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We investigate the ergoregion instability of area-quantized rotating quantum black holes (QBH) under
gravitational perturbation. We show that the instability can be avoided in binary systems that include QBHs
if the separation between the inspiraling components at the onset of black hole formation is less than a
critical value. We also analyze the formation history of such systems from stellar progenitors and
demonstrate that a significant fraction of progenitor masses cannot lead to QBH formation, making it
unlikely for LIGO-Virgo black hole binaries to comprise rotating QBHs.
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I. INTRODUCTION

Black holes (BHs) are a unique laboratory to test our
understanding about the fundamental laws of nature. Over
time, multiple potential BH candidates have been probed
using a variety of observational techniques, including the
detection of gravitational waves (GWs) by the LIGO-Virgo
Collaboration, the observation of BH shadows via the
Event Horizon Telescope, and the analysis of other astro-
physical phenomena using electromagnetic radiation.
These observations have consistently affirmed the presence
of massive compact objects that exhibit characteristics akin
to those of BHs. Nonetheless, the possibility persists that
these entities may in fact be BH mimickers, lacking the
defining feature of an event horizon. Hence, a key focus of
current astrophysical research is to develop observational
methods to distinguish these objects from genuine BHs.
Though BHs are solutions to the classical gravitational

field equations, their event horizons may reveal interesting
features of the yet-to-be-found quantum theory of gravity.
One such possibility was proposed by Bekenstein and
Mukhanov [1,2], who considered the idea of a quantum
BH (QBH) with horizon area quantized in linear steps
(restoring c, G, and ℏ for the moment),

A ¼ αl2
pN: ð1Þ

Here, N is a positive integer, lp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c3

p
is the Planck

length, and α depends on the specifics of the quantum
gravity. Though there are some heuristic arguments for
fixing the value of α [1–4], it can also be treated as a

phenomenological constant to be measured from observa-
tions. Interestingly, besides Bekenstein’s original justifica-
tion based on the adiabatic nature of the BH area [1,2], such
discretization might arise as a generic prediction of some
proposals of quantum theory of gravity [5–11].
It was recently recognized that such area-quantized

QBHs have distinctive signatures in GW observations
because of their selective absorption only at certain
characteristic frequencies [12,13]. For a rotating QBH
of surface gravity κ and horizon angular velocity Ωh, the
characteristic frequency associated with the transition
ðN; jÞ → ðN þ n; jþ 2Þ is given by [13]

ωn ¼
�
ακ

8π

�
nþ 2Ωh þOðN−1Þ: ð2Þ

Owing to the selective absorption at the horizon, the
emitted GWs in the inspiral and postmerger phases of a
binary (having at least one QBH as a component) will
contain imprints of area quantization. Recent works on tidal
heating in the inspiral phase [14] and echo signals in the
ringdown stage [15] have already shown promising results
in this direction. These results suggest that the QBHs may
offer an interesting alternative to the standard BH para-
digm. Also, if detected, the spectrum of area quantization
may provide crucial information about the nature of
quantum gravity. All these possibilities have led to a large
volume of research aimed at investigating the character-
istics of such systems [16–20].
Despite these exciting advancements, it is imperative

to ensure that QBHs do not suffer from any pathology.
Otherwise, we can exclude such objects on mere physical
grounds. In this work, we study the stability of rotating
QBHs under the so-called ergoregion instability [21],
which is linked to the phenomenon of superradiance below
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a critical perturbing frequency fc [22]. Note that a QBH is
stable under perturbations with frequencies f > fc, due to
the absence of superradiance. However, QBHs behave like
perfectly reflecting stars when subjected to perturbations
characterized by frequencies lower than fc, rendering
instability of the system as shown in Refs. [23–25].
Interestingly, for binary systems having at least one QBH

component, such instability is avoided if the separation
between two inspiraling components at the onset of a BH
binary is less than a certain critical value corresponding
to the critical frequency fc, provided the spin of the QBH
formed from the progenitor stars is less than a characteristic
value. Using this stability criterion, we find the permissible
masses of the progenitor binary stellar systems which can
evolve to become binaries with at least one stable QBH.
We conclude by showing how stability considerations for
QBHs disfavor a significant part of the parameter space for
the progenitor masses and provide an upper limit on the
mass of BH candidates detected by the LIGO observations
to be stable QBHs.
The ergoregion instability has been previously used to

constrain the abundance of horizonless compact objects
like a QBH [26]. This is done by computing the stochastic
background of gravitational waves generated by the insta-
bility. The absence of such a background in LIGO
observations imposes stringent limits to the abundance
of such BH alternatives. We consider our work as com-
plementary to such results. Instead of the generation of the
gravitational waves, we consider the formation history of
QBHs from stellar evolution and find the parameter space
of progenitor stars which may lead to stable QBHs.

II. ERGOREGION INSTABILITY FOR QBHs

In the case of rotating QBHs, the incoming perturbation
is completely reflected except at the characteristic frequen-
cies fn ¼ ωn=2π referred from Eq. (2). In contrast, at a
generic frequency f ≠ fn, the surface of the object behaves
as a perfectly reflecting boundary with zero transmissivity.
Consequently, the reflectivity of a QBH can be modeled as
RðfnÞ ¼ 0, and away from the characteristic frequencies
RðfÞ increases smoothly on both sides to reach a value
Rðfn � Γ=2Þ ¼ 1, where Γ denotes the line broadening
due to spontaneous Hawking radiation [13].
Interestingly, if the perturbation frequency f is greater

than the lowest transition frequency f0 ¼ ω0=2π with
ω0 ¼ 2Ωh from Eq. (2), there will be no ergoregion
instability in the absence of superradiance (which requires
ω < 2Ωh). Thus, QBHs are stable for f > f0. However,
perturbations below this frequency will lead to ergoregion
instability, whose effect will be most prominent in the
absence of any surface absorption [24]. Then, taking
into account the line broadening, a QBH behaves like a
perfect reflector below the critical angular frequency
ωc ¼ ω0 − Γ=2. Note, the quantity Γ=2 denotes the half
width on both sides of a transition line fn (here, n ¼ 0).

Since the value of ωc is independent of α, area-quantized
BHs suffer from ergoregion instability at perturbing
frequencies below fc ¼ ωc=2π irrespective of the choice
of α > 0.
Note that the ergoregion instability is prominently

caused by the perturbing GW frequencies in the inspiral
phase. These frequencies depend not only on the compo-
nent QBH’s mass and spin, but also on the instantaneous
orbital separation. Therefore, unlike the cases presented in
Refs. [23–25] with quasinormal modes as the perturbations,
we have no bound on the BH’s spin to set in the ergoregion
instability. In fact, for our case, the stability condition
f > fc can be translated to a bound on the binary orbital
separation discussed in the next section. Moreover, cri-
tiques may argue that the instability timescales are so large
that one may still observe QBH binaries. However, an
intuitive argument shows that is not the case. For this
purpose, we may follow the analysis of Refs. [23–25] and
place the near-horizon reflective boundary condition at
r ¼ rh þ δ, where rh is the location of the Kerr horizon and
δ ≪ rh. Then, the instability timescale is an order-unity
multiple of rhj logðδ=rhÞj, which is roughly the light-travel
time to reach the inner reflecting surface from any finite
distance outside the horizon. Thus, for BHs observed by the
LIGO with mass not more than 100M⊙ and for reasonable
values of δ ∼ lp, the instability timescale is always less
than a second.
Therefore, solely those QBHs can survive the ergoregion

instability and manifest as a viable alternative to the classical
Kerr BHs, for which the perturbing GW frequency is always
above the critical frequency fc. This is only possible if, at the
onset of the formation of the BH binary via an astrophysical
process, the separation between two inspiraling components
(at least one of which is a QBH) is less than a certain critical
value corresponding to fc. Thus, the question of stability is
then related to the formation history of the BH binary.
However, if the formation process leads to nonrotating BHs,
the system does not suffer from such instability and hence
cannot be ruled out on this ground.
Note, though we are using gravitational waves as the

dominant source of perturbation, there are indeed other
possible sources as well (e.g., accreting matter and electro-
magnetic, etc.), which may also add to the ergoregion
instability. Moreover, we are only considering a continuous
source of perturbation, due to the gravitational radiation,
till the ergoregion instability sets in. Nevertheless, once
the instability sets in, there is no need for a continuous
perturbation to sustain the instability.1

III. POPULATION ANALYSIS

Consider a binary system with at least one component
being a QBH. Then, there is always a perturbing GW with

1We thank Vitor Cardoso for bringing this point to our notice.
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an angular frequency 2Ω, where Ω is the average orbital
angular frequency. The parameter space of this binary
is given by the component masses mi, spins χi, and the
binary separation a. Here, the index i represents the QBH
component(s) in the binary. Since at least one of the binary
components is a QBH, we can conclude that any arbitrary
configuration of fmi; χi; ag cannot render a stable system if
ω < ωc, as discussed in the previous section. However, as
the average orbital angular frequency ΩðtÞ of binaries is a
monotonically increasing function of time, the binary will
be stable throughout its lifetime if during its formation,

2Ω > 2ΩðiÞ
h −

1

2
ΓðiÞ; ð3Þ

where Γ is the broadening factor of a characteristic
absorption line. This condition ensures that after the
formation of the QBH, the perturbing frequency is always
greater than the critical value. Now, if the rhs of Eq. (3) is
negative, we are guaranteed unconditional stability since
the lhs is always positive. This will happen if

2χðiÞ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2ðiÞ

q < mðiÞΓðiÞ: ð4Þ

Here, it is understood that the index i refers to the
QBH component(s) of the binary. Then, using the fitting
function for mðiÞΓðiÞ used in Ref. [13], Eq. (4) places an
upper bound on BH spin required for unconditional
stability as χðiÞ ≲ 0.0016.
For the remainder of the parameter space, we use

Kepler’s third law to convert the Ω inequality in Eq. (3)
into an inequality in a. Simultaneously, the restriction to the
inspiral phase means a > 6mwithm being the total mass of
the binary. It is because a ¼ 6mmarks the innermost stable
circular orbit (ISCO), where the inspiral phase ends to
initiate the radial plunge. Combining them together, we get
the following inequality:

6m < a <

�
m

ðΩG
h Þ2

�
1=3

: ð5Þ

Here,ΩG
h ¼maxð2Ωð1;2Þ

h − 1
2
Γð1;2ÞÞ for a double QBH binary

and ΩG
h ¼2Ωh− 1

2
Γ for a single QBH system. Thus, Eq. (5)

dictates the allowed range of the binary separation such that
the inspiraling QBH component(s) is(are) stable.
For a given mass ratio q ¼ m2=m1, Eq. (5) holds true

only for a range of values of spin. In Fig. 1, we plot this
threshold spin value (χG) as a function of q. The superscript
“G” bears the same meaning as discussed earlier. Thus, a
QBH system with ðq; χÞ lying in the unshaded region
cannot form a stable binary.
At this point, it is worth mentioning that both the ISCO

radius and Kepler’s law receive spin corrections as the

QBH(s) under consideration are Kerr BH(s). However,
even for the extremal case, these corrections can at most
induce some order-unity modifications, and thus, it will not
alter the main result (stability/population analysis) of our
work. Hence, we shall continue here with Eq. (5).
Now, we need to know how probable it is for a QBH

component to respect the above condition at the onset of the
formation of the binary. It is clear that every individual
binary configuration would predict a range of stable a that
satisfies Eq. (5). Adding up those ranges over configura-
tions drawn from a population with characteristic mass and
spin distribution, we can generate a probability density plot
of a. Sophisticated mass distribution functions have been
considered in literature [27,28], but for simplicity and
without loss of generality we consider a uniform and a
sharp Gaussian mass distribution as endpoints of a spec-
trum of distributions. BH spins on the other hand are seeded
from a uniform distribution with 0.0016 < χ ≤ 1.0, ensur-
ing no QBH to be unconditionally stable.
The result of such a computation is shown in Fig. 2 for

both single and double QBH systems. As a check of
consistency, we have also overplotted population distribu-
tion of a with the posterior of amax ¼ m1=3ðΩG

h Þ−2=3
obtained from GW150914 and GW170608. Therefore,
we conclude that irrespective of component QBH masses,
the formation of a stable binary is possible if the separation
a at the onset of the binary formation is in the ballpark of
about a thousand solar Schwarzschild radii (the peak of the

FIG. 1. Allowed values of χG as a function of mass ratio q. The
unshaded region (extends up to the extremal value χG ¼ 1 of
spin) denotes the parameter space where Eq. (5) fails to hold.

FIG. 2. Probability density plot of orbital separation (a)
necessary for the stability of binary QBHs. Component masses
are seeded from Gaussian (top) and uniform distributions.
QBH spins are uniformly seeded. The shaded ranges show the
calculated 95% CLs of a posteriors of GW150914 (brown shade)
and GW170608 (gold shade).
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posteriors is near 750 Km). This is a very small number
compared to the average separation between objects
trapped in binaries in our local Universe, indicating a
low probability of stable QBHs in a binary. However, to
convert this intuition into a result, we now investigate
whether there exist progenitor configurations and formation
channels which can theoretically give rise to such values of
a when the binary BHs (BBHs) are born.

IV. FROM PROGENITOR CONFIGURATION
TO BBHs

For this work, we solely consider potential progenitors
that give rise to stellar-mass BBHs typically observed by
LIGO. These BHs are thought to be the remnants of core
collapsed massive (≥ 25M⊙) stars. Based on well-studied
models of stellar population synthesis (for example, see
Ref. [29]), the most prominent channel of forming a BBH is
that progenitor main-sequence stars get trapped in mutual
orbit until both its components collapse to BHs, provided
the remnants manage to remain in orbit at the endpoint of
the entire evolution. Thus, the relevant progenitor configu-
ration space consists of four parameters, namely their
masses mP

1 ; m
P
2 ðmP

2 ≤ mP
1 Þ, the binary separation aP, and

orbital eccentricity eP. Here, P is an index over the
progenitor configuration space. Our goal is to calculate
an absolute lower limit of aP during the orbital evolution
via a method of systematically underestimation discussed
in detail in the Appendix. It makes the perturbing GW
frequency as large as possible, presenting the greatest
possibility of creating a stable QBH binary.
BHs are not the only remnants possible when progenitor

stars die. For the remnants to be just BHs, we impose
reasonable cutoffs (see Ref. [30]) of mP

1 ; m
P
2 ≥ 25M⊙ on

the progenitor masses. Additionally, hydrostatic equilib-
rium restricts the mass from above. For our purpose, we
have taken this to be 100M⊙, i.e., mP

1 ; m
P
2 ≤ 100M⊙. The

space of progenitors off limits are indicated by the gray
shaded regions of Fig. 3. We can now pick possible
progenitor configurations P and evolve them to obtain
the final interbinary separation, under our method of
systematic underestimation. However, we note that as
mP

1 ≥ mP
2 , the lifespans of the progenitors will not be

equal, meaning that in order to get stable double QBHs, the
first QBH formed (from m1) would have to be stable as a
star-BH system.
We evolve our progenitor configurations to see if the

stability condition given by Eq. (5) is obeyed during the
star-QBH and QBH-QBH period. It should be noted that an
unstable star-QBH system is highly unlikely to evolve to a
stable QBH-QBH system, meaning that the instability of a
star-QBH system is a much stronger result compared to its
QBH-QBH counterpart. However, for making a decisive
claim, we have evolved the progenitors to attain the
QBH-QBH phase as well. The processes treated under

our scheme are namely the binary evolution of the
progenitor masses under GW emission, the conservative
Roche overflow, and the treatment of one or more succes-
sive supernova kicks.
As a part of our systematic underestimation scheme, we

take the progenitors to start from that separation slightly
above the Roche limit which ensures the fastest coalesce
rate (because of a greater allowable eccentricity) and no
Roche overflow during binary formation. Another impor-
tant part of our calculation is the effect of two successive
supernovas and the associated kicks on our systematic
underestimation procedure. A curious reader may follow
the Appendix for more details.
Finally, we perform our analysis with three values of

kicks, namely 50 (low), 100 (moderate), and 1000 km=s
(high) [31]. Here, in Fig. 3, we have only shown the case
for the kick at 100 km=s. The plots for the other two kick
values are presented in the accompanying the Appendix.

FIG. 3. BBH distances a (in units of Sun’s radius R⊙, as shown
in the side bar) at the instant of formation as a function of the
progenitor configuration. The progenitors start out from a mini-
mum possible distance as explained in the text. Then, they undergo
two nova kicks (bottom figure is for the first nova, whereas the top
figure is after the second nova) of 100 km=s as they form QBHs.
Note that the gray-shaded portion cannot generate a BBH system.
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V. RESULTS AND CONCLUSIONS

Our results of the computations of the binary separations
attained after systematic underestimation are presented
in Fig. 3. First, it is evident that for allowed progenitor
configurations, the BBHs are born with a values far outside
the 90%CL of the a posterior required to form stable QBHs
as suggested by Fig. 2. Thus, it can be concluded that
progenitors from the allowed regions (shaded blue portion
in Fig. 3) are extremely unlikely to form stable QBH
systems, even if every single process in the formation
channel was to act favorably. Second, we notice that there
are portions of the parameter space in Fig. 3 where
systematic underestimation of aPðtÞ gives zero. It implies
that these configurations may (at least in theory) give rise
to the similar separations depicted by Fig. 2. Since our
calculation is an underestimation, these configurations
should be interpreted as the maximum allowable upper
limit of the progenitor population that can possibly give rise
to stable QBH systems. Among these theoretically possible
systems, some of the configurations with parameters ðq; χÞ
will be ruled out if they happen to lie in the unshaded region
of Fig. 1.
Combining all these results together, we calculate the

region of progenitor parameter space which can possibly
support QBHs (light blue area in Fig. 3) as about 42.5% of
the allowable progenitor parameter space (nongray area).
More interestingly, this ratio is almost independent of the
kick values (∼50–1000 km=s). For example, even a high
value of kick like 1000 km=s can at best make a difference
of ∼1–2%.
Finally, we note that as the masses of progenitors capable

of generating stable QBHs are restricted and that the
remnant masses cannot be larger than those of the progeni-
tors, our results also indicate an upper bound for the mass
of stable QBHs. More quantitatively, we observe from our
plots that BBH configurations with total mass m ≥ 120M⊙
and q ≥ 0.6 are highly unlikely to be QBHs.
In conclusion, we conducted a detailed, systematic

analysis of the possible formation history of area-quantized
quantum black holes from the evolution of stellar binary
systems. We have arranged the setup so that every aspect of
the process of binary evolution conspires to create a stable
QBH. Nevertheless, we have found that about 60% of
allowed progenitor stellar masses still cannot form a stable
QBH. In the actual physical situation, it is unlikely that all
the physical effects will favor the formation of QBHs.
So, we have found only an upper limit of stability; the
actual possible range of stellar masses, which can evolve to
form a stable QBH, will be much lower than this estimate.
Therefore, in conclusion, our work strongly suggests that it
is rather unlikely for LIGO-Virgo black hole binaries to be
comprised of rotating area-quantized QBHs.
An important assumption in our work is to use the Kerr

solution as the exterior spacetime of QBHs. Given the
absence of a rotational version of the Birkhoff theorem, this

assumption is not fully accurate. Nevertheless, it has been
shown that the spacetime structure of a sufficiently compact
horizonless object resembles the Kerr solutions to a good
approximation [32,33]. Still, it would be interesting to
repeat our work using a different exterior spacetime.
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APPENDIX

1. Effect of area quantization on the line width

Area-quantized BHs decay via emission of characteristic
frequencies as given by Eq. (2) of the main text. The
available decay channels are thus fewer when compared to
their classical counterparts. Moreover, the calculation of the
broadening factor Γ≡ ΓCBH of the characteristic transition
lines (as prescribed in Ref. [13]) is based on a semiclassical
calculation of Hawking radiation by Page [34], which for
the above reason overestimates the line width and can only
be treated as an upper bound on the actual quantum-
corrected line width ΓQBH.
Since there is no known estimate of the quantity ΓQBH,

one faces an immediate challenge to obtain an upper bound
(χ ≤ χc) on the QBH spin required for unconditional
stability; see Eq. (4) of the main text discussing the case
ΓQBH ¼ ΓCBH. In such a scenario, we may take a simplified
assumption that ΓQBH is some fraction/percentage of ΓCBH.
In Fig. 4, we have plotted the critical spin χc as a function of
this percentage. It suggests that the value χc always remains
small (in fact, bounded above by 0.0016) irrespective of
the percentage change. Moreover, we have explicitly
checked that this alteration has a negligible effect on
our population analysis.

2. Initial configuration of progenitors

We highlight briefly our strategy to compute the initial
binary progenitor quantities DP, ϵP, given a pair of
progenitor masses mP

1 , m
P
2 . We start with the expression
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of the Roche radius of the heavier star mP
1 which is

approximated to within 1% accuracy by Eggleton’s
formula [35]

rPRLðmP
1 ;m

P
2 ;DÞ¼D×

2
64 0.49

�
m1

m2

�
2=3

0.60
�
m1

m2

�
2=3þ log

h
1þ

�
m1

m2

�
2=3

i
3
75

ðA1Þ
for a given interbinary separation D. To get the Roche
radius of the smaller star, we just need to swap the labels 2
and 1. We guarantee a no-overflow condition at the outset
by demanding that the Roche radii rPkRL of each of the
components remain larger than their corresponding physi-
cal radii Rk. It is clearly evident that both inequalities set
corresponding lower bounds on D. The main sequence
mass-radius scaling [36] implies that satisfying the Roche
condition at the heavier star automatically ensures it at the
smaller star as well. This then, sets for us a minimum
distance DP

RL between the binary components. However, it
is also immediately clear that at such a separation the orbit
is forced to be circular if it has to obey the no-overflow
criterion. A separation D ≥ DP

RL can permit the orbit
to be eccentric, with an upper limit to the eccentricity
eP ≤ ð1 −DP

RL=DÞ. Increasing separation reduces the rate
of quadrupolar emission, while increasing eccentricity
increases it. It thus turns out that the binary in eccentric
orbit with a separation DP slightly above DP

RL is respon-
sible for the fastest coalescence rate, as is demonstrated in
Fig. 5. In our algorithm, we compute this separation and
eccentricity ϵp corresponding to the maximum average
coalescence rate for every pair of progenitor masses, thus
giving us fmP

1 ; m
P
2 ; D

P; ϵPg.

3. Systematic underestimation

We now highlight our semianalytical method of system-
atic underestimation, which allows us to estimate an

absolute lower limit of the interbinary separation at their
endpoint of progenitor evolution for a given initial con-
figuration fmP

1 ; m
P
2 ; D

P; ϵPg. In the following details, we
will suppress the superscript P for brevity.
(i) Incorporating Roche overflow: Although Roche

overflow is assured not to happen initially, it may still
occur during the evolution. There are two important factors
associated with the overflow that may influence the evolu-
tionary outcome: its nature (conservative or nonconserva-
tive), and the associated timescale. Though important for
BBH formation [37], the nonconservative Roche tidal
stripping and the common envelope (CE) evolution phase
cannot be accounted for by our simplified method and
need numerics which are beyond the scope of this work.
However, since the relevance and relative occurrence of
these processes are not yet fully understood [38,39], we can
hope to get an indicative (and partial) answer even if we do
not take them to account.
For reasons stated before, we consider the Roche flow to

be conservative. Then, consistent with our aim of system-
atically underestimating aP, the Roche overflow is treated
to be instantaneous and is terminated when the composition
of the binary becomes symmetric.
Let “bR” and “aR” be the labels for configurations

before and after the Roche transfer. Then, assuming
conservative transfer we end up with

δa
a

¼
��

μbR
μaR

�
2

− 1

�
: ðA2Þ

As the Roche transfers symmetrizes the configuration, the
term in brackets is negative, meaning δa < 0. This result
should now be compared with the loss of separation from

FIG. 4. Critical value (χc) of spin is plotted as a function of the
percentage (¼ 100 × ΓQBH=ΓCBH) change of semiclassical line
width due to area quantization. The red diamond on the top right
corner represents the case where ΓQBH ¼ ΓCBH.

FIG. 5. Average coalescence rates hda=dti for two different
progenitor mass configurations P1 ¼ ½100; 50�M⊙ and P2 ¼ ½75;
35�M⊙, as a function of distances aboveDP

RL. Themaximization is a
result of the antagonistic effects of eccentricity and separation.
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quadrupolar GW emission, which (for circular orbits) is
given by

da
a

¼ −
64

5

μm2

a4
dt: ðA3Þ

Realistically, both processes can happen simultaneously in
nature which require simulations to solve. However, it is
immediately apparent that when Eqs. (A2) and (A3) are
taken together, the efficiency ðδa=aÞ of GW emission to
decrease a increases as −a−4, while that for the Roche stays
constant, for a given progenitor configuration. In a sys-
tematic underestimation, one must find the maximally
efficient combination of processes that decrease a. The
corresponding chronological order turns out to be the
Roche overflow followed by GW emission.
(ii) Incorporating the supernova kicks: Let us now

extend the systematic underestimation to the treatment
of the novas and their respective kicks. Supernova simu-
lations demonstrate that following a supernova explosion,
the asymmetric ejection of material may impart a resultant
natal kick to the supernova remnant. The magnitude
and direction of this kick is an intrinsically model depen-
dent quantity, as has been demonstrated by simulations
[30,40,41]. Additionally, it has also been argued [37,42]
that novas seem to disrupt binary progenitor systems and
predict rates lower than models which assume CE evolution
followed by a direct BH formation without any nova.
Nonetheless, novas continue to be a relevant phenome-

non, given the uncertainties in modeling the event detec-
tion rates. A nova kick occurring prograde with the binary
orbital motion is likely to increase the interbinary sepa-
ration and may even disrupt it, whereas a nova kick
retrograde to the orbital motion carries away angular
momentum from the system and reduces aPðtÞ.
Continuing with our underestimation procedure, we take
each of the novas to be retrograde. The angular momen-
tum carried away by the ejecta is clearly dependent upon
mass of the ejecta and remnant as well as on the kick
velocity imparted to the remnant. As mentioned before
this is intrinsically model dependent. Therefore, for all
points in the progenitor space and for each nova therein,
we assume a fixed value of the kick velocity. As expected,
the range of magnitudes of the imparted kick velocity is
speculative as well.
Despite the uncertainty, an idea about kick magnitudes

can be constructed by the observation of postnova kick
velocity distributions of isolated pulsars which were
observed to be fitted by a Maxwellian distribution having
standard deviation of 265 km=s [31]. In our work, we have
assumed this velocity distribution to be representative of
nova kicks to their remnants. Finally, we perform our
analysis with three values of kicks, namely 50 (low),
100 (moderate), and 1000 km=s (high), among which
the case for moderate kick has been discussed earlier,

whereas the plots for the other two kick values (low and
high) are presented in Fig. 6.
In addition, note that the nova timescales are much

shorter than the orbital timescale of the progenitor binary,
and hence the nova and its kick are assumed to be
instantaneous. This also means that the force on the binary
components continues to obey the 1=r2 law immediately
before and just after the nova. We analyze the low to
moderate kick regime first. As explained, the nova imparts
a kick velocity δv, while taking away some mass δm from
the system as ejecta. Remembering L ≔ μa2Ω and Kepler’s
third law Ω2a3 ¼ m, we have

δa
a

¼ 2

�
δL
L

�
− 2

�
δμ

μ

�
−
δm
m

: ðA4Þ

Notice that for novas δm (and therefore δμ) is itself
negative, so underestimating would mean setting the last
two terms to zero, as well as ensuring δa=a < 0 through a
maximally retrograde dump δL of angular momentum
during the kick. It turns out that for both the novas the
maximally retrograde δL is achieved when δL=L ¼
δv=ðaΩÞ. The values of δv are then chosen as explained
in the main text. Let us now move to the high kick regime,
where Eq. (A4) is modified as

Δa
a

¼
�
1þ ΔL

μa2Ω

�
2
�
1þΔμ

μ

�
−2
�
1þΔm

m

�
−1
−1: ðA5Þ

FIG. 6. BBH distances a½R⊙� at birth for low (50 km=s) kicks
on the left and high (1000 km=s) kicks. Upper and lower panels
denote postnova 2 and postnova 1a’s respectively. Note that the
high kicks have to be treated nonlinearly.
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We denote the differential changes now by Δ to indicate
nonlinear behavior. We can again set Δμ ¼ Δm ¼ 0
initially, as keeping them nonzero would increase Δa=a.
Once again we need to calculate the maximum retrograde
dump ΔL. It is found that this value is equal to
ΔL=ðμa2ΩÞ ¼ ð1 −mopp=mTÞ, where mopp is the mass
of the component opposite to the one having the nova,
and mT is the total mass just before the nova. Putting this
back into Eq. (A5), we get

Δa
a

¼
�
1 −

mopp

mT

�
2

− 1: ðA6Þ

Interestingly, we note that from Eq. (A6), the quantity
Δa=a now becomes independent of the kick velocity, while
underestimation in the nonlinear regime. After the first
nova the quantitymopp=mT ¼ m2=m. Then, after the second
nova, this quantity turns out to be ðm1þΔm1Þ=ðmþΔm1Þ,
whereΔm1 is the magnitude of the mass carried away at the
first nova. Also, we remind ourselves that in our convention
Δm1 < 0. A systematic underestimation can further be
performed considering that the above fraction increases
monotonically with Δm1 in the physically viable range
−m1 ≤ Δm1 ≤ 0. Setting Δm1 ¼ 0, we can therefore get
the maximum possible of mopp=mT ¼ m1=m.
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