηη0 ¼

G0;ηη0 ðΔuÞ
cosh2=qðJΔuÞ. Inter-replica

Green’s functions involve the convolution of two Gaa
ηη0 ’s,

and to lowest order it gives

Gba
ηη0 ¼

μ̂

2q

�
uþ u0 − 2t 2t − jΔuj
2t − jΔuj uþ u0 − 2t

�
; ð5Þ

which becomes large enough at sufficiently long time
t ∼ q=μ̂, where perturbation theory breakdown. By com-
puting the on-shell action, it is straightforward to show that
Eq. (5) results in S ≈ 2μ̂Nt=q, consistent with the previous
perturbative result.
On the other hand, in the long-time limit μ̂t → ∞, the

pairing between branches changes, and the solution is
replica off diagonal. The Green’s functions can be approxi-
mated by the “factorization of twist operators” [49]. We
first consider the Green’s functions where two fermion
operators are inserted in branches Cred ¼ ðb;þÞ ∪ ða;−Þ:

ð6Þ

Here, the dots represent the insertion of Majorana oper-
ators, and the dashed boxes indicate the region in which
Green’s functions are the same. The Green’s functions on
the rhs exactly match those on the traditional Keldysh
contour for the evolution of the density matrix of the single-
sided steady state ρ ¼ 2−N=2I [36–38]. This result shows
that in the long-time limit, the system is equivalent to two
independently thermalized systems, each interacting with
its respective infinite-temperature bath.
Consequently, the Green’s function on Cred or Cblue

matches the equilibrium Green’s functions with
Gbbþþ ¼ −Gaa

−− ¼ sgnðΔuÞGbaþ− ¼ −sgnðΔuÞGab
−þ, and

Gbaþ− ¼ 1

2

�
A

coshðBþ AJ jΔujÞ
�
2=q

; ð7Þ

where A ¼ coshB and μ̂ ¼ 2J sinhB are determined from
the boundary conditions in Appendix B.
The remaining task involves computing the correlation

between Cred and Cblue for long times. It is expected that this
correlation will be localized around the boundary twists.
As a representative example, we evaluate Gaa

−þ [see Eq. (6)]
with the understanding that other components can be derived

by symmetry. Expanding Gaa
−þ ¼ 1

2
ð1þ gaa−þ=qþ � � �Þ, one

arrives at the Liouville equation ∂u∂u0gaa−þ ¼ 2J 2eg
aa
−þ . This

equation is solved, as demonstrated in Appendix B, for
the relevant boundary conditions. The resulting large-q
analytical Green’s function reads

Gaa
−þ ¼ 1

2

�
AcschðAJ uÞcschðAJ u0 þBÞ

cothðAJ u0 þBÞ½cothðAJ uÞþ 2 tanhB�− 1

�
2=q

:

This is depicted in Fig. 2(b), which shows a good agree-
ment with the q ¼ 4 numerical result. Furthermore, using
the large-q solution, we show that the long-time entropy S
is independent of J or μ̂ by computing ∂J S ¼ ∂μ̂S ¼ 0,
which is detailed in Appendix B. On the other hand, we
expect S ¼ N ln 2 for μ̂=J → ∞ where the coupling to the
bath dominates. We thus conclude S ¼ N ln 2 in the long-
time limit for arbitrary J =μ̂. Although we cannot obtain
analytic results for intermediate times where the transition
occurs, the simple extrapolation of the short- and long-time
analytic results to intermediate times yields a time evolution
of the purity very close to the large N numerical results
obtained in the previous section.

C. Finite N trajectories

We now investigate whether signatures of replica worm-
holes are visible for finite N. The standard approach of
duplicating the degrees of freedom of the original system
using the Choi-Jamiolkowski isomorphism [78–81] is not
viable in our case due to the presence of four time contours,
which limit exact diagonalization up to N ≈ 6. Instead, we
exploit the Markovian properties of the Lindblad coupling
which allows us to evolve only a single SYK. This is
achieved by introducing quantum trajectories [82,83],
which ensures that the coupling to the bath is considered
even when replicas a and b are decoupled; see Fig. 1(d).
Specifically, we discretize time into small intervals with

length δt. The evolution is determined by a random variable
ξðuÞ∈ ð0; 1Þ at time u,

U�ðδt; ξðuÞÞ ¼
(
e∓iHδt if ξðuÞ > δp;ffiffiffi
2

p
χi if ξðuÞ < δp;

ð8Þ

where the leakage probability is given by δp¼ 1− e−μNδt=2,
indicating the probability of being detected and measured
by the environment, i.e., experiencing a quantum jump. ξ ¼
fξðδtÞ; ξð2δtÞ;…; ξðN t · δtÞg then characterizes the full
trajectory that determines the evolution operator and there-
fore defines the random quantum dynamics. Subsequently,
TrðP2Þ is computed by substituting the connecting dots
between forward/backward contours in Fig. 1(c) with
identical, yet time-reversed, quantum trajectories. See
Fig. 1(d) for a pictorial demonstration. After averaging
over all possible trajectories, we arrive at TrðP2Þ ¼ A ·A�,
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where A denotes the amplitude in replica a, A� is its
time-reversed counterpart in replica b, and

A ¼ Tr
	
Uþðt; ξþL Þe−βH=2Uþðt; ξþR Þ

· U−ðt; ξ−RÞe−βH=2U−ðt; ξ−LÞ


: ð9Þ

After normalization, the purity is determined using the
above expression after averaging, denoted by γ̄, over all
trajectories.
We employ the Monte Carlo method to simulate [84,85]

the infinitesimal random evolution, Eq. (8). This formalism
makes possible the calculation of γ̄ at βJ ¼ 0 and βJ ¼ ∞
up to N ¼ 20 and N ¼ 30, respectively. The results for the
entropy growth shown in Fig. 4 for various values of μ
exhibit excellent agreement with the large N calculation for
the largest N we can explore numerically. We stress that for
this largestN, the numerical results capture both the change
in leading saddles for small μ and the termination of the
first-order transition for μ≳ μc. However, for smaller
values of N, significant differences for intermediate times
make it challenging to distinguish the transition from the

crossover as μ increases. This observation confirms the
crucial role of the quantum trajectory method, achieving a
dramatic, up to fivefold, increase in system size, in order
to reproduce the large N results. Our numerics confirms
the possibility to observe entanglement dynamics with
features of replica wormholes in quantum systems with
moderate N, which makes more likely its experimental
confirmation.

IV. CONCLUSION AND OUTLOOK

In this work, we delved into the dynamics of entangle-
ment growth within a pair of dissipative SYK models. In
the large N regime, we identified a first-order entanglement
transition at low dissipation strengths. This phenomenon,
absent in single dot SYK models [58], is attributed to the
distinct types of Keldysh contours involved. Intriguingly,
we observed that the long-time behavior closely mirrors
replica wormholes within a gravitational context. Our
analysis, particularly in the twisted replica space represen-
tation detailed in Appendix A, revealed the following
process: Initially, the SYK systems exhibit high entangle-
ment in L-R pairs. As they interact with their environment,
either a sudden or gradual disentanglement occurs around
the Page time, leading to the eventual establishment of
entanglement with their respective environments. This
transition depends on the strength of the environmental
coupling, underscoring the monogamous nature of quan-
tum entanglement [86,87] in dynamically evolving many-
body systems. Furthermore, our numerical studies at finite
N utilizing the quantum trajectories method indicate that
the characteristics of the replica wormhole are observable
even at moderate N values. This finding suggests potential
for experimental investigation: With development of quan-
tum technologies, the proposed mechanism of dynamical
replica-symmetry breaking and its implications for entan-
glement [88–93] could be explored through digital quan-
tum simulations [51,94–96] and in strongly interacting
open quantum systems.
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APPENDIX A: KELDYSH-LINDBLAD PATH
INTEGRAL FOR PURITY

1. Contours and actions

The unitary evolution of the L-R system is governed by
the Hamiltonian HS ¼ HL þHR. For a given time t, the

FIG. 4. Comparison between the numerical entropy growth at
finite N computed by performing an average over quantum
trajectories, and the previous large N results. We present results
for (a) βJ ¼ 0 and (b) βJ ¼ ∞. Inset of (b) refers to the case of
N ¼ 16, 22, 30 at μ ¼ 0.01J emphasized on the transition region.
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wave function for the double-sided SYK system evolves
according to

jΨðtÞi ¼ e−iHStjTFDβi
¼ Z1=2

β e−iðHLþHRÞte−βðHLþHRÞ=4jIi;

where the Majorana fermion on each side of the system
satisfies χi;LjIi ¼ −iχi;RjIi. Under this convention, it is
possible to map the double-sided SYK back to a single-
sided SYK. The wave function projected onto a Majorana
coherent state can be derived and represented as
follows [57]:

In the single-sided SYK picture, the L-R forward evolution
is denoted by two left-pointing arrow linesUþ ¼ e−iHt sep-
arated by a semicircle that represents the imaginary evo-
lution Uβ=2 ¼ e−βH=2. In the absence of any Lindbladian
effects, one can define the corresponding unnormalized
density matrix as PðtÞ ¼ ZβjΨðtÞihΨðtÞj. Taking into
account the conjugate part, one needs the backward evo-
lution U− ¼ eiHt, which is represented by a right-pointing
arrow line. Thus, one can express the density matrix via the
matrix element as

ðA1Þ

Here, the matrix element comprises four external legs: χL,
χR as initial legs, and χ0L, χ

0
R as final legs. This construction

is distinct from the case of the one-sided SYK initialized in
a thermal state, where the density matrix only contains two
external legs [58].
When a Markovian environment is incorporated, as

modeled by jump operators in the Lindblad formalism, it
results in an effective coupling in the path integral between
forward and backward contours at equal time. This orig-
inates from the left and right sides (which should not be
confused with the L-R of the SYK systems, and should be
denoted as �) of the density matrix P. Within the
infinitesimal time δt, the nonunitary equation of motion
can be mapped to the path integral, provided the single-
sided jump operators Li are defined on the forward/
backward contours as Li;�. After integrating over a finite

time on the contour of Eq. (A1) and identifying
Li;�ðsÞ ¼ χiðs�Þ, we attain the following contribution
for the density matrix [36–38,74,75]:

δP=δt¼ μ
X
i

�
LiPL

†
i −

1

2

�
L†
i Li;P

��

→ exp

�Z
δtμ
X
i

Li;þL
†
i;− −

1

2
L†
i;þLi;þ −

1

2
L†
i;−Li;−

�

¼ exp

�Z
dsμ

X
i

χiðsþÞχiðs−Þ− μNt

�
:

Here we use a time argument s to denote evolution, and
sþ=s− are equal time on the forward/backward branch. As a
result, we can illustrate the density evolution of L-R
systems with a Markovian reservoir as

where the vertical dotted lines refer to the Lindblad
couplings between forward/backward contours at equal time.
With knowledge of the density matrix at time t, the

unnormalized purity Tr½PðtÞ2� can now be formulated by
introducing two replicas, namely, 1 and 2. More specifi-
cally, in the basis of the Majorana coherent state, we can
express the purity by linking the legs of two replicas so that
the procedure is consistent with the operation of taking the
trace [46,49], so Tr½P · P� is equal to

The TFD state leads to entanglement between the L-R
systems. Hence, calculating the purity of this state results in
a twisted link between the legs, which we depict in the
diagram above. The presence of this twisted boundary
condition between replicas 1 and 2 complicates the cal-
culation of the purity. In particular, the definition of ∂s,
which typically arises in the path integral form χðsÞ∂sχðsÞ
to encode time ordering, becomes subtle to formulate at the
twisting positions. Fortunately, there is a work-around that
allows us to fix this issue. By reshuffling the time contour,
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we can redefine new replicas denoted by a and b. This
process is illustrated in the following diagram:

ðA2Þ

where the time domain along the contour C is denoted as
u∈ ½0; 8tþ 4β�, with the parametrization of forward (fwd),
backward (bwd), and imaginary (img) contours as

fwd∶

(
uaþ ¼ u∈ ½0; t� ∪ 	tþ 1

2
β; 2tþ 1

2
β


;

ubþ ¼ u∈ ½4tþ β; 5tþ β� ∪ 	5tþ 3
2
β; 6tþ 3

2
β


;

bwd∶

(
ua− ¼ u∈

	
2tþ 1

2
β; 3tþ 1

2
β


∪ ½3tþ β; 4tþ β�;

ub− ¼ u∈
	
6tþ 3

2
β; 7tþ 3

2
β


∪ ½7tþ 2β; 8tþ 2β�;

img∶ u∈
�
t; tþ 1

2
β

�
∪
�
3tþ 1

2
β; 3tþ β

�

∪
�
5tþ β; 5tþ 3

2
β

�
∪
�
7tþ 3

2
β; 7tþ 2β

�
:

Given the time domain u and the corresponding replicas a,
b, it is straightforward to determine the time derivative
operation ∂u with respect to u. In the space of a, b, this
operation is diagonal, represented as ∂u ¼ G−1

0 , where
Gaa

0 ¼ Gbb
0 ¼ 1

2
sgnðu − u0Þ and Gab

0 ¼ Gba
0 ¼ 0. This ∂u

also imposes the fermionic antiperiodic boundary condition
in each replica automatically. The translation of this
diagram Eq. (A2) back into the path integral representing
the purity, results in

TrðP2Þ ¼
Z

Dχ exp

(
−
Z
C
du

"
1

2

XN
i

χi∂uχi þ fðuÞH
#

þ μ
XN
i

Z
du
	
χiðuaþÞχiðub−Þ þ χiðua−ÞχiðubþÞ




− 2μNt

)
:

The next step is to perform an average over disorder
realizations, namely, the SYK random couplings
hTrðP2Þidis and the definition of the Green’s function
Gðu; u0Þ ¼ 1

N

P
i χiðuÞχiðu0Þ and the corresponding

Lagrange multiplier Σðu; u0Þ. This results in the following
mth-effective action of hTrðPmÞidis:

SðmÞ
eff ½G;Σ� ¼ −

N
2
log detð∂u − ΣÞ

þ N
2

Z
C
dudu0

�
ΣG − fðuÞfðu0Þ J

2

q
Gq

�

−
μN
2

Z
C
dudu0Gðu; u0Þgðu; u0Þ þmμNt;

where fðuÞ and gðu; u0Þ stand for

fðuÞ ¼

8><
>:

i u∈ forward;

−i u∈backward;

1 u∈ imaginary;

gðu; u0Þ ¼
�þδð8tþ 2β − u− u0Þ u∈ forward;

−δð8tþ 2β − u− u0Þ u∈backward:
ðA3Þ

For m ¼ 2, and in large N limit, we compute the path
integral in the saddle-point approximation leading to

TrðP2Þ ≃ e−S
ð2Þ
eff ½G;Σ�, where Sð2Þeff ½G;Σ� is the on-shell action

whose arguments follow the saddle points, usually termed
Schwinger-Dyson, equations

Gðu; u0Þ ¼ 	∂u − Σðu; u0Þ
−1;
Σðu; u0Þ ¼ J2Gðu; u0Þq−1fðuÞfðu0Þ þ μgðu; u0Þ: ðA4Þ

The normalization can be calculated by using the m ¼ 1
single replica action, which eventually yields Zβ ¼
TrðPÞ ≃ e−S

ð1Þ
eff . Finally, the Renyi entropy in the large N

limit becomes S ¼ Sð2Þeff ½G;Σ� − 2Sð1Þeff ½G;Σ�.

2. Solutions

The Schwinger-Dyson equations above are solved iter-
atively once the quantities G and Σ are discretized into a
matrix form [24]. These equations are represented in two
different replica spaces, a and b [46] and 1 and 2 (i.e., blue
and red) [49], as illustrated in Fig. 5. The left and right
panels display two distinct saddle-point solutions of
Eq. (A4) calculated at the same time t. For early times,
before the Page time where the transition occurs, the
solution that is almost diagonal in the a, b space [left
panel of Fig. 5(a)] exhibits lower entropy. However, for
sufficiently long times, longer than the Page time, the
solution which is nearly diagonal in the 1,2 space [right
panel of Fig. 5(b)] tends to have a lower entropy. The
physical interpretation of the process, when viewed from
the 1,2 replica space representation, can be outlined as
follows: Initially, L-R pairs of the SYKs are highly
entangled, but under the impact of environmental inter-
actions, they part ways and start entangling more inten-
sively with their respective environments at the Page time.
This illuminates the inherent monogamy feature of quan-
tum entanglement [86,87].
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We have also calculated the growth of the purity for an
initial TFD state at low temperature βJ ¼ 100. As is
observed in Fig. 6(b), there is no qualitative difference
between initial TFD states at low and high temperature.

APPENDIX B: THE LARGE-q SYK WITH
DISSIPATION

1. Single-sided dissipative SYK

We provided additional details of analytical large-q
calculation presented in the main text. Our starting point
is a single-sided large-q SYK model with Hamiltonian

H ¼
X

1≤i1<i2<…<iq≤N
iq=2Ji1i2…iqχi1χi2…χiq :

Ji1i2…iq with a different set of indices are independent
Gaussian variables, with expectations and variances
given by�

Ji1i2…iq


dis ¼ 0;

�
J2i1i2…iq


dis ¼

ðq − 1Þ!J2
Nq−1 ¼ 2q−1ðq − 1Þ!J 2

qNq−1 :

We include a Markovian bath by considering the
Lindblad master equation with jump operators Li ¼ ffiffiffi

μ
p

χi:

∂tρ ¼ −i½H; ρ� þ
X
i

μ

�
χiρχi −

1

2
ρ

�
;

where ρ is the density matrix. Note that we employ
a different notation for the density matrix from the one

used in the main text, P where both L-R systems are
considered. This model, and its solutions, are discussed in
Refs. [36–38]. Here we just summarize these results for
later use. A useful pictorial representation of the Keldysh
contour at β ¼ 0 is

ðB1Þ

where the solid arrow lines represent the branch with
forward/backward evolution in time. The dotted lines
represent the coupling induced by the environment. We
focus on the time evolution toward the steady state with
ρ ¼ 2−N=2I . For that purpose, we compute the Green’s
functionsGηη0 ðu; u0Þ. The Schwinger-Dyson equation reads

FIG. 5. Two distinct saddle-point solutions for Eq. (A4): replica
diagonal vs replica off diagonal at time t ¼ 12=J, with μ ¼ 0.01J
and β ¼ 0. (a) Gðu; u0Þ displayed in replica representations a and
b. The left panel illustrates the replica-diagonal solution, while
the right panel shows the replica-off-diagonal solution at the same
time. (b) Gðs; s0Þ presented in replica representations 1 and 2.

FIG. 6. (a) Left panel: large N Page curve for an initial βJ ¼ 0
TFD state, for values of the coupling to the bath μ ranging from
0.02J to 0.2J. Right panel: time dependence of the derivative of
the Rényi entropy for different values of μ as a function of the
rescaled time μt. (b) Large N Page curve for an initial βJ ¼ 100
TFD state.
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�
∂u − Σþþ μ − Σþ−

−μ − Σ−þ −∂u − Σ−−

�
∘
�
Gþþ Gþ−

G−þ G−−

�
¼ Î;

Σηη0 ¼ −ηη0
J 2

q
ð2Gηη0 Þq−1:

We introduce μ ¼ μ̂=q and fix μ̂ in the large-q limit. At
q ¼ ∞, both μ and Σ become zero. Consequently, the
Green’s functions read

G0;þþ ¼ −G0;−− ¼ 1

2
sgnðu − u0Þ ¼ 1

2
sgnðΔuÞ;

G0;−þ ¼ −G0;þ− ¼ 1

2
: ðB2Þ

This is the Green’s function of free Majorana fermions,
which serves as a good first approximation in the large-q
limit [24,97]. We then expand Gηη0 ¼ G0;ηη0 ð1þ gηη0=
qþ � � �Þ in the large-q limit. In Majorana systems, we
can focus on G−þ, which determines all other Green’s
functions due to the symmetry of the Keldysh contour.
Keeping only the leading 1=q corrections, the Schwinger-
Dyson equation for G−þ becomes

∂u∂u0g−þ ¼ 2J 2eg−þ þ 2μ̂δðΔuÞ: ðB3Þ

We first focus on u > u0, where Eq. (B3) becomes a
Liouville equation. The translational invariant solution
reads

eg−þ ¼ A2

cosh2ðBþ AJΔuÞ ðB4Þ

for Δu > 0. Because of the reflection symmetry of the
Keldysh contour with initial density matrix ρ ¼ 2−N=2I ,
we have g−þðΔuÞ ¼ g−þð−ΔuÞ. Parameters A and B are
determined from the boundary condition at t ¼ 0,

gð0Þ ¼ 0; ∂ugð0þÞ ¼ −μ̂:

The first boundary condition comes from χ2 ¼ 1=2, and the
second boundary condition takes into account the last term
in Eq. (B3), which results in

A ¼ coshB; μ̂ ¼ 2J sinhB: ðB5Þ

In the special limit μ̂ → 0, we find B ¼ 0 and A ¼ 1.

2. The purity calculation

Now we turn to the purity calculation involving two
copies of the density matrix investigated in the main text.
For β ¼ 0, the Keldysh contour with time 2t becomes

ðB6Þ

The Schwinger-Dyson equation on this doubled Keldysh
contour reads

X
p00

 
δpp

00
∂u − Σpp00

þþ μδp̄p
0 − Σpp00

þ−

−μδp̄p0 − Σpp00
−þ −δpp00

∂u − Σpp00
−−

!

∘
 
Gp00p0

þþ Gp00p0
þ−

Gp00p0
−þ Gp00p0

−−

!
¼ Î;

Σpp0
ηη0 ¼ −ηη0

J 2

q
ð2Gpp0

ηη0 Þq−1; ðB7Þ

where p; p0; p00 ∈ fa; bg, and p̄ ≠ p. The large-q saddle-

point equation can be derived after specifying Gpp0
0;ηη0 with

η; η0 ¼ �, which also takes the form of the Liouville
equation with delta function sources. However, comparing
to the single-sided calculation, there are two main diffi-
culties: (1) Unlike Eq. (B1), the boundary condition in
Eq. (B6) breaks the time translation symmetry, so there is

no a simple way to find analytical solutions. (2) The Gpp0
0;ηη0

takes a different form in the short-time/long-time regime, as
in the eternal traversable wormhole calculation [30]. In the
following sections, we focus on the short-time limit and the
long-time limit separately, where the Green’s functions are
almost translation invariant.

a. Short-time solution

For sufficiently short times μ̂t ≪ q, the contribution due
to a finite μ is perturbative. To leading order in μ̂=J , the
Green’s function within each replica a=b can be approxi-
mated by the equilibrium solution with μ̂ ¼ 0. Keeping to
the 1=q order, the result reads [24]

GD
ηη0 ðu; u0Þ ¼ hχa=bη ðuÞχa=bη0 ðu0Þi ¼ G0;ηη0 ðΔuÞ

cosh2=qðJΔuÞ :

For the inter-replica Green’s functions, the result can
be computed by solving Eq. (B7) perturbatively in μ.
We find
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To 1=q order, we can replaceGD
ηη0 byG0;ηη0. The result reads

Gba
ηη0 ðu; u0Þ ¼

μ̂

2q

�
uþ u0 − 2t 2t − ju − u0j
2t − ju − u0j uþ u0 − 2t

�
; ðB8Þ

where u; u0 ∈ ½0; 2t�. We find off-diagonal components are
of the order μ̂t=q. It becomes large enough at sufficient long
time t ∼ q, where our perturbation results breakdown. By
computing the on-shell action, it is straightforward to show
that Eq. (B8) results in S ≈ 2μ̂Nt=q for short time.

b. Long-time solution

At long times, the pairing between branches changes,
and the solution is highly replica off diagonal. In the long-
time limit μ̂t → ∞, the Green’s functions can be approxi-
mated by the “factorization of twist operators”:

ðB9Þ

Here the dots represent the insertion of Majorana operators,
and the dashed box indicates the region in which Green’s
functions are the same. Green’s functions on the rhs can
be computed analytically. We first consider the Green’s
functions where two fermion operators are inserted on
branches Cred ¼ ðb;þÞ ∪ ða;−Þ. By contracting the redun-
dant branches, we find

ðB10Þ

This is exactly the Keldysh contour Eq. (B1) for the evo-
lution of the density matrix. Consequently, the Green’s
function on Cred matches the equilibrium Green’s functions
Eqs. (B4) and (B5) with finite μ̂:

Gbbþþ ¼ −Gaa
−− ¼ 1

2
sgnðΔuÞ

�
A

coshðBþ AJ jΔujÞ
�
2=q

;

Gbaþ− ¼ −Gab
−þ ¼ 1

2

�
A

coshðBþ AJ jΔujÞ
�
2=q

: ðB11Þ

Similar solutions hold on branches Cblue ¼ ðb;−Þ ∪ ða;þÞ.
The remaining task is to compute the correlation between

Cblue and Cred. We take the two-point function illustrated in
Eq. (B9) as an example, while other components can be

obtained straightforwardly. As in the previous calculations,
we expand Gaa

−þ ¼ 1
2
ð1þ gaa−þ=qþ � � �Þ, and the equation

satisfied by gaa−þ is again of Liouville type,

∂u∂u0gaa−þ ¼ 2J 2eg
aa
−þ : ðB12Þ

However, unlike Eq. (B3), there is no source term induced
by the environment. As we will see, this leads to a decay of
gaa−þðu; u0Þ when u and u0 are away from 0.
The general solution to the Liouville equation Eq. (B12)

can be written as

eg
aa
−þðu;u0Þ ¼ −

F 0
1ðJ uÞF 0

2ðJ u0Þ
½F 1ðJ uÞ − F 2ðJ u0Þ�2 ðB13Þ

for arbitrary functions ðF 1;F 2Þ. Using the previous boun-
dary condition at t ¼ 0, we have (u > 0),

eg
aa
−þð0;uÞ ¼ eg

aa
−þðu;0Þ ¼ A2

cosh2ðBþ AJ uÞ : ðB14Þ

Combining Eqs. (B13) and (B14), we obtain

F 1ðxÞ ¼
1

A cothðAxÞ þ 2A tanhB
;

F 2ðxÞ ¼
cothðBþ AxÞ

A
:

This gives Gaa
−þ ¼ eg

aa
−þ=q=2 with

eg
aa
−þ ¼ A2csch2ðAJ uÞcsch2ðAJ u0 þ BÞ

fcothðAJ u0 þ BÞ½cothðAJ uÞ þ 2 tanhB� − 1g2 ;

ðB15Þ

which determines the correlation between Cblue and Cred.
We observed the expected exponential decay for J u ≫ 1.
Furthermore, using the large-q solution, we show that the

long-time entropy S ¼ Sð2Þeff ½G;Σ� − 2Sð1Þeff ½G;Σ� is indepen-
dent of J or μ̂ by computing its derivative with respect

to these variables ∂J S ¼ ∂μ̂S ¼ 0. Since Sð1Þeff ¼ TrðPÞ ¼
Zβ ¼ 2N=2 for β ¼ 0, we focus on ∂J S

ð2Þ
eff and ∂μ̂S

ð2Þ
eff .

Explicitly, we have

∂J S
ð2Þ
eff ½G;Σ� ¼ −

NJ
2q2

Z
C
dudu0 fðuÞfðu0Þj2Gðu; u0Þjq

¼ −
NJ
2q2

Z
C
dudu0 fðuÞfðu0Þegðu;u0Þ: ðB16Þ

Here we omit the a=b and � labels for simplicity. Since
Eq. (B16) is local in time, Eqs. (B11) and (B15) contribute
separately. The contribution from Eq. (B11) is zero. This is
because it matches the on-shell action of the single-sided
contour Eq. (B10). On the other hand, we know that the
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on-shell action of the single-sided contour is time independent due to the unitarity. Mathematically, this originates from the
cancellation between contributions of ðGab

−þ; Gbaþ−Þ and ðGaa
−−; GbbþþÞ, which takes different sign factors fðuÞfðu0Þ. Closer

examination reveals similar cancellations exist for contributions from Eq. (B15). As a result, we find ∂J S
ð2Þ
eff ¼ 0. We then

compute

∂μ̂S
ð2Þ
eff ½G;Σ� ¼ −

N
2q

Z
C
dudu0Gðu; u0Þgðu; u0Þ þmNt

q
: ðB17Þ

Following Eq. (A3), gðu; u0Þ is a combination of Dirac delta functions. As a result, Eq. (B17) only depends on

Gbaþ−ð0Þ ¼ −Gab
−þð0Þ ¼ 1=2, which gives ∂μ̂S

ð2Þ
eff ¼ 0. Finally, we expect S ¼ N ln 2 for μ̂=J → ∞ where the coupling to

bath dominates. We thus conclude S ¼ N ln 2 in the long-time limit for arbitrary J =μ̂.
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