
Holographic screen sequestration

Aidan Chatwin-Davies ,1 Pompey Leung ,2 and Grant N. Remmen 3

1Okinawa Institute of Science and Technology,
1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan

2Department of Physics and Astronomy, University of British Columbia,
6224 Agricultural Road, Vancouver, British Columbia, V6T 1Z1, Canada

3Center for Cosmology and Particle Physics, Department of Physics,
New York University, New York, New York, 10003, USA

(Received 13 December 2023; accepted 16 January 2024; published 7 February 2024)

Holographic screens are codimension-one hypersurfaces that extend the notion of apparent horizons to
general (non-black hole) spacetimes and that display interesting thermodynamic properties. We show that if
a spacetime contains a codimension-two, boundary-homologous, minimal extremal spacelike surface X
(known as an HRT surface in AdS=CFT), then any holographic screens are sequestered to the causal
wedges of X. That is, any single connected component of a holographic screen can be located in at most one
of the causal future, causal past, inner wedge, or outer wedge of X. We comment on how this result informs
possible coarse grained entropic interpretations of generic holographic screens, as well as on connections to
semiclassical objects such as quantum extremal surfaces.
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I. INTRODUCTION

The past quarter-century of the anti–de Sitter/conformal
field theory (AdS=CFT) correspondence [1–4] has ushered
in a revolution of our understanding of gravitation and
spacetime. Rather than being fundamental concepts, in
AdS=CFT both quantum gravity and the bulk dimension of
spacetime itself can be seen as emergent phenomena [5–7],
arising as effective descriptions encoded via complicated
and subtle details of the dynamics in the nongravitational
world of the boundary. This encoding has been understood
as a form of quantum error correction [8,9], with the
geometry encoding entanglement—specifically, the fine
grained (von Neumann) entropy—through areas of surfa-
ces, or more general quantities in a gravitational effective
field theory [10].1 The Ryu-Takayanagi (RT) formula [13],
and more generally the Hubeny-Rangamani-Takayanagi
(HRT) formalism [14] for dynamical spacetimes, give the
prescriptions for finding the appropriate bulk surfaces
whose areas compute the entropy corresponding to a given
boundary region, generalizing the celebrated Bekenstein-
Hawking entropy of black holes [15–17].

Despite the success of these famous results and many
others, significant puzzles remain. How does spacetime
emerge when it is not anti–de Sitter? That is, what is the
analogue of the boundary theory for general spacetimes,
and where is it located? As a starting point, one can look to
history, where Hawking’s area theorem for black holes
arguably was a critical seed leading eventually to our
current holographic understanding of AdS=CFT. Happily,
new area theorems for general spacetimes have been found
by Bousso and Engelhardt [18,19], in the form of mono-
tonic area increase along a special hypersurface called a
holographic screen. The holographic screen has been
conjectured to be the appropriate analogue of the AdS
boundary for a holographic description of general space-
times [18–21]. Within AdS=CFT, an entropic interpretation
of the outermost spacelike portion of a holographic screen,
that is, an apparent horizon, was provided by Refs. [22,23].
There it was shown that the area of a slice of the screen is
equal to the outer entropy: the area of the maximal HRT
surface, in units of 4Gℏ, subject to holding the geometry in
the outer wedge—the exterior of the slice of the screen—
fixed and marginalizing over all possible completions of
the spacetime. In this sense, at least the apparent horizon
can be viewed as a coarse grained holographic measure
of entanglement entropy. Moreover, the outer entropy can
be viewed as computing a quasilocal energy for general
(i.e., nonmarginal) surfaces [24,25].
To truly have a general formulation of holography for

arbitrary spacetimes, however, it is likely that a necessary
condition is an interpretation of the entire holographic
screen in information-theoretic terms. A construction for
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1See Refs. [11,12] for recent analyses of the relationship
between renormalization and holographic entropy in effective
theories.
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timelike holographic screens analogous to Refs. [22,23] is
as yet unknown. In order to find such a construction,
it would be useful to have a complete characterization of
where the holographic screen and HRT surface can be
located relative to each other.
It is this latter question that we answer in this paper.

Specifically, we show that holographic screens are seques-
tered relative to the HRT surface: given an HRT surface, a
holographic screen is contained entirely within either its
interior, exterior, past, or future, being forever forbidden
from crossing the null congruences launched from the HRT
surface. There are special cases in which, under certain
conditions, the screen can touch—but not pass through—a
null congruence from the HRT surface. Specifically, while
such instantaneous intersections are strictly forbidden for
spherically symmetric geometries, in nonspherical cases
they cannot be ruled out if either (i) some generators of
the congruence do not intersect the screen (i.e., the
intersection is incomplete), or (ii) the intersection is a
surface of zero Euler characteristic. Possibility (i) is fairly
generic, and indeed a complete intersection can always be
infinitesimally deformed to an incomplete one. However,
possibility ii. is fairly exotic, as it requires that the HRT
surface be, e.g., a topological torus, Klein bottle, or odd-
dimensional sphere.
This paper is organized as follows. After providing a self-

contained primer of the geometric background and defini-
tions in Sec. II, we prove our main sequestration result,
Theorem III.6, in Sec. III. We enumerate the possibilities for
exceptional caseswhere the screen and null congruences can
touch in detail in Sec. III C. We comment on obstructions to
straightforward application of a coarse grained interpreta-
tion of timelike holographic screens in Sec. IV.We conclude
in Sec. V, placing our result in context and commenting on
connections to non-HRTextremal surfaces (e.g., “minimax”
surfaces) and semiclassical quantum corrections.

II. BACKGROUND AND DEFINITIONS

Let us begin by reviewing relevant definitions and
background material. We will largely follow the conven-
tions and nomenclature from the literature on holographic
screens, for example, as rendered in Ref. [26].

A. Topological definitions

We will mainly consider connected spacetimes M that
possess a causal boundary B consisting of one or more
timelike or null connected components.
Throughout this paper, we will be concerned with

geometric objects constructed from light rays: causally
defined regions, expansion of bundles of light rays, etc. We
begin, for completeness, by reviewing some terminology,
following Refs. [23,24,27]. For a set of points S ⊂ M, we
define the chronological and causal future of S as Iþ½S� and
Jþ½S�, denoting the sets of all points in M connected with

any point in S by timelike or null paths, respectively.
The chronological and causal pasts I−½S� and J−½S� are
defined analogously. We will assume that M is globally
hyperbolic: it is free of closed causal curves and, for all
points p; q∈M, JþðpÞ ∩ J−ðqÞ is compact (or, in the
asymptotically-AdS case, when supplemented with boun-
dary conditions as discussed in Ref. [28]). We define the
future (past) domain of dependence of S, D�½S�, as the
set of all p∈M for which all past (future) inextendible
causal curves through p pass through S, and define
D½S� ¼ Dþ½S� ∪ D−½S�. We will refer to a surface as
acausal if every pair of points on the surface is space-
like-separated; the weaker condition achronal is defined
analogously, but allowing null-separated points. A Cauchy
slice Σ is defined as an achronal codimension-one hyper-
surface for which D½Σ� ¼ M. We will at times refer to an
achronal slice of the boundary B ¼ ∂M (i.e., B ∩ Σ ¼ ∂Σ
for a Cauchy slice Σ) as itself a boundary B, trusting that the
difference between B and B will be clear in context. From a
closed, codimension-two, achronal surface ν ⊂ M, we can
define four orthogonal null congruences—families of null
geodesics hereafter referred to as light sheets—associated
with the null rays launched either outward or inward, past-
or future-directed, from ν, spatially orthogonal to ν at the
launch point. Let us define the null vector on one side
(e.g., “outward”) as k and on the other side (“inward”) as l,
with þk and þl being future-directed, and write the four
congruences as N�k½ν� and N�l½ν�. When convenient, we
will also denote the union of future- and past-directed null
congruences by Nk½ν� ¼ Nþk½ν� ∪ N−k½ν� and Nl½ν� ¼
Nþl½ν� ∪ N−l½ν�. Geodesics can exit the light sheets if
[29,30] and only if [31] they encounter either a caustic or an
intersection with a distinct null geodesic. For ν Cauchy-
splitting—that is, dividing a Cauchy surface Σ ⊃ ν into two
sides Σ�—we can write

N�k½ν� ¼ İ�½Σ�� − Σ�

N�l½ν� ¼ İ�½Σ∓� − Σ∓: ð1Þ

where ˙ denotes the boundary of a set. See Fig. 1. We will
choose Σþ½ν� to be on the side of ν toward which k points
and Σ−½ν� to be on the side toward which l points. We
define the outer wedge OW ½ν� ¼ D½Σþ½ν�� and inner wedge
IW ½ν� ¼ D½Σ−½ν��.

B. Dynamical definitions

Having concluded the topological preliminaries, we now
turn to dynamics. We will define the 2þ 2 formalism for
general relativity, in which the Einstein equations gov-
erning the evolution of spacetime can be recast in terms of
these light-centric objects. This formulation is known as the
characteristic initial data formalism for general relativity
[32–38], and one can view it as akin to the more familiar
3þ 1 Arnowitt-Deser-Misner formalism, but with spatial
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Cauchy data replaced with Cauchy data on a null surface.
Given a Cauchy-splitting surface ν, let us focus on the light
sheet along the k-direction, Nk½ν�. We will define k to be
affinely parametrized as it is parallel transported along
itself, and l to be parallel transported along k but
continually rescaled so that k · l ¼ −1. We define the
induced metric as qμν ¼ gμν þ kμlν þ kνlμ, in terms of
which we have the null extrinsic curvature,

ðBkÞμν ¼ qμρqνσ∇σkρ: ð2Þ

This fundamental object defines the expansion,

θk ¼ qμνðBkÞμν; ð3Þ

and shear,

ðςkÞμν ¼ ðBkÞðμνÞ −
1

D − 2
θkqμν: ð4Þ

We can also define the twist one-form, describing frame-
dragging,

ωμ ¼ −lνqμρ∇ρkν: ð5Þ

Finally, we will write null-contracted indices as ð·Þk ¼
ð·Þμkμ, and we define a Lie derivative Lk along k, a
covariant derivative along a constant-affine slice Dμ ¼
qμν∇ν, and the intrinsic Ricci curvature R of a slice. In
terms of these fundamental geometric data, the dynamics
of the light sheet dictated by general relativity become a set
of three evolution equations, known collectively as the
constraint equations,

∇kθk ¼ −
1

D − 2
θ2k − ς2k − 8πGTkk

qμνLkων ¼ −θkωμ þ
D − 3

D − 2
Dμθk − ðD · ςkÞμ þ 8πGTμk

∇kθl ¼ −
1

2
R − θkθl þ ω2 þD · ωþ 8πGTkl; ð6Þ

where the energy-momentum tensor can include a
cosmological constant. The first equation in Eq. (6) is
the Raychaudhuri equation, the second is the Damour-
Navier-Stokes equation, and the third is the cross-focusing
equation. Along Nl½ν�, where l is affinely parameterized
and k is parallel transported and rescaled such that
k · l ¼ −1, the same equations apply, with k ↔ l and
ω → −ω. The principal result of the characteristic initial
data formalism is that, given a set of null congruences Σ on
which data has been specified satisfying the constraint
equations (6), there exists a unique spacetime satisfying the
Einstein equations in D½Σ�.

C. Screen-related definitions

We now turn to a few other definitions and results that
are more closely related to horizons and holography. First,
concentrating on the k-directed light sheet, we describe a
surface as normal if θk > 0 and θl < 0, (anti-)trapped if
both θk and θl < 0 (>0), and marginally (anti-)trapped if
θk ¼ 0 and θl ≤ 0 (≥0). An extremal surface satisfies
θk ¼ θl ¼ 0. For a marginal surface σ, we define strict
spacetime stability as the requirement that ∇kθl ≤ 0 every-
where on σ, with equality only if σ is extremal; as
shorthand, we refer to a marginal surface obeying strict
spacetime stability simply as stable.
It will also be useful to specify a refinement of the notion

of a marginal surface: a minimal marginal surface μ (that is,
a minimar surface [23]) is a stable marginal surface
homologous to the boundary B and for which there exists
a Cauchy slice Σ of OW ½μ� on which, among all ν ⊂ Σ
homologous to B, μ has minimal area, A½μ� ≤ A½ν�.
We define a Hubeny-Rangamani-Takayanagi (HRT)

surface as an extremal surface X homologous to the
boundary B, such that there exists a Cauchy slice Σ of
D½OW ½X�� on which X is minimal. As such surfaces can be
identified via a maximin optimization [39], we will some-
times refer to HRT surfaces as “being maximin.” Though
HRT surfaces can be defined for subregions of the
boundary, throughout, we will be interested in taking B
to be a complete connected component. One can show
that HRT surfaces are minimar [23]. HRT surfaces are of
particular interest to holography, since the area of the HRT
surface, divided by 4Gℏ, corresponds to the fine grained
(von Neumann) entropy associated with the entanglement
of the state on B with its complement,

SðρBÞ ¼ −trðρB log ρBÞ ¼
A½X�
4Gℏ

: ð7Þ

FIG. 1. The causal wedges and null light sheets defined by a
Cauchy hypersurface Σ, a Cauchy-splitting surface ν, and the two
null directions k and l.
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This equality has been proven in the context of AdS=CFT,
and it provides the appropriate generalization of the RT
prescription for computing the entropy in terms of minimal
area surfaces, which holds for static spacetimes. We remark
that, while we certainly have holographic applications in
mind, we do not specialize to asymptotically AdS space-
times when defining an HRT surface.
Finally, we define a holographic screen, a special surface

with a remarkable area theorem [18,19] and compelling
links to the coarse graining of holographic information
[22,23]. A future holographic screen is a codimension-one
hypersurface for which there exists a slicing into compact,
acausal codimension-two surfaces, each of which is strictly
marginally trapped, by which we mean θk ¼ 0 and θl < 0.
Such a slicing is called a foliation, and the marginally
trapped slices are termed leaves. A past holographic screen
is defined analogously, for marginally antitrapped surfaces.
Throughout, we take our holographic screen to have C2

smoothness. A holographic screen generalizes the more
familiar notion of an apparent horizon (e.g., for a black
hole), which is a hypersurface foliated by the outermost
marginally trapped leaves on some Cauchy slice. Like an
apparent horizon, a holographic screen depends on the
slicing (i.e., on the coordinate choice or observer).
Nonetheless, the holographic screen carries physical sig-
nificance, in the form of an area theorem. Defining a scalar
field τ on the future holographic screen H, so that each leaf
σ is a surface of constant τ, one can define the tangent
vector hμ ¼ ð∂τÞμ ¼ αlμ þ βkμ. Throughout, we assume
Einstein’s equations plus the null energy condition (NEC),
Tuu ≥ 0 for any null vector u. As shown in Ref. [19], it is
then useful to invoke a handful of assumptions defining
a regular holographic screen, specifically, the genericity
conditions that

(i) Rkk þ ς2k > 0 everywhere on H, and
(ii) α ¼ 0 only in a measure-zero region of H forming

the boundary between regions where α ≷ 0,
as well as the technical requirements that
(iii) dividingH up into its regions of α with definite sign,

each region contains either a complete leaf or is
timelike; and

(iv) for each leaf σ, there exists a Cauchy slice for which
σ is Cauchy-splitting.

From these definitions, it follows [19] that α < 0 through-
out H.
As a consequence, only certain transitions in the signature

of h are permitted, precisely such that the flow along the
screen is either past- or outward-directed. The future holo-
graphic screen can then be shown to satisfy an area law:
A½σðτ2Þ� > A½σðτ1Þ� for all τ2 > τ1. This area law is distinct
from Hawking’s area theorem, which pertains to event
horizons rather than apparent horizons, though the two have
been unified into a larger class of objects [27].
Hawking’s area theorem and its recasting as the second

law of thermodynamics applied to the Bekenstein-Hawking

entropy of black holes suggests the existence of an
interpretation of holographic screens in terms of a coarse
graining of some holographic entropy. Concretely, an
information-theoretic interpretation for the outermost
spacelike portion of the holographic screen—that is, the
apparent horizon—was found in Ref. [22]. Given a holo-
graphic asymptotically-AdS spacetime, one defines the
outer entropy SðouterÞ½σ� associated with a marginally
trapped surface σ as the largest von Neumann entropy
among those of boundary states ρB on B such that ρB ¼
trB̄ρ and the geometry Mρ dual to ρ contains OW ½σ�:

SðouterÞ½σ� ¼ max
ρ∶OW ½σ�⊂Mρ

SðρBÞ: ð8Þ

Equivalently, via the HRT formula, SðouterÞ½σ� is equal to the
maximal area, in units of 4Gℏ, of any HRT surface
constructible in the spacetime subject only to the NEC
and to holding the outer wedge OW ½σ� fixed.2 The outer
entropy is a coarse grained holographic entropy, as it
describes a von Neumann entropy maximized subject to
only partial information about the spacetime, namelyOW ½σ�.
For μ minimar, Refs. [22,23] showed that

SðouterÞ½μ� ¼ A½μ�
4Gℏ

: ð9Þ

The fact that outer wedges nest along the apparent horizon,
i.e., OW ½μðτ2Þ� ⊂ OW ½μðτ1Þ� for τ2 > τ1, then explains the
growth of the area in entropic terms, as the outer entropy is
computed with more and more data about the spacetime
integrated out (see, e.g., Fig. 2(b) of Ref. [22]). A pressing
open question, of particular relevance to the case of
collapsing black holes and cosmological applications of
holographic screens, is to provide an analogous, explicit
holographic entropy construction for timelike portions of
the screen. In Sec. IV, we comment on challenges inherent
to doing so. However, toward that end, understanding
and characterizing where HRT surfaces can be located,
in generality, relative to a holographic screen is a question
of critical importance to any future attempt at providing
such an entropic formulation.

III. SEQUESTERING HOLOGRAPHIC SCREENS
WITH EXTREMAL SURFACES

Suppose we have a spacetime M with boundary B and
that the NEC is satisfied. Given an HRT surface X in M,
we want to know where holographic screens H can be
located relative to X. Without loss of generality, let us
consider the case of future holographic screens, which are

2Outer entropy is a quantity that is defined intrinsically in
terms of the bulk spacetime. The corresponding boundary-centric
quantity is simple entropy. We will not make use of it here, but
details are explained in Refs. [22,23].
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foliated by marginally trapped surfaces σ as defined in
Sec. II. To adapt our arguments to past holographic screens,
simply take the time-reverse and replace marginally trapped
surfaces with marginally antitrapped ones. Then, three
properties of holographic screens and HRT surfaces pro-
vide rules that we can use to constrain where σ can be
situated with respect to X, and thus determine where H can
be located relative to X. These rules can be summarized as
follows:

(i) Cross-sectional areas of the null congruence Nk½σ�
are nondecreasing toward the marginal surface σ;
similarly, cross-sectional areas of Nk½X� and Nl½X�
are nondecreasing toward the HRT surface X.

(ii) Areas of leaves foliating H strictly increase toward
the past and exterior along H.

(iii) There exists a Cauchy slice Σ containing the HRT
surface X, for which any Cauchy-splitting surface in
Σ has area at least as large as X.

Let us take a closer look at where each of these rules
come from. Rule (i) stems directly from the definition of
marginality, the Raychaudhuri equation (6), and the NEC.
Marginally trapped surfaces σ that foliate the future holo-
graphic screen have vanishing null expansion in the mar-
ginal direction k, i.e., θk ¼ 0 for any σ ∈H. Likewise, an
HRT surface X is extremal, and therefore marginal in both
the k and l directions, so θk ¼ 0 and θl ¼ 0 at every point
on X as well. The Raychaudhuri equation (6) then implies
that θ�k ≤ 0 along the null congruences N�k½σ� emanating
from σ, and similarly θ�k ≤ 0 and θ�l ≤ 0 along N�k½X�
and N�l½X�. In other words, if ν is a section of the null
congruenceNk½σ�, then we have that A½ν� ≤ A½σ�. Likewise,
A½ν� ≤ A½X� holds for ν∈Nk½X�; Nl½X�. Rule (ii) is the area
law for holographic screens [18,19] reviewed in Sec. II C.
Finally, rule (iii) comes from the definition of an HRT
surface as introduced in Sec. II B.
The illustration in Fig. 2 demonstrates all three rules in

action for one configuration of a screenH in the presence of
an HRT surface X. In this diagram, the surface ν is defined
by the intersection3 of the null congruence Nk½σ� and the
Cauchy slice Σ, i.e., ν ¼ Nk½σ� ∩ Σ. Note that, in this
particular case, a closed, directed path in the Penrose
diagram along which the area of foliating surfaces increases
can be formed from N−k½σ�, H, Nþl½X�, and Σ by invoking
the above three rules. Chaining the inequalities along these
hypersurfaces and comparing cross-sectional areas along
this closed path leads to a contradiction: A½σ� < A½σ�. Note
that here we are implicitly assuming that Nþl½X� ∩ H ¼ σ0
is a leaf of H in order to invoke rule (ii). This will not
generically be the case in the absence of symmetry;
nevertheless, the basic idea remains unchanged. In the

interest of clarity, we will continue with this assumption for
now and later relax it in Sec. III B.
We thus find that Fig. 2 in fact illustrates an example

where a configuration of H and X is inconsistent with the
above rules. This observation gives us the simple criterion:
if such a closed, directed path (i.e., hypersurface) can be
formed with σ ∈H and X being any two nodes (i.e.,
inscribed surfaces) in the path, then such a configuration
of H and X is forbidden as it results in a contradictory area
inequality. We will henceforth refer to these closed paths as
forbidden loops. Any configuration of H and X that does
not form a forbidden loop is then consistent with the three
rules and is allowed. It is important to point out that the
crux of this argument relies on the fact that rule (ii), the area
law for holographic screens, is a strict inequality. If all
inequalities in the chain were weak, then a contradiction
could not be established (albeit with the loophole being a
very finely tuned spacetime in which the cross-sectional
area is constant along the closed path).
An HRT surface X naturally partitions the spacetime into

four regions through its orthogonal null congruences Nk½X�
and Nl½X�: the causal future Iþ½X�, outer wedge OW ½X�,
inner wedge IW ½X�, and causal past I−½X�. By applying the
“forbidden loops” argument of Fig. 2 to each of these four
wedges, we can explicitly determine where a screen leaf σ
can be located relative to X, and thus what types of
structures of H are permitted relative to this partition.
A crucial observation can immediately be made: like the
scenario in Fig. 2, a forbidden loop can be found whenever
a segment of a holographic screen passes through any of
the null congruences Nk½X� and Nl½X� fired from X. These
forbidden loops are explicitly illustrated in Fig. 3.
Interestingly, note in particular that the forbidden loop
for a spacelike segment crossing N−l½X� does not rely on
the Cauchy slice Σ, and is thus agnostic of the maximin

FIG. 2. A configuration of H and X showing how rules (i)–(iii)
apply in practice. Arrows on hypersurfaces represent the direction
of increasing cross-sectional area. The double arrow onΣ indicates
that a notion of increasing area is only true when comparing a
Cauchy-splitting surface ν∈Σwith theHRT surfaceX. The purple
dashed line highlights the fact that in this configuration a closed,
directed path can be formed that is inconsistent with the rules. This
is an example of what we call a forbidden loop.

3In the context of maximin surfaces, this is also known as the
representative of a surface ν on a Cauchy slice. See Refs. [23,39],
for example.
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nature of X. We will return to this curiosity when examin-
ing edge cases in Sec. III C and find that we do not need the
forbidden loop argument to prove that screens cannot cross
N−l½X�. By virtue of the fact that forbidden loops appear
whenever holographic screens cross the null congruences
of X, we arrive at the conclusion that holographic screens
must remain sequestered within a given wedge (at least
for the symmetric case as noted above). We will prove the
same statement, without assuming symmetry of the
spacetime, in Sec. III B.

A. Allowed screen trajectories

Having established that holographic screens must be
sequestered within each of the four wedges defined by X,
we can further determine how screens are allowed to
behave within each wedge. To study this question, we will
systematically examine the trajectory of screens that are
timelike or spacelike early on in their flow. By “early” and
“late,”wemean in the sense of flow along the screen, i.e., as
τ → −∞ orþ∞, respectively. Likewise, when we say that a
region of a screen is “timelike” or “spacelike,” we mean
that hμhμ < 0 or hμhμ > 0 on that region, respectively. A
screen that is timelike early on in its flow has leaves on

which hμhμ < 0 everywhere as τ → −∞, with other com-
binations defined analogously. (Recall, however, that in the
absence of sufficient symmetry hμ need not have uniform
character on a single leaf.) The allowed trajectories of
future holographic screens are summarized in Fig. 4.

1. Causal future I + ½X�
Let us first focus our attention on screens with early

timelike flows. In the causal future of X, these are screens
with a timelike segment close to future infinity. By the area
law for holographic screens [18,19], timelike segments of
future holographic screens may either remain timelike and
past-directed, or turn outward into a spacelike segment;
turning spacelike inward violates monotonicity of its cross-
sectional area. Since we already know that holographic
screens cannot cross Nk½X� and Nl½X�, if a timelike
segment coming in from future infinity is to remain
timelike, it can only end on or go through X. As shown
in Fig. 5, however, it is easy to see that a forbidden loop
arises in this case as well, so the only allowed screens with
early timelike flows are those that have late spacelike flows
that asymptote to Nþk½X�. On the other hand, by seques-
tration, screens with early spacelike flows in the future of X

FIG. 3. Forbidden loops (purple dashed lines) for spacelike segments of a holographic screen (green solid line) passing through each
of the four null congruences N�k½X� and N�l½X� fired from X (red and blue solid lines respectively). In each case, in addition to the
screen segment and one of the four null congruences, the forbidden loop is closed by N�k½σ�, a null congruence of σ in the marginal null
direction k, and possibly the Cauchy slice Σ. Analogous results hold for timelike or mixed signature holographic screen segments.
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must asymptote, backward along the flow, to the null
congruence Nþl½X�. In a similar fashion, spacelike seg-
ments of future holographic screens may either remain
spacelike toward the exterior, or turn timelike toward the
past, as turning timelike toward the future violates the area
law. Since such screens must again not cross Nk½X� or
Nl½X�, or pass through X, they must also have late
spacelike flows asymptoting to Nþk½X� just as for the
timelike case. Note that while consistency with the rules
above constrain the early and late flow behavior ofH to the
future of X, the screen itself is allowed to have arbitrarily
many intermediate transitions between spacelike and time-
like regions of H, as long as monotonicity as stipulated by
the area law is respected.

2. Outer wedge OW ½X�
In the outer wedge, by sequestration, screens that have

early timelike flows must asymptote to Nþk½X� toward the

future. As we evolve along the flow, the screen can continue
in a timelike fashion and asymptote to N−l½X� toward the
past so as to not cross null congruences of X, or turn
spacelike toward the outer boundary B in accordance with
the area law. There is no penalty for the screen to cross the
Cauchy surface Σ defining X as this does not generate
forbidden loops, and so late spacelike flows can be either to
the future or past of Σ. On the other hand, screens with early
spacelike flows must begin at the HRT surface X since
sequestration dictates that they cannot come from another
wedge. These early spacelike segments can have the same
late flow behavior as early timelike segments, i.e., they can
have late spacelike flows to the future or past of Σ, or turn
timelike to the past and asymptote to N−l½X�. Note that
screens in the outer wedge all have to end at the boundaryB.

3. Inner wedge IW ½X�
In the inner wedge, screens with early timelike flows

must asymptote to Nþl½X� by sequestration. These screens
can again turn spacelike outward, but like in the future
wedge, will inevitably run into X. Again, this case can be
ruled out by the presence of forbidden loops as shown in
Fig. 5, so screens with early timelike flows can only have
late timelike flows that asymptote to N−k½X� by sequestra-
tion. Screens with early spacelike flows can have spacelike
segments either to the future or past of the Cauchy surface
Σ like screens in the outer wedge, but must turn toward the
past in a timelike fashion by virtue of the area law and again
asymptote to N−k½X� for late flows.

4. Causal past I − ½X�
Similar to screens with early spacelike flows in the outer

wedge, screens with early timelike flows in the causal
past of X can only start at the HRT surface X due to
sequestration. From here, the screen can have late timelike
flows toward past infinity, or turn spacelike outward and
asymptote to N−l½X� for late spacelike flows. Screens with
early spacelike flows in the past of X must asymptote,
backward along the flow, to N−k½X� by sequestration, then
continue to have a late timelike flow to past infinity
following the area law, or asymptote to N−l½X� with a late
spacelike flow by sequestration.

B. Nonsymmetric spacetimes

In using forbidden loops to argue for the sequestration of
holographic screens, we made use of the fact that the area
law for holographic screens is strictly monotonic. It was
then straightforward to show that a contradiction arises
when we compare areas along H in these forbidden loops.
This comparison of cross-sectional areas is only mean-
ingful, however, when H ∩ N�u½X� ¼ σ0 for u ¼ k;l—for
whichever choice the intersection is nonempty—is itself a
leaf of H. While this is true in symmetric cases, e.g.,
spacetimes with spherical symmetry, the intersection of H

FIG. 4. Representative trajectories of future holographic
screens that are consistent with the rules outlined above. The
left figure shows all allowed trajectories with early timelike flows
while the right figure shows all allowed trajectories with early
spacelike flows. In both cases, sequestration stipulates that no
screens are allowed to cross the null congruences N�k½X� (red
line) and N�l½X� (blue line) fired from the HRT surface X. Note
that although screens may start on X in some cases, they can
never end on X. Here, we are depicting the allowed early and late
asymptotic behavior along the screen; any number of intermedi-
ate transitions between spacelike and timelike regions is allowed.

FIG. 5. Forbidden loops (purple dotted lines) that appear when
a holographic screen (green line) in the interior IW ½X� (left panel)
or future Iþ½X� (right panel) ends at the HRT surface X.
Analogous loops can be found when the screen is to the past
of the Cauchy slice Σ in the interior.
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with a null congruence of X will not generically be a leaf of
the screen. Nevertheless, we can refine our argument and
show that holographic screen sequestration continues to
hold for a large class of spacetimes.
As before, let σðτÞ denote leaves foliating a holographic

screen H with τ parametrizing the flow along the screen so
that A½σðτ1Þ� < A½σðτ2Þ� for τ1 < τ2. We will now consider
the case in which the null congruence N�u½X� intersects H
in an oblique manner such that the intersection H ∩
N�u½X� ¼ Y is some compact spacelike surface that is
not a leaf, i.e., not a marginal surface. More generally, since
k;l are defined everywhere by the outgoing null con-
gruences shot out from the leaves σðτÞ of H, and parallel
transporting along themselves, the null congruences fired
from X in nonsymmetric spacetimes will no longer be
generated by k;l as they are not necessarily orthogonal to
X.4 With this caveat in mind, we will call the X-orthogonal
null congruences N�u½X� for u ¼ k̃; l̃, which are in general
nonparallel to the σðτÞ-orthogonal k;l unless the spacetime
exhibits sufficient (e.g., spherical) symmetry. The geometry
of these surfaces is illustrated in Fig. 6 for the case of
Y ¼ H ∩ Nk̃½X� without loss of generality (a similar
cartoon can be drawn for Y ¼ H ∩ Nl̃½X�).
Since Y is not a leaf of H, we can no longer use the

monotonic area law and conclude that A½σðτÞ� < A½Y� for
some leaf along the flow before H meets N�u½X�. To
employ the same arguments as before, we would like for
there to be some compact spacelike surface Y⋆ forming a
different slice of H such that A½Y⋆� < A½Y� and such that
the map along integral curves of h from Y to Y⋆ is in the −h
direction. We stress that we do not need an area law along
the screen for nonmarginal foliations analogous to the area

law of Refs. [18,19]. We simply require the existence of a
lesser-area surface Y⋆. If such a surface exists, then we can
tweak the forbidden loop argument to use Y and Y⋆ in lieu
of marginal surfaces σðτÞ foliating the screen. Once the
additional ingredients are in place, we can once again chain
area inequalities, for any of the forbidden loops used in our
previous arguments, by the following steps:
(a) By assumption, we have that A½Y⋆� < A½Y�.
(b) Then A½Y� ≤ A½X� from focusing along N�u½X�.
(c) We also have A½X� ≤ A½N�k½Y⋆� ∩ Σ� from the defi-

nition of an HRT surface.
(d) Lastly, A½N�k½Y⋆� ∩ Σ� ≤ A½Y⋆� by focusing along

N�k½Y⋆�.
(e) Chaining everything together, we arrive at A½Y⋆� <

A½Y⋆�, a contradiction.
A few clarifying comments are in order. First, recall

again that the vector field k is defined everywhere by
launching outgoing, future-directed null congruences from
each of the leaves of H and parallel transporting k along
itself. In particular, for nonsymmetric spacetimes, the
notation N�k½Y⋆� does not refer to an orthogonal con-
gruence launched from Y⋆, because such a vector field will
not in general even be parallel to k [23]. So by N�k½Y⋆�, we
mean the union of N�k½p� for each p∈Y⋆, whereN�k½p� is
defined by the pencil of affine generators launched from p
within the orthogonal null congruence N�k½σp� for σp, the
leaf of H within which p resides. For step (d) above, it is
important to note that any area difference between Y⋆ and
complete slices of N�k½Y⋆� is accounted for entirely by the
null expansion along k. In other words, there is no area
difference associated with the tilt of Y⋆ relative to constant-
affine surfaces, precisely because the congruence is null.
That is, consider any null congruence N�u½ν�, launched
from any surface ν, and choose two complete slices ρ1 and
ρ2 within the congruence such that ρ1 is to the past of ρ2
and θu (defined with respect to N�u½ν�) vanishes every-
where on ρ2; then A½ρ1� ≤ A½ρ2� by focusing, regardless of
whether ρ1;2 are constant-affine surfaces.
All figures containing forbidden loops depicted hitherto

in Sec. III then carry over to nonspherical spacetimes
with the replacement σ0 → Y and σ → Y⋆.

5 For all of our
previous sequestration results to carry over to nonsym-
metric spacetimes, all that remains is to show that such a
surface Y⋆ exists.
We will do this by first showing that there exists at least

one point x on both the intersection Y and a leaf σ⋆ that
share a common tangent space TxY ¼ Txσ⋆ within H, or
equivalently, for which their normal vectors within H at x
are parallel. Next, we will demonstrate an area law for
infinitesimal elements of area δAðpÞ for any point p∈ σðτÞ
on marginal leaves foliating the screen. Finally, we prove

FIG. 6. A holographic screen H with transverse spacelike
directions partially restored in the direction perpendicular to
the flow generated by the tangent vector h ¼ αlþ βk. The
canonical foliation by marginal surfaces σðτÞ is given by
constant-τ slices along H. Y is an oblique intersection of H
with the null congruence Nk̃½X�. Infinitesimally deforming the
intersection Y in the −h direction locally at a point (light blue dot)
that shares a normal vector to a complete leaf σ⋆ gives another
surface Y⋆ ∈H (dashed red line) with strictly smaller area than Y.

4See the discussion in Step 2, Sec. 5.2 of Ref. [23], for
example.

5In this case, however, the diagrams exaggerate the separation
between Y⋆ and Y on H, since we will show in Sec. III B 3 that
we can always find a Y⋆ infinitesimally close to Y.
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using this infinitesimal area law that a first-order local
deformation around this point x is sufficient to guarantee
that a surface Y⋆ exists such that A½Y⋆� < A½Y�, allowing us
to complete the chain of inequalities. While finite defor-
mations of Y in the −h direction might take us off of the
screen H, infinitesimal deformations, by definition, remain
within H to linear order. The geometric content of this
proof is explicitly shown in Fig. 6.

1. Existence of points on Y and σðτÞ
with parallel normals

Let us first prove that in a large class of spacetimes there
will always be at least one point on Y and σ⋆ that share a
common normal vector in H. We will use the Poincaré-
Hopf index theorem:
Theorem III.1. [Poincaré-Hopf [40,41] ] Let v be a

continuous vector field on a compact boundaryless mani-
fold Y with isolated zeroes at xi, i.e., vðxiÞ ¼ 0. Then, the
sum of the indices of the zeroes of v is equal to the Euler
characteristic of Y,

X
i

IndexxiðvÞ ¼ χðYÞ: ð10Þ

For Y of dimension n, the index of v at a zero located at
xi ∈Y is a nonzero integer defined as the degree of the
map from the boundary of a closed ball enclosing xi to
the (n − 1)-sphere. In particular, this implies that any
compact manifold with nonzero Euler characteristic
must have at least one point where v must vanish. For
compact manifolds with vanishing Euler characteristic,
the Poincaré-Hopf theorem does not exclude the existence
of zeroes, but rather it fails to guarantee their existence as
indices of different zeroes can conspire to cancel out. If a
vector field is everywhere nonvanishing on a compact
manifold however, the Poincaré-Hopf theorem immedi-
ately implies that the manifold has vanishing Euler
characteristic.
We now establish the following:
Lemma III.2. Let H be a future holographic screen and

let Y be a compact, boundaryless surface that is a cross
section of H. Then, for χðYÞ ≠ 0, there must be at least one
leaf σ⋆ ofH such that at least one point exists on both Y and
σ⋆ where the normal vectors, within H, are parallel. For
χðYÞ ¼ 0, the existence of such a point is still allowed, but
not guaranteed.
Proof. The following geometric construction is shown

in Fig. 7. Since H admits a foliation by marginally trapped
surfaces, and since Y is some cross section of H, any point
p∈Y is also contained in a unique leaf σp.

6 Let the normal
vectors within H at any point p∈Y and σp be denoted by

nYðpÞ and nσpðpÞ respectively.7 The normal vectors nYðpÞ
and nσpðpÞ will generally not be parallel to each other for
any given point p. Now, define a vector field vðpÞ at each
point p in Y as the projection of the normal vector nσpðpÞ
onto TpY, the tangent space of Y at p, in other words, let
vðpÞ ¼ PTpYðnσpðpÞÞ, where PTpY is the projector onto
TpY.

8 Then, by definition, nYðpÞ and nσpðpÞ are parallel to
each other when vðpÞ ¼ 0 for some p. It immediately
follows from Theorem III.1, the Poincaré-Hopf theorem,
that if χðYÞ ≠ 0, then there must be at least one point on Y
where v vanishes. Denoting these points by xi, and the leaf
containing them by σxi following Eq. (10), nYðxiÞ and
nσxi ðxiÞ are therefore parallel at xi. ▪
In what follows, it suffices to choose any one of these

points if multiple exist, and label it x, along with the
corresponding leaf σ⋆ ≡ σðτ⋆Þ.
The special case where the intersection Y is a topological

two-sphere is precisely the statement of the hairy ball
theorem.

2. Local area law for infinitesimal elements
of proper area

Recall that hμ ¼ ðd=dτÞμ is the vector field tangent to
the flow along a screen H on any leaf σðτÞ. Corollary IV.4
of Ref. [19] gives the local form of the rate of change
of A½σðτÞ�,

FIG. 7. Geometric setup for the proof of Lemma III.2. The
normal vector within H of σp at p, denoted nσp , is projected onto
the tangent space TpY of Y at p to define a vector field v at every
point p∈Y. When χðYÞ ≠ 0, the Poincaré-Hopf theorem guar-
antees the existence of at least one point where v vanishes, i.e.,
where nY and nσp are parallel to each other.

6Any leaf can however contain more than one point of Y, i.e.,
p; p0 ∈Y can share the same leaf, in which case σp ¼ σp0 .

7By definition, nσp ∝ h. The fact that Y is codimension-one
with respect to H ensures that there is a unique normal vector
nYðpÞ at any point p∈Y. Were Y to be of any higher
codimension, there would be multiple normal vectors to Y at p.

8We can construct this projector in the usual way. Writing the
induced metric on H as hμν ¼ gμν − hμhν=h2, we can define a
further induced metric on Y as yμν ¼ hμν − nμYn

ν
Y=n

2
Y . Then the

projection of a vector w onto Y is given by yμνwν.
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d
dτ

A½σðτÞ� ¼
Z
σðτÞ

ffiffiffiffiffiffiffiffiffi
qσðτÞ

q
αθσðτÞl ; ð11Þ

where qσðτÞμν is the induced metric on the leaf and qσðτÞ is its
determinant.
For any point p∈ σðτÞ on the leaf, the infinitesimal

element of proper area at p is defined by

δAðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qσðτÞðpÞ

q
dx1 � � � dxn; ð12Þ

for p≡ ðx1;…; xnÞ in some coordinates when σðτÞ is of
dimension n. We now show that there is an analogous local
area law for proper area elements δAðpÞ.
Lemma III.3. The rate of change per unit area of an

infinitesimal element of proper area at a point p∈ σðτÞ in
the direction tangent to the flow along H is

1

δAðpÞ
d
dτ

δAðpÞ ¼ αðpÞθσðτÞl ðpÞ: ð13Þ

Proof. Recall that the tangent vector field orthogonal to
each leaf can be written as the linear combination

hμ ¼ αlμ þ βkμ; ð14Þ

for some scalar fields α and β. By Theorem IV.2 of
Ref. [19], α < 0 everywhere on a future holographic screen
H. We are still free to normalize the null generators kμ

and lμ such that k · l ¼ −1 and lμ is an affine generator.
To preserve the cross-normalization however, rescaling lμ

also means rescaling kμ. Under this rescaling, kμ will
generically not be affinely parametrized, but will remain
proportional to an affine generator, i.e.,

lμ ¼
�

d
dλl

�
μ

; kμ ¼ ck

�
d
dλk

�
μ

; ð15Þ

where ck is a scalar. Since lμ affinely parametrizes null
congruences Nl½σ� fired from leaves of the screen, the
fractional rate of change of cross-sectional area of Nl½σ� is
given precisely by the null expansion

θl ¼ 1

δA
d
dλl

δA: ð16Þ

Then it follows that

1

δA
d
dτ

δA ¼ 1

δA
hμ∇μδA ¼ αθl þ βckθk: ð17Þ

Equation (13) then follows from the fact that θσðτÞk ¼ 0

everywhere on σðτÞ. The monotonicity of this infinitesimal

area law follows from the property that αðpÞ < 0 and

θσðτÞl < 0 at every point p∈ σðτÞ. ▪
Corollary III.4. Equation (13) also holds for past holo-

graphic screens.
Proof. By Corollary IV.5 of Ref. [19], α > 0 everywhere

on past holographic screens, and θσðτÞk ¼ 0 while θσðτÞl > 0

everywhere on the strictly marginally antitrapped leaves
foliating a past holographic screen. The positive definite-
ness of the right-hand side is thus ensured. ▪
Although the local area law in Corollary IV.4 of Ref. [19]

only applies to complete screen leaves σðτÞ and not
surfaces of H that are arbitrary deformations away from
a leaf, here we are saying that Eq. (13) applies to proper
area elements δA at any point in H since the foliation of H
by σðτÞ is unique by Theorem IV.8 of Ref. [19], and so
every point lies on a leaf that is a marginal surface.

3. Constructing Y⋆ by a local deformation of Y

Equipped with the results above, we now prove the
existence of a surface Y⋆ on H with A½Y⋆� < A½Y�.
Proposition III.5. There exists a compact, boundaryless

surface Y⋆ that is a complete cross section of H that
satisfies A½Y⋆� < A½Y�where Y is the intersection ofH with
a null congruence of X, i.e., Y ¼ H ∩ N�u½X� for u ¼ k̃; l̃.
The map along integral curves of h from Y to Y⋆ is in
the −h direction.
Proof. By Lemma III.2, there is a point x on both Y and

σ⋆ such that their normals are parallel. We can construct a
new surface Y⋆ by deforming Y at x in the −h direction by
an infinitesimal length δτ. Then, by Lemma III.3, the
proper area element strictly decreases, δAðx − δτÞ < δAðxÞ.
The change in area associated with the tilt of this area
element—that is, from the angle between the normals of Y
and Y⋆—is second-order in the angle, and hence second-
order in δτ, and can be dropped. We therefore conclude that
Y⋆ has strictly smaller area than Y, A½Y⋆� < A½Y�. ▪
This result justifies the assumption made in step (a) in

the chain of inequalities introduced in the beginning
of Sec. III B. The sequestration of holographic screens
as argued by employing forbidden loops is therefore robust
even in nonsymmetric spacetimes where the intersection Y
has nonzero Euler characteristic. We are now ready to give
a precise statement of sequestration for general spacetimes.
Theorem III.6. (Sequestration). For globally hyperbolic

spacetimes satisfying the NEC, regular C2-smooth holo-
graphic screens are forbidden from passing through the
null congruences of an HRT surface X with nonzero Euler
characteristic. That is, the holographic screens are seques-
tered to live within the (closure of) one of the four causal
wedges of X: the inner wedge, outer wedge, causal past, or
causal future of X.
Proof. The surface Y is homologous to X, since both are

boundary-homologous, so the Euler characteristic of Y is
nonzero. The conclusion then immediately follows from
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steps (a)–(e) and the intervening results introduced
throughout Sec. III B.9 ▪

C. Edge cases: Null congruences containing
a complete slice of sequestered screens

The sequestration result derived above explicitly rules
out the possibility of holographic screens crossing through
null congruences of X. However, it is natural to ask if a
screen H that is sequestered to live within a wedge of X is
allowed to “touch” a null congruence of X, that is, to
intersectN�u½X�without passing through to another wedge.
A key component of our strategy thus far has relied on

comparing areas along the screen H. If H does not pass
through a null congruence of X, then in general, the
intersection between H and a null congruence N�u½X�
does not have to be a “complete slice” of H. By complete
slice, we mean that the intersection Y ¼ H ∩ N�u½X� is
such thatH intercepts each of the null generators of N�u½X�
(see Fig. 6). A complete slice of H would necessarily be a
compact, boundaryless surface by construction, but a
partial slice will generally have a boundary. If Y were
just a partial slice, then the existence of a surface Y⋆ with
strictly smaller area than Y is no longer ensured by
Proposition III.5 since the Poincaré-Hopf theorem
(Theorem III.1) used to prove Lemma III.2 does not hold
for manifolds with boundary (unless we enforce additional
conditions on the vector field that cannot be guaranteed for
our v). It is therefore not guaranteed that we can use rule (ii)
or step (a) of the forbidden loop toolkit to compare areas
along H when Y is a partial intersection. Even if we
suppose for a moment that the surface Y⋆ exists, since the
surface N�k½Y⋆� ∩ Σ in step (c) is not Cauchy-splitting, we
can no longer use rule (iii) or step (c) to compare its area
with the HRT surface X. Thus, Y ¼ H ∩ N�u½X� being a
partial intersection presents an obstruction to finding
forbidden loops as it renders the area inequalities of
rules (ii) and (iii) (in the symmetric case) or steps (a)
and (c) (in the nonsymmetric case) invalid. In what
follows, we will therefore restrict ourselves to intersec-
tions Y that are complete slices of H. We find that
although the answer depends subtly on the null con-
gruence in question, we can nevertheless forbid screens
from touching any null congruence when their intersec-
tion Y is a complete slice of H.

1. N − l̃½X� cannot contain a complete slice of H

Suppose that H is in either the exterior or causal past of
X, and that the intersection of H with the null congru-
ence N−l̃½X� is a complete slice Y, i.e., H ∩ N−l̃½X� ¼ Y.
We would like to compare ingoing, future-directed null

expansions at X and Y, by adopting a similar strategy to
the proof of Lemma III.2 and invoking the Poincaré-Hopf
theorem. For every point p∈Y, identify a leaf σp of the
screen H that contains p. From that leaf, take the ingoing
future-directed null generator of congruences orthogonal
to σp and call it lðpÞ. This defines a null expansion
θlðpÞ everywhere along Nþl½Y�, by which we mean the
pointwise-defined null congruence as elaborated on in the
discussion of N�k½Y⋆� for step (d). Since by Theorem
IV.8 of Ref. [19] each leaf of H is strictly marginally
trapped, each θlðpÞ at p∈Y is strictly negative.
Furthermore, by focusing (6), each θlðpÞ will remain
negative to the future along Nþl½Y�, and thus on every
point of X. Now, take l̃ to be the ingoing, future-directed
null generator of congruences orthogonal to X. Note that
because Y is not a constant-affine slice of N−l̃½X�, lðpÞ
will in general not point in the same direction as l̃. Since
l̃ is by definition orthogonal to X, we can once again
define a vector field v as the projection of lðpÞ onto X
much like the setup shown in Fig. 7. More precisely, v
will be the projection of lðpÞ onto the tangent space of
points on X that the pointwise-defined null congruence
Nþl½Y� intersects. By the Poincaré-Hopf theorem
(Theorem III.1), v has to vanish at some point, say y,
on X, if χðXÞ ≠ 0. At that point, we have that θlðyÞ and
θl̃ are related by an affine scaling since lðyÞ and l̃ are
parallel to each other. However, since θlðpÞ < 0 for all
p∈Y, and can only grow more negative on Nþl½p�, but
θl̃ ¼ 0 everywhere on X by definition of an extremal
surface, we have a contradiction. As a consequence,
N−l̃½X� cannot contain a complete slice Y of a future
holographic screen.
As alluded to in Fig. 3, the forbidden loop for a screen

passing through N−l̃½X� did not rely on the defining
Cauchy slice Σ for a maximin HRT surface X. It is now
apparent that since our argument only depends on proper-
ties of ingoing future-directed null expansions along
N−l̃½X� and the fact that future holographic screens are
foliated by strictly marginally trapped surfaces, it is
irrelevant whether the screen approaches N−l̃½X� from
the exterior or past of X. This statement holds for both
the earlier analysis of a screen crossing N−l̃½X�, as well
as the current analysis of N−l̃½X� containing a complete
slice of H. As such, our sequestering results for N−l̃½X� are
valid without ever invoking forbidden loops.

2. N + l̃½X� cannot contain a complete slice of H

Next, suppose that H ∩ Nþl̃½X� ¼ Y is a complete
slice of a screen H in either the interior or causal future
of X. In this scenario, it is easy to identify the forbidden
loops that lead to contradictory area inequalities as shown
in Fig. 8.
The key observation here is that regardless of whether H

is in the interior or future of X, in spherically symmetric

9The proof for the special case of spherically symmetric
spacetimes is subsumed in the case of Y ¼ σ, i.e., when the
intersection is a leaf of H, in which case forbidden loops can be
drawn as in Fig. 3.
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spacetimes there always exists another leaf σ ∈H that
flows to σ0 with strictly increasing area A½σ� < A½σ0�,
whereas in nonsymmetric spacetimes, Y being a complete
slice of H implies the existence of Y⋆ with A½Y⋆� < A½Y�
by Proposition III.5. The past null congruences N−k½σ�
and N−k½Y⋆� fired from σ and Y⋆ respectively both
intersect the Cauchy slice Σ at ν and close the loop. This
allows us to close the chain of inequalities in the same
fashion as Figs. 2 and 3. We therefore also conclude that
Nþl̃½X� cannot contain a complete slice of any future
holographic screen.

3. N�k̃½X� cannot contain a complete slice of H

The final configurations to consider are, first, when
H ∩ Nþk̃½X� ¼ Y with H in the exterior or future of X, and
second, when H ∩ N−k̃½X� ¼ Y with H in the interior or
past of X. For a screen sequestered to the future of X to
intersect Nþk̃½X� at Y, the screen must continue from Y to X
along Nþk̃½X� to preserve monotonicity of cross-sectional
area. Likewise, a screen sequestered to the interior of X
intersecting N−k̃½X� at Y must extend from Y to X along
N−k̃½X�. In both of these cases, it is straightforward to find
forbidden loops as demonstrated in Fig. 9. We can think of
these as limits of screens depicted in Fig. 5 where a finite
segment of screens ending on X are boosted onto N�k̃½X�.
On the other hand, for a screen sequestered to the

exterior of X to simultaneously intersect Nþk̃½X� at Y
and respect monotonicity of area along the screen, the
screen must have a semi-infinite null segment with area
flow from future null infinity to Y along Nþk̃½X�, then
escape from Y to the outer wedge of X. In the same vein, a
screen sequestered to the past of X will necessarily have a
null segment with flow from past null infinity to Y along
N−k̃½X�, and leave Y to the past of X. No forbidden loops
exist for such outgoing screens from N�k̃½X�, so these
constructions (shown in Fig. 10) are in principle allowed.
While these are still holographic screens in a general sense,
the presence of a semi-infinite null segment means that they
run afoul of a genericity condition in Definition II.8
of Ref. [19] that defines regular holographic screens.
As reviewed in Sec. II, this condition requires a regular

holographic screen to have no set of leaves of nonzero
measure on which the tangent to the screen’s flow is null
and outward-directed. If we restrict ourselves to only
regular holographic screens, then we are forced to forgo
the remaining two types of irregular screens containing
semi-infinite null segments along N�k̃½X�.
An interesting special case of these “irregular” screens

arises under symmetry (e.g., spherical), when the inter-
section itself is a leaf of the screen. When Y ¼ σ, since by
definition θk ¼ 0 on σ ∈H, focusing by the Raychaudhuri
equation says that if Nþk½X� is to contain σ as a cross
section, the segment of Nþk½X� between X and σ must be a
stationary light sheet, i.e., the segment must have vanishing
null expansion θk ¼ 0, giving A½X� ¼ A½σ�. The configu-
ration with a stationary light sheet on a segment of Nþk½X�
and a spacelike screen leaving it to the exterior is precisely
the Engelhardt-Wall construction of Refs. [22,23].
However, our results excluding irregular screens is not
in contention with the construction of Refs. [22,23], as the
goal there was not to construct a holographic screen.

FIG. 8. Forbidden loops (purple dotted lines) appearing when
the null congruence Nþel½X� contains a complete slice of a future
holographic screen in the future of X (left panel), or the interior of
X (right panel). For the special case of symmetric spacetimes,
simply make the substitution Y⋆ → σ and Y → σ0.

FIG. 9. Forbidden loops (purple dotted lines) that arise for
sequestered holographic screens approaching Y� on Nþk̃½X� and
N−k̃½X� from the future and interior, respectively. Similar loops
exist when the screens approach Y� in a spacelike and timelike
fashion, respectively.

FIG. 10. Irregular screens that intersect N�k̃½X� at Y�.
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Rather, by deleting everything but the outer wedge of a
minimar leaf μ on a spacelike segment and gluing a past-
directed stationary light sheet to the interior of μ such that
A½X� ¼ A½μ�, Engelhardt and Wall sought to build a partial
Cauchy slice that guarantees the existence of a maximin
HRT surface X for the outer entropy.
In summary, we have found that not only are regular

holographic screens H sequestered to live within one of
four causal wedges defined by the null congruences
of X, such sequestered screens are further forbidden from
intersecting N�u½X� for u ¼ k̃; l̃ in such a way that the
intersection is a complete slice of H.

IV. APPLICATION: CONSTRAINTS
ON COARSE GRAINING

As an illustration of the results of the previous section,
we now turn to the question of whether and how one could
give a coarse grained entropic interpretation to the areas of
leaves of holographic screens that are not apparent hori-
zons. Specifically, we mean holographic screens whose
leaves are not stable, outermost, marginal surfaces for
which the corresponding outer wedges do not nest. In
spherically symmetric spacetimes, these are screens that
have at least one nonempty interval ½τ1; τ2� on which the
tangent ð∂τÞμ ¼ hμ is everywhere timelike. Such screens
are ubiquitous in cosmology. Already in AdS=CFT, a holo-
graphic screen need not be foliated by minimar surfaces,
and it turns out that the existing proof of Eq. (9) fails to hold
in such cases. It would be illuminating to uncover an
analogous relation for such screens, and here we investigate
how screen sequestration can inform analogous construc-
tive attempts at a proof.
First, to understand the technical reasons why Eq. (9)

ceases to hold, let us give a rough sketch of its proof before
considering a concrete example. The proof of Eq. (9)
essentially proceeds in two steps [22,23]. First, assuming
that a spacetime contains both a minimar surface μ and an
HRT surface X that is homologous to the same boundary
as μ, one shows that A½X� ≤ A½μ�. In other words, the area
of a minimar surface provides an upper bound for the area
of any HRT surface for B and hence also an upper bound
for SðρBÞ via the HRT formula. It therefore follows that
SðouterÞ½μ� ≤ A½μ�=4Gℏ. Second, one saturates the bound
by constructing a spacetime that contains both OW ½μ� and
an HRT surface X⋆ that is homologous to μ and has
A½X⋆� ¼ A½μ�, thereby proving Eq. (9).
The first step is relatively straightforward, with the

bound following as a consequence of focusing [the
Raychaudhuri equation (6)]. The second step is more
involved and requires that several subtle points about
existence and uniqueness be addressed, which we will
not review here; nevertheless, we describe the basics of
the construction below (see also Fig. 1 of Ref. [22] for
illustration). Let k denote the outward-pointing, future-
directed, marginal null direction on μ in which θk ¼ 0 and

let l denote the direction in which θl < 0. (Here we have in
mind that μ is a leaf of a future holographic screen, for
which the area of leaves increases toward the past and
toward the AdS boundary; the case of a past holographic
screen is just the time reverse.) Beginning with OW ½μ� held
fixed, one first glues a stationary null light sheet (i.e., with
Tkk and ςk both vanishing) to μ in the −k direction. The
expansion θk remains zero on the light sheet by virtue of it
being stationary, and so the light sheet is foliated by
constant-area slices. Furthermore, the condition for strict
spacetime stability, ∇kθl < 0, continues to hold on the
light sheet. Equivalently, we may write ∇−kθl > 0.
Therefore, moving along the light sheet away from μ in
the −k direction, one eventually encounters10 an extremal
slice X⋆ on which θk ¼ θl ¼ 0. Labeling the segment of
the stationary light sheet from μ to X⋆ by N−k½μ;X⋆�, one
then glues the CPT conjugate of OW ½μ� ∪ N−k½μ;X⋆�
to X⋆, thereby engineering complete Cauchy data for a
spacetime with two asymptotic boundaries. The extremal
surface X⋆ constructed in this way ends up being an HRT
surface for the spacetime (i.e., one can show that it is an
extremal surface of minimal area) with the same area as μ,
which completes the proof.
We reviewed a sketch of Engelhardt and Wall’s con-

struction in Refs. [22,23] in order to point out a small yet
crucial detail; namely, that the construction relies on the
stability property of minimar surfaces,∇kθl < 0. However,
it is easy to find examples of marginal surfaces that do not
obey strict spacetime stability and for which one might
expect to still have an entropic interpretation. In the interior
of an AdS black hole formed from the gravitational collapse
of matter, for instance, the leaves of a future holographic
screen can fail to obey strict spacetime stability inside of the
collapsing matter, and are as such not minimar. In other
words, the leaves remain closed, marginally trapped, and
boundary-homologous, but they fail to be minimar because
the sign of ∇kθl is wrong.
In fact, by a very mild extension of a result of Booth et al.

[42], at least in the spherically symmetric case it follows
that the sign of ∇kθl on a leaf σ directly correlates with the
character of the screen at that leaf, regardless of whether it
is a future or past holographic screen.11 Recalling the
notation from Sec. II C, let hμ denote the tangent vector to a
holographic screen H in the direction of increasing area.
Let us choose a normalization for k such that k · l ¼ −1
and hμ ¼ αlμ þ βkμ where α < 0 or> 0 for future and past

10In general, for the nonspherical case, the constructed surface
X⋆ on which θk ¼ θl ¼ 0 is not a surface of constant affine
parameter along N−k, and hence is not extremal, since l is not
surface-orthogonal. Nevertheless, given X⋆ one can prove that a
bona fide HRT surface exists as a section of N−k, as was done in
Ref. [23].

11Booth et al. [42] were concerned with marginally trapped
tubes, but the arguments apply just as well to the marginally
antitrapped case and to holographic screens.
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holographic screens, respectively. Since k is the marginal
direction, it follows that the Lie derivative Lhθk ¼ 0, from
which we obtain

−
α

β
¼ Lkθk

Llθk
¼ ∇kθk

∇lθk
: ð18Þ

Furthermore, since hμhμ ¼ −2αβ, the character of hμ fixes
the sign of β. In the spherically symmetric case, for which
hμ has the same character everywhere on a single leaf, α=β
is therefore positive whenH is timelike, negative whenH is
spacelike, and zero when H is null. Focusing implies that
∇kθk ≤ 0, and in the spherically symmetric case, cross-
focusing [see Eq. (6)] implies that ∇lθk ¼ ∇kθl. We
therefore conclude that, for a spherically symmetric holo-
graphic screen H, the sign of ∇kθl at a location on H is in
direct correspondence with the character of H at that
location:

∇kθl ¼
8<
:

> 0 H timelike

0 or undefined H null

< 0 H spacelike:

ð19Þ

It would be somewhat surprising if the interpretation of
holographic screen leaf area as a coarse grained entropy
were to fail in AdS=CFT where a future holographic screen
transitions to being a nonspacelike hypersurface. With this
perspective in mind, let us continue to examine the timelike
portion of a holographic screen in the interior of a holo-
graphic black hole with the additional assumption that the
spacetime is spherically symmetric, for simplicity. Consider
a leaf σ, and let us attempt to mirror the construction of
Refs. [22,23] as closely as possible. On such a leaf, we have
that θk ¼ 0, θl < 0, and ∇kθl > 0. Therefore, based only
on the signs of expansions and cross-focusing, the analogous
construction is to join a stationary null light sheet in theþk
direction, so that one of its future slices is eventually
extremal. Let us label this slice X.
Now, it is unclear what region relative to σ should be

held fixed under a coarse graining prescription. Let us
explore one option based on plausible assumptions; how-
ever, the choices described below are not necessarily
unique. The area law obeyed by holographic screens
suggests that the regions corresponding to different σ
should nest along the screen. Together with the fact that
we join a null light sheet to σ along the þk direction, this
suggests that the past wedge of σ is what should be thought
of as being held fixed. However, according to this reason-
ing based on the area law, it seems reasonable that the
region being held fixed should be augmented to include the
part of the holographic screen that is foliated by leaves with
a larger area than σ. For future reference, let us call this the
part of the screen that is forward to σ.
At this point we can invoke the sequestration arguments

of the previous section. Consider the null congruences that

emanate from X. So that we avoid a situation in which the
congruence in the −l direction intersects the holographic
screen—as discussed in Sec. III C 1—we conclude that
there must be some obstruction to the congruence before it
hits the screen, for example, in the form of a singularity. See
Fig. 11 for illustration. (Of course, even such a case would
correspond to an irregular holographic screen, cf. Fig. 10.)
Alternatively, the coarse graining procedure could

simply not include the part of the holographic screen that
is forward to σ, but then the challenge is to make sense of
the area law. The observation that a holographic screen
can alternate between having timelike and spacelike
components poses a further conceptual challenge to such
an approach. The basic construction of Refs. [22,23] goes
through whenever the screen is spacelike, but it becomes
unclear how to bridge the coarse graining procedure for
successive spacelike components through timelike com-
ponents. In any case, these observations illustrate the ways
in which screen sequestration can inform possible coarse
graining prescriptions. We also remark that understanding
how to coarse grain the leaves of nonspacelike holo-
graphic screens in AdS black holes may suggest ways to
coarse grain holographic screens in cosmology. This latter
problem is doubly puzzling, as cosmological models
are bereft of an entropic formula like the HRT prescrip-
tion, short of embedding a cosmology in a holographic
spacetime [43,44].

FIG. 11. (a) Future holographic screen inside a spherically
symmetric AdS black hole formed from the gravitational collapse
of matter (shaded). In the matter-containing region, the screen can
have timelike character, and past wedges of leaves in this timelike
part nest. However, if we insist that the region that is fixed under
coarsegraining nestwith all such forward regions, then atminimum
we must also take the union of the past wedge of σ with the outer
wedge of σ�, which is where the screen goes from being timelike to
spacelike. (b) Upon attempting to mimic the construction of
Engelhardt andWall [22,23], we see that any constructed extremal
surface X should be screened, e.g., by a singularity, so as to avoid
running afoul of sequestration constraints.
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V. DISCUSSION

We end this article by connecting the results presented
above to existing literature, as well as to possible gener-
alizations and future research directions.

A. Relation to other works

Holographic screen sequestration by HRT surfaces most
closely connects with recent work by Engelhardt and
Folkestad, in which they proved that trapped surfaces in
the classical limit of AdS=CFT must lie behind event
horizons [26]. As an intermediate step, they showed that
minimar surfacesmust lie behind event horizons, and thus so
do spacelike holographic screens. In AdS=CFT, a conse-
quence of causalwedge inclusion is that anyHRT surface for
a complete connected component of the asymptotic boun-
dary must be causally disconnected from the boundary
component in question. If the HRT surface is nontrivial, it
must therefore lie behind an event horizon. Therefore, in the
case where a minimar surface is part of a holographic screen
that is hidden behind an event horizon that also hides anHRT
surface,we can think of sequestration as further constraining
the region behind the horizon in which the minimar surface
can lie. In another sense, sequestration is complementary to
Engelhardt and Folkestad’s findings, since it also constrains
where nonminimar surfaces—namely, marginal surfaces
that foliate timelike, mixed, or indefinite-signature holo-
graphic screens—can lie when HRT surfaces are present.
The arguments for screen sequestration do not make use of
the holographic dictionary, and so in principle the results
remain applicable for spacetimes that are not asymptotically
AdS, provided that they admit nontrivial (boundary-
homologous) HRT surfaces.

B. Other extremal surfaces

In proving results about sequestration, we worked exclu-
sively with HRT surfaces, which in particular are extremal
surfaces that are maximin. There are of course other types of
extremal surfaces: minimax extremal surfaces, which have
maximal area on a Cauchy surface and have the least area
among the maximal area slices of a complete family of
Cauchy surfaces, or even “maximax” surfaces, which are
largest area surfaces among such a family of maximal area
surfaces. Examples of minimax and maximax extremal
surfaces are the equatorial sphere of the throat of a closed
bouncing Friedmann–Lemaître–Robertson–Walker (FLRW)
cosmology and the equatorial sphere of the maximal volume
slice of a big bang–big crunch FLRW cosmology, respec-
tively. In such cases, however, the extremal surface has little
sequestering power. In a diagram that is analogous to Fig. 3,
the extremal surface X would look like an attractor rather
than a saddle. The absence of any lines that represent
surfaces of increasing area away from X prevent us from
forming the forbidden loops that were necessary to argue for
sequestration, save for the loop shown in the bottom right of

Fig. 3. We therefore conclude that future (past) holographic
screens are only forbidden from crossing from OW ½X� into
I−½X� (Iþ½X�) in the nonmaximin case.

C. Semiclassical generalizations

In this article, we presented purely geometrical argu-
ments and demonstrated results that apply to classical
general relativity. Nevertheless, we expect the results on
sequestration to continue to go through when semiclassical
quantum corrections are taken into account.
In particular, one can define a semiclassical version of a

holographic screen called a Q-screen [45], essentially by
replacing all instances of references to the area of surfaces
with the generalized entropy associated to surfaces [15–17].
Given a closed, spacelike, codimension-two surface σ that
splits a Cauchy hypersurface Σ into the interior Σ−½σ� and
exterior Σþ½σ�, the generalized entropy associated with σ is

Sgen½σ� ¼
A½σ�
4Gℏ

þ SðρoutÞ; ð20Þ

where ρout ¼ trΣ−½σ�ρ and ρ denotes the state of quantum
fields on Σ. A Q-screen is then a codimension-one hyper-
surface that admits a foliation by surfaces whose generalized
entropy is stationary with respect to deformations in one null
direction and has variations of definite sign in the other
null direction. Equivalently, one can define the quantum
expansion in the null direction k at a point y∈ σ as

Θk½σ; y� ¼ lim
δA→0

4Gℏ
δA

dSgen
dλ

����
y
; ð21Þ

where δA is a small element of area on σ at y and λ is an affine
parameter for the null geodesic generated by k. The leaves of
a future (respectively, past) Q-screen then satisfy Θk½σ� ¼ 0
and Θl½σ� < 0 (respectively, > 0) where, just as with
(classical) expansion, in omitting from the argument the
point y∈ σ we mean that the (in)equality holds everywhere
on σ.
In complete analogy with holographic screens, one can

show that Q-screens obey a monotonic generalized entropy
law [45] if one assumes the quantum focusing conjecture
(QFC) [46], which states that quantum expansion is non-
decreasing along any null congruence,

dΘ
dλ

≤ 0: ð22Þ

In order to generalize sequestration to Q-screens, the last
generalization that we must make is to replace maximin
HRT surfaces with quantum maximin surfaces [47].
Analogously to classical maximin surfaces, a quantum
maximin surface is obtained by minimizing generalized
entropy on a complete family of Cauchy hypersurfaces
and then identifying the minimal surface of maximum
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generalized entropy (or any one of such surfaces if there
are several). A quantum maximin surface has vanishing
quantum expansions, and it can be shown that a quantum
maximin surface is also a quantum extremal surface [48]
provided that it possesses an additional stability property
[47]. Assuming the QFC, it then follows that quantum
maximin surfaces sequester Q-screens in the same way that
classical maximin surfaces sequester holographic screens.
In connection with semiclassical generalizations, it is

natural to ask whether the results presented in this work
have any connection to quantum extremal islands (see
Ref. [49] for a review). These regions appear in the islands
formula, which is a proposal for how to compute the (fine
grained) von Neumann entropy of a nongravitating system
when it is coupled to an auxiliary system that gravitates.
Among its by-now myriad applications, the islands formula
has been shown to produce a Page curve for the Hawking
radiation in a large variety of models of evaporating
black holes coupled to a nongravitating reservoir (e.g.,
Refs. [50–56] to name but a few). If R is the nongravitating
system, then the islands formula gives the following
prescription for computing the von Neumann entropy of
the reduced state of R:

SðρRÞ ¼ min extI

�
Sðρ̃R∪IÞ þ

A½∂I�
4Gℏ

�
: ð23Þ

The extremization and minimization is over the location
and shape of an island I—in other words, a (partial)
Cauchy slice—within the gravitating system, and the tilde
over ρ̃R∪I is to denote that we are instructed to evaluate the
von Neumann entropy of the semiclassical state of quan-
tum fields on the curved spacetime region R ∪ I.
While SðρRÞ is a generalized entropy and the boundary

of the island is a quantum extremal surface, we cannot

immediately conclude that ∂I sequesters Q-screens in the
same way that a quantum maximin surface does, since the
region R ∪ I need not have any relation to the region Σþ½σ�
used in defining the Q-screen. That said, it may be possible
to define a Q-screen in a different way, e.g., by replacing
ρout ¼ trΣ−½σ�ρ with a state defined on Σ−½σ� ∪ R or some
other region that includes R, for which conclusions may be
drawn about sequestration by ∂I.
In relation to Sec. IV, quantum extremal islands may

have some connection to coarse grainings based on leaves
of timelike holographic screens in the interior of an AdS
black hole. For instance, an island in the black hole interior
provides a new geometric reference that could affect the
way one thinks about nesting of the causal wedges of
screen leaves. While these comments are perhaps the seeds
of interesting questions, we leave further investigation to
future work.
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