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Mermin’s inequalities are investigated in a quantum field theory framework by using von Neumann
algebras built with Weyl operators. We devise a general construction based on the Tomita-Takesaki
modular theory and use it to compute the vacuum expectation value of the Mermin operator, analyzing the
parameter space and explicitly exhibiting a violation of Mermin’s inequalities. Therefore, relying on the
power of modular operators, we are able to demonstrate that Mermin’s inequalities are violated when
examined within the vacuum state of a scalar field theory.
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I. INTRODUCTION

The study of entanglement within the realm of quantum
field theory poses a formidable challenge [1,2]. The combi-
nation of quantummechanics and special relativity leads to a
very rich and sophisticated frameworkwhere questions such
as locality and causality come up as a building block [3,4]. A
quantum field theory naturally presents quantum fields as
operator-valued distributions and a vacuum state that unveils
a profoundly intricate structure enlightened by the Reeh-
Schlieder theorem [5]. Therefore, dealing with entangle-
ment in quantum field theory demands sophisticated tools
such as algebraic quantum field theory and the Tomita-
Takesaki modular theory [6,7].
Although the idea of entanglement [8] was introduced

in the 1930s [9], it was only with the groundbreaking
work of Bell, Clauser, Horne, Shimony, and Holt (Bell-
CHSH) [10–13] that this counterintuitive feature of nature
could be experimentally confirmed [14–16]. Entanglement
can be considered the deepest departure from classical
physics contained in quantum mechanics [17], and its
existence is now beyond any doubt, with the violation
of Bell-CHSH inequalities already confirmed in many

contexts through highly sophisticated experiments in
different physical systems [18–22].
The Bell-CHSH inequalities, although mainly investi-

gated in the context of quantum mechanics, can also be
investigated within the realm of quantum field theory [6,7]
and are currently receiving much attention [23–27]. Many
experimental tests in the high-energy context were proposed
recently [28–34], which will allow us to investigate entan-
glement in a regime never explored before. Remarkably, the
ATLAS Collaboration announced very recently the first
observation of quantum entanglement between a pair of
quarks and the highest-energy measurement of entangle-
ment to date [35].
Quantum entanglement can be generalized for systems

with more than two subsystems [36–38]. Multipartite entan-
glement was experimentally observed for the first time
in [39] and can be considered a relevant resource for quantum
information theory [40]. Mermin proposed a generalization
of Bell inequalities for multipartite systems [41], which
received further developments in the sequence [42–45]. It is
well known that Greenberger-Horne-Zeilinger- (GHZ-) type
states [46] maximally violate Mermin inequalities, which
have also been investigated for W-type states [47] (see
also [48]). Violations of Mermin inequalities were reported
inmanyworks, as one can see, for instance, in Refs. [49–53].
Moreover, Mermin inequalities violations for superconduct-
ing qubits using a quantum computer were reported in [54].
This work aims to provide a framework for investigating

the violation of Mermin inequalities [41] within the vacuum
state of a real scalar field in the (3þ 1)-dimensional
Minkowski spacetime, thereby extending our previous
findings related to the Bell-CHSH inequality [25]. To that
end, we shall rely on unitary Weyl operators, which, due to
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their algebraic properties, prove to be very helpful for the
study of this class of inequalities within the domain of
quantum field theory. We remark that Mermin inequalities
have already been investigated in the quantum field theory
framework for Dirac spinor fields [55].
The paper is organized as follows. Section II is devoted to

the presentation of a few basic concepts concerning real
scalar fields,Weyl operators, vonNeumann algebras and the
Tomita-Takesaki modular theory. For the benefit of the
reader, in Sec. III we briefly review how the aforementioned
setup applies to the case of Bell-CHSH inequalities.
Section IV delves into the generalization of the previous
construction to the case of Mermin inequalities. We will
show that, when probed in the vacuum state of a relativistic
quantum field theory, these inequalities violate the bound
expected from the local realism. The use of Weyl operators
will enable us to make a bridgewith the recent discussion on
the use of normal operators in quantum theory, as outlined in
Sec. V. Finally, we state our conclusions in Sec. VI.

II. THEORETICAL FRAMEWORK

Let us consider a free massive scalar field in a (3þ 1)-
dimensional Minkowski space, with action given by

S ¼
Z

d4x

�
1

2
ð∂μϕÞ2 −

m2

2
ϕ2

�
: ð1Þ

The scalar field can be expanded in terms of creation and
annihilation operators as

ϕðt; x⃗Þ ¼
Z

d3k⃗
ð2πÞ3

1

2ωk
ðake−ikx þ a†ke

ikxÞ; ð2Þ

with ωk ¼ k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þm2

p
. The canonical commutation

relations for these creation and annihilation operators read

½ak; a†q� ¼ ð2πÞ32ωkδ
3ðk⃗ − q⃗Þ;

½ak; aq� ¼ ½a†k; a†q� ¼ 0; ð3Þ

Using the above definitions, one obtains the following
commutator between the scalar fields for arbitrary space-
time points:

½ϕðxÞ;ϕðyÞ� ¼ iΔPJðx − yÞ; ð4Þ

where the Pauli-Jordan distribution is defined by

iΔPJðx − yÞ ¼
Z

d4k
ð2πÞ3 εðk

0Þδðk2 −m2Þe−ikðx−yÞ; ð5Þ

with εðxÞ≡ θðxÞ − θð−xÞ. From the above expression, one
can see that the Pauli-Jordan distribution is Lorentz
invariant and odd under the exchange ðx − yÞ → ðy − xÞ.

Moreover, it vanishes outside of the light cone, ensuring
that measurements at spacelike separated points do not
interfere. As such, the Pauli-Jordan distribution encodes the
information about locality and relativistic causality.
The quantum fields are operator-valued distributions and

must be smeared to give well-defined operators acting on
the Hilbert space [5]. That is, we can use a real smooth test
function with compact support hðxÞ∈ C∞0 ðR4Þ to define the
smeared quantum field

ϕðhÞ ¼
Z

d4xϕðxÞhðxÞ: ð6Þ

Plugging Eq. (2) into Eq. (6), we can rewrite the smeared
quantum field as ϕðhÞ ¼ ah þ a†h, defining the smeared
version of the creation and annihilation operators by

ah ¼
Z

d3k⃗
ð2πÞ3

1

2ωk
ĥ�ðωk; k⃗Þak;

a†h ¼
Z

d3k⃗
ð2πÞ3

1

2ωk
ĥðωk; k⃗Þa†k; ð7Þ

with ĥðpÞ ¼ R
d4x hðxÞeipx for the Fourier transform of

hðxÞ. Using the smeared fields, one introduces the Lorentz-
invariant inner product in the space of the test functions
with compact support given by the smeared version of the
Wightman two-point function, namely,

hfjgi ¼ h0jϕðfÞϕðgÞj0i

¼ i
2
ΔPJðf; gÞ þHðf; gÞ

¼
Z

d3p
ð2πÞ3

1

2ωp
f�ðpÞgðpÞ; ð8Þ

where ΔPJðf; gÞ is the smeared version of Eq. (5) and
Hðf; gÞ is the symmetric combination of the smeared field
product. Thus, we can rewrite the commutator (4) in its
smeared version as ½ϕðfÞ;ϕðgÞ� ¼ iΔPJðf; gÞ. We remark
that, upon using the canonical commutation relations and
the above-defined inner product (8), one finds that

½aðfÞ; a†ðgÞ� ¼ hfjgi: ð9Þ

Let O be an open set in Minkowski spacetime, and let
MðOÞ be the space of test functions belonging to C∞0 ðR4Þ
with support contained in O, that is,

MðOÞ ¼ ffjsuppðfÞ ⊂ Og: ð10Þ

We proceed by defining the causal complement O0 of the
spacetime region O as well as the symplectic complement
M0ðOÞ of the set MðOÞ as
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O0 ¼ fyjðy − xÞ2 < 0; ∀ x∈Og;
M0ðOÞ ¼ fgjΔPJðg; fÞ ¼ 0; ∀ f∈MðOÞg: ð11Þ

With the above definitions, causality can be rephrased by
stating that ½ϕðfÞ;ϕðgÞ� ¼ 0 whenever f∈MðOÞ and
g∈M0ðOÞ. Furthermore, we can also rephrase locality
using the expression MðO0Þ ⊂ M0ðOÞ (see Refs. [6,7]).
Now, let us introduce the Weyl operators [25], a well-

known class of unitary operators given by

Wf ¼ eiϕðfÞ: ð12Þ

These operators give rise to the so-called Weyl algebra,

WfWg ¼ e−
i
2
ΔPJðf;gÞWfþg: ð13Þ

One can see that when the supports of f and g are
spacelike separated, the Pauli-Jordan distribution van-
ishes, and thus the Weyl operators behave as WfWg ¼
Wfþg ¼ WgWf. It should also be stressed that, unlike the
quantum field ϕðfÞ, the Weyl operators are bounded.
Upon using ϕðfÞ ¼ af þ a†f, one can compute the vacuum
expectation value of the Weyl operator, finding that

h0jWfj0i ¼ e−
1
2
kfk2 ; ð14Þ

where kfk2 ¼ hfjfi and j0i is the Fock vacuum.
One can define the observable algebra AðOÞ associated

with the spacetime region O as the von Neumann algebra
obtained by taking products and linear combinations of the
Weyl operators defined on MðOÞ.1 It is known that, by the
Reeh-Schlieder theorem, the vacuum state j0i is both cyclic
and separating for the von Neumann algebra AðOÞ [1,5].
We can therefore make use of the powerful Tomita-
Takesaki modular theory [56] and introduce the antilinear
unbounded operator S acting on the von Neumann algebra
AðOÞ as

Saj0i ¼ a†j0i; ∀ a∈AðOÞ; ð15Þ

fromwhich it follows thatS2¼ 1 andSj0i ¼ j0i. Performing
the polar decomposition of the operator S [56], one gets

S ¼ JΔ1=2; ð16Þ

where J is antiunitary and Δ is positive and self-
adjoint. These modular operators satisfy the following
properties [56]:

JΔ1=2J ¼ Δ−1=2; Δ† ¼ Δ;

S† ¼ JΔ−1=2; J† ¼ J;

Δ ¼ S†S; J2 ¼ 1: ð17Þ

According to the Tomita-Takesaki theorem [56], it turns out
that JAðMÞJ ¼ A0ðMÞ, that is, upon conjugation by the
operator J, the algebraAðMÞ is mapped onto its commutant
A0ðMÞ,

A0ðMÞ ¼ fa0j½a; a0� ¼ 0; ∀ a∈AðMÞg: ð18Þ
The Tomita-Takesaki construction has far-reaching conse-
quences when it is applied to quantum field theory. As far
as the Bell inequalities are concerned, it gives a way of
constructing Bob’s operators from Alice’s by making use of
the modular conjugation J. That is, given Alice’s operator
Af, one can assign the operator Bf ¼ JAfJ to Bob, with the
guarantee that they commute with each other since by the
Tomita-Takesaki theorem the operator Bf ¼ JAfJ belongs
to the commutant A0ðMÞ [25].
When equipped with the Lorentz-invariant inner product

hfjgi defined in Eq. (8), the set of test functions gives rise to
a complex Hilbert space F which enjoys many interesting
properties, as outlined in [57]. It turns out that the
subspaces M and iM are standard subspaces for F ,
meaning that (i) M ∩ iM ¼ f0g and (ii) M þ iM is dense
in F . Moreover, as proven in [57], for standard subspaces it
is possible to set a modular theory analogous to that of the
Tomita-Takesaki theorem. One introduces an operator s
acting on M þ iM as

sðf þ ihÞ ¼ f − ih ð19Þ
for f; h∈M. Notice that with this definition, it follows that
s2 ¼ 1. Using the polar decomposition, one has

s ¼ jδ1=2; ð20Þ

where j is an antiunitary operator and δ is positive and self-
adjoint. Like the operators ðJ;ΔÞ, the operators ðj; δÞ fulfill
the following properties:

jδ1=2j ¼ δ−1=2; δ† ¼ δ;

s† ¼ jδ−1=2; j† ¼ j;

δ ¼ s†s; j2 ¼ 1: ð21Þ

An important result [57] concerning the operator s is the
following: a test function f belongs to M if and only if

sf ¼ f: ð22Þ

In fact, to illustrate the reasoning behind this assertion,
suppose that f∈M. On general grounds, owing to Eq. (19),
one writes

1For the definitions adopted here, see the Appendix of
Ref. [25].
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sf ¼ h1 þ ih2 ð23Þ

for some ðh1; h2Þ. Since s2 ¼ 1, it follows that

f ¼ sðh1 þ ih2Þ ¼ h1 − ih2; ð24Þ

so h1 ¼ f and h2 ¼ 0. In much the same way, one has
f0 ∈M0 if and only if s†f0 ¼ f0.
As shown in [58], the action of the operators ðj; δÞ on the

von Neumann algebra AðMÞ is defined through

JeiϕðfÞJ¼ e−iϕðjfÞ; ΔeiϕðfÞΔ−1 ¼ eiϕðδfÞ: ð25Þ

Also, it is worth noting that f∈M ⇒ jf∈M0. This
property follows from

s†ðjfÞ ¼ jδ−1=2jf ¼ δf ¼ jðjδfÞ ¼ jðsfÞ ¼ jf: ð26Þ

We end this section by mentioning that, in the case of
wedge regions in Minkowski spacetime, the spectrum of δ
coincides with the positive real line, i.e., logðδÞ ¼ R [59],
as it is an unbounded operator with a continuous spectrum.

III. BELL-CHSH INEQUALITIES AND
THE TOMITA-TAKESAKI CONSTRUCTION

Before addressing the issue of the Mermin inequalities,
we briefly remind the reader how the use of Weyl operators
and Tomita-Takesaki modular theory leads to a rather
simple setup for studying the Bell-CHSH inequality within
the quantum field theory framework. For more details,
see Ref. [25].
To construct the Bell-CHSH inequality, we introduce

Alice’s operators as ðWf;Wf0 Þ. Moreover, using the modu-
lar conjugation j, Bob’s operators are given by ðWjf;Wjf0 Þ.
From the discussion of the previous section, we know that
the operators ðWjf;Wjf0 Þ turn out to commute with
ðWf;Wf0 Þ, as required by the Bell-CHSH inequality.
Therefore, we can write the Bell-CHSH correlator as

h0jCj0i¼ h0jðWfþWf0 ÞWjfþðWf−Wf0 ÞWjf0 j0i: ð27Þ

Using the properties of Weyl operators outlined in the
previous section, one obtains

h0jCj0i ¼ e−
1
2
kfþjfjj2 þ e−

1
2
kf0þjfjj2

þ e−
1
2
kfþjf0jj2 − e−

1
2
kf0þjf0jj2 : ð28Þ

To evaluate the norms present in the above expression, we
follow the procedure outlined in [6,7]. Using the fact that
the operator δ has a continuous spectrum coinciding with
the positive real line, we pick up the spectral subspace
specified by ½λ2 − ε; λ2 þ ε� ⊂ ð0; 1Þ. Let ϕ be a normalized
vector belonging to this subspace. One notices that jϕ is
orthogonal to ϕ, i.e., hϕjjϕi ¼ 0. In fact, from

δ−1ðjϕÞ ¼ jðjδ−1jÞϕ ¼ jðδϕÞ; ð29Þ

it follows that the modular conjugation j exchanges the
spectral subspace ½λ2 − ε; λ2 þ ε� for ½1=λ2 − ε; 1=λ2 þ ε�.
Therefore, proceeding as in [25], we set

f ¼ að1þ sÞϕ; ð30Þ

f0 ¼ a0ð1þ sÞiϕ; ð31Þ

where ða; a0Þ are arbitrary real constants. Since s2 ¼ 1, it
turns out that

sf ¼ f; sf0 ¼ f0; ð32Þ
so both f and f0 belong to M. Recalling that ϕ belongs to
the spectral subspace ½λ2 − ε; λ2 þ ε�, it follows that [25]

kfk2 ¼ kjfk2 ¼ a2ð1þ λ2Þ;
kf0k2 ¼ kjf0k2 ¼ a02ð1þ λ2Þ: ð33Þ

One can also find the nonvanishing inner products

hfjjfi ¼ 2a2λ;

hf0jjf0i ¼ 2a02λ: ð34Þ

Therefore, using the above expressions, we can compute all
the norms appearing in Eq. (28), finally obtaining for the
Bell-CHSH inequality

hCi ¼
h
e−a

2ð1þλÞ2 − e−a
02ð1þλÞ2 þ 2e−

1
2
ða2þa02Þð1þλ2Þ

i
: ð35Þ

As shown in [25], the above simple expression is already
able to capture the violation of the Bell-CHSH inequality.
An interesting feature of Eq. (35) is that it has been
obtained by making direct use of the unitaryWeyl operators
only, i.e.,Wf ¼ eiϕðfÞ, without the need of introducing any
Hermiticity procedure. This property will give us the
opportunity to make a bridge to the recent ongoing
discussion on the role of the normal operators, as advocated
for in [60,61].

IV. GENERALIZING THE RESULTS TO THE
MERMIN INEQUALITIES

We are now ready to generalize the previous setup to the
case of Mermin’s inequalities. Mermin’s polynomials can
be defined in a recursive manner according to the following
rule [54,62]:

Mn ¼
1

2
Mn−1ðAn þ A0

nÞ þ
1

2
M0

n−1ðAn − A0
nÞ; ð36Þ

where An and A0
n are dichotomic quantities that can take

values �1. In the above expression, the M0
n operators can
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be obtained from Mn by performing the changes An → A0
n

and A0
n → An. Here we will adopt M1 ¼ 2A1 as the first

term in the recursive procedure. Following this definition,
the maximum value that can be obtained in quantum
mechanics is given by the following upper bound:

jhMnij ≤ 2ð
nþ1
2
Þ: ð37Þ

For example, the third order Mermin’s polynomial is
given by

M3 ¼ A0BCþ AB0Cþ ABC0 − A0B0C0: ð38Þ

Considering the absolute value, local realistic theories obey
the bound jhM3iClj ≤ 2. For quantum mechanics, on the
other hand, the upper bound is given by jhM3iQMj ≤ 4. In
the following we shall consider as an explicit example the
case of the polynomial M3, with the generalization to Mn
being straightforward.
From the quantum field theory point of view, ðA; A0Þ,

ðB;B0Þ, and ðC;C0Þ are pairs of bounded localized field
operators with norm ≤ 1. The different pairs are meant to
be spacelike separated. As done in the Bell-CHSH inequal-
ity case, these operators are built employing the unitary
Weyl operators already introduced. One speaks of a
Mermin inequality violation in the vacuum state whenever
we have

jh0jM3j0ij > 2: ð39Þ

As one can determine, the main difficulty which arises
when dealing with the Mermin’s inequalities is the presence
of an increasing number of field operators A;B; C;…, thus
reflecting the multipartite nature of these inequalities.
Unlike the Bell-CHSH inequality case, facing this point
requires the introduction of several spectral subspaces of
the modular operator δ. More precisely, we shall make use
of a sequence of orthonormal vectors ϕν,

hϕμjϕνi ¼ δμν; ð40Þ

belonging to the spectral subspaces defined by

Iν ¼ ½λ2ν − ε; λ2ν þ ε� ⊂ ð0; 1Þ; ð41Þ

where we have ν ¼ 1; 2;… and λ2ν ≠ λ2μ for ν ≠ μ.
Concerning the test functions, we shall proceed by

introducing the expressions

fν ¼ ηνð1þ sÞϕν; f0ν ¼ η0νð1þ sÞiϕν; ð42Þ

with ϕν as described above and ðην; η0νÞ arbitrary real
constants. Since s2¼1, it turns out that we have sfν¼fν
and sf0ν ¼ f0ν. Let us consider now the action of the modular
conjugation j. We have

δðjϕνÞ ¼ jðδ−1ϕνÞ; ð43Þ

showing that j exchanges the subspace Iν into

Ĩν ¼ ½1=λ2ν − ε; 1=λ2ν þ ε�: ð44Þ

As a consequence,

hϕμjjϕνi ¼ 0; ð45Þ

since ϕμ and jϕν belong to different spectral subspaces.
Using the property sfν ¼ fν, it follows that s†ðjfνÞ ¼ jfν.
In fact,

s†ðjfνÞ ¼ jδ−1=2jfν ¼ δ1=2fν ¼ jsfν ¼ jfν: ð46Þ

We see, therefore, that fν ∈M, while jfν ∈M0. For μ ≠ ν,
we also have hfμjfνi ¼ 0, as well as hjfμjjfνi ¼
hfμjfνi ¼ 0. Similar properties hold for the primed
versions f0ν.
Employing the Weyl operators, for M3 we get

M3¼Wf0þgþhþWfþg0þhþWfþgþh0 −Wf0þg0þh0 ; ð47Þ

where ðf; g; hÞ are generic test functions whose supports
are spacelike separated from each other. Recalling that

h0jWfþgþhj0i ¼ e−
1
2
kfþgþhk2 ; ð48Þ

one gets

hM3i ¼ e−
1
2
kf0þgþhk2 þ e−

1
2
kfþg0þhk2

þ e−
1
2
kfþgþh0k2 − e−

1
2
kf0þg0þh0k2 : ð49Þ

We still need to specify the test functions ðf; f0Þ, ðg; g0Þ,
and ðh; h0Þ. To that end we shall make use of the
expressions (42) and proceed in an alternate way, according
to the following setup:

(i) The first pair of test functions ðf; f0Þ will be
accommodated in the first spectral subspace I1,
namely,

f ¼ f1; f0 ¼ f01: ð50Þ

(ii) The second pair ðg; g0Þwill be obtained from the first
pair ðf1; f01Þ by means of the modular conjugation j,

g ¼ jf1; g0 ¼ jf01: ð51Þ

(iii) The third pair ðh; h0Þ will be accommodated in the
second spectral subspace I2,

h ¼ f2; h0 ¼ f02: ð52Þ
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(iv) The fourth pair will be obtained from the third one
by acting upon with the modular operator j.

(v) The fifth pair will belong to I3, while the sixth pair
will be obtained from the fifth one through the
operator j, and so on.

As one can easily verify, this procedure ensure that all pairs
of test functions are spacelike separated. Therefore, taking
into account that for hM3i we have only three pairs, it
follows that

hfjhi ¼ hfjh0i ¼ hf0jhi ¼ hf0jh0i ¼ 0: ð53Þ

We can also find that

kfk2 ¼ kjfk2 ¼ η1
2ð1þ λ21Þ;

kf0k2 ¼ kjf0k2 ¼ η021 ð1þ λ21Þ; ð54Þ

and

khk2 ¼ η22ð1þ λ22Þ;
kh0k2 ¼ η022 ð1þ λ22Þ: ð55Þ

Furthermore, it turns out that

hfjjfi ¼ 2η21λ1;

hf0jjf0i ¼ 2η021 λ1; ð56Þ

with all the other inner products relevant for this compu-
tation vanishing. Therefore, for the norms appearing in
Eq. (49) we obtain

kf0 þ jfþhk2¼ η021 ð1þλ21Þþη21ð1þλ21Þþη22ð1þλ22Þ;
kfþ jf0 þhk2¼ η21ð1þλ21Þþη001

2ð1þλ21Þþη22ð1þλ22Þ;
kfþ jfþh0k2¼ 2η21ð1þ λ21þ2λ1Þþη022 ð1þλ22Þ;
kf0 þ jf0 þh0k2¼ 2η021 ð1þ λ21þ2λ1Þþη022 ð1þλ22Þ: ð57Þ

Finally, the full expression for hM3i turns out to be

hM3i ¼ 2e−
1
2

�
ðη2

1
þη02

1
Þð1þλ2

1
Þþη2

2
ð1þλ2

2
Þ
�

þ e−
1
2

�
2η2

1
ð1þλ1Þ2þη02

1
ð1þλ2

2
Þ
�

− e−
1
2

�
2η02

1
ð1þλ1Þ2þη02

2
ð1þλ2

2
Þ
�
: ð58Þ

Using the above expression, one can search for Mermin
inequality violations by scanning the available parameter
space. It turns out that, exactly as in the Bell-CHSH
inequality case [25], Eq. (58) is able to capture the
Mermin inequality violation at the quantum level, as one
can see in Fig. 1.

V. DISCUSSING THE USE OF
NORMAL OPERATORS

As already underlined, one interesting feature of the
results presented in the previous sections is that the
violation of both Bell-CHSH and Mermin inequalities
has been obtained by making use of the Weyl operators,
Wf ¼ eiϕðfÞ, which are not Hermitian operators. Rather,
being unitary, they belong to a broader class of operators,
namely, the so-called normal operators fAg,

AA† ¼ A†A: ð59Þ

The results obtained thus far by making direct use of
normal operators can be understood with the help of the
following considerations:

(i) Even being unitary, the vacuum expectation value of
the Weyl operators is real,

hWfi ¼ e−
1
2
kfk2 : ð60Þ

(ii) The standard classical argument based on the local
realism generalizes to unitary complex numbers, i.e.,

jðzþ z0Þwþ ðz − z0Þw0j ≤ 2; ð61Þ

where jzj ¼ jz0j ¼ jwj ¼ jw0j ¼ 1. As such, the Bell-
CHSH and Mermin inequalities have the meaning of
correlation functions built out from unitary operators
which violate the classical bounds (61).

(iii) Despite many efforts and many trials, we have been
unable to find an explicit Hermitian combination of
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FIG. 1. Contour plot exhibiting hM3i as a function of η1 and η01
considering η1 ¼ η2, η01 ¼ η02, λ1 ¼ 0.9, and λ2 ¼ 0.6. There is
violation of Mermin’s inequalities whenever we have jhM3ij > 2,
that is, in the red region.
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the Weyl operators leading to an explicit violation of
Bell-CHSH and Mermin inequalities. To give an
example of what is going on, the simplest Hermitian
combination, 1

2
ðWf þW†

fÞ does not produce any
violations. A very huge set of more sophisticated
combinations has been examined without any suc-
cess. The situation looks very similar to the current
stage of the GHZ theorem [61], for which no
Hermitian operators have been found so far in
order to generalize the theorem to the multidimen-
sional case.

More generally, the potential use of normal operators in
the study of the Bell-CHSH inequality has already been
advocated for in Refs. [60,61], where the authors outlined a
series of suggestive and consistent features.
To grasp the depth of this ongoing discussion, let us

present some very simple reasoning, borrowed from [60].
Write

A ¼ B þ iC; ð62Þ

with B and C self-adjoint. With A being a normal operator,
it follows that

½A;A†� ¼ 0 ⇒ ½B; C� ¼ 0: ð63Þ

One sees thus that condition ½A;A†� ¼ 0 implies that
A is made up by two self-adjoint commuting operators.
According to quantummechanics, the operators ðB; CÞ have
a real spectrum and can be measured simultaneously.
Therefore, a normal operator can be seen as arising from
the simultaneous measurement of two commuting observ-
ables. Evidently, one has the freedom of collecting the two
outcomes into a complex number. In particular, Weyl
operators correspond to a special case of this general pattern.

VI. CONCLUSIONS

In this paper we investigated Mermin’s inequalities
within the framework of quantum field theory, for the case
of a free real scalar field. Using the powerful setup of
Tomita-Takesaki modular theory and considering the von
Neumann algebra built with Weyl operators, we were able
to compute the Mermin correlation analytically and show
that there is a region in the parameter space in which
Mermin’s inequalities are violated when probed in the
vacuum state of a scalar field theory. We remark that the
general construction presented here could be straightfor-
wardly adapted to n-partite systems with n > 3.
It is worth underlining that the combination of the

algebraic quantum field theory with the Tomita-Takesaki
modular theory proved to be very adequate for a systematic
study of both Bell-CHSH and Mermin inequalities.

Moreover, the use of Weyl operators gave us the oppor-
tunity to address the very interesting ongoing discussion of
the role that the class of normal operators might have at the
quantum level.
Let us end by adding a few remarks on two challenging

issues which we plan to address in the near feature. The first
one is to face the Bell-CHSH and Mermin inequalities in
the case of interacting quantum field theories. The main
goal here would be to evaluate the correlation function
dependence on the coupling constant, analyzing whether
the interaction increases or decreases the size of the Bell-
CHSH and Mermin inequality violation in comparison with
the free case. We plan to address this question first in the
1þ 1 interacting Thirring model, which we already ana-
lyzed in the free case [23]. As one can easily determine, the
reason to study such a model relies on the fact that it has
been solved exactly. As such, the Källén-Lehmann spectral
density for the two-point correlation function of the
fermion field is available in a closed form, enabling us
to quantify the interaction effects. This is a work in
progress, and we hope to report on this subject soon.
However, it is worth mentioning that, by combining the
Tomita-Takesaki modular theory with Unruh-DeWitt detec-
tors, we were able to study the interaction between a scalar
field and a pair of q-bits. Although unlike the case of a self-
interacting quantum field theory, the Bell-CHSH inequality
has been evaluated in exact form. As reported very recently
in [63], the presence of a scalar field induces a damping
factor, thereby decreasing the size of the Bell-CHSH
inequality violation in comparison with the case without it.
Another topic for future work is to consider the finite-

temperature case and to inquire about the main differences
in our results in this more realistic framework, allowing for
a wider range of applications for our present results. Even
restricting ourselves to the simpler case of free theories, the
finite-temperature setting looks very attractive. As a very
preliminary and intuitive guess, we can say that the
existence of contributions in the dimensionless parameters
ðLT; mTÞ cannot be excluded, where L is the separation
distance between Alice’s and Bob’s regions, T is the
temperature, and m is the quantum field mass. That would
imply a more in-depth study of the correlation function’s
behavior in this finite-temperature scenario and will be
reported in future work.
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