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R7-branes are a class of recently discovered nonsupersymmetric real codimension-two duality defects in
type IIB string theory predicted by the swampland cobordism conjecture. For type IIB realizations of 6D
SCFTs withN ¼ ð2; 0Þ supersymmetry, wrapping an R7-brane “at infinity” leads to a topological operator
associated with a zero-form charge conjugation symmetry that squares to the identity. Similar consid-
erations hold for those theories obtained from further toroidal compactification, but this can be obstructed
by bundle curvature effects. Using some minimal data on the topological sector of the R7-branes, we
extract the associated fusion rules for these charge conjugation operators. More broadly, we sketch a top
down realization of various topological operators/interfaces associated with C, R, and T transformations.
We also use holography to provide strong evidence for the existence of the R7-brane which is
complementary to the cobordism conjecture. Similar considerations apply to other string-realized QFTs
with symmetry operators constructed via nonsupersymmetric branes which carry a conserved charge.
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I. INTRODUCTION

Symmetries provide a powerful organizing tool in the
study of quantum fields and gravity. Recently, it was shown
that the structures of symmetries in physical systems are
intimately tied with topological structures. In the context of
quantum field theory (QFT), such generalized symmetries
provide a framework for understanding many of these
features [1], and this has by now led to a number of new
developments both in the study of higher-form, higher-
group, as well as noninvertible/categorical generalizations.1

Most of these developments have centered on global
symmetries, but in quantum gravity, one expects that these
symmetries are either explicitly gauged or broken. In the
swampland program this was recently formalized in terms
of the swampland cobordism conjecture, which asserts that
the bordism group of quantum gravity is trivial [155].2

In practice, one considers a long distance limit captured by
the gravitational path integral and then imposes specific
symmetry (spacetime and internal) constraints. Obtaining a
nontrivial bordism group then amounts to the prediction of
new objects, since in the full quantum gravity there must be
boundaries for the bordism classes that seemed nontrivial
in the low-energy effective field theory. By now, the
cobordism conjecture has undergone a number of nontrivial
checks in the context of supersymmetric backgrounds, and
has even been used to predict the existence of new non-
supersymmetric objects [149,155,164].
String theory makes direct contact with both of these

developments. In the context of QFTs, string backgrounds
with localized singularities in the metric/fields/solitonic
branes provide a general template for constructing and
studying a wide class of strongly coupled systems de-
coupled from gravity. In this regard, it is worth noting that
string theory remains the method for explicitly constructing
interacting D > 4 fixed points. Indeed, the spectrum of
(often supersymmetric) extended defects in such systems is
encapsulated in terms of the “defect group” [6,15,19,20],
where branes wrapped on noncompact cycles are screened
by dynamical states obtained from branes wrapped on
compact, collapsing cycles. The associated symmetry
operators which act on these defects directly encode the
generalized symmetry operators, and can be viewed as
branes “wrapped at infinity.” Since they are infinitely far
away, essentially the only contribution they can make to the
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1See e.g., [1–154] for a recent review.
2For recent developments, see e.g., [74,149,156–164].
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field theory is via their topological sector [namely, Wess-
Zumino (WZ) terms]. This was recently used to exhibit
explicit examples of nontrivial fusion rules in a number of
different systems (see e.g., [102,103,105,165]).
Given this, it is natural to ask whether the new branes

predicted by the swampland cobordism conjecture also
generate topological symmetry operators. Our aim in this
note will be to show that this is indeed the case for a specific
new 7-brane predicted in the context of type IIB dualities;
the reflection 7-brane. As found in [149,164],3 these
“R7-branes” can be viewed as a codimension-two defect
of the 10D type IIB supergravity. Winding once around this
brane amounts to a reflection on either the a- or b-cycle of
the F-theory torus. In terms of the type IIB world sheet
theory, these reflections are associated with world sheet
orientation reversal Ω and left-moving fermion parity
ð−1ÞFL . This object carries a Z2 charge of the correspond-
ing type IIB duality group, and as such, cannot completely
“disappear.” Even so, there are good indications from [164]
that it is strongly coupled and potentially unstable to
thickening/expansion.
That being said, wrapping such a brane “at infinity”

means that it cannot contribute to the stress energy tensor
of a localized QFT sector. As such, we can insert these
R7-branes and deduce the corresponding symmetry oper-
ator generated by these objects. In the context of 6D
N ¼ ð2; 0Þ superconformal field theories (SCFTs) realized
via type IIB on an ADE orbifold, we show that insertion
of an R7-brane realizes a zero-form symmetry which acts
as a charge conjugation operation on the heavy stringlike
defects of the theory. Further compactification to four
dimensions leads to a corresponding charge conjugation
operation which can be combined with other “branes at
infinity” to implement more general symmetries such as
spacetime reflections.
Beyond the case of pure geometric engineering, one

can also consider D-branes probing singularities. In some
cases, the contribution from the R7-brane leads to a large
backreaction due to the putative symmetry being explicitly
broken by the background, thus making it unsuitable as a
topological symmetry operator, but in other cases this can
be used to engineer related charge conjugation/reflections
of the localized QFT sector. The basic considerations we
consider here apply to other choices of nonsupersymmetric
branes which carry a conserved charge. In these cases, we
sketch how string-realized QFTs and little string theories
(LSTs) admit symmetry operators obtained from wrapping
these nonsupersymmetric branes “at infinity.”
Turning the discussion around, one can argue that the

existence of a suitable symmetry in the string-realized
QFT implies the existence of a corresponding topological
symmetry operator. This in turn requires the existence of a
suitable object which could implement this symmetry,

amounting to the requirement that a suitable brane must
exist. From this perspective, the main thing to verify is that
such a symmetry exists in the first place. We show that
for those theories with a suitable holographic dual such as
the large-N limits of the A- and D-type 6D SCFTs with
N ¼ ð2; 0Þ supersymmetry, charge conjugation amounts
to a reflection on X, the “internal direction” of the back-
ground AdS7 × X. One can also extend this reasoning
to many other cases where one has a stringy realization of
a D-dimensional CFT with an AdSDþ1 dual, and more
broadly, it can even be applied to more general systems
such as LSTs.

II. R7-BRANES AND 6D SCFTs

We now argue that some 6D SCFTs have a charge
conjugation symmetry which, in the context of F-theory on
an elliptically-fibered Calabi-Yau threefold, is realized via
R7-branes wrapped “at infinity.” That being said, we will
find (by explicit analysis) that only theories with N ¼
ð2; 0Þ supersymmetry have a charge conjugation symmetry
which squares to þ1, and is implemented by the R7-brane.
This corresponds to the case of a trivial elliptic fibration.4

To begin, let us recall that in F-theory on a noncompact
Calabi-Yau threefold X → B, we get a 6D SCFT by
contracting curves of the base B to zero size. D3-branes
wrapped on finite volume curves provide effective strings
with tension which tends to zero as the curves’ volumes
vanish. In this limit, one obtains a 6D SCFT. The full list of
noncompact bases B as well as possible elliptic fibrations
was determined in [167–169] (for reviews see [170,171]).
The general structure of all such bases is, in the contracting
limit, given by an orbifold of the form C2=ΓUð2Þ for ΓUð2Þ a
finite subgroup ofUð2Þ. Working in radial coordinates, this
specifies a conical geometry with an S3=ΓUð2Þ at each radial
slice. One obtains heavy stringlike defects from D3-branes
wrapped on noncompact 2-cycles which extend along
the radial direction and wrap a torsional 1-cycle at the
boundary S3=ΓUð2Þ “at infinity.” Since they wrap a torsion
cycle n times these defects must be trivial, which means
they are charged under a Zn 2-form symmetry (only dis-
crete 2-form symmetries are possible in 6D SCFTs [27]).
More precisely, the spectrum of heavy stringlike defects
which cannot be screened by dynamical strings are clas-
sified by the “defect group” (see Ref. [6]) which is given by
the Abelianization of ΓUð2Þ, namely H1ðS3=ΓUð2Þ;ZÞ ¼
Abðπ1ðS3=ΓUð2Þ;ZÞÞ ¼ AbðΓUð2ÞÞ.
Thus, it should be possible to construct codimension-

three topological symmetry operators that link with the
above heavy stringlike defects. Indeed, these can be
obtained from D3-branes wrapping these same torsional

3They were also hinted at in [166].

4Theories with N ¼ ð1; 0Þ supersymmetry admit a charge
conjugation symmetry which squares to ð−1ÞF, as we explain
later.
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1-cycles [105] in the S3=ΓUð2Þ at infinity. Unlike the heavy
stringlike defects implemented by D3-branes that extend
along the radial direction from infinity to the singularity
where the SCFT lives, the D3-branes implementing topo-
logical operators are localized at infinity. Intuitively, this
means that a small deformation cannot affect the local
physics, as any backreaction must traverse an infinite
distance, and their correlators can only be possibly affected
by the linking with the D3-branes implementing heavy
stringlike defects; precisely the definition of a topological
operator.
The dualities of type IIB string theory act on these heavy

stringlike defects via a general conjugation operation. As
described in [172] (see also [173]), the actual duality group
of type IIB string theory is the Pinþ double cover of
GLð2;ZÞ. The reflections with negative determinant given
(in terms of their action on the F-theory torus)5 by MFL

¼
diagð−1; 1Þ and MΩ ¼ diagð1;−1Þ, correspond respec-
tively to left-moving fermion parity ð−1ÞFL and world
sheet orientation reversal Ω. Each of these generators sends
a D3-brane to an anti-D3-brane: jD3i → jD3i. This spec-
ifies a generalized charge conjugation operation on
D3-branes. In the corresponding 6D SCFT, this sends each
of our heavy stringlike defects (obtained from wrapped
D3-branes) to its antistring counterpart. The reflections
MFL

and MΩ also act nontrivially on D7-branes since we
also have jD7i → jD7i.
Generically, most 6D SCFTs do not have a charge

conjugation symmetry. Indeed, on the tensor branch it is
common to encounter various 6D gauge theories which are
coupled to tensor multiplets. To cancel 1-loop gauge
anomalies generated by the chiral matter of the vector
multiplet one must include suitable Green-Schwarz-
Sagnotti-West terms (see [174,175]) which are schemati-
cally of the form Ba ∧ IGSa , where Ba is an antichiral 2-form
field and IGSa is a 4-form constructed via the characteristic
classes of the gauge bundles. The specific form of such
couplings can be extracted from the algorithm developed
in [176–178], and can also be extended to include possible
couplings to background curvatures/R-symmetries/flavor
symmetries. The presence of couplings such as Ba ∧ Ia
manifestly breaks the charge conjugation symmetry since
Ia is realized via even powers of curvatures/field strengths
(and therefore, must be charge conjugation invariant),
whereas Ba is manifestly odd under the conjugation oper-
ation, since these fields couple directly to the D3-branes
wrapping the noncompact 2-cycles of the ambient geom-
etry. In the associated F-theory background this is also
expected because the gauge theory degrees of freedom are
realized via 7-branes wrapped on compact curves, and
reflections generically send 7-branes to anti-7-branes.

The exception to this general situation are those 6D
SCFTs which have no 7-branes at all. This occurs for the
celebrated N ¼ ð2; 0Þ theories, as obtained from a collec-
tion of −2 curves in the base with intersection form given
by the corresponding ADE Dynkin diagram,

AN∶ 2; 2;…; 2|fflfflfflfflffl{zfflfflfflfflffl}
N

; ð2:1Þ

DN∶ 2; 2
2

;…; 2|fflfflfflfflffl{zfflfflfflfflffl}
N−1

; ð2:2Þ

E6∶ 2; 2; 2
2

; 2; 2; ð2:3Þ

E7∶ 2; 2; 2
2

; 2; 2; 2; ð2:4Þ

E8∶ 2; 2; 2
2

; 2; 2; 2; 2: ð2:5Þ

In fact, one can argue directly from the classification of
superconformal algebras that only N ¼ ð2; 0Þ theories
could possibly have a charge conjugation symmetry rep-
resented by R7-branes. R7-branes have a world volume
charge which is Z2 valued, so the charge conjugation
symmetry they implement squares to þ1. In an N ¼ ð1; 0Þ
theory, this is impossible, since any charge conjugation
symmetry must map the supercharge Q to itself, but in six
Lorentzian dimensions (or Euclidean reflection-positive), the
only possible charge conjugation operator that preserves
chirality squares to −1 [179,180]. So while there may be a
charge conjugation symmetry for N ¼ ð1; 0Þ theories, it is
qualitatively different from the N ¼ ð2; 0Þ case. In fact, this
charge conjugation symmetry may be realized as simply any
Z4 subgroup of the SUð2Þ R-symmetry.
We now directly construct the corresponding topological

symmetry operator for the N ¼ ð2; 0Þ theories. This is
realized at once in terms of an R7-brane “wrapped at
infinity.” In terms of the local coordinates the relevant
objects are obtained as follows:

0 1 2 3 4 5 6 7 8 9

Defect D3 × × × ×

Symm Op: R7 × × × × × × × ×

;

ð2:6Þ

where the “0;…; 5” directions denote the 6D spacetime, the
“6” direction denotes the radial direction of the base, and
the “7,8,9” directions denote the S3=Γ “at infinity.”
Since both the FL- and Ω-brane act the same way on

D3-branes, we might be tempted to conclude that there is
no difference in which one we use to implement this
operator. However, one can wrap F1-strings or D1-branes
on the noncompact 2-cycles of the ambient geometry, and

5The monodromy matrices M can also be deduced from the
action on the 2-form fields of type IIB that transform as a vector
given by ðC2; B2ÞT.
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this engineers pointlike defects in the N ¼ ð2; 0Þ theory.
The FL- and Ω-branes act differently on these, mapping
only F1-strings or D1-branes to their conjugates, respec-
tively.6 In any case, we see that much as in [165], either
R7-brane defines a real codimension-one topological
operator, and as such should be viewed as a zero-form
symmetry operator. It is in fact typical of charge con-
jugation that it acts nontrivially on both pointlike and
extended operators.

A. Fusion rules

While much is still unknown about the R7-brane, general
topological/anomaly inflow arguments provide a natural
candidate action for at least a subsector of the world volume
degrees of freedom of this system [164]. Using this, we can
then consider the fusion rules for two such symmetry
operators wrapped on a 5D subspace of the 6D spacetime.
For ease of exposition we focus on the Ω-brane. Similar
considerations apply for the FL-brane.
In differential cohomology terms,7 (for physicist friendly

reviews see e.g., [70,182,183] as well as the book [184]),
we can rewrite our action for the Ω-brane as [164]

Z
R7

H̆3⋆f̆6 þ F̆5⋆f̆4 þ H̆7⋆f̆2: ð2:7Þ

Here, H̆3 and H̆7 denote differential characters that describe
the NS 2- and 6-form fields, respectively, while F̆5

describes the chiral RR 4-form. The remaining differential
characters f̆k describe (k − 1)-form fields that are localized
on the brane world volume and can absorb the charges
of bulk objects, such as D3-branes, ending on the R7
(see [164] for details). The product ⋆ is defined as a map

⋆∶ H̆p × H̆q → H̆pþq; ð2:8Þ

producing a differential cohomology class which can nat-
urally be integrated over ðpþ q − 1Þ-manifolds, such as the
eight-dimensional world volume of the R7-brane above.
Consider the 6D N ¼ ð2; 0Þ SCFTs engineered from

taking type IIB on B ¼ C2=ΓSUð2Þ. We can now expand
these fields along differential cohomology classes of S3=Γ
to obtain topological terms on the codimension-one wall,

M5, in the 6D spacetime. The cohomology groups of the
boundary geometry are8

H�ðS3=Γ;ZÞ ¼ fZ; 0;AbðΓÞ;Zg: ð2:9Þ
Denote the generator (or generators when Γ is of D-type) of
H2 ¼ AbðΓÞ by t2 (or ti¼1;2

2 for D4k-type) which can be
lifted to a differential cohomology class t̆2 in the sense that
it defines its characteristic class. In the notation of Sec. 2
of [70] there is a projection Iðt̆2Þ ¼ t2. We will pay
particular attention to the middle term of (2.7), returning
to the other two later, and consider the following expan-
sions (suppressing the indices in the D-type case)

F̆5 ¼ Ğ3⋆t̆2; ð2:10Þ
f̆4 ¼ ğ2⋆t̆2: ð2:11Þ

Reducing to M5 then simply requires knowledge of the
linking pairing LΓ ¼ R

S3=Γ t̆2⋆t̆2 which is a 2 × 2 matrix in
the D-type case. The resulting action on M5 can now be
written as

LΓ

Z
M5

G3 ∪ g2; ð2:12Þ

and if we assume that M5 is torsion-free, the Künneth
theorem implies that G3 is an AbðΓÞ-valued 3-form which
is hardly surprising since this is precisely the background
field for the 2-form symmetry of the 6DN ¼ ð2; 0Þ theory.
The path integral of this 5D topological field theory (TFT)
can be written as

P2ðM5Þ≡
Z

Dg2e
2πiLΓ

R
M5

G3∪g2

¼
X

Σ3 ∈H3ðM5;AbðΓÞÞ
e
2πiLΓ

R
Σ3

G3 ; ð2:13Þ

where again we point out that we have suppressed the extra

indices in Lij
Γ for the D4k case. Since e

2πiLΓ

R
Σ3

G3 can be
interpreted as a symmetry operator for AbðΓÞð2Þ, we see that
we are gauging this symmetry along M5. In the language
of [84], this is a 1-gauging of a 2-form symmetry.
Returning to the other two terms in (2.7), we see that
those produce 1-gaugings of AbðΓÞð4Þ and AbðΓÞð0Þ sym-
metries, denoted as P4 and P0, respectively, whose charged
operators arise from wrapping NS5-branes and F1-strings
on relative 2-cycles which, topologically, are cones over the
boundary 1-cycles. We then can write our charge con-
jugation operator as

UΩðM5Þ ¼ C · P0 · P2 · P4; ð2:14Þ

6One can also directly see the full duality group action on
objects of the theory by introducing a stack of probe D3-branes
into the system. From the perspective of the 6D SCFT this is a
specific real codimension-two defect which supports a super-
symmetric gauge theory. In that gauge theory, the axiodilaton
descends to a marginal coupling.

7For simplicity, we take the approximation of classifying type
IIB charges by cohomology, but in principle one should replace
this by KR-theory (see e.g., [166,181]) at the perturbative level
and, ultimately, some unknown generalization of twisted
K-theory which is covariant under S-duality. This subtlety will
not affect our main conclusions.

8For ease of exposition we give the ordinary cohomology
group since the lift of these generators to differential cohomology
are what is relevant in the actual fusion rule calculation.

DIERIGL, HECKMAN, MONTERO, and TORRES PHYS. REV. D 109, 046004 (2024)

046004-4



where C is the more elementary charge conjugation which
simply acts on the operators of the 6D N ¼ ð2; 0Þ theory
in the form we mentioned above. We have that C2 ¼ 1
because the R7 monodromy matrix, as an element in
GLð2;ZÞ lifts to an order-two element in GLþð2;ZÞ [74].
As discussed in [105], the operators Pk which enact a
p-gauging of a k-form symmetry satisfy P2

k ¼ Pk, i.e.,
they are projection operators onto sectors where the flux
being gauged vanishes. This does not have a well-defined
inverse which is the sense in which our charge conjugation
operator engineered from the R7-brane, UΩ, is noninver-
tible. So in summary, the fusion rules of UΩ with itself are
summarized as

U2
Ω ¼ U†

Ω · UΩ ¼ P0 · P2 · P4: ð2:15Þ

We now consider the effect of passing a string defect
operator WγðM2Þ with charge9 γ ∈AbðΓÞð2Þ through
UΩðM5Þ. This can be determined by passing a D3-brane
through an R7 as in Fig. 1. We see that two D3-branes
(with the orientations illustrated) emanate from the R7 as
required for consistency with charge conservation. This
Hanany-Witten effect is similar to the usual case of passing
½p; q� strings/5-branes through supersymmetric 7-branes.10

We see also from Fig. 1 that if we regard the vertical
direction as the radial direction of C2=Γ with r ¼ 0
indicating the bottom of the figure, then the ending
D3-brane created from the Hanany-Witten-like move is
located at the asymptotic boundary. This D3-brane is
nothing other than the symmetry operator associated to

AbðΓÞð2Þ, which we denote by Uð2Þ
2γ . The world volume of

this D3 is H3 × f2γg where H3 is a 3-manifold in the 6D
spacetime such that ∂H3 ¼ M2∐M2 see Fig. 2, and we use
2γ to denote a 1-cycle in S3=Γ with such a charge in
H1ðS3=ΓÞ. We thus have the fusion rule,

UΩ ·WγðM2Þ ¼ W−γðM2Þ · Uð2Þ
2γ ðH3Þ · UΩ: ð2:16Þ

This effect of a creation of another topological symmetry
operator when passing a heavy operator through a 0-form
symmetry operator is a common feature of noninvertible
symmetries. This notably happens when passing (dis)order
operators through the Kramers-Wannier duality defect in
the Ising model [185–188] (see also [189–191]). Note that
for D4k-type theories, the action on WγðM2Þ is trivial since
the charge of γ is labeled by Z2 × Z2.

The fusion rule (2.16) can simplify after one chooses a
polarization for the 6D SCFT defect group, or equivalently,
gauge a maximal nonanomalous subgroup of AbðΓÞð2Þ such
that a given WγðM2Þ is a genuine defect operator while

some Uð2Þ
2γ0 is summed over the entire spacetime. In this case,

Uð2Þ
2γ0 ðH3Þ would no longer appear in the fusion rule since it

is projected out of the theory.11 For an illustrative example,

take the type Ap2−1 6D (2,0) theory where AbðΓÞð2Þ ¼ Zð2Þ
p2 .

A priori this is a relative theory and we can form an

FIG. 1. Here we illustrate the effect of dragging a D3-brane
(oriented black line) through an R7-brane (red star) whose cut
associated to the monodromy action C4 → −C4 is denoted by the
dashed red line. We also denote the submanifolds of C2=Γ
wrapped by these branes, here γ ∈H1ðS3=ΓÞ is the torsion
1-cycle, relevant to constructing the 0-form charge conjugation
operator for 6D SCFTs.

FIG. 2. Spacetime view of the Hanany-Witten process illus-
trated in Fig. 1 where we now indicate the spacetime submani-
folds where these operators are supported. As the charged string
defect operator WγðM2Þ passes through the charge conjugation

operator UΩðM5Þ, the 2-form symmetry operator Uð2Þ
2γ is created

and stretches between W−γðM2Þ and UΩðM5Þ.

9Technically speaking, we should write γ̃ ∈ ðAbðΓÞð2ÞÞ∨ where
∨ denotes Pontryagin dual and γ̃ pairs perfectly with γ, but we
choose not to overload the notation.

10The ½p; q� strings/5-branes also experience a Hanany-Witten
effect for R7-branes, which, for example is nontrivial for p ≠ 0
for the Ω-brane. The relevance of Hanany-Witten moves in the
study of symmetry operators was noted in [102] and was further
explored in [105].

11Note that this is not always be possible as for instance when
jAbðΓÞð2Þj is a square-free integer.
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absolute 6D SCFT by gauging Zð2Þ
p ⊂ Zð2Þ

p2 . If we denote γ

as a generator ofZð2Þ
p2 , the gauging implies that we sum over

networks of topological operators Uð2Þ
pγ such that pγ ∈

Zð2Þ
p ⊂ Zð2Þ

p2 . The gauged theory has the topological oper-

ators Uð2Þ
γmodp that generate the remaining Zð2Þ

p symmetry
(we leave the mod p implicit in what follows). From the
string defect perspective, we start in the relative 6D theory
with nongenuine defects W γ̃ðM2Þ · UγðM3Þ where γ̃ gen-

erates the Pontryagin dual group ðZð2Þ
p2 Þ∨, γ̃ðγÞ ¼

1=p2 mod 1, and ∂M3 ¼ M2. After gauging Zð2Þ
p , we have

genuine defects Wpγ̃ðM2Þ∈ ðZð2Þ
p Þ∨ ⊂ ðZð2Þ

p2 Þ∨, while all

other defects [i.e., ones nontrivial in ðZð2Þ
p2 Þ∨=ðZð2Þ

p Þ∨] are
nongenuine. We now observe what happens when we drag
a genuine and nongenuine defect across a charge con-
jugation operator UΩ. We see that the genuine defect no
longer has a topological operator attached because
Eq. (2.16) now reads

UΩ ·Wpγ̃ðM2Þ ¼ W−pγ̃ðM2Þ · U2pγðH3Þ · UΩ ð2:17Þ

but U2pγ ¼ 1 in the gauged theory so there is no extra topo-
logical operator attached. Meanwhile, the nongenuine defect
has its attached topological operator altered by Uγ ↦ U−γ. In
other words, the right-hand side of the fusion rule would
automatically be accompanied by an extra U2γðH3Þ.
From this example, we then see that appearance of

condensation operators in the definition of UΩðM5Þ in
(2.14) also follows from bottom-up considerations. This is
because we are allowed to spontaneously create open
topological defects of the form U2γðN3Þ on its world
volume where ∂N3 ⊂ M5. This follows from moving W γ̃

acrossUΩðM5Þ and back again which means that a network
ofU2γðN3Þ is implicitly summed on the charge conjugation
world volume M5. For a similar point, see Fig. 5 of [65]
which shows this creation property for duality defects.
For completeness, we also mention the analogous fusion

rules relevant for the action of the R7 charge conjugation
operator on the local operators and 4-manifold defects
charged under AbðΓÞð4Þ and AbðΓÞð0Þ in the obvious
notational adaptations

UΩ ·WγðxÞ ¼ W−γðxÞ · Uð0Þ
2γ ðH1Þ · UΩ; ð2:18Þ

UΩ ·WγðM4Þ ¼ W−γðM4Þ · Uð4Þ
2γ ðH5Þ · UΩ: ð2:19Þ

Similar remarks related to the simplification after choosing
the polarization apply to these symmetries as well.

B. Using holographic CFTs to predict cobordism defects

Up to this point, we have assumed the existence of
the R7-brane and have shown that it admits a natural

interpretation as a charge conjugation symmetry operator in
certain 6D SCFTs. We now turn the discussion around and
use holography to argue for the existence of this cobordism
defect.
Along these lines, the main idea will be to first show

that for 6D N ¼ ð2; 0Þ SCFTs with a semiclassical holo-
graphic dual, the gravity dual admits a discrete symmetry
which we shall interpret as a charge conjugation symmetry
in the 6D SCFT. As such, there must exist a corres-
ponding codimension-one topological symmetry operator.
Proceeding back from the M-theory realization to the
F-theory realization, this amounts to a complementary
expectation that there must exist a corresponding object
in type IIB which implements this symmetry operator; this
is nothing but the R7-brane.
To proceed, recall that there are well-known holographic

duals for some of the 6D SCFTs just considered. For
example, for the A-type N ¼ ð2; 0Þ theories, we can start
from N coincident M5-branes in flat space, we reach the
gravity dual given by M-theory on AdS7 × S4 with N units
of 4-form flux through the S4 (see e.g., [192]). Similar
considerations hold for the D-type theories, where the
holographic dual is AdS7 ×RP4.
All the states, operators and symmetries that we found

above, including the charge conjugation symmetry, must be
apparent in the holographic dual. In this picture, the string
defects obtained from D3-branes wrapping noncompact
2-cycles are represented by M2-branes attached to the
boundary of the holographic dual. The charge conjugation
symmetry is implemented in terms of the Pinþ symmetry of
M-theory [172,173,193–195], under which the M-theory
3-form C3 transforms as a pseudo-3-form. What this means
is that, in a compactification of the form AdS7 × X4, a
reflection of an AdS7 coordinate is not a symmetry of the
theory, because the G4 flux threading X4 flips sign (and
thus changes the vacuum), but a reflection on X4 (if there is
such a symmetry available) will flip bothG4 and the sign of
the volume form, being a symmetry of the theory. Indeed,
there are M-theory backgrounds which are holographically
dual to N ¼ ð2; 0Þ theories in the large N limit of the A-
and D-type theories. These involve an X4 which is either S4

orRP4, and both preserve discrete symmetries which in the
6D SCFT specify a charge conjugation which squares to
þ1 in the 6D SCFT.12

12To be even more concrete, let us illustrate how some
examples of such reflections are implemented on S4 and RP4.
Starting with an S4 of radius L, we view it as the real hypersurface
ðx1Þ2 þ ðx2Þ2 þ ðx3Þ2 þ ðx4Þ2 þ ðx5Þ2 ¼ L2 in R5. The reflection
ðx1; x2; x3; x4; x5Þ ↦ ð−x1; x2; x3; x4; x5Þ induces a correspond-
ing reflection on the S4. Other reflections are obtained by
performing a rotation on the S4. We reach RP4 by quotienting
S4 by the antipodal map ðx1; x2; x3; x4; x5Þ ↦ ð−x1;−x2;−x3;
−x4;−x5Þ. This still retains a Z⊭ symmetry given by reflection of
one of the ambient R5 coordinates, so this descends to a charge
conjugation symmetry of the D-type theory.
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In fact, at this point, one may very well flip the logic.
Using the fact that the N ¼ ð2; 0Þ theory has a charge
conjugation symmetry that squares to þ1, we predict the
existence of the R7-brane as the object that realizes the
corresponding topological operator in the type IIB descrip-
tion. The R7-brane was originally described in [149,164] as
a consequence of the cobordism conjecture, but from this
perspective, its existence is required by holography and the
standard type IIB description of the N ¼ ð2; 0Þ theory. In
short, one can use concrete holographic constructions to
provide evidence for some of the nonsupersymmetric
objects predicted by the cobordism conjecture!
The considerations just presented also apply to many

other situations, including beyond the AdS=CFT corre-
spondence. For example, the holographic dual of a little
string theory is (when it exists), flat space with a linear
dilaton profile [196]. In such situations one can consider
discrete reflection-type symmetries of the “internal” direc-
tions. This also applies to the near horizon limits of various
black (and gray) objects in gravity. In short, the existence of
a discrete symmetry in a holographic (but not necessarily
AdS) dual provides evidence for a corresponding topo-
logical symmetry operator which must be implemented by
a suitable object.

III. COMPACTIFICATION AND FURTHER
REFLECTIONS

Starting from the 6D N ¼ ð2; 0Þ theories, one reaches
a range of 4D SCFTs with N ≥ 1 supersymmetry by
compactifying further on a genus g Riemann surface with
punctures (see e.g., [197–199]).
It is natural to ask whether the R7-brane still implements

a charge conjugation topological operator in this compac-
tified theory. Although at first it would seem that the answer
is always affirmative, since one can just wrap the 6D topo-
logical defect on the Riemann surface, additional ingre-
dients such as a nontrivial flavor or R-symmetry bundle can
still end up breaking the charge conjugation symmetry of
the parent 6D theory. In such situations, one might still have
a charge conjugation symmetry but it will have to be
combined with additional discrete symmetry actions.
One should expect to have a charge conjugation sym-

metry in many cases. For example, this is the case for 4D
N ¼ 2 supersymmetric theories. The question is whether
the charge conjugation symmetry thus obtained in four
dimensions can be directly traced back to the 6D C that
squares to þ1 and that we described above. When the
reduction is on T2, to produce an N ¼ 4 theory, this is
automatically the case, and more generally, any toroidal
compactification of the 6D N ¼ ð2; 0Þ SCFTwill inherit a
charge conjugation symmetry. However, when the com-
pactification is on another genus g ≠ 1 Riemann surface,
the nontrivial R-symmetry bundle used to implement a
partial topological twist of the theory will generically break
the charge conjugation symmetry, and the samewill happen

when punctures are included. Moreover, in the case of 4D
N ¼ 1 theories, the presence of background curvatures /
flavor fluxes will generically lead to a chiral spectrum and
broken charge conjugation symmetry (for example, a 6D
hypermultiplet in the presence of a background flavor flux
will descend to a 4D Weyl fermion).
We now briefly comment on spacetime reflection sym-

metries. Unlike ordinary symmetries, spacetime sym-
metries (and in particular, reflections) are not captured
by simple topological operators. The only meaning of a
reflection in a QFT is that the QFT makes sense on non-
orientable manifolds (see [200] for a recent discussion of
this point). Nonorientability is detected by the first Stiefel-
Whitney class w1; if we transport any operator along
a closed path in the Z2 cycle dual to w1, it will come
back “reflected” to the starting point. One can take the point
of view that this is because in going around the cycle
it “crossed” a topological defect inducing a reflection
(see [200] for a detailed exposition of this point), but such
notions can be misleading since one cannot “insert” the
operator in any orientable manifold. In cases where both
charge conjugation and reflection symmetries are present,
one may construct, in the restricted sense described above,
a time-reversal operator. This provides a top down route to
implementing various time-reversal symmetry defects of
the sort considered in [98].

A. Other brane systems

So far, our discussion has primarily focused on the case
of supersymmetric quantum field theories (SQFTs) engi-
neered purely from singular background geometries. One
can also consider D-brane probes of a singularity, and ask
whether the R7-brane introduces a charge conjugation
operation in this setting as well. In some cases, we find
that the R7-brane does not implement a charge conjugation
symmetry operator, and so we instead seek an alternative,
which we explicitly provide in various cases.
It is instructive to observe that not all R7-branes can

be introduced as topological operators in such construc-
tions. For example, precisely because the FL-brane acts
via jDpi → jDpi, this leads to a rather dramatic jump in
the asymptotic profile of the corresponding RR flux at the
boundary of the background spacetime. Placing the
FL-brane at infinity then leads to a large backreaction in
which the RR flux jumps from N to −N. See Fig. 3 for a
depiction in the case of D3-branes.
The Ω-brane introduces no such issues for D1- and

D5-branes, but again sends jD3i → jD3i and jD7i → jD7i.
As such, we conclude that a charge conjugation operator
may be realized in the D1- and D5-brane gauge theories via
Ω-branes, but not in these other systems. Lastly, one can
also consider the S-dual brane configurations, and in such
situations the roles of the FL- and Ω-brane are reversed.
As an illustrative example, consider type IIB on R5;1×C2

with N D5-branes filling the first factor. In this system,
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we have Wilson line defects as obtained from F1-strings
which run along the radial direction of C2 ¼ ConeðS3Þ, and
’t Hooft “membranes,” from D3-branes which wrap the
same radial direction and fill a three-dimensional subspace
of R5;1. The topological operator which implements charge
conjugation is given by an Ω-brane wrapped on the
boundary S3 ¼ ∂C2. Indeed, observe that both the F1-string
and D3-brane are conjugated to their antibrane counterparts

upon passing through the corresponding topological defect.
Wrapping on a T2 and T-dualizing, we get a 4D gauge
theory on the worldvolume of a D3-brane. In this setting,
the wrapped D3-brane descends to a D1-brane, namely the
’t Hooft line defect of the 4D theory. Observe also that
T-duality must act nontrivially on the wrapped R7-brane to
realize charge conjugation in this new theory.

1. D3-brane stack

Recently it was shown that for D3-brane probes of geo-
metry, wrapping 7-branes with a constant axiodilaton
profile “at infinity” provides a natural way to implement
and unify various approaches to the duality defects
of [64,65] from a top-down vantage point [165]. A natural
candidate for a charge conjugation operator for a stack
of N D3-branes realizing an N ¼ 4 suðNÞ gauge theory
is the I�0 7-brane13 wrapped along the boundary S5 and a
codimension-one manifold in the D3 world volume. An
important feature of the I�0 7-brane compared with other
constant axiodilaton 7-branes is that it does not fix a
specific value of the axiodilaton.14

The monodromy matrix for this 7-brane is given by

C≡
�−1 0

0 −1

�
∈GLð2;ZÞ; ð3:1Þ

which in particular sends F1- and D1-strings to their
antistring counterparts. Since an F1-/D1-string stretching
from infinity and ending on the D3 stack is a fundamental
Wilson/’t Hooft line we see that (3.1) indeed specifies a
charge conjugation. The directions of the various branes in
this scenario are as follows:

0 1 2 3 4 5 6 7 8 9

QFT world volume D3 × × × ×

Defect F1 or D1 × ×

Symmetry operator I�07-brane × × × × × × × ×

; ð3:2Þ

where the directions “0;…; 3” represent the D3 world
volume, the “4” direction is the radial direction of the
transverse C3, and “5;…; 9,” represent the asymptotic S5

boundary. Similar to Sec. II A, we denote theM3 × S5 as the
total world volume of the 7-brane which produces a topo-
logical charge conjugation symmetry operator UI�

0
ðM3Þ. A

key feature that differentiates this charge conjugation oper-
ator from those engineered from R7-branes is that C in (3.1)
lifts to an order-four element Ĉ inGLþð2;ZÞwhich satisfies
Ĉ2 ¼ ð−1ÞF, whereas the lift of the R7 monodromy will be
an order-two element which squares to the identity due to the
Pinþ condition. For an explicit presentation of generators
and relations of GLþð2;ZÞ see [74].

Since N ¼ 4 SYM can be obtained from dimensional
reduction of the 6D (2,0) AN−1 theory on T2 [201], we
expect to have a charge conjugation operator which squares
to þ1. To construct it in the D3-brane system, one may
combine the charge conjugation action C defined above
with any order-four element of the SUð4Þ R-symmetry
group. The resulting operator, which we will call Ĉ, will act

FIG. 3. Depiction of N D3-branes (at r ¼ 0) in the presence of
an R7-brane (at r ¼ ∞). Because the R7-brane sends D3-branes
to anti-D3-branes, there is a large jump in the flux and a number
of D3-branes extend out from the D3 to the R7-brane at infinity.
The jump in the flux emanates from the branch cut (dashed red).
In this case the R7-brane does not produce a topological operator
due to the significant change to the QFT sector. Rather, it
becomes a nonsupersymmetric interface between N ¼ 4 SYM
to itself.

13In perturbative string language, this is a collection of 4
D7-branes coincident with an O7− plane.

14The Weierstrass model for an I�0 singularity is y2 ¼
x3 þ f0z2xþ g0z3. Tuning f0 and g0, one can reach any desired
value of the axiodilaton.
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on F1- and D1-strings as above, while not commuting
with the R-symmetry; these are precisely the properties
of the 6D charge-conjugation operator that we discussed
previously.
To summarize then, the I�0 on M3 × S5 engineers the

operator,

UI�
0
ðM3Þ ¼ Ĉ · TFT3; ð3:3Þ

where Ĉ2 ¼ ð−1ÞF and TFT3 is a 3D TFT living on the
world volume of the topological operator. From the WZ
term on the I�0 world volume,

SWZ;I�
0
⊃
Z
M3×S5

C4TrF2
soð8Þ; ð3:4Þ

we find that the TFT is simply a level N Chern-Simons
theory with gauge algebra soð8Þ. As in the case of UΩ, we
similarly obtain a Hanany-Witten effect whereby a topo-
logical surface operator attaches to a line operator after
dragging it through UI�

0
ðM3Þ.

Finally, note that clearly these remarks generalize
straightforwardly to constructing charge conjugation oper-
ators of SCFTs engineered from D3-brane probes of a
Calabi-Yau twofold singularity. The nontrivial boundary
topology can generally cause the fusion rules to become far
richer as the bevy of terms in the Wess-Zumino action of
the I�0 7-brane other than (3.4) will also have nontrivial
Kaluza-Klein (KK)-reductions.15

B. Symmetry operators from other
nonsupersymmetric branes

We now comment on how various nonsupersymmetric
branes in heterotic and type I string theories can be used to
construct topological symmetry operators for various field
theories and LSTs. The type I nonsupersymmetric branes
were first discussed long ago (see e.g., [202,203] for
reviews and [204–206] for recent discussions of these
branes from a world sheet point-of-view) and admit a KO-
theory classification which is roughly equivalent to the
topological configurations of the gauge field associated
to nontrivial homotopy groups π�ðSOð32ÞÞ [207]. Mean-
while, nonsupersymmetric branes in heterotic string theo-
ries were recently discovered16 in [208,210]. While our
presentation is not exhaustive, our aim is to highlight some

of the minimal settings in which these branes play a role as
symmetry operators. These will be broadly applicable to
geometric and brane engineering of QFTs or LSTs since
these branes do not act on Ramond-Ramond (RR) p-form
potentials nor on the Neveu-Schwarz-Neveu-Schwarz
(NSNS) 2-form, and thus will not cause a large back-
reaction as we saw in Fig. 3. As for the nonsupersymmetric
branes not mentioned in this subsection, which include
the heterotic 4-brane and type I D8-brane, we leave the
exploration of their utility as symmetry operators for future
work. Again, this section can also be read “backwards,” in
the sense that the fact that the symmetry operators must
exist in the corresponding world volume theories provides
indirect evidence for the existence of the corresponding
nonsupersymmetric branes in the dual quantum theory
of gravity.

1. ðE8 × E8Þ⋊Z2 heterotic 7-brane

The heterotic 7-brane introduced in [208] is character-
ized by having a monodromy that exchanges the two E8

factors of the gauge group. In other words, there is a
nontrivial Wilson line for the Z2 outer automorphism factor
in ðE8 × E8Þ⋊Z2. Wrapping this 7-brane along the asymp-
totic spatial directions would then be a 0-form symmetry
that exchanges the two E8 factors in a flavor group
associated to some localized degrees of freedom.
A natural candidate for a physical system that may

realize this 7-brane as a symmetry operator are small
heterotic instantons arranged such that the instanton num-
bers are the same for both E8 factors. In heterotic M-theory
language,17 this amounts to considering the same number
N of parallel M5-branes arranged symmetrically between
the two E8 walls. As in [211,212], we can consider a
gravitational decouping limit to isolate these 6D degrees of
freedom such that the size of the interval between the two
E8 walls remains fixed but is much larger than the ten-
dimensional Planck length, which engineers a 6D LST. If
we consider N M5-branes, this engineers a rank-N E-string
LST whose tensor branch is captured in the dual F-theory
geometry as follows (where the number denote the self-
intersection numbers of 2-cycles in the dual F-theory
geometry):

Rank-N E-string LST∶ ½E8�1; 2; 2;…; 2|fflfflfflfflffl{zfflfflfflfflffl}
N−2

; 1½E8�: ð3:5Þ

Of the N compact curves, it is only possible to blow down
N − 1 of them with the volume of the remaining curve
corresponding with the intrinsic length scale of the LST.
The nonsupersymmetric 7-brane then engineers a 0-form
symmetry exchanging the E8 flavor factors only for a

15See for instance Sec. 5 of [165] which studied the dimen-
sional reduction of various type IIB 7-branes on S5=Γ in order to
calculate the fusion of duality defects for 4D N ¼ 1 SCFTs
engineered from D3-branes probing C3=Γ. From that point of
view, charge conjugation can be seen as a special case of a duality
defect.

16The authors of [208] point out that the non-Bogomol'nyi-
Prasad-Sommerfield (BPS) 0-brane they discuss is an endpoint
for the Spinð32Þ=Z2 heterotic string, as initially proposed in
[209].

17In this duality frame, the nonsupersymmetric 7-brane uplifts
to pure geometry and is associated with reflection along the
interval direction.
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subregion in the LST tensor branch that respects this
symmetry. For example, if we take N to be even and are
at a tensor branch location such that N=2 M5-branes are at
one E8 wall and N=2 at the other, then the 7-brane is indeed
a symmetry operator. Under the renormalization group flow
to the IR we have

ðRank-N E-string LSTÞ → ðRank-N=2E-string SCFTÞ
⊕ ðRank-N=2E-string SCFTÞ;

where the right-hand side is a direct sum of two identical
Rank-N=2 E-string SCFTs and the 0-form symmetry in the
IR simply exchanges these two factors.
Similar remarks equally hold if we take four of the

spatial directions of the ðE8 × E8Þ⋊Z2 heterotic string
theory to be an ADE singularity C2=ΓADE and consider
small instanton probes thereof [213–215]. These are known
as orbi-instanton LSTs, and on a partial tensor branch are
characterized by the F-theory geometry

Orbi-instanton Rank-N E-string LST∶ ½E8� 1
gADE

; 2
gADE

; 2
gADE

;…; 2
gADE|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

N−2

; 1
gADE½E8�; ð3:6Þ

where the notation n
gADE denotes a (−n)-curve with a 7-brane

hosting gauge degrees of freedom with Lie algebra gADE
wrapping it.
Finally, we mention that this 7-brane would engineer a

symmetry operator on a 2DN ¼ ð0; 1Þ SCFTassociated to
the heterotic string itself. This 0-form symmetry of course
acts as an outer automorphism on the momentum lattice
associated the internal left-moving T16 geometry.

2. 7-brane of type I string and 6-brane of heterotic string

Another set of nonsupersymmetric branes that can easily
be interpreted in terms of symmetry operators are the
Z2-valued 7-brane in type I string theory and the Z2-valued
6-brane in heterotic Spinð32Þ=Z2 string theory. The former
is associated with a Spinð32Þ=Z2 gauge bundle such
that we have a nontrivial Wilson line along the transverse
angular S1 direction. In particular, the nonsupersym-
metric 0-brane of type I (which is S-dual to the massive
spinor state in perturbative heterotic string theory) is a
Spinð32Þ=Z2 spinor state which has a nontrivial mono-
dromy around this 7-brane [207,216]. In other words, the
7-brane is characterized by a Wilson line in the center of
Spinð32Þ=Z2 and winding around the bounding S1 trans-
verse to the 7-brane. As for the heterotic 6-brane, this is
characterized by a nontrivial integral of the second Stiefel-
Whitney class,

R
S2 w2, along an S2 that surrounds it.

We can realize both of these as symmetry operators for
6DN ¼ ð1; 0Þ SCFTs considered in [217,218] (for a recent
review see [219]) that arise in the low-energy limit of
½Spinð32Þ=Z2�-heterotic/type I small instantons probing an
ADE singularity. A key property of these SCFTs is that

they possess a Spinð32Þ=Z2 flavor symmetry. Wrapping
the 7-brane or 6-brane on the entire asymptotic boundary
S3=ΓADE leads to a Z2-valued 0-form symmetry (this is the
Z2 flavor center symmetry operator) and Z2-valued 1-form
symmetry operator respectively.18 Backgrounds for these
0- and 1-form symmetries are simply associated with
nontrivial Wilson line and w2 for the Spinð32Þ=Z2 flavor
backgrounds in the dual field theory.19
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