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Higher-form symmetries are a valuable tool for classifying topological phases of matter. However,
emergent higher-form symmetries in interacting many-body systems are typically not exact due to the
presence of topological defects. In this paper, we develop a systematic framework for building effective
theories with approximate higher-form symmetries. We focus on a continuous U(1) q-form symmetry and
study phases with various patterns of spontaneous and explicit symmetry breaking. We uncover a web of
dualities between such phases and highlight their role in describing the presence of dynamical higher-form
topological defects. In order to study the out-of-equilibrium dynamics of these phases of matter, we
formulate respective hydrodynamic theories and study the spectra of excitations exhibiting higher-form
charge relaxation and Goldstone relaxation effects. We show that our framework is able to describe various
phase transitions due to proliferation of vortices or defects. This includes the melting transition in smectic
crystals, the plasma phase transition from polarized gases to magnetohydrodynamics, the spin-ice
transition, the superfluid to neutral fluid transition, and the Meissner effect in superconductors, among
many others.
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I. THE HIGHER FORM OF LIFE

Identifying the symmetries underlying fundamental inter-
actions and emergent collective phenomena continues to be
one of the most important and interesting problems in
theoretical physics. Symmetries provide a powerful and
useful characterization of phases of matter at all length
scales, paving the way for constraining effective field
theories governing the dynamics of a largevariety of physical
systems. Examples include the quark-gluon plasma, astro-
physical plasma, quantum many-body systems, active mat-
ter, and liquid crystals among many others.
In recent years, exotic generalized notions of symmetry

have received considerable attention, including higher-
form symmetries, higher-group symmetries, subsystem
symmetries, and noninvertible symmetries; see [1] for a
review. They have been particularly useful in the context of
topological phases of matter for which conventional
notions of symmetry cannot provide an understanding in
terms of the Landau paradigm [2]. An interesting case to

highlight is that of U(1) q-form symmetries [3], denoted as
Uð1Þq, characterized by a conserved (qþ 1)-form current J
and associated nonlocal order parameters constructed from
q-dimensional charged operators. The best explored exam-
ple of such symmetries comes from electromagnetism in
three spatial dimensions, which has two one-form sym-
metries: a “magnetic” Uð1Þ1 symmetry whose charged
objects are ’t Hooft lines (magnetic field lines) and another
“electric” Uð1Þ1 symmetry in the absence of free charges
whose charged objects are Wilson lines (electric field
lines). Higher-form symmetries not only allow for classi-
fying novel phases of matter but also provide new organ-
izing principles for phases with conventional symmetries.
This includes phases of hot electromagnetism such as
magnetohydrodynamics in three spatial dimensions, char-
acterized by magnetic Uð1Þ1 symmetry [4,5], and polarized
plasma, characterized by electric and magnetic Uð1Þ1 ×
Uð1Þ1 symmetry [5,6]. Other examples include the theory
of elasticity in two spatial dimensions which can be recast
in terms of a Uð1Þ1 symmetry [7,8] and the theory of
superfluidity in two spatial dimensions which can be
written in terms of a Uð1Þ0 × Uð1Þ1 symmetry [9]. A
systematic exploration of the applications of generalized
symmetries is an exciting frontier of modern physics.
The broad scope of applications of higher-form sym-

metries makes them an ideal tool for classifying phases of
matter and studying phases transitions. However, most
systems in nature do not have exact higher-form symmetries.
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In fact, most systems do not have exact conventional zero-
form symmetries either. For instance, the crystalline phase of
matter is characterized by a pseudospontaneous pattern of
symmetry breaking, in which translation symmetry is both
spontaneously as well as weakly explicitly broken due to the
presence of impurities [10–12]. In a recent series of papers
[13,14], we illustrated that even when zero-form symmetries
are only approximate due to weak explicit breaking, it is still
possible to significantly constrain the low energy effective
theory and extend the Landau paradigm to realistic situations
by systematically controlling the strength of explicit sym-
metry breaking. The primary goal of this paper is to
generalize this framework to approximate higher-form
symmetries.
Approximate higher-form symmetries are ubiquitous in

nature. For instance, consider a smectic crystal in two
spatial dimensions, characterized by a Goldstone field ϕ
due to spontaneous breaking of translational symmetry
along one of the spatial directions. If the translation order is
exact, ϕ is smooth and satisfies ∂½μ∂ν�ϕ ¼ 0. This so-called
“Bianchi identity” can be redecorated as a one-form
conservation equation ∂μJ̃μν ¼ 0 for a two-form current
J̃μν ¼ ϵλμν∂λϕ. Therefore, a smectic crystal has a global
one-form symmetry with an associated conserved charge
that counts the number of lattice lines piercing a given
codimension-1 surface. The generalization to isotropic
crystals is straightforward and features a one-form sym-
metry in every spatial direction [7,8]. According to the
theory of melting of two-dimensional crystals [15–19],
increasing temperature leads to translational disorder due to
spontaneous formation of localized topological defects
called dislocations. Phenomenologically, this is modeled
by the Goldstone field ϕ becoming singular, modifying the
Bianchi identity to 2∂½μ∂ν�ϕ ¼ −l̃ϵλμνL̃λ, where L̃μ denotes

the “dislocation current” and the small parameter l̃ controls
the strength of dislocations. This leads to a violation of the
one-form conservation law ∂μJ̃μν ¼ −l̃L̃ν. Thus, as a phase
of matter, a two-dimensional smectic crystal with disloca-
tions is characterized by an approximate one-form sym-
metry and an emergent topological zero-form symmetry
∂μL̃μ ¼ 0 arising from the modified Bianchi identity. The
conserved charge associated with this latter symmetry
counts the number of dislocations. If we melt the crystal
by proliferating dislocations, the one-form symmetry is
strongly violated, giving rise to a fluid with spontaneously
restored translational symmetry.1 In the absence of external
gauge fields, the same construction also holds for super-
fluids with vortices in two-spatial dimensions, in which
case the Goldstone field ϕ arises due to spontaneous
symmetry breaking of an internal Uð1Þ0 symmetry instead.

Returning to the example of electromagnetism, the
polarized plasma phase (also, free electromagnetism in
vacuum) has electric and magnetic Uð1Þ1 × Uð1Þ1 sym-
metry, with the associated currents Jμν ¼ −1=g2ξμν þMμν

and J̃μν ¼ 1
2
ϵμνρσξρσ. Here ξμν ¼ 2∂½μϕν� denotes the

electromagnetic field strength, ϕμ the dynamical gauge
field or photon, Mμν the polarization tensor, and g the
electromagnetic coupling constant.2 Explicitly breaking the
magnetic Uð1Þ1 symmetry leads to magnetic monopoles in
the theory, causing ∂μJ̃μν ¼ −l̃L̃μ, where L̃ν can be seen as
the magnetic monopole current. While no fundamental
monopoles have been observed in nature, this model is still
useful for the phenomenology of emergent magnetic
monopoles observed in spin ice [21] and anomalous
Hall effect [22].
On the other hand, explicit breaking of the electric Uð1Þ1

symmetry can be understood as introducing free charges in
the theory that screen the Wilson lines. This results in the
violation of the associated conservation law (Maxwell’s
equations) ∂μJμν ¼ −lLν, where Lμ can be seen as the
electric charge current. In fact, this phase can be further
fine-grained depending on the fate of the emergent topo-
logical Uð1Þl0 symmetry ∂μLμ ¼ 0; the superscript l is to
distinguish this from the original higher-form global
symmetry. For electromagnetism, this is precisely the
dynamical U(1) symmetry associated with conservation
of electric charges. If this emergent symmetry is sponta-
neously unbroken, we reside in the Coulomb phase of
electromagnetism with massless photon ϕμ; whereas, if it is
spontaneously broken leading to a Goldstone phase ϕl, we
reside in the Higgs phase where the photon ϕμ eats the
Goldstone to become ψμ ¼ lðϕμ − ∂μϕlÞ and acquires a
mass, resulting in the theory of superconductivity. In terms
of symmetries, the Higgs phase is characterized by an
explicitly broken Uð1Þ1 × Uð1Þψ2 symmetry, where the
nonconserved current associated with the latter part of
the symmetry group is merely J̃μνρψ ¼ ϵλμνρψλ, which
satisfies the approximate conservation equation ∂μJ̃

μνρ
ψ ¼

−lJ̃νρ. The superscript ψ is to distinguish this symmetry
from the original higher-form symmetries in the system.
The original magnetic Uð1Þ1 symmetry now arises as an
emergent topological symmetry due to the breaking of
Uð1Þψ2 symmetry.
Phases of approximate higher-form symmetry. Various

phases of matter described above can be organized using
spontaneous and explicit breaking of higher-form sym-
metries; see Fig. 1. We start with a q-form fluid with a

1A related discussion on explicitly broken higher-form sym-
metries in the context of isotropic crystals appeared in [20].

2We use the notation ξμν and ϕμ for the electromagnetic field
strength and gauge field instead of the conventional Fμν and Aμ

because, as we shall discuss further, the polarized plasma phase
of electromagnetism can be understood as a one-form superfluid
with the one-form ϕμ playing the role of the associated Goldstone
and ξμν its “superfluid velocity.”
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Uð1Þq symmetry in Fig. 1(a),3 endowed with some (qþ 1)-
form conserved current J. This can describe ordinary
charged fluids for q ¼ 0, smectic crystals for q ¼ d − 1,
and magnetohydrodynamics for q ¼ d − 2, where d is the
number of spatial dimensions. We can spontaneously break
this Uð1Þq symmetry by introducing a q-form Goldstone
field ϕ, giving rise to a Uð1Þq superfluid in Fig. 1(b). This
phase also has a new emergent Uð1Þp symmetry, with p ¼
d − 1 − q and the (pþ 1)-form current J̃ ¼⋆ dϕ, which is
conserved due to the Bianchi identity associated with ϕ.
Here ⋆ denotes the spacetime Hodge duality operation.
This phase can describe a Uð1Þ0 superfluid for q ¼ 0 and
polarized plasma for q ¼ 1.
Starting from a q-form fluid, we can instead break the

Uð1Þq symmetry explicitly by introducing a q-form defect
current L, resulting in a q-form pseudofluid in Fig. 1(c)
with relaxed q-form charges. This can describe particle
number violating interactions in a relaxed charged fluid for
q ¼ 0, dislocations in a smectic crystal for q ¼ d − 1,
and magnetic monopoles in magnetohydrodynamics for
q ¼ d − 2. One can also break the Uð1Þq symmetry both
explicitly and spontaneously, colloquially called pseudo-
spontaneous symmetry breaking, which results in a q-form
pseudosuperfluid in Fig. 1(d) where q-form charges are
relaxed but q-form Goldstone ϕ is not relaxed. For q ¼ 0,
this can describe an ordinary relaxed superfluid, whereas

for q ¼ 1, this describes electromagnetism in the Coulomb
phase. In fact, explicitly breaking the Uð1Þq symmetry
gives rise to an emergent explicitly unbroken topological
Uð1Þlq−1 symmetry associated with the defect current L. If
we further spontaneously break this emergent symmetry by
introducing a (q − 1)-form Goldstone ϕl, we arrive at a
pinned Uð1Þq pseudosuperfluid in Fig. 1(e) where q-form
charges and q-form Goldstone ϕ are both relaxed. This
phase is characterized by a massive pseudo-Goldstone field
ψ ¼ lðϕ − dϕlÞ and describes an ordinary pinned super-
fluid for q ¼ 0 [13] and the Higgs phase of electromag-
netism or a superconductor for q ¼ 1.
Starting from the Uð1Þq superfluid in Fig. 1(b), we can

instead explicitly break the Uð1Þp symmetry. The associ-
ated p-form defects are understood as vortices in a q-form
superfluid in Fig. 1(f). For q ¼ 0, this phase describes
ordinary superfluid vortices, while for q ¼ 1, this is the
theory of magnetic monopoles in electromagnetism.
Finally, we can envision breaking both Uð1Þq and Uð1Þp
symmetries together and describe a theory of q-form
pseudosuperfluids with vortices. For q ¼ 1, this would
be electromagnetism with both electric and magnetic free
charges (monopoles). As is well known, this is not some-
thing we can do consistently at zero temperature in
Maxwell’s electromagnetism, but as it turns out, we can
indeed realize this possibility at finite temperature as we
shall see in the course of our discussion.
The Uð1Þq and Uð1Þp higher-form symmetries of a

q-form (pseudo)superfluid actually have a mixed anomaly
between them, which plays a crucial role while organizing

FIG. 1. Phases with explicitly broken (ESB) and spontaneously broken (SSB) q-form symmetry and topological phase transitions
mediated by topological defects. Here p ¼ d − q − 1.

3At finite temperature, for q > 0, this symmetry needs be
partially spontaneously broken in the time direction to allow for a
finite q-form density [5,6].
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the phase space of approximate higher-form symmetries.
Similarly, there is also a mixed anomaly between the Uð1Þq
and Uð1Þψpþ1 higher-form symmetries of the Uð1Þq pseu-
dosuperfluid in the pinned phase. The respective anomaly
coefficient in both of these cases is nothing but the charge
cϕ of the Uð1Þq Goldstone field.
Dualities. Looking at the symmetry structure of the

phase space in Fig. 1, we can identify a few dualities. First
of all, a q-form superfluid in Fig. 1(b) is dual to a p-form
superfluid, and consequently is self-dual when p ¼ q in
d ¼ 2qþ 1 spatial dimensions. This is just the generali-
zation of the electromagnetic duality in three spatial
dimensions in the absence of free charges that exchanges
electric and magnetic fields. In two spatial dimensions, this
also realizes the electromagnetism/superfluid duality that
exchanges electric fields for superfluid velocity and mag-
netic fields for superfluid charge. Under the same duality,
the relaxed phase of a q-form pseudosuperfluid in Fig. 1(d)
maps to a p-form superfluid with vortices [Fig. 1(f)], and
vice versa, and a relaxed q-form superfluid with vortices in
Fig. 1(g) maps to its p-form version with the roles of
p-form vortices and q-form defects exchanged. This maps
electric and magnetic free charges to each other in the
context of electromagnetic duality. In the context of
electromagnetism/superfluid duality, this maps free electric
charges to superfluid vortices (also called the particle/
vortex duality) and free magnetic charges, if present, to the
sources of superfluid charge relaxation.
Interestingly, we also have a different duality in the

pinned phase of a q-form pseudosuperfluid in Fig. 1(e) with
its (pþ 1)-form version, making it self-dual in d ¼ 2q
spatial dimensions. This means that a superconductor is
self-dual in two spatial dimensions, with electric fields
exchanged with massive gauge fields and free electric
charges exchanged with magnetic fields. In one spatial
dimension, this also yields a duality between supercon-
ductors and pinned superfluids, mapping electric fields to
massive pseudo-Goldstones, free electric charges to super-
fluid velocity, massive gauge fields to superfluid charges,
and magnetic fields to charge relaxation sources. We will
explore these dualities in more detail in the bulk of
the paper.
Phase transitions. In this work, our interest lies not only

in classifying the phases of matter according to their higher-
form symmetry breaking pattern, but also to understand the
out-of-equilibrium dynamics and transitions between these
phases. To this aim, we draw motivation from our previous
work on approximate zero-form symmetries and vortices
[13,14], and construct hydrodynamic theories at finite
temperature for phases with spontaneously and/or explic-
itly broken higher-form symmetry. This allows us to
identify potential phase transitions as guided by the
proliferation of p-form defects (vortices) or q-form defects
(charge relaxation sources), which have been illustrated
in Fig. 1.

The first class of such phase transitions is the transition
from q-form superfluids in Fig. 1(b) to q-form fluids in
Fig. 1(a). This transition is mediated by the proliferation of
p-form defects/vortices in the q-form superfluid phase in
Fig. 1(f) and restores the previously spontaneously broken
Uð1Þq symmetry. A similar story applies to the phase
transition from q-form pseudosuperfluids in relaxed phase
in Fig. 1(d) to q-form pseudofluids Fig. 1(c), mediated by
vortices in Fig. 1(g). The obvious application of this for
q ¼ 0 is the transition from ordinary zero-form superfluids
(with relaxation) to ordinary zero-form fluids (with relax-
ation), mediated by vortices in the scalar superfluid phase.
Taking q ¼ d − 2, the phase transition from polarized
plasma to magnetohydrodynamics also falls in this class,
mediated by free electric charges playing the role of
vortices of the (d − 2)-form dual magnetic photon.
Theoretically, taking q ¼ 1, we can also get a transition
from the polarized plasma phase to electrohydrodynamics,
mediated by magnetic monopoles playing the role of
vortices of the one-form photon.
There is a similar class of transitions from a q-form fluid

in Fig. 1(a) to a fluid with no higher-form symmetry in
Fig. 1(h), mediated by q-form defects in Fig. 1(c). For
q ¼ 0, these are transitions from charged to neutral fluids
due to the proliferation of charge-violating interactions. For
q ¼ d − 1, these also include the melting phase transition
from crystals to fluids, mediated by (d − 1)-form disloca-
tions.4 Finally, for q ¼ d − 2, these include transitions from
magnetohydrodynamics to neutral fluids due to the pro-
liferation of (d − 2)-dimensional magnetic monopoles.
A phenomenological application of the final case is the
spin-ice phase transition.
The final class of phase transitions is from the pinned

phase of a Uð1Þq superfluid in Fig. 1(e) to a neutral fluid in
Fig. 1(h). This is also mediated by the proliferation of q-
form defects, but due to spontaneously broken Uð1Þlq−1
symmetry, also gaps out the massive q-form pseudo-
Goldstone field ψ ¼ lðϕ − dϕlÞ from the theory. This
can be used to model the Meissner effect in superconduc-
tors, where the gapped massive photon removes all electro-
magnetic field excitations from the material, effectively
leaving only a theory of neutral excitations inside the
superconductor.
Mode spectrum. For these broad classes of phases of

matter, we use our hydrodynamic theory to investigate the
linearized spectrum of excitations and find novel physical
effects related to charge relaxation, Goldstone relaxation,
and pinning effects. For simplicity, we focus on excitations

4Note that this does not necessarily mean that melting in
arbitrary spatial dimensions is guided by the proliferation of
vortices. While this is known to be true in two spatial dimensions,
in arbitrary dimensions this just means that proliferation of
vortices would contribute to melting but might not be the primary
mechanism as we increase temperature.
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around equilibrium configurations with zero higher-form
charge density. In this limit, the energy-momentum fluc-
tuations decouple from the charged sector and give rise to
the sound and shear modes, ω ∼�vkk − i=2Dk

πk2 and
ω ∼ −iD⊥

π k2, familiar from neutral relativistic hydrody-
namics; see e.g. Refs. [23,24]. Here ðω; kiÞ denote the
frequency and wave vector of linearized fluctuations
respectively, and different coefficients characterizing the
mode spectrum are provided later in the main text.
For an ordinary zero-form charged pseudofluid with

approximate Uð1Þ0 symmetry, the spectrum also contains a
relaxed charge diffusion mode ω ∼ −iDnk2 − iΓ carried by
the fluctuations of charge density. On the other hand, in
the relaxed phase of zero-form pseudosuperfluid, where the
Uð1Þ0 symmetry is pseudospontaneously broken but the
Goldstone remains massless, the charge and Goldstone
fluctuations couple to yield the second-sound mode:
ω ∼�v⊥k − i=2ðDn þ D̃nÞk2 − i=2Γ. The relaxation coef-
ficient Γ shifts to Γþ Γ̃ in the presence of vortices; whereas
in the pinned phase, the second-sound mode gets pinned to
ω∼� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
0þv2⊥k2

p
− i=2ðDnþ D̃nÞk2− i=2ðΓþ Ω̃Þ. More

details can be found in [13] and later in the paper.
The modes described above appear for higher q-form

symmetries as well, carried by the fluctuations of q-form
charge density transverse to the wave vector ki. In fact, the
analog of superfluid second-sound mode in the one-form
superfluid interpretation of electromagnetism is precisely
the photon, relaxed and/or pinned due to explicit symmetry
breaking effects. Furthermore, in the absence of explicit
symmetry breaking, the longitudinal components of the
charge density are fixed by the Gauss constraint and do not
participate in the dynamics.
However, when the Uð1Þq symmetry is only approx-

imately preserved, the longitudinal q-form density gets
aligned with the associated defect density and we find the
mode spectrum to exhibit genuinely distinct features. In
particular, a q-form pseudofluid carries another relaxed
diffusion mode ω ∼ −iDlk2 − iΓ carried by the longi-
tudinal charge density. Interestingly, the relaxation coef-
ficient Γ is the same for both the transverse and longitudinal
charge relaxation, but the diffusion coefficients Dn, Dl
differ. In a relaxed q-form pseudosuperfluid, we still find
the longitudinal charge relaxation mode and, if vortices are
present, a vortex relaxation mode ω ∼ −iD̃lk2 − iΓ̃ coming
from explicitly broken Uð1Þp symmetry. Finally, in the
pinned phase, we find another relaxed and pinned sound

modeω∼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ v2kk

2
q

− i=2ðDl þ D̃ψÞk2 − i=2ðΓþ Ω̃Þ.
Later in the paper, we will discuss the mode spectrum of all
of these phases in depth, together with their behavior under
defect-mediated phase transitions.
Damping-attenuation relations. An interesting aspect of

the mode spectrum that we find is that all phases with
explicitly broken higher-form symmetries feature modes
satisfying damping-attenuation relations of the kind

Γ ¼ Dk20: ð1:1Þ

Here Γ is the damping or relaxation rate of the mode, D its
attenuation or diffusion constant, and 1=k0 characterizes
some finite hydrostatic correlation length associated with
the degrees of freedom that carry this mode. Such relations
are a hallmark feature of systems with symmetries that are
both spontaneously as well as explicitly broken, i.e.
pseudospontaneously broken, and have already been
derived in a variety of systems with zero-form symmetries
such as pinned superfluids and pinned crystals [13,25].5

We find such relations in the propagation of p-form
defects (vortices) in q-form superfluids, including vortices
in ordinary zero-form superfluids, and q-form defects in the
relaxed phase of q-form pseudosuperfluids. In this context,
k20 ¼ l2χl=χ is the inverse-squared correlation length of
q-form defects, with l2χl being their susceptibility and χ the
susceptibility of q-form charge, and similarly for the
p-form defects (vortices). The susceptibility for p-form
charge is inverse of the superfluid density. Using q ¼ 1,
the same relation also arises for the propagation of free
electric charges in electromagnetism with k0 being the
inverse Debye-screening length, l2χl the susceptibility of
free charges, and χ the permittivity of electric fields, and
similarly for magnetic charges in the presence of magnetic
monopoles. In the pinned phase of q-form pseudosuper-
fluids, we still get the damping-attenuation relations for
q-form defects, but we get another one for the propagation of
superfluid velocity (or p-form charge). In this context,
ðkϕ0 Þ2 ¼ l2m2χ̃ represents the pinning momenta squared,
where χ̃ is the susceptibility of p-form charge (or inverse of
the superfluid density) and m is the mass of the pseudo-
Goldstone. Correspondingly in superconductivity, kϕ0 is the
inverse London penetration depth, χ̃ the permeability of
magnetic fields, andm the mass of the massive gauge fields.
Screening of propagating modes. Another characteristic

feature of systems featuring pseudospontaneous symmetry
breaking is the screening of propagating modes, e.g. sound
modes, phonons, photons, etc., due to the presence of
symmetry defects. This phenomena was discovered for
zero-form symmetries in [13], encoded in certain new
“screening coefficients,” denoted by λ, appearing in the
Josephson equations determining the time evolution of the
pseudo-Goldstones ϕ. We find that similar coefficients also
appear in various phases with pseudospontaneously broken
higher-form symmetries.
In the context of the electric one-form symmetry of

electromagnetism, explicitly broken by free charges, the

5For q ¼ 0, no such damping-attenuation relation exists for
relaxed zero-form pseudofluids; see Fig. 1(c). This is because the
Uð1Þ0 symmetry in this phase is only explicitly broken and not
spontaneously broken. However, for q > 0, this phase features
partial-spontaneous breaking of the Uð1Þq symmetry in the time
direction, yielding the damping-attenuation relations.
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respective Josephson equation takes the form uμξμν ¼
λμν þ � � �, where μμ is the one-form chemical potential
and λ is a coefficient characteristic of explicit symmetry
breaking. In the absence of free charges, we have that
λ ¼ 1, and consequently the electric fields uμξμν serve as
the chemical potential conjugate to the conserved “electric
displacement field” Jti ¼ −1=g2ξti þMti. However, this is
no longer true in the presence of free charges and both are
related by a factor of λ. As a result, the speed of photons
inside a dielectric medium that is conventionally given by
ðχχ̃Þ−1, where χ is the electric permittivity and χ̃ is the
magnetic permeability, now gets modified to λ2ðχχ̃Þ−1.
Interestingly, further, λ is not constrained to be ≤1 or ≥1 by
any fundamental considerations of the hydrodynamic
framework like stability or the second law of thermody-
namics. This means that, depending on the material under
consideration, the photons inside a dielectric medium can
speed up or slow down as the medium is polarized by free
electric charges.
Organization of the paper. This paper is organized as

follows. We start in Sec. II with a review of the basics of
higher-form symmetries and discuss how to explicitly break
them by introducing appropriate background sources. In
Sec. III we discuss different patterns of spontaneous and
explicit breaking of higher-form symmetries at zero temper-
ature using an action principle. In Sec. IV we consider the
same phase space of spontaneously and explicitly broken
higher-form symmetries in thermal equilibrium using ther-
mal partition functions. An important result that arises from
this section is that, at finite temperature, higher-form sym-
metries must at least be partially spontaneously broken in the
time direction to allow for nonzero thermodynamic density
of the respective higher-form charges. In Sec. V, we outline
the hydrodynamic theory for q-form (pseudo)fluids with
temporal-(pseudo)spontaneous symmetry breaking and in
Secs. VI and VII we discuss q-form (pseudo)superfluids
with complete-(pseudo)spontaneous symmetry breaking in
the relaxed and pinned phases, respectively. We employ the
hydrodynamic theories in these sections to compute the
linearized mode spectra in the respective phases and explore
transitions between different phases. Finally, in Sec. VIII we
end with a discussion of our results.
We also provide several Appendices. As the paper relies

heavily on the differential forms we have summarized our
conventions in Appendix A. In Appendix B, we give details
of the anomaly-inflow mechanism for higher-form sym-
metries used in the core of the paper. In Appendix C we
give the details of various retarded correlation functions
derived from our hydrodynamic construction.

II. INTRODUCTION TO HIGHER-FORM
SYMMETRIES

We start our discussion with a pedagogical overview of
systems with higher-form symmetries [3]. There is a vast

amount of work in the literature exploring the intricacies of
higher-form symmetries in great detail; see [1] for a recent
review. We will only touch upon certain practical aspects of
higher-form symmetries that are relevant for studying out-
of-equilibrium dynamics. In particular, we will introduce a
controlled perturbative procedure to break higher-form
symmetries and discuss its physical implications.

A. Higher-form symmetries

A physical system is said to admit a continuous q-form
U(1) generalized global symmetry [3], which we refer to as
Uð1Þq, if it admits a (qþ 1)-form conserved current J
satisfying a set of conservation equations,

d ⋆ J ¼ 0: ð2:1Þ

For q ¼ 0, we recover the ordinary “zero-form” Uð1Þ0
symmetries, with the familiar conservation equation
∂μJμ ¼ 0. Just like point particles are charged under a
Uð1Þ0 symmetry, the operators charged under a Uð1Þq
symmetry are q-dimensional extended objects. The total
conserved charge associated with a Uð1Þ0 symmetry can be
defined by integrating the current Jμ over a spacelike
hypersurface Σd, which counts the number of particle
worldlines crossing the hypersurface. This charge remains
“conserved” under smooth deformations of Σd, in particular
time translations. Similarly, the total conserved charge
associated with a Uð1Þq symmetry can be defined by
integrating the associated current over a (d − q)-dimensional
spacelike surface Σd−q, i.e.

Q½Σd−q� ¼
Z
Σd−q

⋆ J; ð2:2Þ

which counts the number of charged operator world sheets
that intersect Σd−q; see Fig. 2. The fact that this charge is
conserved amounts to the statement thatQ½Σd−q� is invariant

FIG. 2. A snapshot of a system with a q-form Uð1Þq symmetry.
The charged operators are q-dimensional extended objects
(strings in this illustration). The total Uð1Þq charge can be
obtained by counting the number of operators crossing a space-
like surface Σd−q. This charge remains conserved under smooth
deformations of Σd−q.
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under smooth deformations of the surfaceΣd−q over which it
is defined, keeping the boundary fixed.
Note that the notion of higher-form conservation is

qualitatively more general than its zero-form counterpart.
In particular, the Uð1Þq charge Q½Σd−q� is conserved not
only under time translations of the surface Σd−q over which
it is defined, but also under translations in any of the q
spatial directions transverse to Σd−q. This can also be seen
by decomposing the Uð1Þq conservation equations (2.1)
into space and time components as

∂tJtk1…kq þ ∂iJik1…kq ¼ 0; ð2:3aÞ

∂iJtik2…kq ¼ 0: ð2:3bÞ

The first equation here is the true “conservation” equation,
telling us that the rate of change of the q-form density is
given by the divergence of the (qþ 1)-form flux; whereas
the second equation, which is absent for q ¼ 0, is like a
“Gauss constraint” for the divergence of the q-form density
and is responsible for the invariance of the charge Q½Σd−q�
under transverse spatial deformations of the defining sur-
face. Note that the time derivative of Eq. (2.3b) is trivially
zero due to Eq. (2.3a). This means that it is sufficient to
impose the Gauss constraint as a boundary condition on
some initial time slice, after which it is automatically
satisfied at all later times. Since this constraint needs to be
satisfied even for equilibrium configurations, it will play an
important role for us when considering thermal systems
with higher-form symmetries.
To probe a Uð1Þq symmetry in a field theory, following

common lore from zero-form symmetries, it is convenient
to introduce a (qþ 1)-form background gauge field A
coupled to the associated current J, with the standard
coupling action

Z
δA ∧⋆ J: ð2:4aÞ

The conservation equation (2.1) can then be understood as
the Noether conservation laws associated with the q-form
background transformations

A → Aþ dΛ: ð2:4bÞ

We can also define the associated background field strength
tensor F ¼ dA, which is invariant under these background
gauge transformations.

B. Approximate higher-form symmetries

The description of a system in terms of higher-form
symmetries can still be useful when the symmetry is only
approximate. One might hope to get some control over the
problem by studying the system as a perturbative expansion
around the symmetry-invariant point. For a system that

respects a Uð1Þq global symmetry only approximately, the
conservation equations (2.1) modify to include an arbitrary
source term,

d ⋆ J ¼ ð−Þqþ1l ⋆ L; ð2:5aÞ

where L is the q-form “defect” current and l is a small
parameter controlling the strength of explicit symmetry
breaking. The factor of ð−Þqþ1 is introduced for later
convenience. What this means is that the q-dimensional
operators charged under the Uð1Þq symmetry are no longer
conserved and can be locally sourced by defects; see Fig. 3.
A similar discussion for approximate Uð1Þ0 symmetries
appeared in our recent paper [13]. However, approximate
higher-form symmetries are qualitatively distinct because the
defect current itself furnishes an emergent unbrokenUð1Þlq−1
topological symmetry and follows the conservation equation,

d ⋆ L ¼ 0; ð2:5bÞ

which is a direct consequence of Eq. (2.5a). We use the
superscript “l” to distinguish this global symmetry from the
originalUð1Þq symmetry. The associated conserved charge is
topological, i.e. the total number of defects integrated over a
ðd − qþ 1Þ-dimensional spacelike surface Σd−qþ1 only
depends on its boundary,

lQl½Σd−qþ1� ¼
Z
Σd−qþ1

l ⋆ L

¼ ð−Þqþ1

Z
∂Σd−qþ1

⋆ J

¼ ð−Þqþ1Q½∂Σd−qþ1�: ð2:6Þ

Note that no such conservation appears for q ¼ 0.

FIG. 3. A snapshot of a system with an approximate q-form
Uð1Þq symmetry. The charged q-dimensional objects (strings in
this illustration) are no longer conserved and can be created or
annihilated at (q − 1)-dimensional defects (red points in this
illustration). The number of charged operators crossing a space-
like hypersurface Σd−q is no longer conserved under a smooth
deformation of Σd−q to Σ0

d−q. However, the defects themselves
furnish a Uð1Þq−1 symmetry and are conserved.
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It is instructive to see Eq. (2.5a) in components, giving
rise to the explicitly broken version of Eq. (2.3), i.e.,

∂tJtk1…kq þ ∂iJik1…kq ¼ −lLk1…kq ; ð2:7aÞ

∂iJtik2…kq ¼ lLtk2…kq : ð2:7bÞ

We see that the defect density arises as a source term in
the Gauss constraint, acting as points where the q-form
operators can begin or end; see Fig. 3. On the other hand,
the flux of defects causes the number of q-form operators to
not be conserved in time.6

Following the approach of [13], it is convenient to
artificially restore the Uð1Þq symmetry by introducing a
q-form background source Φ in the theory for the defect
current lL. We choose the coupling between Φ and the
defect current L to be

Z
lδΦ ∧ ⋆L: ð2:8aÞ

The factor of l here ensures that the dependence on Φ
drops out from the effective theory in the defect-free limit
l → 0. To obtain the conservation equations (2.5a), the
new background field must transform under the Uð1Þq
background transformations as

Φ → Φ − Λ: ð2:8bÞ

From this point of view, the background explicitly breaks
the original Uð1Þq symmetry by picking up a preferred set
of q-form phases Φ. Replacing Λ with −dΛl, or by a
constant −al for q ¼ 0, we can obtain the Uð1Þlq−1 back-
ground transformations responsible for the defect conser-
vation equation (2.5b), i.e.,

Φ → Φþ
�
dΛl; for q > 0;

al; for q ¼ 0;
ð2:9Þ

while leaving the gauge fields A invariant. We can see that,
for q > 0, Φ acts as the background gauge field associated
with the Uð1Þlq−1 global symmetry. We can construct a field
strength associated with Φ as Ξ ¼ dΦþ A, which remains
invariant under both q-form and (q − 1)-form background
gauge transformations.

III. APPROXIMATE HIGHER-FORM
SYMMETRIES AT ZERO TEMPERATURE

As a warm-up exercise, we consider systems with
approximate higher-form symmetries at zero temperature.

The simplest field theories that realize higher-form sym-
metries are where these symmetries are spontaneously
broken, giving rise to a q-form Goldstone field ϕ. For
ordinary Uð1Þ0 global symmetries, this effective theory is
understood as describing a superfluid. On the other hand,
the spontaneously broken phase of a higher Uð1Þq global
symmetry describes a q-form superfluid or equivalently a
Uð1Þlocq−1 gauge theory in the absence of free charges, with
the q-form ϕ playing the role of the associated dynamical
gauge field. We use the superscript “loc” to remind
ourselves that this symmetry is local and not global.
When the Uð1Þq symmetry is further explicitly broken,
the Uð1Þq superfluid can exist in one of two phases, relaxed
or pinned, depending on the symmetry breaking pattern of
the emergent topological Uð1Þlq−1 symmetry in Eq. (2.5b).
These correspond to the Coulomb and Higgs phases of
Uð1Þlocq−1 gauge theory, respectively. In the relaxed phase,
the q-form charges are relaxed but the Goldstone field ϕ is
massless, so the superfluid velocity is not relaxed. On the
other hand, in the pinned phase, the Goldstone field ϕ is
massive and hence the superfluid velocity is also relaxed;
see e.g. [13] for the relevant zero-form discussion. We also
discuss vortices which, given the definition we will
introduce later on, can only exist in the relaxed phase of
the Uð1Þq pseudosuperfluid (see Fig. 1) and also have the
physical effect of relaxing the superfluid velocity without
pinning the Goldstone field ϕ, i.e., without giving it a mass.

A. Spontaneous symmetry breaking and superfluids

When a continuous Uð1Þq global symmetry of a physical
system is spontaneously broken in the ground state,
the low-energy effective description admits a q-form
Goldstone phase field ϕ, transforming as a shift under
the Uð1Þq transformations

ϕ → ϕ − cϕΛ: ð3:1Þ

Here cϕ denotes the constant charge of the Goldstone.7 It
will also be convenient to define the associated (qþ 1)-
form covariant derivative

ξ ¼ dϕþ cϕA; ð3:2Þ

which is invariant under the Uð1Þq background gauge
transformations. Keeping with the terminology from spon-
taneously broken zero-form symmetries, we refer to ξ as the
superfluid velocity, even though it is only a vector when
q ¼ 0. Because of the Uð1Þq symmetry, all of the depend-
ence on ϕ comes via ξ in the effective theory. This results in

6Some aspects of explicit symmetry breaking of higher-form
symmetries were discussed in specific models in the context of
holography [26,27].

7We discussed one-form superfluids in a previous paper [6],
where we chose the charge of the Goldstone to be cϕ ¼ 1. In the
work of [9], the authors used cϕ ¼ −a.
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the invariance of the theory under shifts of ϕ by an exact
q-form or by a constant for q ¼ 0, i.e.

ϕ → ϕ − cϕ

�
dλ; for q > 0;

a; for q ¼ 0:
ð3:3Þ

For q > 0, this invariance can be interpreted as a Uð1Þlocq−1
gauge symmetry of the effective theory, with ϕ acting as the
dynamical gauge field and ξ its field strength. The special
case of Uð1Þ1 superfluids describes Maxwell’s electromag-
netism with Uð1Þloc0 gauge symmetry.

1. Goldstone action

We can write a Landau-Ginzburg-type effective action
for the Goldstone as

S ¼ −
Z

fs
2
ξ ∧⋆ ξ− ⋆ Lpol þ ξ ∧ Ã; ð3:4Þ

where fs denotes the constant superfluid density or the
gauge coupling constant in the context of Uð1Þlocq−1 gauge
theories. The “matter Lagrangian” Lpol contains contribu-
tions from additional matter fields or higher-derivative/
higher-powers of ξ. The Uð1Þq global symmetry of the
theory requires that all dependence on ϕ in Lpol must come
via ξ. Therefore, we can parametrize its variation as

⋆ δLpol ¼ δξ ∧⋆ M; ð3:5Þ

for some (qþ 1)-formM. In the context of gauge theories,
this just means that we do not have any free Uð1Þlocq−1
charges in the description; the matter Lagrangian Lpol is
purely polarized with the polarization tensor M. We have
also introduced a new (d − q)-form source Ã in the action
that can be used to compute the correlation functions of the
superfluid velocity ξ. The reason for the particular notation
will become clear momentarily.
Varying the action (3.4) with respect to ϕ, we can read

off the respective equations of motion

−cϕd ⋆ ðfsξ −MÞ ¼ cϕF̃; ð3:6aÞ

where F̃ ¼ dÃ. There is also a Bianchi identity associated
with ξ, which takes a similar form as above:

dξ ¼ cϕF: ð3:6bÞ

In the context of Uð1Þlocq−1 gauge theories, these are
nothing but the Maxwell’s equations and Bianchi identity
associated with the dynamical field strength ξ.
Looking at Eq. (3.6), we can give a physical interpre-

tation to the two higher-form background gauge fields. In
the superfluid interpretation of this theory, A is the

background gauge field associated with the symmetry
being spontaneously broken, with F ¼ dA the associated
field strength. On the other hand, F̃ ¼ dÃ can be Hodge
dualized to define

F̃ ¼ ð−Þq ⋆ Kext; ð3:7aÞ
where the q-form Kext serves as a background source
coupled to the Goldstone phase field ϕ. Since ϕ is not
Uð1Þq invariant, this source appears on the right-hand side
of the Uð1Þq conservation equation (3.6a). In the context of
gauge theories, Kext can be understood as the external
electric current coupled to the dynamical gauge field ϕ,
showing up as a source in the Maxwell’s equations (3.6a).
Similarly, we can define the dual version K̃ext via

F ¼ ð−Þp ⋆ K̃ext; ð3:7bÞ

which serves as the external magnetic current, sourcing the
Bianchi identity (3.6b). Note that these background cur-
rents are conserved, i.e.,

d ⋆ Kext ¼ d ⋆ K̃ext ¼ 0: ð3:8Þ

2. Higher-form symmetries

A Uð1Þq superfluid or a Uð1Þlocq−1 gauge theory has two
higher-form symmetries. The theory manifestly respects
the original Uð1Þq electric global symmetry that was
spontaneously broken, with the associated current

Jcons ¼ −cϕðfsξ −MÞ − c̃ϕ ⋆ Ã; ð3:9aÞ

which can be obtained by varying the action (3.4) with
respect to the background field A. Here we have defined
c̃ϕ ¼ ð−Þpqþpþqcϕ which will be useful later. The asso-
ciated conservation equations are precisely Eq. (3.6a).
Interestingly, this theory also has a Uð1Þp magnetic global
symmetry, where p ¼ d − 1 − q, given by the associated
current

J̃cons ¼ ⋆ξ − cϕ ⋆ A ¼ ⋆dϕ; ð3:9bÞ

with the associated conservation equation coming from the
Bianchi identity (3.6b). This corresponds to the conserva-
tion of p-dimensional “equipotential” surfaces of the phase
field ϕ. We use the “tilde” to distinguish the quantities
related to this second higher-form symmetry. The associ-
ated conserved charges are given as

Q½Σd−q� ¼
Z
Σd−q

−cϕðfs ⋆ ξ− ⋆ MÞ − cϕÃ; ð3:10aÞ

Q̃½Σd−p� ¼
Z
Σd−p

ð−Þpqþpþqξ − c̃ϕA: ð3:10bÞ

APPROXIMATE HIGHER-FORM SYMMETRIES, TOPOLOGICAL … PHYS. REV. D 109, 045019 (2024)

045019-9



These charges remain unchanged under smooth deforma-
tions of the surfaces Σd−q and Σd−p over which they are
defined, provided that we do not cross any free charges.
In the context of gauge theories, switching off the

background fields A and Ã, the higher-form charged objects
can be understood as the q-dimensional field lines of the
electric displacement field Jti… ¼ −cϕfsξti… þ cϕMti…

and the p-dimensional field lines of the magnetic field
J̃ti… ¼ 1

ðqþ1Þ! ϵ
k…ti…ξk…. The associated conserved charges

in Eq. (3.10) count the number of field lines passing the
cross sections Σd−q and Σd−p, respectively.
The Uð1Þq electric symmetry is realized in the action

(3.4) via invariance under Uð1Þq symmetry transformations
of the background gauge field A given in Eq. (2.4b),
together with the shift (3.1) of the phase field ϕ. On the
other hand, the action is invariant under Uð1Þp symmetry
transformations of the associated gauge field Ã as
Ã → Ãþ dΛ̃, but only in the absence of the Uð1Þq gauge

field A.8 We could exchange the coupling term ξ ∧ Ã in the
action (3.4) with dϕ ∧ Ã to make it invariant under the
Uð1Þp symmetry, but doing this will violate the Uð1Þq
symmetry that was originally manifest. Unfortunately, we
cannot manifest both the higher-form global symmetries
together in the action because the theory has a mixed
’t Hooft anomaly [3]. This is the reason why the Uð1Þq and
Uð1Þp conserved currents in Eq. (3.9) and the respective
charges in Eq. (3.10) are not invariant under the Uð1Þp and
Uð1Þq global transformations, respectively.
This anomaly can actually be treated using the anomaly

inflow mechanism, by coupling the system to a (dþ 2)-
dimensional bulk theory with a Chern-Simons-like topo-
logical Lagrangian (see Appendix B for details)

Sbulk ¼ cϕ

Z
bulk

dA ∧ Ã: ð3:11Þ

One can check that the combined theory is invariant under
both the higher-form global symmetries. By varying the full
action with respect to the two higher-form sources, we can
read out the covariant versions of the two higher-form
currents,

J ¼ −cϕðfsξ −MÞ; ð3:12aÞ

J̃ ¼ ⋆ξ: ð3:12bÞ
They obey a set of anomalous conservation laws,

d ⋆ J ¼ cϕF̃; ð3:13aÞ
d ⋆ J̃ ¼ c̃ϕF: ð3:13bÞ

Therefore, an equivalent way to think about a Uð1Þq
superfluid, or a Uð1Þlocq−1 gauge theory without free charges,
is as a system with an anomalous Uð1Þq × Uð1Þp global
symmetry. See [9] for details on the q ¼ 0 case. This
representation is appealing because it does not require one
to make assumptions about the field content or the gauge
symmetries of the underlying description, and relies solely
on the physical global symmetry structure of the theory and
the associated conservation equations. It also allows us to
systematically introduce dissipative phenomena into the
model without having to resort to any of the microscopic
details of the theory, as we shall explore later in our
discussion.

3. Duality transformations

Note that the description of a Uð1Þq superfluid in terms
of an anomalous Uð1Þq × Uð1Þp global symmetry is
invariant under the exchange of q ↔ p, which suggests
a duality with a Uð1Þp superfluid. This can be made precise
by coupling the action (3.4) to a p-form Lagrange multi-
plier ϕ̃ through a term like

S ∼
Z

1

cϕ
dϕ̃ ∧ ðξ − cϕAÞ; ð3:14Þ

implementing the Bianchi identity (3.6b). The full action is
still invariant under the Uð1Þq symmetry, however to
respect the Uð1Þp symmetry, the Lagrange multiplier

should shift as a phase ϕ̃ → ϕ̃ − c̃ϕΛ̃. Therefore, we can
think of ϕ̃ as a Goldstone for the Uð1Þp global symmetry.
Having introduced this term in the action, the superfluid
velocity ξ becomes an independent unconstrained degree of
freedom in the Lagrangian with the classical equation of
motion,

ξ ¼ −
1=fs
cϕ

ð⋆ ξ̃ − cϕMÞ; ð3:15Þ

where ξ̃ ¼ dϕ̃þ c̃ϕÃ. Substituting this back into the action
(3.4) together with the Lagrange multiplier term (3.14), we
are led to the same theory as before, but with the
substitutions

ϕ ↔ ϕ̃; A ↔ Ã; ξ ↔ ξ̃;

cϕ ↔ c̃ϕ; fs ↔
1

fsc2ϕ
; J ↔ J̃; ð3:16Þ

together with a transformation of the polarized matter
Lagrangian

⋆ Lpol ↔ ⋆Lpol −
1

2fs
M ∧ ⋆M: ð3:17Þ

8The action (3.4) only strictly respects the Uð1Þp if the
spacetime is unbounded. This is because the Uð1Þp and Uð1Þq
symmetries have a mixed anomaly, as we discuss below.
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Note that we also need to perform these transformations to
the bulk anomaly-inflow action in Eq. (3.11), giving rise to

Sbulk ↔ Sbulk − cϕ

Z
A ∧ Ã: ð3:18Þ

Therefore, a Uð1Þq superfluid is dual to a Uð1Þp super-
fluid. This is just a realization of the electromagnetic duality
for higher-form gauge theories, which states that a Uð1Þlocq−1
gauge theory is dual to aUð1Þlocp−1 gauge theory in the absence
of free charges, with the electric and magnetic sectors
exchanged. The dual Goldstone field ϕ̃ in the context of
electromagnetism is known as the dual/magnetic gauge field.
Setting p ¼ q ¼ 1 in d ¼ 3, one recovers the well-known
self-duality of electromagnetism in (3þ 1) dimensions.
Such self-dualities exist for all Uð1Þlocq−1 gauge theories [or
Uð1Þq superfluids] in d ¼ 2qþ 1 spatial dimensions.

B. Pseudospontaneous symmetry breaking
and relaxed pseudosuperfluids

The setup becomes more interesting when we explicitly
break one of the higher-form global symmetries of the
superfluid, let us say the Uð1Þq electric symmetry. In this
context, the global Uð1Þq symmetry is said to be pseudo-
spontaneously broken and the field ϕ is referred to as a
pseudo-Goldstone field. The effective theory for a pseu-
dosuperfluid can additionally depend on a q-form misalign-
ment tensor ψ capturing the difference between the
superfluid phase field ϕ and the background phase field
Φ introduced in Sec. II B, i.e.,

ψ ¼ lðϕ − cϕΦÞ: ð3:19Þ

We have included a factor of l in the definition of ψ to
make sure that it vanishes in the limit l → 0, restoring the
Uð1Þq symmetry. A similar construction for Uð1Þ0 pseu-
dosuperfluids appeared in our recent paper [13].

1. Relaxed phase

A pseudosuperfluid can exist in two distinct phases
depending on the fate of the Uð1Þlq−1 global symmetry
associated with the conservation of defects given in
Eq. (2.9). The first of these is the relaxed phase, where
the Uð1Þlq−1 global symmetry is spontaneously intact.
Another way to think about this phase is as follows:
Consider the Uð1Þlq−1 transformation with parameter Λl ¼
λ (or al ¼ a for q ¼ 0), together with a Uð1Þq trans-
formation with parameter Λ ¼ dλ (or Λ ¼ a for q ¼ 0).
This combination leaves both the background fields A and
Φ invariant, but the phase field ϕ undergoes the Uð1Þlocq−1
gauge transformation given in Eq. (3.3). This means that
the effective theory must be invariant under gauge trans-
formations of the misalignment tensor:

ψ → ψ − lcϕ

�
dλ; for q > 0;

a; for q ¼ 0:
ð3:20Þ

As a result, the relaxed phase of a pseudosuperfluid is where
the Uð1Þlocq−1 gauge symmetry in Eq. (3.3) is respected. The
physical picture one can keep in mind is that the Uð1Þq
global symmetry is spontaneously as well as explicitly
broken, but the operator that condensed to spontaneously
break the symmetry was itself invariant under Uð1Þq
transformations. This means that the effective theory is
still invariant under gauge shifts Uð1Þlocq−1 of the Goldstone
phase ϕ that take us from one ground state of the
condensate to another.
The action describing this phase still takes the same

schematic form as (3.4); namely,

S ¼ −
Z

fs
2
ξ ∧ ⋆ξ − ⋆Le þ ξ ∧ Ã: ð3:21Þ

In this expression, the matter Lagrangian Lpol is replaced
by Le, which can also depend on the misalignment tensor ψ
in addition to ξ. However, the dependence on ψ cannot be
arbitrary and must conform to the gauge transformations in
Eq. (3.20). In other words, if we parametrize the variations
of Le as

⋆δLe ¼ δξ ∧ ⋆Mþ δψ ∧ ⋆J e; ð3:22Þ

we must have that J e is conserved, i.e., d ⋆ J e ¼ 0, when
all other matter fields have been taken on shell. Such a term
does not exist for q ¼ 0, so naively it looks like there are no
signatures of explicit symmetry breaking in this phase.
However, upon including dissipative effects at finite tem-
perature, we will see that explicit symmetry breaking still
leaves physically measurable signatures in the theory such
as charge relaxation. For q > 0, this can be identified
precisely as the Coulomb phase of the Uð1Þlocq−1 gauge
theory with J e playing the role of free electric charge
current. That is to say, the equation of motion (3.6a)
modifies to

−cϕd ⋆ ðfsξ −MÞ ¼ cϕF̃ þ ð−Þqcϕl ⋆ J e: ð3:23Þ

The background field Φ serves as a source for J e and, in
the context of gauge theories, can be interpreted as a
background gauge field coupled to the free electric charges
in the theory, with Ξ ¼ dΦþ A the associated Uð1Þq-
invariant background field strength. The identity dΞ ¼ F
yields the Bianchi identity for Ξ,

dΞ ¼ ð−Þp ⋆ K̃ext; ð3:24Þ

which is sourced by the external magnetic current K̃ext
defined in Eq. (3.7).
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The Uð1Þq electric global symmetry is now explicitly
broken by the defect current

L ¼ −cϕJ e; ð3:25Þ

which can be obtained by varying the action with respect to
the background phase field Φ. The conservation equations
modify from Eq. (3.13) to

d ⋆ J ¼ cϕF̃ þ ð−Þqþ1l ⋆ L; ð3:26aÞ

d ⋆ J̃ ¼ c̃ϕF; ð3:26bÞ

d ⋆ L ¼ 0: ð3:26cÞ

The Uð1Þq charges (electric field lines) given in Eq. (3.10a)
are no longer conserved in the presence of L. However, the
defect current L itself furnishes a topologically conserved
Uð1Þlq−1 charge, given in the spirit of Eq. (2.6) as

lQl½Σd−qþ1� ¼ −lcϕ
Z
Σd−qþ1

⋆J e

¼ ð−Þqþ1Q½∂Σd−qþ1�: ð3:27Þ

The value of this topological charge is given by the number
of Uð1Þq charged objects (electric field lines) crossing the
boundary of the region Σd−qþ1 over which it is defined. The
Uð1Þp charges (magnetic field lines) given in Eq. (3.10a)
are still conserved.

2. Vortices

Let us take a quick detour and consider what happens if
we break the Uð1Þp magnetic global symmetry instead.
These are related to the topological defects of the phase
field (dynamical gauge field) ϕ; see Fig. 4. Let us consider
a superfluid with an explicitly unbroken Uð1Þq symmetry,
which got spontaneously broken by the condensation of
some charged operator Ψ to the ground state value Ψ0. The
usual Higgs mechanism lore is to decompose the fluctua-
tions of Ψ around Ψ0 into a massive magnitude η and a
massless Goldstone phase ϕ. However, there is no funda-
mental principle guaranteeing that such a decomposition
can be smoothly implemented all over spacetime. When
this decomposition fails, the phase field ϕ in the effective
theory can generically be singular, in a way that the
physically observable superfluid velocity ξ is still smooth.
Borrowing superfluid terminology, we will refer to such
configurations as vortices; in the context of gauge theories,
these would be the infamous magnetic monopoles. In the
presence of vortices ddϕ ≠ 0. Formally, we can split the
gradient dϕ into a defect-free and a defected part accord-
ing to

dϕ ¼ dϕ̄þ l̃V; ð3:28Þ

where ϕ̄ should roughly be thought of as the smooth part of
the Goldstone field and V as the new degrees of freedom
required to describe the configurations of vortices. We have
introduced a small parameter l̃ in the decomposition to
control the strength of vortices. Plugging this into the
definition of the superfluid velocity in Eq. (3.2), we can see
that the Bianchi identity (3.6b) modifies to

dξ ¼ cϕF þ l̃dV: ð3:29Þ

To add vortices to the action of Uð1Þq superfluids, we

need to introduce a Uð1Þp background phase field Φ̃,

transforming as Φ̃ → Φ̃ − Λ̃. This can also be understood
as a background gauge field associated with the vortex (or
magnetic monopole) current. The object Ξ̃ ¼ dΦ̃þ Ã
serves as the associated field strength, whose Bianchi
identity is sourced by the external electric current similar
to Eq. (3.24), i.e.,

dΞ̃ ¼ ð−Þq ⋆ Kext: ð3:30Þ

Together with the dual Goldstone field ϕ̃ introduced around
Eq. (3.14), we can use this to define the dual misalignment
tensor ψ̃ similar to Eq. (3.19), i.e.,

ψ̃ ¼ l̃ðϕ̃ − c̃ϕΦ̃Þ: ð3:31Þ

Armed with these tools, we can append the action (3.4) to
allow for vortices as

FIG. 4. An illustration of a vortex-antivortex pair in a Uð1Þq
superfluid. The dashed lines denote the (qþ 1)-form superfluid
velocity field ξ. The solid lines denote the p-dimensional charged
objects associated with the approximate p-form Uð1Þp symmetry,
defined by the (pþ 1)-form current J̃ ¼ ⋆ξ. Vortices, denoted in
red, serve as (p − 1)-dimensional defects,where thep-dimensional
charged objects can begin or end.
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S ¼ −
Z

fs
2
ξ ∧⋆ ξ− ⋆ Lpol þ ξ ∧ Ã

−
1

cϕ
dϕ̃ ∧ ðξ − cϕAÞ −

ð−Þp
cϕ

ψ̃ ∧ dV: ð3:32Þ

The field ϕ̃ now acts as a Lagrange multiplier for the
broken Bianchi identity (3.29).
One can check that this action is manifestly invariant

under both Uð1Þq and Uð1Þp background gauge trans-
formations, up to the mixed anomaly discussed previously.
However, the Uð1Þp conservation is now explicitly broken
by the vortex current

L̃ ¼ ð−Þq ⋆ dV; ð3:33Þ

which can be obtained by varying the action with respect to
the source Φ̃. Note that the object ⋆ dV is conserved by
construction, so the theory is invariant under transforma-
tions of the dual misalignment tensor ψ̃ similar to the one
given in Eq. (3.20). This implies that we are in the relaxed
phase with respect to the explicitly broken Uð1Þp sym-
metry. The conservation equations in the presence of
vortices take the form

d ⋆ J ¼ cϕF̃; ð3:34aÞ

d ⋆ J̃ ¼ c̃ϕF þ ð−Þpþ1l̃ ⋆ L̃; ð3:34bÞ

d ⋆ L̃ ¼ 0: ð3:34cÞ

The number of vortices crossing a surface Σd−pþ1 is
conserved and, in the absence of the Uð1Þq gauge field
A, is given by the number of the Uð1Þp charged objects
(magnetic field lines) crossing its boundary:

l̃Q̃l½Σd−pþ1� ¼ ð−Þpqþqþ1l̃
Z
Σd−pþ1

dV

¼ ð−Þpþ1Q̃½∂Σd−pþ1�: ð3:35Þ

One can see that conservation equations (3.34) are
almost identical to the ones we obtained for Uð1Þq
pseudosuperfluids in (3.26), on account of the electromag-
netic dualities discussed towards the end of Sec. III A.
Since the Uð1Þq symmetry is explicitly unbroken and all
dependence on ϕ comes purely via ξ, we can proceed as
before and integrate out ξ from the action. The classical
equations of motion for ξ are still given by Eq. (3.15).
Substituting this into the action (3.32), we recover the
theory of a Uð1Þp pseudosuperfluid in relaxed phase [i.e., a
Uð1Þlocp−1 gauge theory coupled to free electric charges],
described by the action (3.21) with p ↔ q and the
substitutions

l ↔ l̃; Φ ↔ Φ̃; ψ ↔ ψ̃ ; L ↔ L̃;

⋆Le ↔ ⋆Lpol −
1

2fs
M ∧ ⋆Mþ ð−Þp

cϕ
ψ̃ ∧ dV; ð3:36Þ

together with the mappings in Eq. (3.16). This means
that a Uð1Þq superfluid with vortices is dual to a Uð1Þp
pseudosuperfluid in the relaxed phase, and vice versa.
Analogously, the statement of electromagnetic duality is
that a Uð1Þlocq−1 gauge theory with magnetically charged
matter is dual to a Uð1Þlocp−1 gauge theory with electrically
charged matter, and vice versa. A corollary of this duality is
that, just like magnetic charges can be understood as
topological defects of the electric gauge field, free electric
charges can also be understood as topological defects of the
dual magnetic gauge field.
A special case of the above duality is that vortices in a

Uð1Þ0 superfluid are dual to charged particles in a Uð1Þlocd−2
gauge theory. In d ¼ 2, this is well-known particle/vortex
duality that relates vortices in a Uð1Þ0 superfluid to charged
particles in Uð1Þloc0 electromagnetism.
The natural question to consider now is whether it is

possible to break both the Uð1Þq and Uð1Þp global
symmetries simultaneously, i.e., to write down a theory
of vortices for a Uð1Þq pseudosuperfluid. This is the same
question as whether it is possible to write down a Uð1Þlocq−1
gauge theory with both electrically and magnetically
charged matter. There seems to be no simple way of
realizing this possibility by means of a local action
principle, because both the q-form Goldstone ϕ and the
dual p-form Goldstone ϕ̃will need to be singular. However,
as it turns out, it is possible to write down such effective
theories at finite temperature in the presence of a preferred
thermal rest frame, by making the spatial components of ϕ
and ϕ̃ singular, while keeping their time components
smooth. Formally, this would lead to the symmetric set
of conservation equations:

d ⋆ J ¼ cϕF̃ þ ð−Þqþ1l ⋆ L; ð3:37aÞ

d ⋆ J̃ ¼ c̃ϕF þ ð−Þpþ1l̃ ⋆ L̃; ð3:37bÞ

d ⋆ L ¼ 0; ð3:37cÞ

d ⋆ L̃ ¼ 0: ð3:37dÞ

We will look at this scenario in more detail in Sec. IV B.

C. Pseudospontaneous symmetry breaking
and pinned pseudosuperfluids

Let us return to explicitly broken Uð1Þq global sym-
metry. The pinned phase of a Uð1Þq pseudosuperfluid is
defined to be the one where the Uð1Þlq−1 global symmetry in
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Eq. (2.9) is spontaneously broken, giving rise to a (q − 1)-
form Goldstone ϕl transforming as ϕl → ϕl − cϕΛl. For
q ¼ 0, we would instead introduce a constant parameter αl
in the theory that shifts as αl → αl − cϕal. One can
actually redefine the misalignment tensor in Eq. (3.19) to
“eat” this Goldstone, i.e.,9

ψ ¼ l
�
ϕ − cϕΦ − dϕl; for q > 0;

ϕ − cϕΦ − αl; for q ¼ 0;
ð3:38Þ

and become entirely gauge invariant. Consequently, the
effective theory can now depend on ψ arbitrarily.

1. Pinned phase

The action describing this phase remains the same in
form as in Eq. (3.21), except that we can introduce a new
background coupling term for the gauge-invariant ψ , i.e.,

S¼−
Z

fs
2
ξ∧⋆ξ−⋆Leþ ξ∧ Ã− ð−Þqψ ∧ Ãψ : ð3:39Þ

We will return to the physical interpretation of the source
Ãψ in a bit. Furthermore, J e defined in Eq. (3.22) is not
required to be automatically conserved anymore. In par-
ticular, the matter Lagrangian ⋆Le can contain a new mass
term like −m2=2ψ ∧ ⋆ψ , leading to a contribution like
−m2ψ in J e. The parameter lm can be understood as the
mass parameter for ϕ. Note that factors of l appear in the
action implicitly through the definition of ψ in Eq. (3.19).
For q ¼ 0, the new mass term gives rise to the phenom-
enology of pinned superfluids; see [13]. For q > 0, on the
other hand, we can understand this as the Higgs phase of
the Uð1Þlocq−1 gauge theory with massive gauge fields ϕ. For
q ¼ 1, this describes the theory of superconductivity. The
quantity kϕ0 ¼ lm=

ffiffiffiffiffi
fs

p
denotes the inverse correlation

length of a pinned superfluid or the inverse London
penetration depth of a superconductor.
The physical consequence of the pseudo-Goldstones

(massive gauge fields) ϕ is that below the mass scale
lm, they are too heavy to excite and the spectrum becomes
trivial that is characteristic of superconductivity. In fact,
despite there still existing an explicitly unbroken Uð1Þp
magnetic symmetry, there are no low-energy modes in the
theory to carry the associated charge (magnetic fields for
gauge theories) at macroscopically long distance and time
scales. Controlling the l parameter appropriately allows us
to systematically probe the regime near or above the gauge-
field/pseudo-Goldstone mass scale.

Given the definition of the misalignment tensor ψ in
Eq. (3.38), it satisfies a Bianchi identity,

dψ ¼ lξ − lcϕΞ; ð3:40Þ

relating ψ and ξ. The consequence of this identity is that the
associated background sources Ãψ and Ã in the action
(3.39) feature a new Uð1Þψpþ1 global symmetry,

Ãψ → Ãψ þ dΛ̃ψ ;

Ã → Ã − lΛ̃ψ ; ð3:41Þ

which is respected in the absence of the background defect
field strength Ξ ¼ dΦþ A. Note that the Uð1Þp gauge field
Ã shifts as a background phase, meaning that the Uð1Þψpþ1

symmetry is explicitly broken; see Eq. (2.8b) for reference.
Correspondingly, F̃ ¼ dÃ appearing in the equations of
motion for ϕ in Eq. (3.23) gets replaced with its new
Uð1Þψpþ1-invariant definition,

F̃ ¼ dÃþ lÃψ : ð3:42Þ

The Bianchi identity [Eq. (3.6b)] for ξ remains the same as
before. In fact, it follows as a consequence of the ψ Bianchi
identity in Eq. (3.40). This brings us to the physical
interpretation of Ãψ . Specializing to the context of gauge
theories, note that the external electric current ⋆ Kext
defined in Eq. (3.7) is no longer conserved in the presence
of Ãψ . Instead, we get a new charge source term,

d ⋆ Kext ¼ ð−Þqþ1l ⋆ Qext; ð3:43Þ

where we have defined the electric charge source Qext via

F̃ψ ¼ −⋆Qext: ð3:44Þ

Therefore Ãψ contains information about the additional
electric charges being pumped into the system causing the
dynamical gauge field ϕ to acquire a mass.
To make the action manifestly invariant under the new

Uð1Þψpþ1 global symmetry even in the presence of Ξ, we
need to modify the anomaly-inflow Lagrangian in
Eq. (3.11) to

Sbulk ¼ cϕ

Z
bulk

dA ∧ Ãþ ð−ÞqlΞ ∧ Ãψ : ð3:45Þ

Varying the new full action with respect to the associated
background fields, we can read off the same currents J, J̃,
and L as defined in Eqs. (3.12) and (3.25). There is also a
new (pþ 2)-form Uð1Þψpþ1 current coupled to Ãψ given as

J̃ψ ¼ ð−Þqþ1 ⋆ ψ : ð3:46Þ

9For the q ¼ 0 case, we can actually redefine the background
phase Φ → Φ − αl=cϕ to make it invariant under “Uð1Þl−1”
transformations in Eq. (2.9). The misalignment tensor is then
just given by ψ ¼ lðϕ −ΦÞ as in our previous work [13].
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The full set of conservation equations is given as

d ⋆ J ¼ cϕF̃ þ ð−Þqþ1l ⋆ L; ð3:47aÞ

d ⋆ J̃ψ ¼ ð−Þpþ1c̃ϕlΞþ ð−Þpl ⋆ J̃; ð3:47bÞ

d ⋆ L ¼ ð−ÞqcϕF̃ψ ; ð3:47cÞ

d ⋆ J̃ ¼ c̃ϕF; ð3:47dÞ
where F̃ψ ¼ dÃψ . Note that all four conservation equations
are anomalous. We can define non-gauge-invariant con-
served currents

Jcons ¼ J − c̃ϕ ⋆ Ã;

J̃ψcons ¼ J̃ψ þ ð−Þqþ1cϕl ⋆ Φ;

Lcons ¼ Lþ ð−Þpc̃ϕ ⋆ Ãψ ;

J̃cons ¼ J̃ − cϕ ⋆ A; ð3:48Þ
which satisfy the nonanomalous version of the conserva-
tion equations (3.47).
There are a few interesting features of the conservation

equations that we should highlight. First, we see that the
Uð1Þlq−1 defect conservation equation (3.47c), obtained by
taking a differential of the Uð1Þq conservation equa-
tion (3.47a), is now anomalous unlike the relaxed phase.
This means that, instead of Eq. (3.27), the topologically
conserved Uð1Þlq−1 defect charge now needs to be defined
using the gauge-noninvariant conserved current and is
given as

lQl½Σd−qþ1� ¼ −lcϕ
Z
Σd−qþ1

⋆J e þ ð−ÞqÃψ

¼ ð−Þqþ1Q½∂Σd−qþ1�: ð3:49Þ
Furthermore, we can see that the Uð1Þψpþ1 symmetry is
explicitly broken by the Uð1Þp current (magnetic field
lines) acting as defects. Correspondingly, the Uð1Þp con-
servation equation (3.47d) follows as a consequence of the
approximate Uð1Þψpþ1 conservation (3.47b). Indeed, the
Uð1Þp charge (magnetic field lines) defined in Eq. (3.10b)
becomes topological in the pinned phase; namely,

lQ̃½Σd−p� ¼ l
Z
Σd−p

ð−Þpqþpþqξ − c̃ϕA

¼ ð−ÞpQ̃ψ ½∂Σd−p�; ð3:50Þ
where

Q̃ψ ½Σd−p−1� ¼ ð−Þpqþq

Z
Σd−p−1

ψ þ cϕlΦ; ð3:51Þ

is the approximately conserved Uð1Þψpþ1 charge operator.

2. Duality transformations

Notice that the conservation equations (3.47) can be
understood as corresponding to a system with an anoma-
lous Uð1Þq × Uð1Þψpþ1 global symmetry, with both of the
symmetry groups weakly explicitly broken. This suggests a
duality under q ↔ pþ 1. This can be made precise by
coupling the action to Lagrange multipliers ϕ̃ and ϕ̃ψ ,
imposing the Bianchi identities of ξ and ψ , respectively.
These take the form

S ¼
Z

1

cϕ
dϕ̃ ∧ ðξ − cϕAÞ

þ 1

cϕ
ϕ̃ψ ∧ ðdψ − lξþ cϕlΞÞ: ð3:52Þ

Furthermore, we isolate the mass term from the matter
Lagrangian and electric current to define

⋆Le ¼ −
m2

2
ψ ∧ ⋆ψ þ ⋆L0

e;

J e ¼ −m2ψ þ J 0
e: ð3:53Þ

With these in place, ξ and ψ can be integrated out from the
action to give

ξ ¼ −1
cϕfs

⋆ ξ̃þ 1

fs
M;

ψ ¼ ð−Þpþ1

cϕm2
⋆ ξ̃ψ þ 1

m2
J 0

e; ð3:54Þ

where we have defined

ξ̃ ¼ dϕ̃þ c̃ϕÃ − lϕ̃ψ ;

ξ̃ψ ¼ dϕ̃ψ þ c̃ϕÃψ : ð3:55Þ

Note that the definition of ξ̃ has been modified compared to
Sec. III A 3 to make it Uð1Þψpþ1 invariant. Plugging these
back into the action (3.39), together with the Lagrange
multiplier terms in Eq. (3.52), we arrive at exactly the same
theory as before but with substitutions:

ϕ ↔ ð−Þpþ1ϕ̃ψ ; A ↔ Ãψ ; ξ ↔ ð−Þpþ1ξ̃ψ ;

lϕl ↔ ð−Þpþ1ϕ̃; lΦ ↔ Ã; ψ ↔ ð−Þpξ̃;

cϕ ↔ ð−Þpþ1c̃ϕ; fs →
1

m2c2ϕ
; m2 →

1

fsc2ϕ
;

J ↔ J̃ψ ; L ↔ J̃; ð3:56Þ

together with q ↔ pþ 1 and a transformation of the matter
Lagrangian

APPROXIMATE HIGHER-FORM SYMMETRIES, TOPOLOGICAL … PHYS. REV. D 109, 045019 (2024)

045019-15



⋆ L0
e →⋆ L0

e −
1

2fs
M ∧⋆ M −

1

2m2
J 0

e ∧⋆ J 0
e: ð3:57Þ

We also need to perform these transformations on the bulk
anomaly-inflow Lagrangian defined in Eq. (3.45), which
results in

Sbulk ↔ Sbulk − cϕ

Z
A ∧ Ãþ ð−ÞqlΦ ∧ Ãψ : ð3:58Þ

Therefore, we are led to the conclusion that a Uð1Þq
pseudosuperfluid in the pinned phase admits a dual
description as a Uð1Þpþ1 pseudosuperfluid in the pinned
phase. A corollary to this statement is that a Uð1Þloc0

superconductor is self-dual in d ¼ 2 spatial dimensions
and is dual to a pinned Uð1Þ0 superfluid in d ¼ 1 spatial
dimensions.

IV. APPROXIMATE HIGHER-FORM
SYMMETRIES IN THERMAL EQUILIBRIUM

Our discussion thus far has focused on higher-form
symmetries at zero temperature. When we couple the
system to a thermal bath, it is no longer possible to base
our description on a simple action principle due to the
presence of stochastic thermal noise.10 Things are under
better control in thermal equilibrium, where one can talk
about an equilibrium free energy or partition function
instead of an effective action and use it to obtain the
equilibrium values of the conserved currents. In this
section, we will review higher-form symmetries in thermal
equilibrium, drawing from our previous work [5,6,8]. We
will then proceed to weakly break these symmetries and
discuss the repercussions thereof.

A. Temporal-pseudospontaneous symmetry breaking
and pseudofluids

Consider a physical system with a spontaneously unbro-
ken Uð1Þq global symmetry, meaning that there are no low-
energy fields in the theory charged under the Uð1Þq
symmetry. The thermal equilibrium state of such a system
can be described by a partition function Zeqb, expressed as
a local functional of time-independent configurations of the
Uð1Þq gauge field A. The equilibrium expectation values of
the conserved Uð1Þq current Jeqb can be obtained by
varying Zeqb with respect to A. The partition function is

required to be invariant under time-independent Uð1Þq
background gauge transformations,

A → Aþ dΛ such that £βΛ ¼ 0: ð4:1Þ

Here £β denotes the Lie derivative with respect to the
thermal time vector βμ ¼ δμt =T0, with T0 being the constant
temperature of the thermal state. In noncovariant notation,
the condition merely means ∂tΛ ¼ 0. In general, the
partition function can also depend on other thermodynamic
variables relevant for the system such as temperature and
chemical potentials, which we shall drop for now for
clarity.
Let us start with the standard q ¼ 0 case for motivation.

We can prepare a thermodynamic ensemble with a constant
nonzero density Jteqb ¼ χμ0 using the partition function

T0 lnZeqb ¼ 1
2

R
ddxχμ2, with μ ¼ μ0 þ T0ιβA. Here μ0 is

the equilibrium value of the chemical potential, χ the
susceptibility, and ιβ denotes the exterior product with
respect to βμ. The reason why this works is because the
time component of the gauge field ιβA is invariant under
time-independent gauge transformations. Unfortunately, as
we can see from Eq. (4.1), this is no longer the case for
q ≠ 0. In fact,

ιβA → ιβA − dιβΛ when £βΛ ¼ 0: ð4:2Þ

This means that it is not possible to construct a thermo-
dynamic ensemble with a spontaneously unbroken higher-
form global symmetry that admits a nonzero q-form density
in equilibrium.11 It is interesting to note that the gauge-
parameters ιβΛ are responsible for the Gauss-constraint
components (2.3b) of the Uð1Þq conservation equations.
Since this constraint is nontrivial in equilibrium, we need a
way to impose it in the free energy.

1. Temporal-spontaneous symmetry breaking

We can remedy this situation if we allow the global
Uð1Þq symmetry to be spontaneously broken. We could
bring in the full q-form Goldstone field ϕ from Sec. III A,
but, for a minimal model, it is sufficient to only sponta-
neously break the Uð1Þq symmetry in the time direction.
Note that this option is only available to us at finite
temperature due to the existence of a preferred thermal
rest frame, and turns out to apply to a wide array of physical
systems including magnetohydrodynamics [5,6] and vis-
coelastic crystals [8]. To this end, we introduce a purely
spatial (q − 1)-form field φ satisfying

10This is only partially true. In recent years, a new action
principle approach for nonequilibrium thermal systems has been
formulated, known as the Schwinger-Keldysh effective field
theory [28–30]; see [31] for a review. Among other things, this
framework requires a doubling of all degrees of freedom and a
new Kubo-Martin-Schwinger symmetry. At the level of classical
hydrodynamic equations, this framework is equivalent to the
conventional framework of dissipative hydrodynamics which we
explore in this paper.

11It is still possible to construct higher-derivative theories with
spontaneously unbroken higher-form global symmetry, with
terms such as ⋆ ðdιβA ∧ ⋆ dιβAÞ. However, the resultant q-form
density is zero in the absence of background fields. See [6].
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ιβφ ¼ 0; ð4:3aÞ

which transforms as

φ → φ − ιβΛ; ð4:3bÞ

and hence can compensate for the inhomogeneous trans-
formation in Eq. (4.2). We can interpret φ as a Goldstone
field arising from the spontaneous breaking of the temporal
part of the Uð1Þq symmetry. In scenarios where the Uð1Þq
symmetry is completely spontaneously broken, we could
obtain φ as the time component of the full Goldstone field
as φ ¼ ιβϕ=cϕ. We will return to this case in the next
subsection. The utility of the temporal-spontaneous break-
ing of the Uð1Þq symmetry is that we can now define a
chemical potential via

μ

T0

¼ ιβAþ
�−dφ; for q > 0;

μ0=T0; for q ¼ 0;
ð4:4Þ

which is gauge invariant in equilibrium. It is easy to see that
μ is also purely spatial in equilibrium, i.e. ιβμ ¼ 0, since
£βφ ¼ 0.
In the presence of temporal-spontaneous breaking of the

higher-form symmetry, the thermal partition function is
given by a Euclidean path integral over all time-independent
configurations of the temporal-Goldstone field, i.e., Zeqb ¼R
Dφ expSeqb, whereSeqb denotes the Euclidean equilibrium

effective action of the theory.12 Using the q-form chemical
potential μ, we can write down an expression for Seqb as

Seqb ¼
Z
Σβ

χ

2
μ ∧ �μ; ð4:5Þ

which neatly generalizes the thermal partition function from
the q ¼ 0 case. The integral here is performed over a spatial
slice Σβ normal to the thermal vector βμ.13 Furthermore, “�”
denotes the spatial Hodge duality operation, defined as
�μ ¼⋆ ðu ∧ μÞ, with uμ ¼ T0β

μ denoting the equilibrium
frame velocity. We can vary Seqb with respect to the back-
ground Uð1Þq gauge field A to obtain the respective current,

Jeqb ¼ u ∧ n; ð4:6Þ

where n ¼ χμ. This current corresponds to a nonzero q-form
density in equilibrium Jti…eqb ¼ ni…, with zero flux.
The classical configuration equation for φ obtained via

extremizing the equilibrium action precisely implements
the Gauss constraint (2.3b) in equilibrium; namely,

d � n ¼ 0: ð4:7aÞ

We can solve this constraint for a constant configuration of
the chemical potential μ ¼ μ0, or φ ¼ − 1

q ιxμ0=T0 in the
absence of background gauge fields, giving rise to the
required nonzero q-form density. Depending on the boun-
dary conditions, it is also possible to find more interesting
solutions of the Gauss constraint; see [6] for more dis-
cussion on temporally spontaneously broken higher-form
symmetries. There is also a Bianchi identity associated with
μ given as

dμ ¼ −ιuF: ð4:7bÞ

This is identically satisfied as long as φ is smooth.

2. Temporal-pseudospontaneous symmetry breaking

The effects of temporal-spontaneous symmetry breaking
are further manifest when the symmetry is also approx-
imately broken. In this case, the equilibrium action of the
theory can additionally depend on the background phase
field Φ introduced in Sec. II B that shifts under Uð1Þq
transformations as Eq. (2.8b). The effective theory will now
also possess a spatial Uð1Þlq−1 global symmetry associated
with the conservation of defects,

Φ→Φþ
�
dΛl; for q> 0;

al; for q¼ 0;
such that £βΛl ¼ 0; ð4:8Þ

which is the equilibrium version of Eq. (2.9). For q > 1, we
run into the same issue concerning thermal equilibrium
for the Uð1Þlq−1 global symmetry as we did for the Uð1Þq
global symmetry previously. To circumvent this, we will
require that the Uð1Þlq−1 symmetry is at least temporally-
spontaneously broken in the thermal state, giving rise to a
(q − 2)-form temporal-Goldstone φl with transformation
φl → φl − ιβΛl. The equilibrium action can now depend
on the new defect chemical potential μl, defined as

μl
T0

¼ l

8<
:

ιβΦ − φ − dφl; for q > 1;

ιβΦ − φþ μl0=T0 for q ¼ 1;

∅ for q ¼ 0;

ð4:9Þ

which is invariant under both Uð1Þq and Uð1Þlq−1 symmetry
transformations. It is easy to see that μl is purely spatial as
well like μ, i.e. ιβμl ¼ 0. Note that μl does not exist for
q ¼ 0, as there is no concept of temporal-spontaneous
symmetry breaking. This is to be expected because the
scalar source term L associated with an approximate Uð1Þ0
symmetry, i.e. ∂μJμ ¼ −lL, does not feature any conser-
vation of its own.
Depending on the application in mind, we can also

completely spontaneously break the Uð1Þlq−1 symmetry,

12The quantity −T0Seqb can be identified with the off shell free
energy of the system.

13In coordinates, this integral is just
R
Σβ
�f ¼ T−1

0

R
ddxf.
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giving rise to the full Goldstone field ϕl introduced in
Sec. III C. However, as long as the Uð1Þq symmetry is only
spontaneously broken in the time direction, the effective
theory would still be the same because there are no possible
symmetry invariants that depend on the spatial components
of ϕl.
Using μl, we can write down a new term in the

equilibrium action (4.5) that was previously disallowed
by symmetries:

Seqb ¼
Z
Σβ

χ

2
μ ∧ �μþ χl

2
μl ∧ �μl: ð4:10Þ

This results in a defect current obtained by varying the
equilibrium action with respect to Φ as

Leqb ¼ u ∧ nl; ð4:11Þ

where nl ¼ χμl, while the Uð1Þq current is still given by
Eq. (4.6). We can see that μl acts as the chemical potential
for defects, with χl being the associated susceptibility.
We emphasize that the temporal-spontaneous breaking
of Uð1Þq and Uð1Þlq−1 symmetries, for q > 0 and q > 1

respectively, is crucial to be able to generate a thermody-
namic density of defects. The configuration equation for φ
now gives rise to the Gauss constraint (2.7b) including
defects, i.e.,

d � n ¼ ð−Þqþ1l � nl: ð4:12aÞ

The Bianchi identity (4.7b) remains the same, but now we
also have another such identity associated with μl, i.e.,

dμl ¼ lðμ − ιuΞÞ: ð4:12bÞ

For nonzero l, the identity (4.7b) follows as a differential
of Eq. (4.12b).
Using this identity back into Eq. (4.12a), we can see that

due to the presence of defects, both q-form charge and
defects admit a finite inverse correlation length given by
k0 ¼ l

ffiffiffiffiffiffiffiffiffiffi
χl=χ

p
. Indeed, switching off the background

fields, we find

ðd � dþ ð−Þpk20�Þ � n ¼ 0;

ðd � dþ ð−Þqk20�Þnl ¼ 0: ð4:13Þ

Note that the transverse components of n and the longi-
tudinal components of nl are identically zero in the absence
of background fields, i.e., dn ¼ d � nl ¼ 0.

3. Applications

Relaxed fluids. The equilibrium currents (4.6) and (4.11)
describe the equilibrium state of a Uð1Þq fluid relaxed due
to the presence of Uð1Þlq−1 defects. This is also the theory

we will be left with after phase transition from a Uð1Þq
superfluid with Uð1Þlq−1 defects, mediated by the prolifer-
ation of vortices. We will discuss more about vortices in the
next subsection.
Superfluids with vortices. The symmetry breaking pat-

tern outlined above can also be used to describe a Uð1Þp
superfluid with vortices, in a phase where the fluctuations
of the Uð1Þp charge itself have been relaxed due to the
presence of impurities or can be ignored at the timescales
under consideration. This leaves only the superfluid veloc-
ity as the low-energy degree of freedom. In this interpre-
tation, the q-form χμ represents the spatial Hodge dual of
the superfluid velocity, which is conserved in the absence
of vortices due to the Bianchi identity, while the (q − 1)-
form lχlμl represents the vortex density.

14 The parameters
1=χ and lχl can be seen as superfluid density and vortex
susceptibility, respectively. In the presence of vortices, the
correlation length of the superfluid velocity becomes finite
and is given by 1=k0. We will revisit this system in more
detail in the subsequent subsections and see how this arises
from a consistent limit of the full superfluid including
Uð1Þp charge fluctuations.
Electrohydrodynamics with free electric charges. The

same setup can also be applied to the theory of “electro-
hydrodynamics.” This is seen as a limit of electromagnet-
ism near the mass scale of charged matter fields, so that
electric fields are not strongly screened, but looking at
small enough timescales that the fluctuations of magnetic
fields can be effectively neglected. For a Uð1Þlocq−1 gauge
theory, in the absence of free charges, this theory furnishes
a Uð1Þq global symmetry associated with conserved elec-
tric field lines, with the q-form μ playing the role of electric
fields and χ that of electric permittivity. In the presence of
free electric charges, however, the Uð1Þq symmetry is
violated by the (q − 1)-form free charge density lχlμl
with susceptibility lχl. In this interpretation, 1=k0 repre-
sents the Debye screening length, which decreases with the
increasing susceptibility of free charges.
Magnetohydrodynamics with free magnetic charges.

Perhaps the best explored example of temporal-spontaneous
symmetry breaking is magnetohydrodynamics [5,6]. This
applies to electromagnetism with charged matter at energy
scales well above the mass scale of the matter fields. In this
regime, electric fields and charged particles have mutually
screened each other, leaving a theory of just the conserved
magnetic fields. For a Uð1Þlp−1 gauge theory, magnetic fields
realize a Uð1Þq global symmetry. In this interpretation, the
q-form χμ plays the role ofmagnetic fields that are conserved
due to the Bianchi identity, with χ being the magnetic
permeability. Explicit breaking of the Uð1Þq symmetry
amounts to the introduction of the magnetic monopoles.

14Conventional zero-form superfluids with vortices were dis-
cussed in [32] but the vortex susceptibility was not accounted for.
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We can identify the (q − 1)-form lχlμl as the magnetic
monopole density and lχl as the susceptibility of magnetic
charge. The static correlation length 1=k0, in this scenario, is
the magnetic equivalent of the Debye screening length.
While fundamental magnetic monopoles have not been
observed in nature, this effective theory can also be applied
to “emergent magnetic monopoles” observed in various
condensed matter systems such as spin ice [21] and the
anomalous Hall effect [22]. Later in our discussion, we will
set up a theory of magnetic monopoles more formally as
topological defects of theUð1Þlocp−1 gauge field, and showhow
we reduce to the description above when electric fields are
screened.

B. Pseudospontaneous symmetry breaking
and relaxed pseudosuperfluids

The discussion of the previous section can be easily
extended to the superfluid phase where the Uð1Þq global
symmetry is completely spontaneously broken, giving rise
to the q-form Goldstone field ϕ introduced in Sec. III A.
When the symmetry is further explicitly broken, the
pseudosuperfluid can exist in one of two phases depending
on the status of the Uð1Þlq−1 global symmetry in Eq. (4.8).

The first of these is the relaxed phase, where the Uð1Þlq−1
global symmetry is only spontaneously broken in the time
direction, or spontaneously unbroken for q ¼ 1 or simply
unbroken for q ¼ 0. This results in the spatial components
of the Goldstone ϕ, or just ϕ as a whole for q ¼ 0,
remaining massless. This phase will describe a relaxed
superfluid or the relaxed phase of electromagnetism at
finite temperature. It is also in this phase that we will be
able to consistently introduce vortices (or magnetic monop-
oles) as topological defects in the configurations of the
spatial components of ϕ, or ϕ as a whole for q ¼ 0.
The other phase of a pseudosuperfluid is the pinned

phase, where the Uð1Þlq−1 global symmetry is completely
spontaneously broken, or simply broken for q ¼ 0. This
results in the Goldstone ϕ becoming massive and applies to
the theory of pinned superfluids or the Higgs phase of
electromagnetism (superconductivity) at finite temperature.
In this subsection, we devote our attention to the relaxed
phase of a pseudosuperfluid and return to the pinned phase
in Sec. IV C.

1. Spontaneous symmetry breaking

Let us start with the higher-form superfluid where the
Uð1Þq global symmetry is not yet explicitly broken. Noting
the definition of superfluid velocity from Eq. (3.2), and
upon identifying the temporal-Goldstone field as
φ ¼ ιβϕ=cϕ, one can check that ιuξ ¼ cϕμ in equilibrium.
However, the equilibrium action (4.5) can now contain a
new term containing the spatial components of the super-
fluid velocity,

Seqb ¼
Z
Σβ

χ

2
μ ∧ �μ − fs

2
ξ ∧ �ξ − ιuðξ ∧ ÃÞ; ð4:14Þ

where fs is the superfluid density we met in Sec. III A. We
have also introduced the background coupling term for the
Uð1Þp topological symmetry coming from Eq. (3.4).
Varying the equilibrium action with respect to A, account-
ing for the bulk action in Eq. (3.11), we can read off the
associated Uð1Þq and Uð1Þp currents in equilibrium,

Jeqb ¼ u ∧ n − cϕfsPuξ ¼ ð1 − c2ϕfs=χÞu ∧ n − cϕfsξ;

J̃eqb ¼ ð−Þqu ∧ �ξ − cϕ � μ ¼ ⋆ξ; ð4:15Þ

where Pu ¼ ð1þ u ∧ ιuÞ denotes the projection operator
transverse to uμ. We still find a nonzero q-form density
Jti…eqb ¼ ni… as before, but now we also have a nonzero flux
Ji…eqb ¼ −cϕfsξi… characteristic of superfluids. Comparing
this expression to the zero temperature version of the
current in Eq. (3.12a), we can identify the term proportional
to 1 − c2ϕfs=χ in Jeqb as the contribution coming from the
matter polarization tensor M; whereas, the expression for
J̃eqb is the same as in Eq. (3.12b).
The classical configuration equations for the temporal

components of ϕ lead to the same Gauss constraint from
Eq. (4.7), but modified due to Ã, i.e.,

d � n ¼ cϕPuF̃: ð4:16aÞ

In addition, we now also have the configuration equations
coming from the spatial components of ϕ, leading to

d � ξ ¼ ð−Þqþ1
1

fs
ιuF̃: ð4:16bÞ

Because the fluxes in the superfluid phase are nonzero,
these equations are necessary to ensure that the dynamical
components of the Uð1Þq conservation equations (2.7a) are
satisfied in thermal equilibrium. The Bianchi identity
generalizes from Eqs. (3.6b) to (4.7b).

2. Pseudospontaneous symmetry breaking

Let us introduce a weak explicit breaking of the Uð1Þq
global symmetry. We will focus on the relaxed phase of the
pseudosuperfluid, where the Uð1Þlq−1 symmetry is only
spontaneously broken in the time direction, allowing us to
define the defect chemical potential μl as in Eq. (4.9).
However, there are no symmetry invariants in the theory
that contain the spatial components of ϕwithout acted upon
by derivatives.We can try to define amisalignment tensor as
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ψ ¼ l

8<
:

ϕ − cϕΦ − cϕu ∧ dφl; for q > 1;

ϕ − cϕΦþ cϕuμl0=T0; for q ¼ 1;

ϕ − cϕΦ; for q ¼ 0:

Taking Λ ¼ dλ, Λl ¼ λ (or Λ ¼ a, al ¼ a for q ¼ 0), we
can see that ψ transforms under the spatial version of the
Uð1Þlocq−1 symmetry in Eq. (3.20), i.e.,

ψ ¼ψ −lcϕ

�
Pudλ; for q> 0;

a; for q¼ 0:
such that £βλ¼ 0: ð4:17Þ

For q ¼ 0, ψ has a constant shift symmetry. For q > 0, the
time component of ψ is gauge invariant and is precisely
given by μl; namely, ιuψ ¼ −cϕμl in equilibrium.
However, the spatial components behave like a gauge field.
All in all, we are allowed to add the superfluid density

term from Eq. (4.14) to the equilibrium action (4.10), i.e.,

Seqb ¼
Z
Σβ

χ

2
μ ∧ �μ − fs

2
ξ ∧ �ξþ χl

2
μl ∧ �μl

− ιuðξ ∧ ÃÞ: ð4:18Þ

The equilibrium versions of Uð1Þq, Uð1Þp currents and the
Uð1Þlq−1 defect current are the same as Eqs. (4.11) and
(4.15), respectively. The classical configuration equations
for the temporal components of ϕ are given by Eq. (4.12a)
modified with the Ã term

d � n ¼ cϕPuF̃ þ ð−Þqþ1l � nl: ð4:19Þ

The configuration equations for the spatial components of
ϕ are still given by Eq. (4.16b). The Bianchi identities are
the same as Eqs. (3.6b) and (4.12b). The presence of
defects screens the q-form charges and defects the same as
Eq. (4.13), but the spatial components of ξ remain
unscreened.

3. Vortices and magnetic monopoles

We can also explicitly break the Uð1Þp magnetic global
symmetry of a Uð1Þq superfluid. This results in the
introduction of vortices, or magnetic monopoles in the
context of Uð1Þlocq−1 gauge theory. An interesting conse-
quence of finite temperature is that we can do this even
when the Uð1Þq symmetry is explicitly broken, provided
that we are in the relaxed phase of the Uð1Þq pseudosuper-
fluid, as we now explain.
In the presence of vortices, the Uð1Þq Goldstone field ϕ

need not be well behaved and we can decompose its
gradient into a vortex-free and vortex-induced part as in
Eq. (3.28). Of course, any such splitting is inherently
redundant and we must supplement it with a new local
Uð1Þlocq gauge symmetry,

ϕ̄ → ϕ̄ − l̃a; V → V þ da: ð4:20Þ

This should not be confused with the local Uð1Þlocq−1 gauge
symmetry we have previously introduced. Without loss of
generality, we can work in a gauge where ιβV ¼ 0 and
ιβϕ̄ ¼ ιβϕ ¼ cϕφ. This leaves us with purely spatial
residual Uð1Þlocq gauge transformations:

ιβa ¼ £βa ¼ 0: ð4:21Þ

In fixing this gauge, we have essentially chosen to shift all
the singular “vortex information” into the spatial compo-
nents of ϕ and picked out the temporal components φ to be
smooth.
As long as the Uð1Þlocq−1 gauge symmetry in Eq. (4.17) is

respected, all the dependence on ϕ in the effective theory
can only appear via φ or ξ, both of which are smooth in the
presence of vortices. Therefore, the relaxed phase of
Uð1Þlocq−1 gauge theories is compatible with vortices (mag-
netic monopoles) at finite temperature. Note that for
ordinary Uð1Þ0 superfluids, there is no notion of the
temporal-Goldstone φ, so the restriction is still the same
as it was at zero temperature, i.e., all of the dependence on
the Uð1Þ0 phase ϕ must arise via ξ to allow for vortices in
the configurations of ϕ.
Because of the presence of vortices, the equilibrium

action in Eq. (4.18) can now contain a new term,

Seqb ¼
Z
Σβ

χ

2
μ ∧ �μ − fs

2
ξ ∧ �ξ

þ χl
2
μl ∧ �μl −

1=χ̃l
2

dV ∧ �dV
− ιuðξ ∧ ÃÞ − l̃ð−1ÞqιuðdV ∧ Φ̃Þ: ð4:22Þ

We have also introduced a source term coupled to dV in the
equilibrium action. The equilibrium versions of Uð1Þq,
Uð1Þp currents, and the Uð1Þlq−1 defect current are the same
as Eqs. (4.11) and (4.15), respectively. However, we now
have a Uð1Þlp−1 defect current,

L̃eqb ¼ −u ∧ �dV ¼ ð−Þq ⋆ dV: ð4:23Þ

Varying this with respect to the time components of ϕ̄, we
recover the Gauss constraint in Eq. (4.19). However,
varying with respect to the spatial components of ϕ̄ and
V, we now find

d � ξ ¼ ð−Þqþ1
1

fs
ιuF̃; ð4:24aÞ

d�ðdξ − cϕFÞ ¼ ð−Þqþ1l̃2χ̃lðfs � ξ − ð−ÞqιuΞ̃Þ: ð4:24bÞ
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For any nonzero l̃, the first equation is just the derivative of
the second. This is to be expected on account of the Uð1Þlocq

spatial gauge symmetry remaining after the gauge fixing in
Eq. (4.21). On the other hand, for l̃ ¼ 0, the second
equation becomes trivial, while the first reverts to the
original vortex-free version of the configuration equations
in Eq. (4.16b). The Bianchi identity in the presence of
vortices becomes Eq. (3.29), while the Bianchi identity
(4.12b) remains the same.
The q-form charges and defects are screened as in

Eq. (4.13). In the presence of vortices, the spatial compo-
nents of ξ are also relaxed as we can see from Eq. (4.24b).
In the absence of background fields, this yields

ðd � dþ ð−Þqk̃20�Þξ ¼ 0; ð4:25Þ

where k̃0 ¼ l̃
ffiffiffiffiffiffiffiffiffi
χ̃lfs

p
denotes the new inverse correlation

length associated with the spatial components of ξ.

4. Duality transformations

As we have discussed at length in Sec. II, when the
Uð1Þq global symmetry is not explicitly broken, we can
employ the duality procedure in Sec. III A to dress the
theory of Uð1Þq superfluids with vortices equivalently as a
Uð1Þp pseudosuperfluid in the relaxed phase. The ingre-
dients we need are the dual-Goldstone terms similar to
Eq. (3.14) to impose the Bianchi identities

Seqb ∼
Z
Σβ

ιu

�
1

cϕ
dϕ̃ ∧ ðξ − cϕA − l̃VÞ

�

þ ιu

�
l̃
cϕ

ð−Þpþ1dϕ̃l ∧ dV

�
: ð4:26Þ

We can now go ahead and integrate out ξ and dV to give

ξ ¼ ð−Þpqþpþq 1

fs
� μ̃þ ð−Þpþ1

cϕ
χ
u ∧ �ξ̃; ð4:27aÞ

dV ¼ −ð−Þpqþqχ̃l � μ̃l; ð4:27bÞ

where μ̃, μ̃l are defined using φ̃ ¼ ιβϕ̃=c̃ϕ, φ̃l ¼ ιβϕ̃=c̃ϕ
similar to Eqs. (4.4) and (4.9). Substituting these back into
the equilibrium action together with the Lagrange multi-
plier terms in Eq. (4.26), we recover the relaxed phase of a
Uð1Þp pseudosuperfluid without vortices in Eq. (4.18),
with the same substitutions outlined in Eqs. (3.16) and
(3.36) together with

μ ↔ μ̃; μl ↔ μ̃l;

χ ↔ χ̃; χl ↔ χ̃l; ð4:28Þ

where we have identified χ̃ ¼ 1=fs.

Normally, at zero temperature, we cannot perform a
duality transformation when the Uð1Þq symmetry is explic-
itly broken. This is because the description now explicitly
depends on the Goldstone field ϕ and not on its derivatives
ξ alone. However, when describing the relaxed phase of a
Uð1Þq superfluid in thermal equilibrium, the transformation
(4.17) implies that equilibrium action only explicitly
depends on the time component φ ¼ ιβϕ=cϕ of the
Goldstone field ϕ and not on its spatial components.
Therefore, we still have access to the partial duality
transformation, where we only integrate out the spatial
components of ξ. To this end, instead of Eq. (4.26), we only
introduce a (p − 1)-form Lagrange multiplier φ̃ and a
(p − 2)-form Lagrange multiplier φ̃l for the spatial com-
ponents of the Bianchi identities, i.e.,

Seqb ∼ −ð−ÞpqþpþqT0

Z
Σβ

dφ̃ ∧ ðξ − cϕA − l̃VÞ

− ð−Þpl̃dφ̃l ∧ dV: ð4:29Þ

The configuration equations for the spatial components of ξ
and dV read

Puξ ¼
1

fs
ð−Þpqþpþq � μ̃;

PudV ¼ −ð−Þpqþqχ̃l � μ̃l: ð4:30Þ

We can use this, together with the time components of the
two objects ιuξ ¼ cϕμ, ιudV ¼ 0, to find an equivalent form
of the equilibrium action

Seqb ¼
Z
Σβ

χ

2
μ∧ �μþ χ̃

2
μ̃∧ �μ̃þ χl

2
μl ∧ �μlþ

χ̃l
2
μ̃l ∧ �μ̃l

þ cϕðTF ∧ φ̃−μ∧ ÃÞ: ð4:31Þ

Interestingly, we observe that this representation corre-
sponds to a system with a temporally spontaneously broken
approximate Uð1Þq × Uð1Þp symmetry, with a mixed
anomaly between the two symmetry groups. The terms
in the last line are precisely the anomalous contribution to
the equilibrium action that can be treated by using the bulk
anomaly-inflow action; see Eq. (B8).
Varying the full equilibrium action with respect to the

background sources, we can read out the respective
currents:

Jeqb ¼ u ∧ n − c̃ϕ � μ̃;
J̃eqb ¼ u ∧ ñ − cϕ � μ;
Leqb ¼ u ∧ nl;

L̃eqb ¼ u ∧ ñl; ð4:32Þ
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where we have further identified ñ ¼ χ̃ μ̃ and ñl ¼ χ̃lμ̃l.
We can extremize the equilibrium action with respect to φ
and φ̃ to recover the anomalous Gauss constraints

d � n ¼ cϕPuF̃ þ ð−Þqþ1l � nl; ð4:33aÞ

d � ñ ¼ c̃ϕPuF þ ð−Þpþ1l̃ � ñl; ð4:33bÞ

together with the Bianchi identities

dμ ¼ −ιuF; ð4:33cÞ

dμ̃ ¼ −ιuF̃ ð4:33dÞ

dμl ¼ lðμ − ιuΞÞ; ð4:33eÞ

dμ̃l ¼ l̃ðμ̃ − ιuΞ̃Þ: ð4:33fÞ

The first and fifth of these equations [(4.33a) and (4.33e)]
are just the original Uð1Þq Gauss constraint in Eq. (4.19)
and the Bianchi identity in Eq. (4.12b). The second and
third equations [(4.33b) and (4.33c)] implement the
Bianchi identities (3.29). Finally, the fourth and sixth
equations [(4.33d) and (4.33f)] implement Eqs. (4.24a)
and (4.24b), respectively.
Because of the final two Bianchi identities, all charges

are screened as

ðd � dþ ð−Þpk20�Þ � n ¼ 0;

ðd � dþ ð−Þqk20�Þnl ¼ 0;

ðd � dþ ð−Þqk̃20�Þ � ñ ¼ 0;

ðd � dþ ð−Þpk̃20�Þñl ¼ 0: ð4:34Þ

The first two equations are precisely Eq. (4.13), whereas
the last two are a consequence of Eq. (4.25).
This representation of the theory is neat because it is

symmetric in the Uð1Þq and Uð1Þp sectors. It also allows us
to infer that the relaxed phase of a Uð1Þq pseudosuperfluid
with vortices is dual to the relaxed phase of a Uð1Þp
pseudosuperfluid with vortices. Under this duality, all
“tilde” quantities get exchanged with the respective
“untilde” quantities.

5. Applications

Superfluids with vortices. To summarize, the model
above describes a theory of relaxed Uð1Þq or Uð1Þp
superfluids in the presence of vortices. If we increase
the susceptibility of vortices by increasing l̃, thereby
decreasing the correlation length 1=k̃0, we can integrate
out the spatial components of the superfluid velocity χ̃ μ̃ ¼
ð−Þq � ξ from the setup altogether using Eq. (4.34). This
leads us to the theory of relaxed fluids with temporally
spontaneously broken Uð1Þq global symmetry discussed in

Sec. IVA. In this sense, the proliferation of vortices
controls the phase transition from superfluids to fluids.
Analogously, by increasing the susceptibility of Uð1Þlq−1
defects by increasing l, thereby decreasing the correlation
length 1=k0, we can integrate out the q-form chemical
potential χμ ¼ ð−Þp � ξ̃ from the setup using Eq. (4.34).
This results in a theory of just dynamical superfluid
velocity, furnishing a temporally spontaneously broken
Uð1Þp global symmetry in Sec. IVA; see Sec. IVA 3.
These notions of phase transitions will be made more
precise in the subsequent hydrodynamic discussion.
Electromagnetism with free electric and magnetic

charges. The setup outlined above can also be understood
as describing the relaxed phase of a Uð1Þlocq−1 or Uð1Þlocp−1
gauge theory in thermal equilibrium, in the presence of free
electric and possibly magnetic charges. Taking the Uð1Þlocq−1
interpretation, we can identify −cϕμ as electric field, χ̃ μ̃ as
magnetic fields, χ=c2ϕ as the electric permittivity, and χ̃ as
the magnetic permeability. Furthermore, we can identify
−lχlμl=cϕ as the electric charge density and l̃χ̃lμ̃l as the
magnetic charge density, with l2χl=c2ϕ and l̃2χ̃l their
respective susceptibilities.
Therefore, in the presence of free electric charges,

electric fields and electric charges themselves are screened
to a finite Debye length 1=k0. If we proliferate the free
electric charges by increasing l, thereby decreasing the
electric Debye screening length 1=k0, we can integrate out
electric fields and free electric charges from the description
using the equations above. This leaves us with the theory of
magnetohydrodynamics with magnetic monopoles, with an
approximate Uð1Þp symmetry detailed in Sec. IVA; see
Sec. IVA 3. Similarly, in the presence of free magnetic
charges/monopoles, magnetic field and magnetic charges
are screened to a finite magnetic Debye length 1=k̃0. If we
wish, we can identically switch off the effects of magnetic
monopoles by setting l̃ to zero, which takes k̃0 → 0 and
unscreens the magnetic fields. On the other hand, if we
proliferate the magnetic monopoles by increasing l̃,
thereby decreasing the magnetic Debye screening length
1=k̃0, we can integrate out magnetic fields and free
magnetic charges from the description. In this case, we
are left with the theory of electrohydrodynamics with free
electric charges, with an approximate Uð1Þq symmetry
detailed in Sec. IVA.

C. Pseudospontaneous symmetry breaking
and pinned pseudosuperfluids

Let us switch gears and consider the pinned phase of a
Uð1Þq pseudosuperfluid, where the topological Uð1Þlq−1
global symmetry is completely spontaneously broken,
giving mass to the q-form pseudo-Goldstone field ϕ.
The resultant model also describes a Uð1Þlocq−1 gauge theory
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in the Higgs phase, where the Uð1Þlocq−1 gauge symmetry is
spontaneously broken and the dynamical q-form gauge
field ϕ acquires a mass. For q ¼ 0, this model describes a
pinned Uð1Þ0 superfluid with a massive zero-form pseudo-
Goldstone field ϕ, while for q ¼ 1 it describes a Uð1Þ0
superconductor with a massive dynamical one-form gauge
field ϕ. We will talk more about these applications after
setting up the model.

1. Pseudospontaneous symmetry breaking

Since both the Uð1Þq and Uð1Þlq−1 global symmetries are
completely spontaneously broken, we have access to the
full Goldstone fields ϕ and ϕl. Using these, we can
construct the completely gauge-invariant misalignment
tensor ψ defined in Eq. (3.38). One can check that we
still have ιuψ ¼ −cϕμl, so this definition of ψ only differs
from its relaxed phase definition in Eq. (4.17) by spatial
terms. The new gauge-invariant information in ψ allows us
to introduce a new mass term for ψ in the equilibrium
action (4.18) as

Seqb ¼
Z
Σβ

χ

2
μ ∧ �μ− fs

2
ξ ∧ �ξþ χl

2
μl ∧ �μl −

m2

2
ψ ∧ �ψ

− ιuðξ ∧ ÃÞ þ ð−Þqιuðψ ∧ Ãψ Þ: ð4:35Þ

Here m is the pinning mass that we also encountered
previously in Sec. III B. We have also included the Ãψ

coupling term for ψ from Eq. (3.39). The Uð1Þq charge
current is still given by Eq. (4.15), while the defect current
can be obtained by varying the equilibrium action, together
with the bulk action in Eq. (3.45), with respect to Φ, to
yield

Leqb ¼ χlu ∧ μl þ cϕm2Puψ

¼ ðχl − c2ϕm
2Þu ∧ μl þ cϕm2ψ : ð4:36Þ

The configuration equations for the time component of ϕ
give rise to the same Gauss constraint in Eq. (4.19), but
with the renewed definition of F̃ in Eq. (3.42). However,
the configuration equations coming from the spatial com-
ponents of ϕ modify from Eq. (4.16b) to

d � ξ ¼ ð−Þq lm
2

fs
� ψ − ð−Þq 1

fs
ιuF̃: ð4:37Þ

The Bianchi identities associated with ψ are given by
Eq. (3.40) and that associated with ξ is given in Eq. (3.6b).
Since ϕ acquires a mass, the temporal as well as spatial
components of the superfluid velocity ξ and ψ are screened.
The screening of the temporal components cϕμ ¼ ιuξ

and cϕμl ¼ −ιuψ is still given by Eq. (4.13), however the
screening of the spatial components of ξ and ψ takes the
form

ðd � d − ð−Þpðkϕ0 Þ2�Þ � ξ ¼ 0;

ðd � d − ð−Þqðkϕ0 Þ2�Þψ ¼ 0; ð4:38Þ

where kϕ0 ¼ lm=
ffiffiffiffiffi
fs

p
denotes the finite inverse correlation

length of ϕ due to pinning. Recall that ξ was also screened
in the presence of vortices in Eq. (4.25). However, the
precise form of the screening equations is different in the
two cases.

2. Duality transformations

As we discussed in Sec. III C, the pinned phase of a
Uð1Þq pseudosuperfluid is self-dual under q ↔ pþ 1. To
see the finite temperature realization of this duality, we
need to introduce the Lagrange multiplier ϕ̃ and ϕ̃ψ to
impose the Bianchi identities

Seqb ∼
Z
Σβ

ιu

�
1

cϕ
dϕ̃ ∧ ðξ − cϕAÞ

�

þ ιu

�
1

cϕ
ϕ̃ψ ∧ ðdψ − lξþ lcϕΞÞ

�
: ð4:39Þ

Together with the equilibrium action [Eq. (4.35)], this can
be used to integrate out ξ and ψ from the theory to give

ξ ¼ ð−Þpqþpþq 1

fs
� μ̃þ ð−Þpþ1

cϕ
χ
u ∧ �ξ̃; ð4:40aÞ

ψ ¼ ð−Þpqþq

m2
� μ̃ψ þ cϕ

χl
u ∧ �ξ̃ψ ; ð4:40bÞ

where the new definition of ξ̃ is being used from Eq. (3.55)
in the pinned phase. The dual chemical potentials, on the
other hand, are defined as

μ̃ψ
T0

¼ ιβÃψ − dφ̃ψ ; ð4:41aÞ

μ̃

T0

¼ ιβÃ − dφ̃ − lφ̃ψ ; ð4:41bÞ

where φ̃ ¼ ιβϕ̃=c̃ϕ and φ̃ψ ¼ ιβφ̃ψ=c̃ϕ. Substituting these
back, we obtain back the same functional form of the
equilibrium action with the mappings in Eq. (3.56) together
with

μ ↔ μ̃ψ ; μl ↔ μ̃

χ ↔
1

m2
; χl ↔ χ̃: ð4:42Þ

We can also derive an intermediate picture purely in
terms of temporally spontaneously broken higher-form
symmetry by performing a partial duality transformation.
To this end, we only introduce the temporal components of
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the Lagrange multipliers to impose the spatial components
of the Bianchi identities, i.e.,

Seqb ∼ −ð−ÞpqþpþqT0

Z
Σβ

dφ̃ ∧ ðξ − cϕAÞ

− φ̃ψ ∧ ðdψ − lξþ lcϕΞÞ: ð4:43Þ
This still allows us to integrate out the spatial components
of ξ and ψ as

Puξ ¼ ð−Þpqþpþq 1

fs
� μ̃; ð4:44aÞ

Puψ ¼ ð−Þpqþq

m2
� μ̃ψ : ð4:44bÞ

Further using ιuξ ¼ cϕμ and ιuψ ¼ −χϕμl, we can sub-
stitute these expressions into the on shell action to obtain a
dual form:

Seqb ¼
Z
Σβ

χ

2
μ ∧ �μþ 1

2fs
μ̃ ∧ �μ̃þ χl

2
μl ∧ �μl

þ 1

2m2
μ̃ψ ∧ �μ̃ψ þ cϕðT0F ∧ φ̃ − μ ∧ ÃÞ

þ cϕð−ÞqðT0lΞ ∧ φ̃ψ − μl ∧ Ãψ Þ: ð4:45Þ
The anomalous terms in the last two lines of this expression
can be removed by using the bulk anomaly-inflow action;
see Eq. (B14). The remaining terms in the dual form
manifest the q ↔ pþ 1 symmetry of the pinned phase of a
Uð1Þq pseudosuperfluid.
Varying the full action with respect to the background

sources, we can read off the respective currents:

Jeqb ¼ u ∧ n − c̃ϕ � μ̃;
J̃eqb ¼ u ∧ ñ − cϕ � μ;
Leqb ¼ u ∧ nl þ ð−Þpc̃ϕ � μ̃ψ ;

J̃ψ ;eqb ¼ u ∧ ñψ − ð−Þqcϕ � μl: ð4:46Þ

The anomalous Gauss constraints take the similar form,

d � n ¼ cϕPuF̃ þ ð−Þqþ1l � nl;
d � ñψ ¼ ð−Þpþ1c̃ϕlPuΞþ ð−Þpl � ñ; ð4:47aÞ

together with the Bianchi identities,

dμ ¼ −ιuF; ð4:47bÞ

dμ̃ψ ¼ −ιuF̃ψ ; ð4:47cÞ

dμl ¼ lμ − lιuΞ; ð4:47dÞ

dμ̃ ¼ lμ̃ψ − ιuF̃: ð4:47eÞ

All charged objects are also screened in the pinned phase.
But the actual form of the relaxation is different and is
given as

ðd � dþ ð−Þpk20�Þ � n ¼ 0;

ðd � dþ ð−Þqk20�Þnl ¼ 0;

ðd � d − ð−Þqðkϕ0 Þ2�Þ � ñψ ¼ 0;

ðd � d − ð−Þpðkϕ0 Þ2�Þñ ¼ 0: ð4:48Þ

These are just rewriting the equations found in the
respective equations found previously.

3. Applications

Superconductivity. The above construction applies to the
spontaneously broken phase of aUð1Þlocq−1 gauge theory, with
massive gauge fields ψ . For q ¼ 1, this describes the theory
of superconductivity with a spontaneously broken Uð1Þ0
gauge symmetry. The massive gauge fields ξ can only
propagate over a finite correlation length 1=kϕ0 , identified
as the London penetration depth in a superconductor.

V. HIGHER-FORM PSEUDOHYDRODYNAMICS

In this section, we discuss the theory of hydrodynamics
with an approximate higher-form symmetry in the tempo-
rally spontaneously broken phase. The setup we employ
here is a direct generalization of our recent work on
approximate zero-form symmetries [13] and utilizes the
hydrodynamic framework for higher-form symmetries
from [6,33]. We will assume relativistic symmetry through
this discussion. The generalization to Galilean systems or
systems without any boost symmetry is involved but
conceptually straightforward, and we will consider it in
a future publication.

A. Hydrodynamic fields and equations

When we leave thermal equilibrium, we no longer have
the luxury to base our effective description on an equilib-
rium action like in Sec. IVA. We must instead rely on the
framework of hydrodynamics, where the starting points are
symmetries and the respective conservation laws. The
rationale being that out-of-equilibrium processes are
generically dissipative and the only long-lived modes that
are relevant for the low-energy effective description are
those corresponding to conserved quantities. As we have
discussed in detail in the previous subsections, for a system
respecting an approximate Uð1Þq global symmetry, the
relevant conservation law is

d ⋆ J ¼ ð−1Þqþ1lL: ð5:1aÞ

Furthermore, we assume the system to be thermodynami-
cally isolated and invariant under spacetime translations, in

JAY ARMAS and AKASH JAIN PHYS. REV. D 109, 045019 (2024)

045019-24



which case we also have an energy-momentum conserva-
tion equation,

∇μTμν ¼ ðF · JÞν þ ðlΞ · LÞν; ð5:1bÞ
where Tμν is the symmetric energy-momentum tensor and
∇μ denotes the covariant derivative operator associated
with the background spacetime metric gμν. We have used
the notation ðF · JÞν ¼ 1=ðqþ 1Þ!Fνλ1…Jλ1… and similarly
for the second term on the right. The force terms sourcing
the energy-momentum conservation are a direct generali-
zation of the Lorentz force for zero-form symmetries.
Depending on the particular application in mind, one might
also need to consider additional conservation equations
associated with particle number, etc. We will ignore these
for now for simplicity.
To solve these hydrodynamic equations, we need the

appropriate degrees of freedom. Following our previous
work on one-form hydrodynamics [6], we note that the
hydrodynamic fields can be identified as a set of symmetry
parameters corresponding to the global symmetries of the
system under consideration. For our case of interest, these
are a q-form parameter Λβ and a diffeomorphism parameter
βμ ¼ uμ=T, with uμ being the normalized timelike fluid
velocity (with uμuμ ¼ −1) and T the fluid temperature.
These fields transform under infinitesimal diffeomorphisms
χμ and Uð1Þq transformations Λ as

βμ → βμ þ £χβμ; ð5:2aÞ

Λβ → Λβ þ £χΛβ − £βΛ: ð5:2bÞ

When the Uð1Þq global symmetry is explicitly broken,
for q > 0, we also have a new global Uð1Þlq−1 sym-
metry associated with the conservation of defects.
Correspondingly, we introduce a (q − 1)-form parameter
Λl
β transforming under diffeomorphisms χμ and (q − 1)-

form gauge transformations Λl as

Λl
β → Λl

β þ £χΛl
β − £βΛl: ð5:2cÞ

In equilibrium, the hydrodynamic fields take trivial values
βμ ¼ δμt =T0 and Λβ ¼ Λl

β ¼ 0. Using Eq. (5.2), we can see
that these remain unchanged under time-independent dif-
feomorphisms and gauge transformations.
As we discussed in Sec. IVA, we need to temporally

spontaneously break the Uð1Þq and Uð1Þlq−1 global sym-
metries of the theory, for q > 0 and q > 1, respectively,
to allow for nontrivial chemical potentials. This gives
rise to temporal-Goldstone fields φ and φl, satisfying
ιβφ ¼ ιβφl ¼ 0, and transforming as

φ → φþ £χφ − ιβΛ; ð5:3aÞ

φl → φl þ £χφl − ιβΛl: ð5:3bÞ

We will also need Josephson equations to govern the time
evolution of these temporal Goldstones, which take the
usual form:

£βφ ¼ ιβΛβ; ð5:4aÞ

£βφl ¼ ιβΛl
β : ð5:4bÞ

The Λβ and Λl
β terms on the right are necessitated by

symmetries. In principle, these equations can admit deriva-
tive corrections. However, by judiciously redefining the
time components of Λβ and Λl

β , we can absorb all such
corrections and impose the above equations exactly.
An astute reader will notice the mismatch between the

equations of motion and the degrees of freedom. The two
Josephson equations determine the evolution of φ and φl,
while the two conservation equations determine the dynam-
ics of βμ andΛβ. However, there is no independent equation
of motion for the field Λl

β . This can be pinned down to a
secret gauge symmetry in the theory. Consider a Uð1Þq
transformation with parameter Λ ¼ dλ, together with a
Uð1Þlq−1 transformation with parameter Λl ¼ λ. This leaves
both the background fields A and Φ invariant, but instead
acts as a Uð1Þlocq−1 local gauge transformation on the
dynamical fields of the theory

Λβ → Λβ − £βdλ; Λl
β → Λl

β − £βλ;

φ → φ − ιβdλ; φl → φl − ιβλ: ð5:5Þ

This gauge symmetry accounts for the additional unphys-
ical degrees of freedom in the description. We could fix a
gauge to try and rid ourselves of the unphysical degrees of
freedom, but it is cleaner to play along and keep the gauge
symmetry manifest for the moment.
We can use the dynamical field content of the theory to

define the gauge-invariant Uð1Þq chemical potential μ and
the Uð1Þlq−1 defect chemical potential μl via

μ

T
¼ Λβ þ ιβA − dφ; ð5:6aÞ

μl
T

¼ lðΛl
β þ ιβΦ − dφl − φÞ: ð5:6bÞ

The Josephson equations (5.4) imply that both of these
chemical potentials are purely spatial,

ιβμ ¼ ιβμl ¼ 0; ð5:7Þ

as we obtained in equilibrium. Together, βμ, μ, and μl make
up the right amount of degrees of freedom to solve for using
the hydrodynamic equations (5.1).
Before we proceed, it is important to set a derivative

counting scheme. To keep the effects of explicit symmetry
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breaking small in the effective theory, we take the sym-
metry breaking parameter to be of l ∼Oð∂Þ. We choose the
usual derivative scaling for the gauge field A ∼Oð∂0Þ,
while for the dynamical and background phase fields we
choose φ;Φ ∼Oð∂−1Þ, so that μ and μl are Oð∂0Þ. This is
the same derivative counting we employed in our recent
work on approximate zero-form symmetries [13].

B. Second law of thermodynamics
and constitutive relations

An important aspect of the hydrodynamic framework is
the local second law of thermodynamics. As such, all we
need to complete the hydrodynamic equations is a set of
constitutive relations for the currents J, L, Tμν in terms of
the hydrodynamic variables uμ, T, μ, and μl (for q > 0),
along with the background field strengths F and Ξ.
However, the second law of thermodynamics imposes
constraints on the constitutive relations as it postulates
the existence of an entropy current Sμ whose divergence is
locally positive semidefinite,

∇μSμ ≥ 0; ð5:8Þ

for all possible solutions of the hydrodynamic equations. In
practice, it is useful to work with the free energy current Nμ

defined as

TNμ ¼ TSμ þ Tμνuν þ ðJ · μÞμ þ ðL · μlÞμ: ð5:9Þ

In terms of this, the statement of the second law turns into
the so-called adiabaticity equation,

∇μNμ ¼ 1

2
TμνδBgμν þ J · δBAþ lL · δBΦþ Δ; ð5:10Þ

for some positive-semidefinite quadratic form Δ represent-
ing entropy production. To compactify the notation, we
have utilized the variations of the background fields along
the hydrodynamic data,

δBgμν ¼ £βgμν ¼ 2∇ðμβνÞ;

δBA ¼ £βAþ dΛβ ¼ d
μ

T
þ ιβF;

δBΦ ¼ £βΦ − lΛβ þ dΛl
β ¼ d

μl
lT

þ ιβΞ −
μ

T
: ð5:11Þ

The primary benefit of the adiabaticity equation over the
statement of the second law is that it is satisfied even off
shell, i.e., even when the hydrodynamic conservation
equations are not necessarily imposed.

1. Constitutive relations

The adiabaticity equation can be used to classify the
hydrodynamic constitutive relations consistent with the
second law of thermodynamics to arbitrary orders in

derivatives [34–36]. We will not perform this exercise
here. Instead, for illustrative purposes, we focus just on
“canonical transport,” characterized by a simple free energy
current,

Nμ ¼ Pβμ þN μ: ð5:12Þ

Here P denotes the thermodynamic pressure that generi-
cally depends on all the zero-derivative order Lorentz
scalars in the theory constructed out T, μ, and μl. The
vectorN μ denotes possible noncanonical corrections to the
free energy current. Since the higher-form chemical poten-
tials carry Lorentz indices, the number of such scalars
crucially depends on the rank q of the higher-form
symmetry and the number of spatial dimensions d.15 We
can sweep this complication under the rug for now by
pretending that P is a function of the thermodynamic
parameters directly and expressing its derivatives as

dP ¼ sδT þ n · δμþ nl · δμl −
1

2
rμνδgμν: ð5:13aÞ

The cost we pay is that the differential of P now also
explicitly depends on the differential of the spacetime
metric used for the contraction of indices. We can identify
s as the thermodynamic entropy density, n as the q-form
charge density, nl as the (q − 1)-form defect density, and
rμν the anisotropic stress tensor. We can also define the
thermodynamic energy density

ϵ ¼ −Pþ Tsþ μ · nþ μl · nl: ð5:13bÞ

SinceP is a scalar, it cannot arbitrarily depend on the metric
and hence rμν is not independent. In fact, requiring the Lie
derivative of P to be given by the Lie derivatives of its
constituents, we can find that

rμν ¼ 1

ðq − 1Þ! n
μ
ρ1…μνρ1… þ 1

ðq − 2Þ! ðnlÞ
μ
ρ1…

μνρ1…l ;

r½μν� ¼ 0: ð5:14Þ

The condition in the last line can be understood as a
constraint on the densities due to the Lorentz invariance. In
the simplified case when the pressure only depends on T,
μ2, and μ2l, we find that

15For q ¼ 0 and any d, we only have T and μ as we expect from
ordinary zero-form hydrodynamics. For q ¼ 1 and any d, we
have T and μμμ

μ, but also μv because the defects themselves
furnish a zero-form symmetry. For higher q, the counting
becomes dimension dependent. For instance, for q ¼ 2, d ¼ 3,
we have T, μμνμμν, μvμμ

μ
v, and the product μμνμνρμvρμ

μ
v. But for

q ¼ 2, d ≥ 4, we also have independent chemical potential chains
like μμνμ

νρμρσμ
σμ.
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n ¼ χμ; nl ¼ χlμl; ð5:15Þ

where χ and χl are susceptibilities of q-form charge and
(q − 1)-form defects, respectively. One can check that the
Lorentz-invariance constraint is trivially satisfied.
Let us now move on to the constitutive relations. Using

the fact that ∇μðPβμÞ ¼ 1
2
PgμνδBgμν þ δBP into the adia-

baticity equation (5.10), and using

δBT ¼ T
2
uμuνδBgμν;

δBμ ¼ μ

2
uμuνδBgμν þ ιuδBA;

δBμl ¼ μl
2
uμuνδBgμν þ lιuδBΦ; ð5:16Þ

we can read off the constitutive relations,

Tμν ¼ ðϵþ PÞuμuν þ Pgμν − rμν þ T μν;

J ¼ u ∧ nþ J ;

L ¼ u ∧ nl þ L: ð5:17Þ

Here T μν, J , and L denote the respective dissipative
corrections, which we will return to below. These con-
stitutive relations satisfy the adiabaticity equation in the
absence of dissipative corrections.
We can use the second law of thermodynamics to

constrain the derivative corrections that can appear in the
hydrodynamic constitutive relations. Plugging the constit-
utive relations (5.17) into the adiabaticity equation (5.10),
we can derive a constraint equation to be satisfied by the
derivative corrections,

−
1

2
T μνδBgμν − J · δBA − lL · δBΦþ∇μN μ

¼ Δ ≥ 0: ð5:18Þ

We already fixed the redefinition freedom in the time
component of Λβ to set ιβμ ¼ 0. Further, using the redefi-
nition freedom in the spatial components of Λβ, along with
those in βμ andφ, we can choose these dissipative corrections
to satisfy the Landau frame condition,

T μνuν ¼ ιuJ ¼ ιuL ¼ 0: ð5:19Þ

2. Dissipative corrections

For simplicity, we shall ignore any noncanonical trans-
port characterized by N μ and further focus only on fluids
enjoying parity and charge-conjugation invariance; see
Table I for discrete transformation properties of various
fields. The most general such derivative corrections up to
first order in derivatives are given as

T μν ¼ −TηPμρPνσδBgρσ −
T
2

�
ζ −

2

d
η

�
PμνPρσδBgρσ

¼ −2ηPλðμ∇ρuνÞ −
�
ζ −

2

d
η

�
Pμν∇λuλ;

J ¼ −TσPuδBA

¼ −σ
�
TPud

μ

T
þ ιuF

�
;

L ¼ −lTσlPuδBΦ

¼ −σl
�
TPud

μl
T

þ lðιuΞ − μÞ
�
; ð5:20Þ

where Pμν ¼ gμν þ uμuν is the projector transverse to the
fluid velocity. The shear viscosity η, bulk viscosity ζ,
conductivity σ, and the defect conductivity σl are all non-
negative dissipative transport coefficients.
In writing these constitutive relations, for simplicity, we

have ignored possible anisotropic transport in μ. When
expanded around the isotropic equilibrium state μ ¼ 0,
such terms only contribute to the hydrodynamic equations
nonlinearly. More generally, we might be interested in
anisotropic equilibrium states, such as magnetohydrody-
namics with a constant density of magnetic fields in
equilibrium, where such anisotropic contributions to the
constitutive relations will become important; see [6].
Let us do a quick sanity check. As we said before, in

equilibrium, the hydrodynamic fields take trivial values
βμ ¼ δμt =T0 and Λβ ¼ 0. Furthermore, all background
sources must be time independent in equilibrium, implying
that

δBgμν ¼ δBA ¼ δBΦ ¼ 0: ð5:21Þ

This sets all the dissipative corrections in the constitutive
relations to be identically zero and we can verify that we get

TABLE I. Discrete symmetries of various objects. Under the
duality transformation p ↔ q, the spacetime discrete symmetries
will change as P ↔ CP, T ↔ CT.

C P T

Ttt, gtt, T þ þ þ
Tti, gti, ui þ − −
Tij, gij þ þ þ
Jti…, Ati…, μi… − ð−Þqþ1 þ
Jij…, Aij… − ð−Þq −
Lti…, Φti…, μli… − ð−Þq þ
Lij…, Φij… − ð−Þqþ1 −
J̃ti…, Ãti…, μ̃i… − ð−Þp −
J̃ij…, Ãij… − ð−Þpþ1 þ
L̃ti…, Φ̃ti…, μ̃li… − ð−Þpþ1 −
L̃ij…, Φ̃ij… − ð−Þp þ
ϵtij… þ ð−Þd−1 þ
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the same expressions for the currents as we did using the
equilibrium action in Sec. IVA.

C. Linearized analysis and mode spectrum

To understand the physical effects of these coefficients,
let us switch off the background sources and take the
simplified equation of state (5.15). The hydrodynamic
equations are trivially satisfied by the equilibrium configu-
ration T ¼ T0, uμ ¼ δμt , together with μ ¼ μl ¼ 0. In
principle, we can also consider equilibrium states with
μ ≠ 0, but for q > 0, these states are anisotropic and would
need a more careful treatment that we leave for future work.
We can look at small perturbations around the said
equilibrium state, which will be described by linearized
hydrodynamics.
When expanding around the isotropic state with μ ¼ 0,

energy and momentum fluctuations decouple from the
charge fluctuations and are simply given by

∂tϵ ¼ −∂iπi;

∂tπ
i ¼ −v2s∂iϵþD⊥

π ∂
2πi þ ðDk

π −D⊥
π Þ∂i∂kπk; ð5:22Þ

where πi ¼ ðϵþ pÞui denote the momentum fluctuations
and we have identified

v2s ¼
∂P
∂ϵ

; D⊥
π ¼ η

ϵþP
; Dk

π ¼ ζþ2d−1
d η

ϵþP
: ð5:23Þ

They give rise to the familiar longitudinal fluid sound and
transverse shear diffusion modes

ω ¼ �vsk −
i
2
Dk

πk2 þ � � � ;
ω ¼ −iD⊥

π k2: ð5:24Þ

Around a state with μ ≠ 0, the energy-momentum sector
generically nontrivially couples with the charge sector. We
shall not consider this case in this work.
Coming back to the charge fluctuations, the two higher-

form currents take the form

J ¼ u ∧ n − σPudμ;

L ¼ u ∧ nl þ lσlμ − σlPudμl: ð5:25Þ

We can see that σ and σl are conductivities for Uð1Þq
charge n and Uð1Þlq−1 defects nl, respectively. On the other
hand, defect current also has a term proportional to μ also
controlled by σl, which tends to relax n. The conservation
equations become

ð∂t þ ΓÞn ¼ Dn∂
2n − ð−ÞpqþpþqðDl −DnÞd � d � n;

�d � n ¼ ð−Þpqþpþqþ1lnl; ð5:26Þ

where we have defined the diffusion constants Dn, Dl, and
the relaxation rate Γ as

Dn ¼
σ

χ
; Dl ¼ σl

χl
; Γ ¼ l2σl

χ
: ð5:27Þ

The first equation in Eq. (5.26) determines the dynamics of
Uð1Þq charge density n, whereas the second equation
defines the defect density nl.
Let us go to the momentum space with frequency ω and

wave vector k, and decompose the Uð1Þq charge density as
n ¼ k=jkj ∧ nk þ n⊥, such that ιknk ¼ ιkn⊥ ¼ 0. We can
see that transverse components of the Uð1Þq charge n⊥
evolves independently of the defects and give rise to the
charge diffusion mode,

ω ¼ −iDnk2 − iΓ: ð5:28Þ

This is the generalization of the familiar diffusion mode
from Uð1Þ0 charged fluids, however, is now damped due to
the presence of explicit symmetry breaking. There is
another damped diffusion mode associated with the fluc-
tuations of the longitudinal components of the Uð1Þq
charge nk. This mode is absent in the absence of defects
due to the Gauss constraint nk ¼ −l=knl. It reads

ω ¼ −iDlk2 − iΓ: ð5:29Þ

Such a mode does not exist for q ¼ 0. Note that defects are
exactly conserved, but since they are topological and
cannot propagate locally, the associated diffusion mode
is still relaxed. Because of their topological nature, the
damping coefficient Γ and the attenuation coefficient Dk in
this mode are related via the damping-attenuation relation

Γ ¼ Dlk20; ð5:30Þ

where k0 ¼ l
ffiffiffiffiffiffiffiffiffiffi
χl=χ

p
is the inverse hydrostatic correlation

length of defects introduced in Sec. IVA. Such relations are
a generic hallmark of systems with a spontaneously broken
approximate symmetry [13,25], in this case the temporal
part of the higher-form symmetry.
As we have discussed before, magnetohydrodynamics in

three spatial dimensions and viscoelasticity in two spatial
dimensions can be seen as hydrodynamics with Uð1Þ1
symmetry [4–6], and the respective defects would model
the presence of magnetic monopoles. In this context, the
mode in Eq. (5.28) corresponds to the diffusion of magnetic
fields and the one in Eq. (5.29) to the diffusion of magnetic
monopoles.16

16We note that these results cannot be applied directly to the
higher-form symmetries in viscoelastic crystals, because the
associated higher-form density is nonzero in equilibrium.
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If we proliferate q-form defects by increasing the
magnitude of l, the relaxation rate Γ becomes finite and
both the higher-form charged modes drop out of the
spectrum. The resultant theory is that of a neutral fluid
without any higher-form symmetry and implements the
phase transition ðaÞ → ðcÞ → ðhÞ in Fig. 1.
We can also use the hydrodynamic equations to obtain

the retarded correlation functions of the Uð1Þq charge.
These have been summarized in Appendix C.

VI. RELAXED HIGHER-FORM
PSEUDOSUPERFLUID DYNAMICS

In this section, we will discuss the hydrodynamic theory
of a Uð1Þq pseudosuperfluid in the relaxed phase. For
q ¼ 0, this amounts to an ordinary Uð1Þ0 superfluid with
charge relaxation effects. For q > 1, this describes non-
equilibrium effects in a Uð1Þlocq−1 gauge theory in the
presence of free electric charges. We will also study the
effects of vortices in the hydrodynamic theory, interpreted
as magnetic monopoles in the context of gauge theories.

A. Hydrodynamic fields and equations

We will start with the conventional formulation of
(pseudo)superfluid dynamics in terms of the Goldstone
phase field ϕ and superfluid velocity ξ. In the later half of
this subsection, we will explicitly show that this system can
equivalently be posed as hydrodynamics with a temporally
spontaneously broken approximate anomalous Uð1Þq ×
Uð1Þp symmetry. This generalizes the work of [6,9], where
the authors discussed explicitly unbroken Uð1Þ0 and Uð1Þ1
superfluids.

1. Conventional formulation

The hydrodynamic description of a system is based on
the associated conservation equations. As we discussed at
length in Sec. III B, the conservation equations of a Uð1Þq
superfluid in the relaxed phase (with vortices) take the form

d ⋆ J ¼ cϕF̃ þ ð−Þqþ1l ⋆ L; ð6:1aÞ

d ⋆ J̃ ¼ c̃ϕF þ ð−Þpþ1l̃ ⋆ L̃; ð6:1bÞ

d ⋆ L ¼ 0; ð6:1cÞ

d ⋆ L̃ ¼ 0; ð6:1dÞ

∇μTμν ¼ ðF · JÞν þ ðF̃ · J̃Þν
þ ðlΞ · LÞν þ ðl̃ Ξ̃ ·L̃Þν: ð6:1eÞ

We have included additional Lorentz force terms in the
energy-momentum conservation corresponding to the new
conserved currents. In the conventional formulation of
superfluid dynamics, theUð1Þp conservation equation (6.1b)

and the associated Uð1Þlp−1 defect conservation equa-
tion (6.1d) are trivially satisfied due to the Bianchi identity
(3.29). The respective Uð1Þp current J̃ is defined in terms of
the superfluid velocity ξ in Eq. (3.12b), while the Uð1Þlp−1
defect current L̃ is given in terms of thevortex-induced partV
of the superfluid phase in Eq. (3.33). To solve the remaining
hydrodynamic equations, we introduce the set of hydro-
dynamic fields βμ, Λβ, and Λl

β from Sec. V, with the
transformation properties given in Eq. (5.2). We can define
the Uð1Þq chemical potential μ and the Uð1Þlq−1 defect
chemical potential μl the same as in Eq. (5.6).
Out of equilibrium, the configuration equation for ϕ is

replaced by the respective Josephson equation determining
its time derivatives, i.e.,

£βϕ ¼ cϕΛβ þ
1

T
K where ιβK ¼ 0; ð6:2aÞ

where K denotes arbitrary corrections to the Josephson
equation that need to be determined as part of the
constitutive relations. The Λβ term here is necessitated
by Uð1Þq invariance, rendering the derivative corrections K
to be gauge invariant. We have used the redefinition
freedom in the time component of Λβ to set ιβK ¼ 0,
keeping with our previous convention in Eq. (5.4a) upon
identifying φ ¼ ιβϕ=cϕ. We can also use the redefinition
freedom in Λβ as a whole to rid ourselves of K entirely, but
we have other plans for this freedom later in our discussion.
Since the Uð1Þlq−1 symmetry is temporally spontaneously
broken in the relaxed phase, we also have a similar
Josephson equation for pseudo-Goldstone φl, taking the
same form as in Eq. (5.4b). Analogously, in the presence of
vortices, we have another Josephson equation for the
vortex-induced part V of the superfluid velocity. This takes
the form

£βV ¼ 1

T
V; where ιβV ¼ 0; ð6:2bÞ

with V denoting the admissible derivative corrections. In
line with our gauge choice ιβV ¼ 0 in Eq. (4.21), we have
also taken ιβV ¼ 0. The consequence of having vortices is
that the evolution of ξ is now dependent on both ϕ and V.
This can be seen by expressing the two Josephson
equations as

ιβξ ¼ cϕ
μ

T
þ 1

T
K; ð6:3aÞ

£βξ ¼ cϕ

�
d
μ

T
þ ιβF

�
þ d

�
1

T
K
�
þ 1

T
l̃V: ð6:3bÞ

Similar to our discussion around Eq. (5.5), we have a
Uð1Þlocq−1 gauge freedom in this theory given by
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Λβ → Λβ − £βdλ; Λl
β → Λl

β − £βλ;

ϕ → ϕ − cϕdλ; φl → φl − ιβλ: ð6:4Þ

We can see that ϕ acts as a dynamical gauge field for this
Uð1Þlocq−1 symmetry.

2. Dual formulation

The set of hydrodynamic equations outlined above can
also be described in terms of a temporally spontaneously
broken approximate anomalous Uð1Þq × Uð1Þp symmetry.
In this formalism, we do not interpret the Uð1Þp conserva-
tion equation in (6.1b) as a Bianchi identity, but rather treat
both Uð1Þq and Uð1Þp symmetries democratically. The
hydrodynamic fields are taken to be a set of symmetry
parametersΛβ,Λl

β , Λ̃β, Λ̃l
β , and β

μ, and their transformation
properties are given analogous to Eq. (5.2). We will take the
Uð1Þq, Uð1Þp higher-form symmetries and the emergent
Uð1Þlq−1, Uð1Þlp−1 topological symmetries to be temporally
spontaneously broken, for q > 0, q > 1, p > 0, and p > 1,
respectively, giving rise to the respective temporal-
Goldstones φ, φ̃, φl, φ̃l, with the same transformation
properties analogous to Eq. (5.3). Their dynamics is
governed by the Josephson equations that take the same
form as (5.4).
This representation of the theory has two copies of gauge

symmetries Uð1Þlocq−1, Uð1Þlocp−1 analogous to Eq. (5.5).
However, we do not need to worry about these as long
as we work with the gauge-invariant higher-form chemical
potentials μ, μ̃, and the associated defect chemical poten-
tials μl, μ̃l defined similar to Eq. (5.6). Together with βμ,
these make up the right amount of degrees of freedom to
solve for using the hydrodynamic equations (6.1).
Let us see how this description is related to the original

conventional formulation of a Uð1Þq (pseudo)superfluid.
Essentially, we can use the constitutive relations for the
temporal parts of the currents ιuJ̃, ιuL̃ to relate μ̃l, μ̃l to the
spatial components of the superfluid velocity ξ and defect
density dV, respectively, via

ιuJ̃ ¼ ð−Þqþ1 � ξ;
ιuL̃ ¼ �dV: ð6:5Þ

On the other hand, the physical information in the two
Josephson equations (6.2) can be identified with the
constitutive relations for the spatial parts of the currents;
namely,

PuJ̃ ¼ − � ιuξ ¼ −cϕ � μþ J̃ ;

PuL̃ ¼ ð−Þqþ1�ιudV ¼ L̃; ð6:6Þ

where we have defined

J̃ ¼ − �K; L̃ ¼ ð−Þqþ1 � V: ð6:7Þ

This ensures that the two formulations describe the same
physical system.

B. Second law of thermodynamics
and constitutive relations

Having set up the hydrodynamic model, let us construct
the respective constitutive relations. Using the free energy
current defined in Eq. (5.9), we find that the adiabaticity
equation (5.10) for a superfluid modifies to

∇μNμ ¼ 1

2
TμνδBgμν þ J · δBAþ lL · δBΦ

− Kext · δBϕþ lUext · δBV þ Δ; ð6:8Þ

where we have defined ⋆Kext ¼ ð−ÞqF̃ and ⋆Uext ¼ Ξ̃. In
addition to the variational definitions in Eq. (5.11), we have
further defined

δBϕ ¼ £βϕ − Λ ¼ ιβξ −
μ

T
;

δBV ¼ £βV ¼ ιβdV: ð6:9Þ

We need to solve the adiabaticity equation for the con-
stitutive relations for Tμν, J, L, together with corrections to
the Josephson equations K, V, in terms of uμ, T, μ, μl, ξ,
dV, and the background fields, given some Nμ and Δ ≥ 0,
arranged order by order in derivatives.

1. Constitutive relations

Following our discussion in Sec. V B, we can set up the
thermodynamics for a Uð1Þq superfluid. Unlike Sec. V B,
however, the thermodynamic pressure P can now also
depend on the spatial components of the superfluid velocity
ñ ¼ ð−Þq � ξ and the vortex density ñl ¼ − � dV. We can
parametrize its variation as

δP ¼ sδT þ n · δμþ nl · δμl − �μ̃ · δ � ñ − �μ̃l · δ � ñl
−
1

2
rμνdgμν;

ϵ ¼ −Pþ Tsþ μ · nþ μl · nl: ð6:10Þ

This equation can be seen as defining the conjugate
chemical potentials μ̃ and μ̃l. By using ξ as the independent
degree of freedom in the conventional formulation, we are
naturally led to work in the canonical ensemble with respect
to ñ and ñl. We can find the associated rμν using Lorentz
invariance
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rμν ¼ 1

ðq − 1Þ! n
μ
ρ1… μνρ1… þ 1

ðq − 2Þ! ðnlÞ
μ
ρ1…

μνρ1…l

−
1

q!
�ñμρ1…�μ̃νρ1… −

1

ðqþ 1Þ! ð�ñlÞ
μ
ρ1…

�μ̃lνρ1…;

r½μν� ¼ 0: ð6:11Þ

We can take a simplified equation of state where P only
depends on the squares of the higher-form objects, leading
to the thermodynamic relations

δP¼ sdTþ1

2
χδμ2þ1

2
χlδμ

2
l−

1

2χ̃
δñ2−

1

2χ̃l
δñ2l: ð6:12aÞ

In this case, various densities are related to the chemical
potentials as

n¼ χμ; nl¼ χlμl; ñ¼ χ̃ μ̃; ñl ¼ χ̃lμ̃l: ð6:12bÞ

Additionally, the anisotropic stress tensor rμν is automati-
cally symmetric.
To analyze the adiabaticity equation, let us perform a

canonical decomposition of the free energy current. We
take the parametrization

Nμ ¼Pβμþ 1

T
ð�K · μ̃Þμþð−Þq

T
ð�V · μ̃lÞμþN μ; ð6:13Þ

where N μ denotes noncanonical contributions. The addi-
tional terms proportional toK and V have been included for
later convenience. We are now ready to derive the con-
stitutive relations of an ideal superfluid. Following a
procedure similar to the one used for Eq. (5.17), together
with the variational formulas

�μ̃ · δB � ñ ¼ Tð−Þpqþqþ1 � d μ̃
T
· δBϕ

þ ð−Þpqþpþq � μ̃ · ðcϕδBAþ l̃δBVÞ
þ cϕð−Þp�ðμ ∧ μ̃ÞμuνδBgμν
− ð−Þpqþq ⋆ dðu ∧ μ̃ ∧ δBϕÞ;

�μ̃l · δB � ñl ¼ Tð−Þpqþqþpþ1 � d μ̃l
T

· δBV

− ð−Þpqþpþq ⋆ dðu ∧ μ̃l ∧ δBVÞ; ð6:14Þ

we can find the constitutive relations

Tμν ¼ ðϵþ PÞuμuν þ Pgμν − rμν

− 2cϕð−Þp�ðμ ∧ μ̃ÞðμuνÞ þ T μν;

J ¼ u ∧ n − c̃ϕ � μ̃þ J ;

L ¼ u ∧ nl þ L: ð6:15Þ
These satisfy the adiabaticity equation with Δ ¼ 0 when all
the derivative corrections have been switched off. The total

derivative terms in Eq. (6.14) precisely account for the two
additional terms in the free energy current decomposition
in Eq. (6.13).
Plugging the constitutive relations (6.15) into the adia-

baticity equation together with the Josephson equations
[Eq. (6.2)], we can read off the constraint equation to be
satisfied by the dissipative corrections:

−
1

2
T μνδBgμν − J · δBA − lL · δBΦ

− J̃ · δBÃ − l̃ L̃ ·δBΦ̃þ∇μN μ ¼ Δ ≥ 0; ð6:16Þ

where the variations δBÃ and δBΦ̃ are defined similar to
Eq. (5.11). The Landau frame condition is given as

T μνuν ¼ ιuJ ¼ ιuL ¼ ιuJ̃ ¼ ιuL̃ ¼ 0: ð6:17Þ

2. Dual formulation

The same constitutive relations can also be derived using
the dual formulation in terms of anomalous higher-form
symmetries. The relevant free energy current is given by a
canonical transformation of Eq. (5.9) as

TN0μ ¼ TNμ þ ðJ̃ · μ̃Þμ þ ðL̃ · μ̃lÞμ
¼ TSμ þ Tμνuν þ ðJ · μÞμ þ ðJ̃ · μ̃Þμ
þ ðL · μlÞμ þ ðL̃ · μ̃lÞμ: ð6:18Þ

One can check that the respective adiabaticity equation
takes a similar form to Eq. (5.10) but generalized to two
higher-form symmetries, i.e.,

∇μN0μ ¼ NH þ 1

2
TμνδBgμν þ J · δBAþ J̃ · δBÃ

þ lL · δBΦþ l̃ L̃ ·δBΦ̃þ Δ: ð6:19Þ

Here δBÃ and δBΦ̃ are defined similarly to Eq. (5.11). We
also get a new anomaly-induced “Hall free energy” con-
tribution in the adiabaticity equation given by

NH ¼ ð−Þqþ1
cϕ
T
ðð−Þpqμ· ⋆ F̃ þ μ̃· ⋆ FÞ: ð6:20Þ

Similarly, the canonical decomposition of the free energy
current in Eq. (6.13) becomes

N0μ ¼ P0βμ − ð−Þp cϕ
T

� ðμ ∧ μ̃Þμ þN μ; ð6:21Þ

where the conjugate pressure is given as

P0 ¼ Pþ ñ · μ̃þ ñl · μ̃l: ð6:22Þ
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The differential of the new pressure yields

δP0 ¼ sδTþn ·δμþ ñ ·δμ̃þnl ·δμlþ ñl ·δμ̃l−
1

2
r0μνδgμν;

ϵ¼−P0 þTsþμ ·nþ μ̃ · ñþμl ·nlþ μ̃l · ñl; ð6:23Þ

together with

r0μν ¼ rμν þ Pμνðñ · μ̃þ ñl · μ̃lÞ

¼ 1

ðq − 1Þ! n
μ
ρ1…μνρ1… þ 1

ðq − 2Þ! ðnlÞ
μ
ρ1…

μνρ1…l

þ 1

ðp − 1Þ! ñ
μ
ρ1…μ̃νρ1… þ 1

ðp − 2Þ! ðñlÞ
μ
ρ1…

μ̃νρ1…l ;

r0½μν� ¼ 0: ð6:24Þ

Using these, together with the identifications in Eq. (6.6),
we can read off the constitutive relations in the dual
formulation:

Tμν ¼ ðϵþ P0Þuμuν þ P0gμν − r0μν

− 2cϕð−Þp � ðμ ∧ μ̃ÞðμuνÞ þ T μν;

J ¼ u ∧ n − c̃ϕ � μ̃þ J ;

J̃ ¼ u ∧ ñ − cϕ � μþ J̃ ;

L ¼ u ∧ nl þ L;

L̃ ¼ u ∧ ñl þ L̃: ð6:25Þ

Note that the definitions of the dissipative corrections J̃
and L̃ coincide with Eq. (6.7). Ignoring all derivative
corrections, we can see that we have arrived at exactly the
same form of the constitutive relations as derived using an
equilibrium action in Sec. IV B. The constraint equation for
dissipative corrections in the higher-form formulation takes
the same form given in Eq. (6.16).

3. Dissipative corrections

For simplicity, let us assume the constitutive relations to
be parity and charge-conjugation invariant. The discrete
transformation properties of various objects are given in
Table I. We also ignore all anisotropic dissipative transport.
With these in mind, the constitutive relations for the
dissipative energy-momentum tensor T μν take precisely
the same form as before in Eq. (5.20). Next, we have
transport in the higher-form currents. It turns out that the
dissipative (qþ 1)-form flux J and the dissipative p-form
defect flux L̃ mutually couple, giving rise to

J ¼ −TσPuδBA − Tl̃ γ̃ �δBΦ̃

¼ −σ
�
TPud

μ

T
þ ιuF

�

− γ̃ �
�
Td

μ̃l
T

− l̃ μ̃þl̃ιuΞ̃
�
;

L̃ ¼ −Tl̃σ̃lPuδBΦ̃þ ð−ÞqTγ̃0 � δBA

¼ −σ̃l
�
TPud

μ̃l
T

− l̃ μ̃þl̃ιuΞ̃
�

þ ð−Þqγ̃0 �
�
Td

μ

T
þ ιuF

�
: ð6:26Þ

We see the same coupling structure in the dissipative
(pþ 1)-form flux J̃ and the dissipative q-form defect flux
L, taking the form

J̃ ¼ −Tσ̃PuδBÃ − Tlγ � δBΦ

¼ −σ̃
�
TPud

μ̃

T
þ ιuF̃

�
− γ �

�
Td

μl
T

− lμþ lιuΞ
�
;

L ¼ −TlσlPuδBΦþ ð−ÞpTγ0 � δBÃ

¼ −σl
�
TPud

μl
T

− lμþ lιuΞ
�

þ ð−Þpγ0 �
�
Td

μ̃

T
þ ιuF̃

�
: ð6:27Þ

The coefficients σ, σ̃ are the conductivities of Uð1Þq, Uð1Þp
charges, respectively, which we met already in Sec. V.
Similarly, σl, σ̃l are conductivities of the respective
defects. They are also responsible for the relaxation of
Uð1Þq, Uð1Þp charges, through the linear term in the
chemical potentials, eventually giving rise to the damp-
ing-attenuation relations like Eq. (5.30). However, interest-
ingly, we now also have mixed coefficients γ, γ0, γ̃, γ̃0
coupling the Uð1Þq and Uð1Þp symmetries. The physical
significance of these will be clear below. In the anisotropic
case, we expect more intricate couplings between various
currents, leading to many more transport coefficients.
Requiring the microscopic theory underlying the hydro-

dynamic description to be invariant under time-reversal
transformations, the primed and unprimed mixed coeffi-
cients are related via the Onsager’s relations,

γ0 ¼ ð−Þpqþpþqγ; γ̃0 ¼ ð−Þpqþpþqγ̃; ð6:28Þ

leaving only two of the mixed coefficients to be independ-
ently physical. With the Onsager’s relations in place, we
find that the mixed coefficients do now contribute to the
entropy production quadratic form Δ obtained through
Eq. (6.16). Demanding entropy production to be positive
semidefinite, we find the inequality constraints on the
remaining six coefficients,
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η; ζ; σ; σ̃; σl; σ̃l ≥ 0: ð6:29Þ

We will discuss the physical implications of these coef-
ficients in the next subsection.
For completeness, let us also record the corrections to the

ϕ and V Josephson equations obtained using Eq. (6.7),
leading to

TK ¼ ð−Þpqþqσ̃ �
�
Td

μ̃

T
þ ιuF̃

�

þ γ

�
TPud

μl
T

− lμþ lιuΞ
�
;

TV ¼ ð−Þpqþpþqσ̃l �
�
Td

μ̃l
T

− l̃ μ̃þl̃ιuΞ̃
�

− γ̃0
�
TPud

μ

T
þ ιuF

�
: ð6:30Þ

In particular, notice that there is a term proportional to μ in
the constitutive relations for K coming with the coefficient
γ. This will modify the leading order cϕμ term in the
Josephson equation (6.3a) to λcϕμ, where λ ¼ 1 − lγ=cϕ.
Similarly, there is a term proportional to μ̃ ¼ ð−Þq � ξ=χ̃ in
the constitutive relations for V coming with the coefficient
σ̃l. Plugging this into the equation of motion (6.3b), this
term will relax the spatial components of ξ with relaxation
rate Γ̃ ¼ l̃2σ̃l=χ̃; more on this in a moment.
We have carefully parametrized the constitutive rela-

tions, so that the theory is self-dual under the exchange of
tilde and untilde quantities. This implements the Uð1Þq ↔
Uð1Þp duality of the relaxed phase of a Uð1Þq pseudosu-
perfluid with vortices.

C. Linearized analysis and mode spectrum

To understand the physical meaning of the hydrody-
namic equations and various transport coefficients, let us
perform the same simplifications as in Sec. V C. In
particular, we focus on fluctuations around an equilibrium
state with zero densities, so the energy-momentum fluctu-
ations decouple and lead to the same longitudinal sound
and shear diffusion modes in Eq. (5.24). The higher-form
charge currents, on the other hand, take the form

J ¼ u ∧ n − λ̃c̃ϕ � μ̃ − σPudμ − γ̃ � dμ̃l;
J̃ ¼ u ∧ ñ − λcϕ � μ − σ̃Pudμ̃ − γ � dμl;
L ¼ u ∧ nl þ lσlμ − σlPudμl þ ð−Þpγ0 � dμ̃;
L̃ ¼ u ∧ ñl þ l̃σ̃lμ̃ − σ̃lPudμ̃l þ ð−Þqγ̃0 � dμ; ð6:31Þ

where

λ ¼ 1 −
lγ
cϕ

; λ̃ ¼ 1 −
l̃ γ̃
c̃ϕ

ð6:32Þ

renormalize cϕ and c̃ϕ, respectively. In the conventional
formulation, the constitutive relations for J̃ and L̃ give rise
to the Josephson equations,

ιuξ ¼ λcϕμþ ð−Þpq σ̃
χ̃
� d � ξþ γPudμl;

ιudV ¼ −
l̃σ̃l
χ̃

Puξþ ð−Þpqþpþqσ̃l � dμ̃l − γ̃0Pudμ: ð6:33Þ

We see that the λ coefficient modifies the leading order
Josephson equation and screens the effective chemical
potential as seen by the superfluid phase. The same result
was also found for zero-form superfluids in [13], with the
coefficient γ=cϕ being identified as−σ×=σϕ from that paper.
For q > 0, this coefficient also controls the coupling of the
Josephson relation to the Uð1Þq defect chemical potential.
The coefficient σ̃, on the other hand, causes the Goldstone to
diffuse and can be identified with 1=σϕ from [13].
Using the constitutive relations, we can see that the two

higher-form conservation equations become

ð∂t þ ΓÞn ¼ ð−Þp λs
χ̃
c̃ϕ � dñ

þDn∂
2n − ð−ÞpqþpþqðDl −DnÞd � dn;

ð∂t þ Γ̃Þñ ¼ ð−Þq λs
χ
cϕ � dn

þ D̃n∂
2ñ − ð−ÞpqþpþqðD̃l − D̃nÞd � dñ;

�d � n ¼ ð−Þpqþpþqþ1lnl;

�d � ñ ¼ ð−Þpqþpþqþ1l̃ñl; ð6:34Þ

where we have defined two copies of damping and
attenuation coefficients as in Eq. (5.27). We have also
defined a combined renormalization factor,

λs ¼ 1 −
lγ
cϕ

−
l̃γ̃0

c̃ϕ
¼ λþ λ̃ − 1: ð6:35Þ

For completeness, let us also write down the conservation
equations in terms of the superfluid velocity ξ, leading to

ð∂t þ ΓÞn ¼ ð−Þpqλscϕfs � d � ξþDn∂
2n

− ð−ÞpqþpþqðDl −DnÞd � dn;

ð∂t þ Γ̃ÞPuξ ¼
λs
χ
cϕPudnþ D̃n∂

2Puξ

− ð−ÞpqþpþqðD̃l − D̃nÞ � d � dξ;
�d � n ¼ ð−Þpqþpþqþ1lnl;

�dξ ¼ −l̃ñl: ð6:36Þ

Let us decompose the Uð1Þq and Uð1Þp charge densities
into longitudinal and transverse components according to
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n ¼ k=jkj ∧ nk þ n⊥ and ñ ¼ k=jkj ∧ ñk þ ñ⊥. In the
same spirit, decomposing the spatial components of the
superfluid velocity, Puξ ¼ k=jkj ∧ ξk þ ξ⊥, we can see that

ñ⊥ ¼ ð−Þq
jkj �ðk ∧ ξkÞ; ñk ¼

−1
jkj �ðk ∧ ξ⊥Þ: ð6:37Þ

If it were not for the λs coupling terms in Eq. (6.34), the
transverse components of higher-form densities n⊥ and ñ⊥
(or the longitudinal components of the superfluid velocity
ξk) would lead to two independent damped diffusion modes
like Eq. (5.28). However, because of the coupling terms,
these combine into the dispersion relations

ðiω −Dnk2 − ΓÞðiω − D̃nk2 − Γ̃Þ þ v2⊥k2 ¼ 0; ð6:38Þ

where we have defined the transverse sound speed v⊥ as

v2⊥ ¼ λ2s
c2ϕ
χχ̃

: ð6:39Þ

If we take l; l̃ ∼ k, i.e. assume both the defect-induced
relaxation Γ and the vortex-induced relaxation Γ̃ to be
Oðk2Þ, this yields a second sound mode characteristic of
superfluids

ω ¼ �v⊥k −
i
2
ðΓþ Γ̃þ ðDn þ D̃nÞk2Þ þ � � � : ð6:40Þ

However, the sound mode is damped due to the presence of
defects and vortices. Note that the speed of this mode v⊥
also gets modified by the coefficient λs due to explicit
symmetry breaking.
If we proliferate vortices by taking l̃ ∼Oð1Þ, thereby

making Γ̃ ∼Oðk0Þ, the dispersion relations instead give rise
to a charge diffusion mode weakly damped due to defects
and a strongly damped mode

ω ¼ −iΓ − i

�
Dn þ

v2⊥
Γ̃

�
k2 þ � � � ;

ω ¼ −iΓ̃þ � � � : ð6:41Þ

The resultant mode spectrum is precisely that of a Uð1Þq
(pseudo)fluid discussed in Sec. V C. Depending on the
presence of explicit breaking of the Uð1Þq symmetry, this
implements the phase transition from ðbÞ → ðfÞ → ðaÞ or
ðdÞ → ðgÞ → ðcÞ in Fig. 1. Instead, if we proliferate Uð1Þq
defects by taking l ∼Oð1Þ, thereby making Γ ∼Oðk0Þ, the
charge diffusion mode gets strongly relaxed and we instead
get a weakly damped vortex diffusion mode

ω ¼ −iΓþ � � � ;

ω ¼ −iΓ̃ − i

�
D̃n þ

v2⊥
Γ

�
k2 þ � � � : ð6:42Þ

This is a signature of a Uð1Þp (pseudo)fluid and imple-
ments the phase transitions ðbÞ → ðdÞ ¼ ðfÞq↔p → ðaÞq↔p

or ðfÞ→ðgÞ¼ðgÞq↔p→ðcÞq↔p, depending on the presence
of vortices.
Finally, for fluctuations in the longitudinal components

of the higher-form densities nk and ñk (or the transverse
components of the superfluid velocity ξ⊥), we find two
defect diffusion modes mediated by nl and ñl, respectively,

ω ¼ −iΓ − iDlk2; ω ¼ −iΓ̃ − iD̃lk2: ð6:43Þ

These modes would be absent in the absence of defects and
vortices, respectively. These modes will also be absent for
q ¼ 0 and p ¼ 0, respectively.
In the context of electromagnetism, seen as a one-form

superfluid, the second sound mode in Eq. (6.40) is nothing
but the photon, relaxed by the presence of free electric
charges, i.e., one-form defects, and possibly magnetic
monopoles, i.e., (d − 2)-form vortices. Notice that if we
normalize cϕ ¼ 1, we can identify χ as electric permittivity
and χ̃ as magnetic permeability. As advertised in the
Introduction, the factor of λs in the photon speed v⊥ in
Eq. (6.39) implies that the photons in a dielectric medium
can slow down or speed up in the presence of free electric
or magnetic charges. The remaining modes in Eq. (6.43)
correspond to the diffusion of electric and magnetic
charges.

VII. PINNED HIGHER-FORM
PSEUDOSUPERFLUID DYNAMICS

In this section, we discuss the hydrodynamics of a Uð1Þq
pseudosuperfluid in the pinned phase. For q ¼ 0, this
describes a pinned Uð1Þ0 superfluid.17

A. Hydrodynamic fields and equations

Following our discussion in Sec. III C, the conservation
equations for a Uð1Þq pseudosuperfluid in the pinned phase
are given by

d ⋆ J ¼ cϕF̃ þ ð−Þqþ1l ⋆ L; ð7:1aÞ

d ⋆ J̃ψ ¼ ð−Þpþ1c̃ϕlΞþ ð−Þpl ⋆ J̃; ð7:1bÞ

d ⋆ L ¼ ð−ÞqcϕF̃ψ ; ð7:1cÞ

d ⋆ J̃ ¼ c̃ϕF; ð7:1dÞ

17Pinned conventional zero-form superfluids were considered
in [25,37]; a complete discussion in [13].
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∇μTμν¼ðF ·JÞνþðF̃ · J̃ÞνþðlΞ ·LÞνþðF̃ψ · J̃ψÞν: ð7:1eÞ

In the conventional formulation of a pseudosuperfluid
(gauge theory), the Uð1Þψpþ1 conservation equation (7.1b)
and the Uð1Þp conservation equation (7.1d) are identically
satisfied due to the Bianchi identities associated with the
misalignment tensor ψ and the superfluid velocity ξ. The
definitions of the respective currents are given in
Eqs. (3.12b) and (3.46). For the remaining hydrodynamic
equations, we have the set of hydrodynamic fields βμ, Λβ,
and Λl

β from Sec. V, with the transformation properties
given in Eq. (5.2). These can be used to define the Uð1Þq
chemical potential μ and the Uð1Þlq−1 defect chemical
potential μl the same as in Eq. (5.6).
The Josephson equation for the Uð1Þq Goldstone ϕ also

takes the same as in Eq. (6.2a). In the pinned phase, there is
a similar Josephson equation associated with the Uð1Þlq−1
Goldstone ϕl, taking the form

£βϕl ¼ cϕΛl
β þ

1

T
Kl where ιβKl ¼ 0: ð7:2Þ

Similar to our discussion around Eq. (6.2a), we have used
the redefinition freedom in the temporal components of Λl

β

to absorb derivative corrections in the temporal direction.
The Josephson equation (5.4b) for the temporal-Goldstone
field φl ¼ ιβϕl=cϕ follows as the time component of the
equation above. Recast in terms of gauge-invariant varia-
bles, the two Josephson equations lead to the relations

ιβξ ¼ cϕ
μ

T
þ 1

T
K;

ιβψ ¼ −cϕ
μl
T

−
l
T
Kl: ð7:3aÞ

Similar to our discussion around Eq. (5.5), we also have a
Uð1Þlocq−1 gauge freedom in this theory:

Λβ → Λβ − £βdλ; Λl
β → Λl

β − £βλ;

ϕ → ϕ − cϕdλ; ϕl → ϕl − cϕλ: ð7:4Þ

The field ϕ acts as the dynamical gauge field associated
with the Uð1Þlocq−1 gauge symmetry, while the field ϕl can be
thought of as the Goldstone arising from its spontaneous
breaking. Following the usual lore of a Higgs mechanism,
the dynamical gauge field ϕ eats the Goldstone ϕl to
acquire a mass, precisely giving rise to the gauge-invariant
misalignment tensor ψ.

1. Dual formulation

We can also view the pinned phase of a Uð1Þq pseudo-
superfluid from the perspective of hydrodynamics with a
temporally spontaneously broken approximate anomalous

Uð1Þq × Uð1Þψpþ1 global symmetry. The relevant hydro-
dynamic variables are a set of symmetry parametersΛβ,Λl

β ,

Λ̃ψ
β , Λ̃β, and βμ, and their transformation properties are

given analogous to Eq. (5.2). We will take all the higher-
form symmetries to be temporally spontaneously broken,
giving rise to the respective temporal Goldstone fields φ,
φl, φ̃, and φ̃ψ , with transformation properties similar to
(5.3). We can use these to define Uð1Þq and Uð1Þlq−1
chemical potentials the same as Eq. (5.6b). On the other
hand, we have two more chemical potentials for Uð1Þp and
Uð1Þψpþ1 symmetries, given as

μ̃ψ
T

¼ Λ̃ψ
β þ ιβÃψ − dφ̃ψ ; ð7:5aÞ

μ̃

T
¼ Λ̃β þ ιβÃ − dφ̃ − lφ̃ψ : ð7:5bÞ

Note that the definition of μ̃ needs to be modified to make it
invariant under the new Uð1Þψpþ1 transformations exclusive
to the pinned phase. The temporal Goldstone fields satisfy
Josephson equations similar to Eq. (5.4). These imply that
all the chemical potentials are purely spatial, satisfying
constraints similar to Eq. (5.7).
To relate this formalism to the conventional formulation,

we can notice that the constitutive relations for the temporal
parts of the currents ιuJ̃, ιuJ̃ψ to relate μ̃l, μ̃ψ to the spatial
components of the superfluid velocity ξ and misalignment
tensor ψ, respectively, via

ιuJ̃ ¼ ð−Þqþ1 � ξ;
ιuJ̃ψ ¼ − � ψ : ð7:6Þ

On the other hand, the two Josephson equations (7.3) can
be seen as determining the constitutive relations for the
spatial parts of the currents; namely,

PuJ̃ ¼ − � ιuξ ¼ −cϕ � μþ J̃ ;

PuJ̃ψ ¼ ð−Þq � ιuψ ¼ ð−Þqþ1cϕ � μl þ J̃ ψ ; ð7:7Þ

where we have defined

J̃ ¼ − �K; J̃ ψ ¼ ð−Þqþ1l �Kl: ð7:8Þ

This ensures that both formulations describe the same
pinned phase of a Uð1Þq pseudosuperfluid.

B. Second law of thermodynamics
and constitutive relations

Using the free energy current defined in Eq. (5.9), we
find that the adiabaticity equation (5.10) for a superfluid
modifies to
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∇μNμ ¼ 1

2
TμνδBgμν þ J · δBAþ lL · δBΦ

− Kext · δBϕ − lQext · δBϕl þ Δ; ð7:9Þ

where we have defined F̃ψ ¼ −⋆Qext. The variations of the
phase fields are defined similar to Eq. (6.9).

1. Conventional formulation

Thermodynamics in the pinned phase can be defined
similar to Eq. (6.10). However, the thermodynamic pres-
sure P does not depend on the (p − 1)-form vortex
chemical potential μ̃l anymore and instead depends on
the misalignment tensor ñψ ¼ �ψ. We find

δP ¼ sδT þ n · δμþ nl · δμl − �μ̃ · δ � ñ − �μ̃ψ · δ � ñψ
−
1

2
rμνdgμν;

ϵ ¼ −Pþ Tsþ μ · nþ μl · nl: ð7:10Þ

This equation can be seen as defining the conjugate
chemical potentials μ̃ and μ̃l. We can find the associated
anisotropic stress tensor rμν using Lorentz invariance,

rμν ¼ 1

ðq − 1Þ! n
μ
ρ1…μνρ1… þ 1

ðq − 2Þ! ðnlÞ
μ
ρ1…

μνρ1…l

−
1

q!
�ñμρ1…�μ̃νρ1… −

m2

ðq − 1Þ! ð�ñψÞ
μ
ρ1…

�μ̃νρ1…ψ ;

r½μν� ¼ 0: ð7:11Þ

If we take a simplified equation of state where P only
depends on the squares of the higher-form objects, the
thermodynamic relations become

δP¼ sdTþ1

2
χδμ2þ1

2
χlδμ

2
l−

1

2χ̃
δñ2−

m2

2
δñ2ψ : ð7:12aÞ

In this case, various densities are related to the chemical
potentials as

n¼ χμ; nl¼ χlμl; ñ¼ χ̃ μ̃; ñψ ¼
1

m2
μ̃ψ : ð7:12bÞ

As before, the anisotropic stress tensor rμν is automatically
symmetric.
The free energy current can be decomposed in the

canonical parametrization similar to Eq. (6.13) as

Nμ ¼Pβμþ 1

T
ð�K · μ̃Þμþð−Þq

T
lð�Kl · μ̃ψÞμþN μ; ð7:13Þ

where N μ denotes noncanonical contributions. Using the
variational formulas,

�μ̃ψ · δB � ñψ ¼ −lð−ÞsT � d μ̃ψ
T

· δBϕl

þ lð−Þpqþq � μ̃ψ · ðδBϕ − cϕδBΦÞ
− cϕð−Þpþq�ðμl ∧ μ̃ψÞðμuνÞδBgμν
− lð−Þs⋆ dðu ∧ μ̃ψ ∧ δBϕlÞ; ð7:14Þ

we can derive the constitutive relations for an ideal Uð1Þq
pseudosuperfluid in the pinned phase,

Tμν ¼ ðϵþ PÞuμuν þ Pgμν − rμν

− 2cϕð−Þp�ðμ ∧ μ̃ − ð−Þqμl ∧ μ̃ψÞðμuνÞ þ T μν;

J ¼ u ∧ n − c̃ϕ � μ̃þ J ;

L ¼ u ∧ nl þ ð−Þpc̃ϕ � μ̃ψ þ L: ð7:15Þ

These satisfy the adiabaticity equation with Δ ¼ 0 when all
the derivative corrections have been switched off. Note the
additional terms compared to constitutive relations in the
relaxed phase given in Eq. (6.15). These drop out if we take
μ̃ψ ¼ m2ñψ to zero, i.e., turn off the mass m of the pseudo-
Goldstone fields.
Plugging the constitutive relations (7.15) into the adia-

baticity equation together with the Josephson equations
[Eq. (7.3)], we can read of the constraint equation to be
satisfied by the dissipative corrections,

−
1

2
T μνδBgμν − J · δBA − lL · δBΦ

− J̃ · δBÃ − J̃ ψ · δBÃψ þ∇μN μ ¼ Δ ≥ 0; ð7:16Þ

where we have defined

δBÃ ¼ d
μ̃

T
þ ιβF̃ − l

μ̃ψ
T

;

δBÃψ ¼ d
μ̃ψ
T

þ ιβF̃ψ : ð7:17Þ

The Landau frame condition for various dissipative cor-
rections is given as

T μνuν ¼ ιuJ ¼ ιuL ¼ ιuJ̃ ¼ ιuJ̃ ψ ¼ 0: ð7:18Þ
2. Dual formulation

We can also formulate Uð1Þq pseudosuperfluid in the
pinned phase using the language of anomalous approxi-
mate Uð1Þq × Uð1Þψpþ1 symmetry. The relevant free energy
current can be defined similar to Eq. (6.18) as

TN0μ ¼ TNμ þ ðJ̃ · μ̃Þμ þ ðJ̃ψ · μ̃ψÞμ
¼ TSμ þ Tμνuν þ ðJ · μÞμ þ ðJ̃ · μ̃Þμ
þ ðL · μlÞμ þ ðJ̃ψ · μ̃ψÞμ: ð7:19Þ
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One can check that the respective adiabaticity equation
takes a similar form to Eq. (5.10) but generalized to two
higher-form symmetries, i.e.,

∇μN0μ ¼ NH þ 1

2
TμνδBgμν þ J · δBAþ J̃ · δBÃ

þ lL · δBΦþ J̃ψ · δBÃψ þ Δ: ð7:20Þ

Here δBÃ and δBÃψ are defined similarly to Eq. (5.11). We
also get a new anomaly-induced “Hall free energy” con-
tribution in the adiabaticity equation given by

NH ¼ −
cϕ
T
ðð−Þpqþqμ· ⋆ F̃ þ ð−Þqμ̃· ⋆ F

þ ð−Þpqþpþqlμl· ⋆ F̃ψ − lμψ · ⋆ ΞÞ: ð7:21Þ

Similarly, the canonical decomposition of the free energy
current in Eq. (7.13) becomes

N0μ ¼ P0βμ − ð−Þp cϕ
T

� ðμ ∧ μ̃ − ð−Þqμl ∧ μ̃ψ Þμ

þN μ; ð7:22Þ

where the conjugate pressure is given as

P0 ¼ Pþ ñ · μ̃þ ñψ · μ̃ψ : ð7:23Þ

The differential of the new pressure yields the thermo-
dynamic relations

δP0 ¼ sδTþn ·δμþ ñ ·δμ̃þnl ·δμlþ ñψ ·δμ̃ψ −
1

2
r0μνδgμν;

ϵ¼−P0 þTsþμ ·nþ μ̃ · ñþμl ·nlþ μ̃ψ · ñψ ; ð7:24Þ

together with

r0μν ¼ rμν þ Pμνðñ · μ̃þ ñψ · μ̃ψ Þ

¼ 1

ðq − 1Þ! n
μ
ρ1…μνρ1… þ 1

ðq − 2Þ! ðnlÞ
μ
ρ1…

μνρ1…l

þ 1

ðp − 1Þ! ñ
μ
ρ1…μ̃νρ1… þ 1

p!
ðñψÞμρ1…μ̃νρ1…ψ ;

r0½μν� ¼ 0: ð7:25Þ

Using these, together with the identifications in Eq. (7.7),
we can read off the constitutive relations in the dual
formulation:

Tμν ¼ ðϵþ P0Þuμuν þ P0gμν − r0μν

− 2cϕð−Þp�ðμ ∧ μ̃ − ð−Þqμl ∧ μ̃ψÞðμuνÞ þ T μν;

J ¼ u ∧ n − c̃ϕ � μ̃þ J ;

J̃ ¼ u ∧ ñ − cϕ � μþ J̃ ;

L ¼ u ∧ nl þ ð−Þpc̃ϕ � μ̃ψ þ L;

J̃ψ ¼ u ∧ ñψ − ð−Þqcϕ � μl þ J̃ ψ : ð7:26Þ

Note that the definitions of the dissipative corrections J̃
and J̃ ψ coincide with Eq. (7.8). Ignoring all derivative
corrections, we can see that we have arrived at exactly the
same form of the constitutive relations as derived using an
equilibrium action in Sec. IV B. The constraint equation for
dissipative corrections in the higher-form formulation takes
the same form given in Eq. (7.16).

3. Dissipative corrections

Similar to our discussion in Sec. VI B 3, we will assume
the constitutive relations to be parity and charge-conjugation
invariant and ignore all anisotropic contributions. The con-
stitutive relations for T μν and J take the same form as in the
temporally spontaneously broken phase in Eq. (5.20).
The constitutive relations for J̃ and L are the same in form
as the relaxed phase in Eq. (6.27), but there are new μ̃ψ
contributions coming from the modified definition of δBÃ in
Eq. (7.17), i.e.,

J̃ ¼ −Tσ̃PuδBÃ − Tlγ � δBΦ

¼ −σ̃
�
TPud

μ̃

T
þ ιuF̃ − lμ̃ψ

�

− γ �
�
Td

μl
T

þ lðιuΞ − μÞ
�
;

L ¼ −TlσlPuδBΦþ ð−ÞpTγ0 � δBÃ

¼ −σl
�
TPud

μl
T

þ lðιuΞ − μÞ
�

þ ð−Þpγ0 �
�
Td

μ̃

T
þ ιuF̃ − lμ̃ψ

�
: ð7:27Þ

Since μ̃ψ ¼ m2ñψ ¼ m2 � ψ contains a term linear inϕ, the σ̃
contribution to J̃ is now responsible for relaxation ofϕwith
relaxation rate Ω̃ ¼ l2m2σ̃. This plays a role very similar to
thevorticity-induced relaxation rate Γ̃ observed in the relaxed
phase, but is qualitatively distinct. The μ̃ψ contribution
coupled to γ0 in L renormalizes the pinning term in
Eq. (7.26). We need to supply new dissipative constitutive
relations for J̃ ψ , given by
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J̃ ψ ¼ −Tσ̃ψPuδBÃψ

¼ −σ̃ψ
�
TPud

μ̃ψ
T

þ ιuF̃ψ

�
: ð7:28Þ

Note that this object does not exist forq ¼ 0. In the context of
Uð1Þlocq−1 gauge theories, the coefficient σ̃ψ modifies the
relation between the scalar gauge potential ιβϕ and the
electric chemical potential μl, and will result in damping
of the vector gauge potential Puϕ.
One can check that the dissipative corrections map to

each other under the q ↔ pþ 1 self-duality transformation
of the pinned phase, provided that we transform the
dissipative transport coefficients as follows:

σ ↔ σ̃ψ ; σl ↔ σ̃; γ ↔ ð−Þpqþqþ1γ: ð7:29Þ

In particular, note that the conductivities σ and σ̃ do not
map to each other unlike the duality transformations in the
relaxed phase.

C. Linearized analysis and mode spectrum

We will again focus on fluctuations around an equilib-
rium state with zero densities, so the energy-momentum
fluctuations decouple and lead to the same longitudinal
sound and shear diffusion modes in Eq. (5.24). The
constitutive relations for the higher-form currents in the
absence of background fields take the form

J ¼ u ∧ n − c̃ϕ � μ̃ − σPudμ;

J̃ ¼ u ∧ ñ − λcϕ � μþ lσ̃μ̃ψ − σ̃Pudμ̃ − γ � dμl;
L ¼ u ∧ nl þ ð−Þpλc̃ϕ � μ̃ψ þ lσlμ − σlPudμl

þ ð−Þpγ0 � dμ̃;
J̃ψ ¼ u ∧ ñψ − ð−Þqcϕ � μl − σ̃ψPudμ̃ψ : ð7:30Þ

The constitutive relations for J̃ and J̃ψ give rise to the
Josephson equations

ιuξ ¼ λcϕμ − l2m2σ̃ϕþ ð−Þpq σ̃
χ̃
� d � ξþ γdμl;

lιuϕ ¼ −cϕμl − ð−Þpqþpþqlm2σ̃ψ � d � ϕ: ð7:31Þ

We have specialized to a gauge where ϕl ¼ 0, meaning that
ψ ¼ lϕ in the absence of background fields. Compared to
the relaxed phase expressions in Eq. (6.33), ιuξ has a new
pinning term proportional to ϕ controlled by l2m2. The
second Josephson equation, which is specific to the pinned
phase and is only nontrivial for q > 1, provided the relation
between the scalar potential ιuϕ and the defect chemical
potential μl.
Let us look at the linearized equations of motion. In the

higher-form language, they are given as

ð∂t þ ΓÞn ¼ ð−Þp λ
χ̃
c̃ϕ � dñ − ð−Þplλm2c̃ϕ � ñψ

þDn∂
2n − ð−ÞpqþpþqðDl −DnÞd � d � n;

ð∂t þ Ω̃Þñψ ¼ −
λ

χl
cϕ � dnl þ l

λ

χ
cϕ � n

þ D̃ψ∂
2ñψ þ ð−ÞpqðD̃n − D̃ψ Þd � d � ñψ ;

�d � n ¼ ð−Þpqþpþqþ1lnl;

�d � ñψ ¼ ð−Þpqlñ; ð7:32Þ

where we have defined the diffusion and relaxation
coefficients

D̃ψ ¼ m2σ̃ψ ; Ω̃ ¼ l2m2σ̃: ð7:33Þ

In terms of the conventional formulation variables, we
instead find

ð∂t þ ΓÞn¼ ð−Þpq λ
χ̃
cϕ � d � ξþDn∂

2nþ lðDl −DnÞdnl
− l2λm2cϕϕ;

ð∂t þ Ω̃Þϕ¼ −
λ

lχl
cϕdnl þ D̃ψ∂

2ϕ

þ ð−ÞpqðD̃n − D̃ψÞ � d � dϕþ λ

χ
cϕn;

Pud � n¼ ð−Þqþ1l � nl;
Pudϕ¼ Puξ: ð7:34Þ

In particular, note that phase field ϕ is now directly relaxed
with the characteristic rate Ω̃, unlike the relaxed pseudo-
superfluid phase in the presence of vortices, where the
superfluid velocity is relaxed instead with rate Γ̃.
To obtain the respective mode spectrum, let us first look

at the transverse Uð1Þq density sector, spanned by n⊥ and

nkψ ; we find the dispersion relations

ðiω−Dnk2−ΓÞðiω− D̃nk2− Ω̃Þþω2
0þv2⊥k2¼ 0; ð7:35Þ

where we have identified the pinning frequency

ω2
0 ¼

l2m2λ2c2ϕ
χ

: ð7:36Þ

Takingl ∼ k, this leads to a pinned and damped soundmode

ω ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ v2⊥k2

q

−
i
2
ðΓþ Ω̃þ ðDn þ D̃nÞk2Þ þ � � � : ð7:37Þ

In the theory of superconductivity, this is the photon mode
that is now pinned and damped due to the presence of the
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superconducting condensate. In the longitudinal Uð1Þq
density channel, spanned by nk and ñ⊥ψ , we find another
set of dispersion relations,

ðiω−Dlk2−ΓÞðiω−D̃ψk2−Ω̃Þþω2
0þv2kk

2¼0; ð7:38Þ

where we have defined

v2k ¼
λ2c2ϕm

2

χl
: ð7:39Þ

This leads to another damped and pinned sound mode,

ω ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ v2kk

2
q

−
i
2
ðΓþ Ω̃þ ðDl þ D̃ψÞk2Þ þ � � � : ð7:40Þ

The two sets of modes map to each other under q ↔ pþ 1
self-duality, which maps

χ ↔
1

m2
; χl ↔ χ̃; v⊥ ↔ vk; k0 ↔ kϕ0 ;

Dn ↔ Dψ ; Dl ↔ D̃n; Γ ↔ Ω̃; ð7:41Þ

and leaves λ and ω0 invariant.
If we increase the strength of explicit symmetry breaking

by increasing the magnitude of l, both of the relaxation
rates Γ and Ω̃ will become finite, thereby gapping both the
sets of modes above and implementing the phase transition
from the pinned superfluid phase to the neutral fluid phase.
This is the transition ðeÞ → ðhÞ in Fig. 1.

VIII. OUTLOOK

In this paper we have introduced a new framework to
classify phases of matter according to their approximate
higher-form symmetries. In particular, we focused on
phases with a Uð1Þq generalized global symmetry and
various patterns of symmetry breaking therein at zero and
finite temperature. These patterns include temporal-
(pseudo)spontaneous symmetry breaking in higher-form
fluids and complete-(pseudo)spontaneous symmetry break-
ing in higher-form superfluids. We showed how these
phases naturally incorporate dynamical q-form defects
and p-form vortices, where p ¼ d − 1 − q. In all such
phases of matter, we studied their out-of-equilibrium
dynamics by formulating appropriate hydrodynamic theo-
ries that respect the symmetry breaking patterns. As we
commented throughout the paper, this framework is appli-
cable to many phases of matter including smectic crystals
with topological defects, superfluids with vortices, polar-
ized plasmas with free electromagnetic charges, magneto-
hydrodynamics with magnetic monopoles, spin ices,
superconductors, among many others.

One of our main interests in this work was to understand
potential phase transitions that can occur by the prolifer-
ation of q-form defects or p-form vortices. As we men-
tioned earlier, these transitions include the melting
transition and the plasma phase transition. In order to
address the physics of these transitions in a hydrodynamic
framework, in Secs. V–VII we studied the linearized
spectrum of various phases. We noted that in what we
denoted by relaxed phases (or Coulomb phases) the higher-
form charge is relaxed but the Goldstone is not, while in
pinned phases (or Higgs phases) both the higher-form
charge and the Goldstone field is relaxed. By carefully
studying the linearized spectrum of excitations in various
regimes, we could clearly identify features of phase
transitions by proliferating defects or vortices. In particular,
upon proliferation, certain modes become gapped and the
spectrum of q-form (pseudo)fluids or uncharged fluids is
recovered.
It should be noted, however, that our linearized mode

analysis was not the most general one. We focused on
isotropic phases by linearly perturbing around a state with
vanishing chemical potential. While this is the most
relevant equilibrium state in certain contexts such as in
zero-form superfluids, it is not the most physically relevant
state in other contexts as in the case of smectic crystals or in
magnetohydrodynamics with constant magnetic fields. The
various correlation functions derived in Appendix C reflect
the same choice of equilibrium states. As the main purpose
of this work was to provide a new framework for describing
phases of matter with higher-form symmetries, we have not
performed an exhaustive analysis of the phenomenology of
the mode spectra and correlators in the context of specific
systems. In an upcoming series of papers, we will be using
the formalism introduced here to study the dynamics of
specific phases of matter.
Our work has dealt with relativistic field theories, which

is the natural language to describe electromagnetism and
magnetohydrodynamics but also to describe the effects of
elasticity in cosmological matter [38]. However, many of
the relevant applications of approximate higher-form sym-
metries are to nonrelativistic systems, including spin ices
and superconductors. Following the approach of [13,14] it
is straightforward, though cumbersome, to couple these
field theories to nonrelativistic backgrounds. We plan on
discussing this elsewhere. At the same time, having
formulated this framework in the context of relativistic
theories makes this work ideal to study phases of matter
using holography. A few holographic studies of higher-
form symmetries have been performed (see e.g.
[7,8,26,27,39–41]) and it appears to be possible to extend
them to approximate Uð1Þq symmetries more generally.
Finally, we would like to note that we focused on

continuous U(1) higher-form symmetries. Given the broad
scope of applications of this single case we studied here, it
would be extremely interesting to study other (discrete)
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higher-form symmetries and more exotic symmetries such
as higher-group symmetries, subsystem symmetries and
noninvertible symmetries in the context of hydrodynamics
and phase transitions.
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APPENDIX A: DIFFERENTIAL
FORM CONVENTIONS

In this appendix we give details about our differential
form conventions. A q-rank differential form or q-form μ
can be expressed in components as

μ ¼ 1

q!
μμ1…μqdx

μ1 ∧ � � � ∧ dxμq : ðA1Þ

Standard operations are Hodge dual, exterior derivative,
interior product, and interior derivative,

ð⋆μÞμ1…μdþ1−q
¼ 1

q!
ϵν1…νqμ1…μdþ1−q

μμ1…μq ;

ðdμÞμ1…μqþ1
¼ ðqþ 1Þ∂½μ1μμ2…μqþ1�;

ðιXμÞμ1…μq−1
¼ Xμμμμ1…μq−1 ;

ðι∂μÞμ1…μq−1
¼ ∇μμμμ1…μq−1 : ðA2Þ

Here ϵμ1…μdþ1
is the (dþ 1)-rank totally antisymmetric

Levi-Civita tensor, with ϵ012… ¼ ffiffiffiffiffiffi�g
p

. The upper sign
corresponds to Euclidean spacetime while the lower one to
Lorentzian spacetime. Also, Xμ is a vector field. Given a
q-form μ and another r-rank form ν, we can define their
exterior product or wedge product as

ðμ ∧ νÞμ1…μqþr
¼ ðqþ rÞ!

q!r!
μ½μ1…μqνμqþ1…μqþr�: ðA3Þ

We also introduce another notation for contraction of
differential forms. We define

ðμ · νÞμ1…μr−q
¼ 1

q!
μν1…νqνν1…νqμ1…μr−q ; q ≤ r;

ðμ · νÞμ1…μq−r
¼ 1

r!
μμ1…μq−rν1…νrν

ν1…νr ; q ≥ r: ðA4Þ

Let us note a few useful identities:

⋆⋆ μ ¼ �ð−1Þqðdþ1−qÞμ;

ι∂ ⋆ μ ¼ ð−1Þq ⋆ dμ;

ι∂dμ ¼ ∂
2μ − dι∂μ;

d ⋆ μ ¼ ð−1Þqþ1 ⋆ ι∂μ;

ιX ⋆ μ ¼ ð−1Þq⋆ ðX ∧ μÞ;
⋆ ðμ ∧ νÞ ¼ ν· ⋆ μ;

⋆ ðν ∧⋆ μÞ ¼ �ð−1Þðq−rÞðdþ1−qÞν · μ: ðA5Þ

A special differential form is the spacetime volume form
voldþ1 ¼ ⋆1. It can be used to integrate a function fðxÞ
over spacetime

Z
⋆fðxÞ ¼

Z
fðxÞvoldþ1 ¼

Z
ddþ1x

ffiffiffiffiffiffi
�g

p
fðxÞ: ðA6Þ

Given a (d − q)-dimensional hypersurface Σd−q in space-
time, with orthonormalized normalized normal vectors
nμ1;…; nμqþ1, we can define a volume form on the hyper-
surface,

vold−q ¼ ⋆ðn1 ∧ … ∧ nqþ1Þ; ðA7Þ

which is understood to be zero everywhere in spacetime
other than the hypersurface. This can be used to integrate a
q-form J as

Z
Σd−q

⋆J ¼
Z

J ∧ vold−q ¼
Z

dΣμ1…μqþ1
Jμ1…μqþ1 ; ðA8Þ

where dΣμ1…μqþ1
¼ dqþ1x

ffiffiffiffiffiffi�g
p

n1½μ1…nqþ1

μqþ1� is the integra-

tion measure on the hypersurface. A corollary of the setup
above is the Green’s theorem: given a hypersurface Σd−q
and a ðd − q − 1Þ-form Y, we have that

Z
Σd−q

dY ¼
Z
∂Σd−q

Y; ðA9Þ

where ∂Σd−q is the ðd − q − 1Þ-dimensional boundary of
Σd−q. The volume form on the boundary is defined with
respect to the outward-pointing normal vector.

APPENDIX B: ANOMALY INFLOW
FOR HIGHER-FORM SYMMETRIES

In this appendix, we discuss the anomaly inflow
mechanism for Uð1Þq × Uð1Þp and Uð1Þq × Uð1Þψpþ1

mixed anomalies used in this work. Wewill set the anomaly
coefficient cϕ ¼ 1 in this appendix for clarity. The anomaly
coefficient can be restored by multiplying all the relevant
expressions with cϕ.
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Gauge anomalies in quantum field theories can be
classified using the anomaly inflow mechanism. Herein,
one posits that an anomalous (dþ 1)-dimensional system,
described by a symmetry-noninvariant effective action S,
can be coupled to a (dþ 2)-dimensional bulk with a
symmetry-noninvariant action Sbulk, so that the full theory
described by

Stot ¼ Sbulk þ S ðB1Þ

is symmetry invariant. The bulk action Sbulk has to be such
that it is gauge invariant up to a boundary term. It must also
be a topological theory so that there are no propagating
degrees of freedom residing in the bulk. In light of these
requirements, anomalies can be characterized by an exact
(dþ 3)-form anomaly polynomial made out of the wedge
product of gauge field strengths. The bulk Lagrangian is
then given by a Chern-Simons form ICS related to the
anomaly polynomial as P ¼ dICS, so that

Sbulk ¼
Z
bulk

ICS: ðB2Þ

The explicit form of the anomaly polynomial depends on
the dimensionality of the spacetime and the symmetry
group under consideration. For a system with an anomalous
Uð1Þq×Uð1Þp higher-form symmetry, where pþq¼d−1,
the anomaly polynomial is given by

P ¼ ð−ÞqF ∧ F̃: ðB3Þ

The anomaly polynomial results in the Chern-Simons form
for the bulk Lagrangian:

ICS ¼ F ∧ Ã: ðB4Þ

We have chosen the bulk Lagrangian to respect the Uð1Þq
part of the symmetry and violate Uð1Þp, but we can also
choose the conventions to be the other way around.
We can parametrize the variations of the boundary part of

the action S as

δS ¼
Z

δA ∧⋆ Jcons þ δÃ ∧⋆ J̃

þ lδΦ ∧⋆ Lþ l̃δΦ̃ ∧⋆ L̃: ðB5Þ

Note that we have used the conserved current Jcons, also
often called the “consistent current” in the anomaly
literature. Since we have chosen to manifest the Uð1Þq
symmetry in Eq. (B4), the associated current Jcons obtained
by varying the boundary part of the action S will be exactly
conserved, but will not be gauge invariant; see Eq. (3.9):
whereas, the Uð1Þp current J̃ will be gauge invariant but
anomalous; see Eq. (3.12). We have allowed for symmetry

violation terms in line with our discussion in the main text.
Depending on the application in mind, they can be switched
off by turning off l or l̃ accordingly. We can vary the total
action Stot with respect to the background fields to yield

δStot ¼
Z
bulk

ð−ÞqδA ∧ F̃ þ ð−1ÞpqþqδÃ ∧ F

þ
Z

δA ∧⋆ J þ δÃ ∧⋆ J̃

þ lδΦ ∧⋆ Lþ l̃δΦ̃ ∧⋆ L̃; ðB6Þ

where the boundary variations of the total action define the
“covariant current” J as

J ¼ Jcons þ ð−Þpqþpþq ⋆ Ã: ðB7Þ

Since the full theory is meant to be invariant under both
Uð1Þq and Uð1Þp symmetries, we are led to the conserva-
tion laws given in Eqs. (3.26), (3.34), or (3.37), depending
on the structure of explicit symmetry breaking.
Let us note the form of the bulk action in thermal

equilibrium in the context of our discussion in Sec. IV B.
Using the definitions of the higher-form chemical poten-
tials form (4.4), we can see that

Seqbbulk ¼
Z
Σbulk
β

ιuICS

¼
Z
Σbulk
β

ð−1Þqμ ∧ F̃ þ ð−1Þpqþqμ̃ ∧ F

−
Z
Σβ

T0F ∧ φ̃ − μ ∧ Ã: ðB8Þ

The bulk part in this expression is completely gauge
invariant. Therefore, in equilibrium, the anomaly in the
respective quantum field theory can be generated by the
boundary part of the bulk action, which is precisely what
we need to cancel the anomaly-induced terms in Eq. (4.29).
The construction for the Uð1Þq × Uð1Þψpþ1 anomaly in

the pinned phase of a Uð1Þq pseudosuperfluid follows
similarly. The anomaly polynomial is given as

P ¼ ð−ÞqF ∧ F̃ − lΞ ∧ F̃ψ ; ðB9Þ

where we have used the Uð1Þψpþ1-invariant definition of F̃
from Eq. (3.42). The relative coefficient between the two
terms can be fixed by requiring that P is closed. The
anomaly polynomial leads to the Chern-Simons form,

ICS ¼ F ∧ Ãþ ð−ÞqlΞ ∧ Ãψ : ðB10Þ

We have, again, chosen the bulk Lagrangian to be invariant
under the Uð1Þq part of the symmetry group.
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In this case, we can parametrize the variations of the
boundary action S in terms of the “consistent currents”
according to

δS ¼
Z

δA ∧⋆ Jcons þ δÃ ∧⋆ J̃

þ lδΦ ∧⋆ Lcons þ l̃δÃψ ∧⋆ J̃ψ : ðB11Þ

Combining this with the variations of the Chern-Simons
form, we can read off the equivalent expression for the total
Lagrangian Stot to give

δStot ¼
Z
bulk

ð−ÞqδA ∧ F̃ þ ð−ÞpqþqδÃ ∧ F

− lδΦ ∧ F̃ψ þ ð−ÞpqþpþqδÃψ ∧ lΞ

þ
Z

δA ∧⋆ J þ δÃ ∧⋆ J̃

þ lδΦ ∧⋆ Lþ l̃δÃψ ∧⋆ J̃ψ ; ðB12Þ

where we have defined the covariant currents,

J ¼ Jcons þ ð−Þpqþpþq ⋆ Ã;

L ¼ Lcons − ð−Þpqþq ⋆ Ãψ : ðB13Þ

This yields the respective set of conservation equations
given in Eq. (3.47).
Finally, we record the form of the bulk action in thermal

equilibrium. In this instance, we find

Seqbbulk ¼
Z
Σbulk
β

ιuICS

¼
Z
Σbulk
β

ð−Þqμ ∧ F̃ þ ð−Þpqþqμ̃ ∧ F

− μl ∧ F̃ψ þ ð−Þpqþpþqμ̃ψ ∧ lΞ

−
Z
Σβ

T0F ∧ φ̃ − μ ∧ Ã

þ ð−ÞqT0lΞ ∧ ϕ̃ψ − μl ∧ Ãψ : ðB14Þ

Again, the bulk part in this expression is completely gauge
invariant and the anomalous boundary part is precisely what
is needed to cancel the anomaly-induced terms in Eq. (4.45).

APPENDIX C: RETARDED
CORRELATION FUNCTIONS

In this appendix, we compute the retarded correlation
functions of various higher-form densities and fluxes using
our hydrodynamic model.

1. Approximate higher-form fluids

Let us start with the Uð1Þq fluid with an approximate
temporally spontaneously broken Uð1Þq global symmetry.
Split into longitudinal and transverse sectors, the higher-
form conservation equations look like

−iωn⊥ þ ikjk ¼ −lj⊥l ;

iωnk ¼ ljkl;

iknk ¼ ln⊥l : ðC1Þ

Note that the longitudinal defect density nkl is identically
zero. The constitutive relations take the form

jk ¼ −σðikμ⊥ − ikA⊥
t − iωAkÞ;

j⊥ ¼ iωσA⊥;

ljkl ¼ Γðnk − χAk
t þ iωχΦkÞ − lσlðikμl − iklΦ⊥

t Þ;
lj⊥l ¼ Γðn⊥ − χA⊥

t þ iωχΦ⊥Þ: ðC2Þ

We can use the constitutive relations together with the
conservation equations to find the classical expectation
values of the (approximately) conserved densities and
fluxes in terms of the background fields.
This procedure can be used to compute the retarded

correlation functions of hydrodynamic densities and fluxes.
Denoting operators by O and respective sources by J, the
retarded correlation functions are defined as

GR
O1O2

¼ −
δhO1i
δJ2

: ðC3Þ

If the microscopic description underlying the effective
theory is invariant under time-reversal symmetry, the
correlation functions satisfy the so-called Onsager recip-
rocal relations,

GR
O1O2

ðω; kÞ ¼ ηT1 η
T
2G

R
O2O1

ðω;−kÞ; ðC4Þ

where ηT are the time-reversal eigenvalues of various
operators given in Table I.
Let us start with the transverse density sector, spanned by

the transverse density n⊥, longitudinal flux jk, and trans-
verse defect flux j⊥l . There are three independent retarded
correlation functions in this sector, given as

GR
n⊥n⊥ ¼ χ

�
iω

iω −Dnk2 − Γ
− 1

�
;

GR
n⊥jk ¼

ωkσ
iω −Dnk2 − Γ

;

GR
jkjk ¼ −iωσ

�
Dnk2

iω −Dnk2 − Γ
þ 1

�
: ðC5Þ
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The correlation functions involving the defect flux jkl can
be obtained using the Ward identities (C1). In the longi-
tudinal density sector, spanned by the longitudinal density
nk, transverse flux j⊥, defect density n⊥l , and the longi-

tudinal defect flux jkl. We find density and flux correlators

GR
nknk ¼ −

iχΓ
ωþ ik2Dk þ iΓ

;

GR
j⊥j⊥ ¼ −iωσ: ðC6Þ

Note that GR
nkj⊥ is trivially zero by isotropy. The defect

density and flux correlators can be read off trivially from
here using the Gauss constraints in (C1). Note that if we
turn off explicit symmetry breaking, the longitudinal charge
density nk identically vanishes and so does its correlator.

2. Higher-form pseudosuperfluids: Relaxed phase

For a Uð1Þq superfluid, the discussion is slightly more
involved. Since the Uð1Þq symmetry is now anomalous, the
conservation equations (C1) become

−iωn⊥ þ ikjk ¼ −ið−Þpc̃ϕ �k ðkÃ⊥
t þ ωÃkÞ − ljl⊥;

iωnk ¼ −iωc̃ϕ �k Ã⊥ þ ljlk ;

iknk ¼ −ikc̃ϕ �k Ã⊥ þ ln⊥l ; ðC7Þ

where �k ¼ �ðk=jkj ∧ ∘Þ ¼⋆ ðu ∧ k=jkj ∧ ∘Þ is the Hodge
duality operation transverse to the wave vector and fluid
velocity. The constitutive relations take the form

jk ¼ −ð−Þpλ̃c̃ϕ �k μ̃⊥ − σðikμ⊥ − ikA⊥
t − iωAkÞ

− ð−Þpl̃ γ̃ �kðÃ⊥
t − iωΦ̃⊥Þ;

j⊥ ¼ −λ̃c̃ϕ �k μ̃k þ iωσA⊥
− γ̃ �k ðikμ̃⊥l − iωl̃Φ̃k − ikl̃Φ̃⊥

t þ l̃Ãk
t Þ;

ljkl ¼ Γðnk − χAk
t þ iωχΦkÞ − lσlðikμ⊥l − iklΦ⊥

t Þ
þ lγ0iω �k Ã⊥;

lj⊥l ¼ Γðn⊥ − χA⊥
t þ iωχΦ⊥Þ

þ ð−Þplγ0ðik �k μ̃⊥ − ik �k Ã⊥
t − iω �k ÃkÞ: ðC8Þ

The conservation equations and constitutive relations in
the Uð1Þp sector follow similarly by performing a tilde
conjugation.
While the Onsager relations (C4) are satisfied for most

correlation functions, some mixed correlators between the
Uð1Þq and Uð1Þp sectors now violate the Onsager relations
due to the mixed anomaly. We find

GR
jkñ⊥ ¼ ð−ÞpqGR

ñ⊥jk þ ð−Þpc̃ϕ
�k
jkj ;

GR
j⊥ñk ¼ ð−Þpqþpþqþ1GR

ñkj⊥ þ c̃ϕ
�k
k
; ðC9Þ

and similarly for the tilde conjugates.
Let us now look at the explicit correlation functions. The

transverse density sector correlation functions in Eq. (C5)
modify for a superfluid to

GR
n⊥n⊥ ¼ χ

�
iωðiω − D̃nk2 − Γ̃Þ

ðiω −Dnk2 − ΓÞðiω − D̃nk2 − Γ̃Þ þ v2⊥k2
− 1

�
;

GR
n⊥jk ¼ ωk

σðiω − D̃nk2 − Γ̃Þ − ð1þ τÞχv2⊥
ðiω −Dnk2 − ΓÞðiω − D̃nk2 − Γ̃Þ þ v2⊥k2

;

GR
jkjk ¼ −iω

ðiω − ΓÞðσðiω − D̃nk2 − Γ̃Þ − ð1þ τÞ2χv2⊥Þ þ τ2σv2⊥k2

ðiω −Dnk2 − ΓÞðiω − D̃nk2 − Γ̃Þ þ v2⊥k2
: ðC10Þ

Here we have defined combinations of renormalization
coefficients for clarity

τ ¼ λ̃

λs
− 1 ¼ 1 − λ

λs
; τ̃ ¼ λ

λs
− 1 ¼ 1 − λ̃

λs
: ðC11Þ

They are zero in the absence of the Uð1Þq defect coefficient
γ and the Uð1Þp defect coefficient γ̃, respectively. Note that
τ þ τ̃ ¼ 1=λs − 1. The correlation functions for ñ⊥, |̃k, and
|̃l⊥ in the Uð1Þp sector can be obtained similarly by
performing a tilde conjugate of these expressions. The

longitudinal density sector correlation functions in Eq. (C6)
modify to

GR
nknk ¼

χΓ
iω − k2Dl − Γ

;

GR
j⊥j⊥ ¼ λ2sc2ϕ

χ̃

iωð1þ τÞ2 þ iωτ̃2k2=k̃20 − D̃lk2=λ2s
iω − D̃lk2 − Γ̃

− iωσ: ðC12Þ

Similar expressions hold in the Uð1Þp sector.
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In addition to these, there are now also mixed correlation functions between the Uð1Þq and Uð1Þp sectors due to the mixed
anomaly. In the transverse density sector, we find

ð−Þp
λsc̃ϕ

GR
n⊥ñ⊥ ¼ ωk

ðiω −Dnk2 − ΓÞðiω − D̃nk2 − Γ̃Þ þ v2⊥k2
�k
jkj ;

ð−Þp
λsc̃ϕ

GR
n⊥ |̃k ¼ −

iωD̃nk2 þ iωð1þ τ̃Þðiω − D̃nk2 − Γ̃Þ
ðiω −Dnk2 − ΓÞðiω − D̃nk2 − Γ̃Þ þ v2⊥k2

�k
jkj ;

ð−Þp
λsc̃ϕ

GR
jk |̃k ¼ ωk

ðττ̃ þ 1=λsÞv2⊥ − ð1þ τÞD̃nðiω − ΓÞ −Dnð1þ τ̃Þðiω − Γ̃Þ þDnD̃nk2=λs
ðiω −Dnk2 − ΓÞðiω − D̃nk2 − Γ̃Þ þ v2⊥k2

�k
jkj : ðC13Þ

Finally, in the longitudinal density sector, we have

1

λsc̃ϕ
GR

nk |̃⊥ ¼ iωð1þ τ̃Þ −Dlk2=λs
iω −Dlk2 − Γ

�k
jkj : ðC14Þ

It is trivial to see that all of the mixed correlators vanish if
we turn off the anomaly coefficient cϕ.

3. Higher-form pseudosuperfluids: Pinned phase

We finally look at the correlation functions of a Uð1Þq
pseudosuperfluid in the pinned phase. The conservation
equations in the Uð1Þq sector modify from Eq. (C7) to

include the new Ãψ source terms

ωn⊥ − kjk ¼ ð−Þpc̃ϕ �k ðkÃ⊥
t þ ωÃk þ ilÃk

ψ ;tÞ − ilj⊥l ;

ωnk ¼ −c̃ϕ �k ðωÃ⊥ þ ilÃ⊥
ψ ;tÞ − iljkl;

knk ¼ −c̃ϕ �k ðkÃ⊥ − ilÃk
ψ Þ − iln⊥l ;

nkl ¼ ð−Þpc̃ϕ �k Ã⊥
ψ : ðC15Þ

The associated constitutive relations take the form

jk ¼ ð−Þpþ1c̃ϕ �k μ̃⊥−σðikμ⊥− ikA⊥
t − iωAkÞ;

j⊥¼−c̃ϕ �k μ̃k þ iωσA⊥;

ljlk ¼−lλc̃ϕ �k μ̃⊥ψ þΓðnk−χAk
t þ iωχΦkÞ

−lσlðikμl− iklΦ⊥
t Þþlγ0 �k ðiωÃ⊥−lÃ⊥

ψ ;tÞ;
ljl⊥¼lð−Þpλc̃ϕ �k μ̃kψ þΓðn⊥−χA⊥

t þ iωχΦ⊥Þ
þð−Þplγ0 �k ðikμ̃⊥− ikÃ⊥

t − iωÃk þlÃk
ψ ;tÞ: ðC16Þ

The conservation equations and constitutive relations in the
Uð1Þp sector can be obtained by performing the q ↔ pþ 1

self-duality transformation of the pinned phase.
The correlators in the transverse Uð1Þq density sector in

the pinned phase modify from their relaxed phase expres-
sions in Eq. (C10) to

GR
n⊥n⊥ ¼ χ

�
iωðiω − D̃nk2 − Ω̃Þ

ðiω −Dnk2 − ΓÞðiω − D̃nk2 − Ω̃Þ þ ω2
0 þ v2⊥k2

− 1

�
;

GR
n⊥jk ¼ ωk

σðiω − D̃nk2 − Ω̃Þ − ð1þ τÞχv2⊥
ðiω −Dnk2 − ΓÞðiω − D̃nk2 − Ω̃Þ þ ω2

0 þ v2⊥k2
;

GR
jkjk ¼ −iω

ðiω − ΓÞðσðiω − D̃nk2 − Ω̃Þ − ð1þ τÞ2χv2⊥Þ þ τ2σv2⊥k2

ðiω −Dnk2 − ΓÞðiω − D̃nk2 − Ω̃Þ þ ω2
0 þ v2⊥k2

− χω2
0

iωDn þ ð1þ τÞ2ðiω −Dnk2 − ΓÞD̃n − ð1þ τÞ2v2⊥
ðiω −Dnk2 − ΓÞðiω − D̃nk2 − Ω̃Þ þ ω2

0 þ v2⊥k2
: ðC17Þ

We see that these expressions are almost identical to the
relaxed phase correlators in the presence of vortices
(magnetic monopoles) in Eq. (C10), except that the
vortex-induced relaxation Γ̃ gets exchanged by pinning-
induced relaxation Ω̃ and the pole has an additional

ω2
0 pinning term. The flux correlator also gets an

entirely new term proportional to ω2
0. Since the pinned

phase is not self-dual in q ↔ p, the correlators in the
transverse Uð1Þp density sector take a qualitatively differ-
ent form:
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GR
ñ⊥ñ⊥ ¼ χ̃

� ðiω − Ω̃Þðiω −Dnk2 − ΓÞ þ ω2
0

ðiω −Dnk2 − ΓÞðiω − D̃nk2 − Ω̃Þ þ ω2
0 þ v2⊥k2

− 1

�
;

GR
ñ⊥ |̃k ¼ ωk

σ̃ðiω −Dnk2 − ΓÞ − χ̃v2⊥
ðiω −Dnk2 − ΓÞðiω − D̃nk2 − Ω̃Þ þ ω2

0 þ v2⊥k2
;

GR
|̃k |̃k ¼ −iω

iωðσ̃ðiω −Dnk2 − ΓÞ − χ̃v2⊥Þ
ðiω −Dnk2 − ΓÞðiω − D̃nk2 − Ω̃Þ þ ω2

0 þ v2⊥k2
: ðC18Þ

Physically, the qualitative differences between Eqs. (C17) and (C18) can be ascribed to the fact that Uð1Þp charges are
conserved in the pinned phase while the Uð1Þq charges are not.
Next, in the longitudinal Uð1Þq density sector, we find the correlation functions

GR
nknk ¼

χΓðiω − D̃ψk2 − Ω̃Þ − χω2
0

ðiω −Dlk2 − ΓÞðiω − D̃ψk2 − Ω̃Þ þ ω2
0 þ v2kk

2
;

GR
j⊥j⊥ ¼ c2ϕ

χ̃
− iωσ: ðC19Þ

These should be compared to Eq. (C12) from the relaxed phase. On the other hand, in the longitudinal Uð1Þp density sector
we find

GR
ñkñk ¼ 0;

GR
|̃⊥ |̃⊥ ¼ λ2c2ϕ

χ

ðiω − D̃ψk2Þiωð1þ τ2k2=k20Þ − ð1þ τÞ2ðiω − D̃ψk2 − Ω̃ÞDlk2 þ ð1þ τÞ2v2kk2
ðiω −Dlk2 − ΓÞðiω − D̃ψk2 − Ω̃Þ þ ω2

0 þ v2kk
2

− iωσ̃
ðiω − D̃ψk2Þðiω −Dlk2 − ΓÞ þ ð1þ τÞ2v2kk2
ðiω −Dlk2 − ΓÞðiω − D̃ψk2 − Ω̃Þ þ ω2

0 þ v2kk
2
: ðC20Þ

Note that Uð1Þp charges are exactly conserved (up to anomaly), so ñk is not dynamical.
Finally we have the mixed correlators; in the transverse density sector

ð−Þp
λc̃ϕ

GR
n⊥ñ⊥ ¼ ωk

ðiω −Dnk2 − ΓÞðiω − D̃nk2 − Ω̃Þ þ ω2
0 þ v2⊥k2

�k
jkj ;

ð−Þp
λc̃ϕ

GR
n⊥ |̃k ¼

ω2

ðiω −Dnk2 − ΓÞðiω − D̃nk2 − Ω̃Þ þ ω2
0 þ v2⊥k2

�k
jkj ;

ð−Þp
λc̃ϕ

GR
jkñ⊥ ¼ −k2

iωDn þ ðiω −Dnk2 − ΓÞD̃n=λ − v2⊥=λ
ðiω −Dnk2 − ΓÞðiω − D̃nk2 − Ω̃Þ þ ω2

0 þ v2⊥k2
�k
jkj ;

ð−Þp
λc̃ϕ

GR
jk |̃k ¼ −ωk

iωDn þ ðiω −Dnk2 − ΓÞD̃n=λ − v2⊥=λ
ðiω −Dnk2 − ΓÞðiω − D̃nk2 − Ω̃Þ þ ω2

0 þ v2⊥k2
�k
jkj ; ðC21Þ

and in the longitudinal density sector

1

λc̃ϕ
GR

nk |̃⊥ ¼
iωðiω − D̃ψk2Þ − ðiω − D̃ψk2 − Ω̃ÞDlk2=λþ v2kk

2=λ

ðiω −Dlk2 − ΓÞðiω − D̃ψk2 − Ω̃Þ þ ω2
0 þ v2kk

2

�k
jkj ;

1

c̃ϕ
GR

j⊥ñk ¼ 0: ðC22Þ

All other correlators not reported here can be obtained by q ↔ pþ 1 self-duality of the pinned phase.
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