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We study the protocol of entanglement harvesting when the particle detectors that harvest entanglement
from the field are replaced by fully relativistic quantum field theories. We show that two localized modes
of the quantum field theories are able to harvest the same amount of leading order entanglement as two
nonrelativistic particle detectors, thus implying that quantum field theoretical probes can generally harvest
more entanglement than particle detectors. These results legitimize the use of particle detectors to study
entanglement harvesting regardless of their internally nonrelativistic nature.
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I. INTRODUCTION

Entanglement is a fundamental feature of quantum
theories whose measurement cannot be reproduced by local
classical models. Its applications range from improving
quantum communication protocols [1], cryptography [2]
and facilitating computational tasks [3]. In this sense,
entanglement is a quantum resource that can be used to
enhance our computational power. Being at the heart of
quantum theory, one could expect that entanglement is well
understood in most relevant scenarios, and indeed, there
are situations where a full characterization of entanglement
is known, such as for example for arbitrary states in
sufficiently simple bipartite systems. However, quantifying
entanglement in mixed states of arbitrary systems [4] and
in infinite dimensional Hilbert spaces is still an ongoing
research topic [5].
The situation is even worse in the case of quantum field

theory (QFT), where, strictly speaking, the Hilbert space
cannot be factorized as a tensor product of local Hilbert
spaces associated to causally disjoint regions. Therefore,
even the well-established measures of entanglement for
bipartite pure states in quantum mechanics are not very
meaningful in QFT. One of the main reasons for this is
because any sufficiently regular QFT state restricted to two
noncomplementary regions separated by some finite dis-
tance will be mixed. As a consequence, the entanglement
shared between the two subsystems of interest is very hard
to characterize—both because of our limited understanding

of mixed-state entanglement in general, and because local
subregions in QFT are associated to type III von Neumann
algebras, and therefore do not even admit descriptions
in terms of density matrices [6,7]. In this light, other
techniques for studying the entanglement between sub-
regions of a QFT have been developed. One of them, on
which we will focus in this work, is the protocol of
entanglement harvesting.
Entanglement harvesting is a protocol in which localized

quantum probes couple to a quantum field aiming to extract
entanglement from it [8–10]. If the probes are unable to
communicate through the field,1 the entanglement they
acquired serves as a witness for the entanglement in the
field between the regions that they couple to [12]. This
simple approach to quantifying entanglement in a quantum
field theory has the advantages of being readily applicable
for quantum fields in both flat [8–11,13–25] and curved
spacetimes [26–29], and being able to describe physically
realistic scenarios of local measurements of quantum
fields [16,21,22,30–32]. In fact, experimental implementa-
tions of the entanglement harvesting protocol are now
within reach [25,33,34].
In order to model entanglement harvesting, it is common

to describe the localized probes as Unruh-DeWitt (UDW)
detectors. These are nonrelativistic quantum systems which
locally couple to quantum fields [35–38]. Although UDW
models have been shown to accurately describe numerous
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1By “cannot communicate” we mean that the detectors cannot
exchange information via the propagation of their respective
actions on the field (e.g., when they are spacelike separated). If
the detectors can communicate through the field, the acquired
entanglement may not originate from extracting preexisting field
correlations. For a discussion on this, see Ref. [11].
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physical setups [30,39], they are effective descriptions of
bound states of matter that are internally nonrelativistic,
which can of course be problematic within the context
of QFT. Unsurprisingly, the nonrelativistic nature of the
detectors can cause problems with covariance and causality,
so many efforts have been spent in recent years to fully
analyze to what extent and in what regimes particle
detectors can be used without spoiling the relativistic
nature of the QFT they probe [40–43]. However, these
issues have legitimately raised some questions as to
whether analyzing phenomena like entanglement harvest-
ing using internally nonrelativistic probes can give trust-
worthy results. For instance, arguments have been made
that perhaps the observed entanglement is an artifact of the
nonrelativistic nature of the detectors [44].
In order to address these questions, we will use the

description presented in [45] to replace the nonrelativistic
particle detector models in the entanglement harvesting
protocol by two fully relativistic localized quantum fields
that are then used to probe a free quantum field. By
considering explicit examples, we show that the two
localized fields can extract entanglement from the free
field, even if their interaction regions are spacelike sepa-
rated. This proves that entanglement harvesting is not a
consequence of nonlocalities present because of the non-
relativistic nature of commonly employed particle detector
models, and that the protocol can be implemented within a
fully relativistic framework. We also find that, to leading
order in the coupling strength, any two modes of each of the
localized QFTs behave exactly like two harmonic oscillator
particle detectors, provided suitable choices of coupling
regions. This extends the results of [45] to setups where
multiple detectors are present. Finally we also show that the
results obtained with nonrelativistic particle detector mod-
els provide a lower bound to the results obtained at leading
order with fully relativistic QFT probes.
This manuscript is organized as follows. In Sec. II,

we review the protocol of entanglement harvesting with
harmonic oscillator particle detector models. In Sec. III we
discuss how to use two localized quantum fields in order to
locally probe a third quantum field. Section IV is devoted
to the study of entanglement harvesting using two fully
relativistic localized quantum fields coupled to a free field.
The conclusions of our work can be found in Sec. V.

II. ENTANGLEMENT HARVESTING

It is well known that the vacuum state of a free quantum
field contains correlations between different spacetime
regions, including those in spacelike separation [46–52].
In fact, in flat spacetimes, for any two spacetime regions,
one can always find correlations between local observables
of the field. However, when talking about finite regions, it
is not so easy to tell whether these correlations come from
entanglement or from another form of classical correla-
tions. The reason why addressing this question becomes

difficult is the fact that when one effectively restricts a
global state of a quantum field theory to finite regions of
spacetime, the result is a mixed state, and our techniques for
computing entanglement for mixed states are limited, even
more so in quantum field theory. One way of approaching
the question of how much entanglement there is between
two regions of spacetime in a quantum field is to probe the
field with simpler localized quantum systems. These
systems can couple to the field in the regions of interest
in an attempt to extract preexisting entanglement. One can
then compute the entanglement between the auxiliary
quantum systems in order to infer the entanglement present
in the field itself. This is the key idea in the protocol of
entanglement harvesting (see, e.g., [10]).
The protocol of entanglement harvesting was originally

developed in [9,13], and has since been refined and
studied exhaustively in many different scenarios and
spacetimes [8–11,13–25]. The protocol considers two (or
more [23,53]) particle detectors which couple to the field in
distinct regions of spacetime. These particle detectors
are usually described as effective nonrelativistic models
for localized quantum systems that couple to quantum
fields (typically called Unruh-DeWitt detectors [35,36]).
Although the main goal of the protocol is for the detectors
to extract entanglement that is previously present in the
quantum field, harvesting entanglement is not the only way
the detectors can get correlated. The field can also establish
a communication channel between the two detectors,
enabling another possible source of entanglement when
the detectors exchange quantum information through the
field [11,54]. In order to isolate the entanglement that is
harvested from the field, it is then common to consider
detectors whose interaction regions are causally discon-
nected. This prevents the detectors from exchanging any
information,2 thus leading to the conclusion that all the
entanglement they acquire comes from the field.
For illustration purposes, let us review a concrete

example of entanglement harvesting. We consider two
harmonic oscillator particle detectors3 in 3þ 1-dimensional
Minkowski spacetime, and we label the detectors by
A and B. Each detector is assumed to undergo an
inertial trajectory zAðtÞ ¼ ðt; xAÞ and zBðtÞ ¼ ðt; xBÞ.

2Notice that the extraction of entanglement by the detectors,
including the scenario in which they interact with the field in
spacelike separated regions, does not incur into any kind of
causality violation. Indeed, the fact that the field vacuum exhibits
entanglement between spacelike separated regions is a well-
known feature of any relativistic QFT [48,49], and this entangle-
ment, when acquired by the detectors, can never be used to signal
between them.

3Notice that an analogous derivation follows when a two-level
particle detector model is considered instead of a harmonic
oscillator. In fact, it can be seen, e.g., in section IV.B of [55],
that at leading order a two-level UDW model and a harmonic
oscillator model yield exactly the same amount of harvested
entanglement when starting in their ground states.
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The harmonic oscillator detectors have frequencies ΩA
and ΩB, and their free time evolution is determined by
the Hamiltonians

ĤA ¼ ΩAâ
†
AâA; ĤB ¼ ΩBâ

†
BâB; ð1Þ

where âA, â†A, âB, and â†B denote the annihilation and
creation operators in the Hilbert space of each detector.
Each harmonic oscillator interacts with the quantum field

according to the scalar interaction Hamiltonian densities
(or Hamiltonian weights [41])

ĥI;AðxÞ ¼ λðΛAðxÞe−iΩAtâA þ Λ�
AðxÞeiΩAtâ†AÞϕ̂ðxÞ; ð2Þ

ĥI;BðxÞ ¼ λðΛBðxÞe−iΩBtâB þ Λ�
BðxÞeiΩBtâ†BÞϕ̂ðxÞ; ð3Þ

where ΛAðxÞ and ΛBðxÞ are the spacetime smearing
functions, which control the spacetime region where the
detectors couple to the field, and λ is a coupling constant,
which controls the strength of the interactions with the
field. The interaction Hamiltonian weight for the full
system of the two detectors and field is given by

ĥIðxÞ ¼ ĥI;AðxÞ þ ĥI;BðxÞ: ð4Þ

The Hamiltonian weight above gives rise to the time
evolution operator

ÛI ¼ T t exp

�
−i
Z

dVĥIðxÞ
�
; ð5Þ

where T t exp denotes the time ordering operation with
respect to the time parameter t and dV is the invariant
spacetime volume element.
Notice that the time ordering operation in Eq. (5)

privileges the time parameter t. This is a consequence of
the nonrelativistic model employed for the description of
the detectors themselves, and is directly linked to the fact
that the interaction Hamiltonian weights of Eqs. (2) and (3)
violate the microcausality condition whenever the detectors
are not pointlike. That is, for spatially smeared detectors,
ĥI;AðxÞ and ĥI;BðxÞ do not commute with themselves at
spacelike separated points. The incompatibilities of the
effective models of particle detectors with relativity are well
known [40–43], and are understood to provide a limit for
the regime of validity of the models. Nevertheless, these
serve as a reminder that particle detector models are an
effective description for localized quantum systems, which
ultimately should be modeled fully relativistically.
Using the time evolution operator of Eq. (5), it is then

possible to compute the final state of the two detectors
after their interaction with the field. For convenience

we choose the initial state ρ̂0 ¼ j0Aih0Aj ⊗ j0Bih0Bj ⊗ ρ̂ϕ
for the detectors-field system. That is, we assume that
both detectors are initially in their ground states, and that
the field is initially in the state ρ̂ϕ. We also assume that ρ̂ϕ
is a zero-mean Gaussian state. In the regime of weak
interactions, it is then possible to use the Dyson
expansion for the time evolution operator. The final state
of the detectors is found by tracing out the field ϕ̂.
We find that the final state of the detectors to leading
order only has components in the subspace spanned by
fj0Ai; j1Ai; j2Aig ⊗ fj0Bi; j1Bi; j2Big. It can be written as

ρ̂D ¼
�

M 07×2

02×7 02×2

�
þOðλ4Þ; ð6Þ

where

M¼

0
BBBBBBBBBBBB@

1−LAA−LBB 0 K�
B 0 M� 0 K�

A

0 LBB 0 L�
AB 0 0 0

KB 0 0 0 0 0 0

0 LAB 0 LAA 0 0 0

M 0 0 0 0 0 0

0 0 0 0 0 0 0

KA 0 0 0 0 0 0

1
CCCCCCCCCCCCA
; ð7Þ

LIJ ¼ λ2
Z

dVdV 0ΛIðxÞΛJðx0Þe−iΩðt−t0ÞWðx; x0Þ; ð8Þ

KI ¼ λ2
Z

dVdV 0ΛIðxÞΛIðx0ÞeiΩðtþt0ÞGFðx; x0Þ; ð9Þ

M ¼ −λ2
Z

dVdV 0ΛAðxÞΛBðx0ÞeiΩðtþt0ÞGFðx; x0Þ: ð10Þ

Here, we have denoted Wðx; x0Þ ¼ trϕðρ̂ϕϕ̂ðxÞϕ̂ðx0ÞÞ and
GFðx; x0Þ ¼ Wðx; x0Þθðt − t0Þ þWðx0; xÞθðt0 − tÞ, which
are the two-point function (or Wightman function) and
the Feynman propagator of the field in the state ρ̂ϕ. In the
expressions above, I; J∈ fA;Bg. The LAA, LBB, KA and
KB terms are local to each detector, while the terms LAB
and M correspond to the correlations acquired by the
two detectors.
Our goal is to quantify the entanglement present in the

final state of the detectors (if any). Noticing that the final
state in Eq. (6) is a mixed state (the detectors become
entangled with the quantum field), we pick the negativity as
an entanglement quantifier. The negativity is an entangle-
ment monotone, which is nonzero only when the state
under consideration is entangled. It is defined as the sum of
the absolute value of the negative eigenvalues of the partial
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transpose of a bipartite density operator, and for the state
given in Eq. (6), it reads as

N ðρ̂DÞ¼max

 
0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMj2−

�
LAA−LBB

2

�
2

s
−
LAAþLBB

2

!

þOðλ4Þ: ð11Þ

Moreover, if the detectors’ local terms are the
same (i.e., LAA ¼ LBB ¼ L), Eq. (11) simplifies to
N ðρ̂DÞ ¼ maxð0; jMj − LÞ. Overall, the entanglement in
the state of the detectors is a competition between the
nonlocal M term and the local noise terms LAA and LBB.
The quantification of how much of the entanglement

acquired by the detectors is from communication between
them and how much is actual entanglement harvested from
the quantum field has been studied in previous literature [11].
If the interaction regions of the detectors are spacelike
separated, no entanglement can come from communication.
However, many physical examples involve detectors without
a finite support (such as atoms [16]), and one has to quantify
whether the overlap of the tails of the spacetime smearing
functions can generate entanglement originating from com-
munication between the detectors. Means to quantify this are
now well known, and it is well understood that if strongly
supported spacetime smearing functions are sufficiently
separated in space, the communication contribution can be
made irrelevant [11,43]. Using these techniques it is possible
to find setups such that (effectively) spacelike separated
detectors can harvest entanglement from a quantum field
[10]. Examples can also be found in the literature where
spacelike separated compactly supported spacetime smearing
functions can also extract entanglement from a free field [10].
The entanglement present in spacelike separated regions

of spacetime is generally very small, and, while proposals
for implementations exist [25,34], as of today, entangle-
ment harvesting has not yet been experimentally observed.
The lack of experimental observations, together with the
fact that the protocol has only been studied when consid-
ering nonrelativistic particle detectors, has raised some
questions as to whether entanglement harvesting is an
artifact coming from the nonlocality of the effective models
themselves [44]. For this reason, one of the goals in this
manuscript is to show that it is possible to implement the
entanglement harvesting protocol in the context of fully
relativistic quantum field theories. Moreover, we will show
that the predictions of entanglement harvesting coming
from particle detectors are but a lower bound to the amount
of leading order entanglement that one can harvest with
localized modes of a fully relativistic quantum field.

III. LOCALIZED QUANTUM FIELDS
AS PARTICLE DETECTORS

In this section we briefly review the setup considered
in [45], where localized quantum fields are used to probe a

free quantum field theory. We begin the section defining
localized fields in Sec. III A, and then consider the setup in
which the localized probe field couples to a Klein Gordon
field in Sec. III B.

A. Localized quantum fields

Consider a scalar field under the influence of a trapping
potential V which localizes its modes in space. These
examples can be constructed by considering a scalar field
ϕD in 3þ 1 dimensional Minkowski spacetime with
Lagrangian

L ¼ −
1

2
∂μϕD∂

μϕD −
m2

D

2
ϕ2
D − VðxÞϕ2

D; ð12Þ

where mD is the field’s mass, and we employ inertial
coordinates ðt; xÞ, which we assume to be comoving with
the source of the potential, following the approach of [45].
Under the assumption that the potential VðxÞ is confining

(see Ref. [45] for details), we find that any solution to the
equation of motion that originates from the Lagrangian of
Eq. (12) can be written as a discrete sum of modes:

ϕ̂DðxÞ ¼
X
n

αne−iωntΦnðxÞ þ α�neiωntΦ�
nðxÞ; ð13Þ

where n is a multi-index, and the functions ΦnðxÞ and
the eigenfrequencies ωn are solutions to the eigenvalue
problem

ð−∇2 þm2 þ 2VðxÞÞΦnðxÞ ¼ ω2
nΦnðxÞ: ð14Þ

The field can be canonically quantized by promoting
the coefficients αn and α�n to creation and annihilation
operators â†n and ân. This gives rise to the following field
representation:

ϕ̂DðxÞ ¼
X
n

âne−iωntΦnðxÞ þ â†neiωntΦ�
nðxÞ: ð15Þ

The vacuum state j0i associated with this representation
of the field is then the one that satisfies ânj0i ¼ 0 for all n.
The states of the form â†nj0i represent (normalized) one-
mode excitations of the field with the spatial support of the
eigenfunctions ΦnðxÞ. This means that the presence of the
time-independent confining potential allows the quantum
field theory we just constructed to have localized states
invariant under time translations, which is the main
ingredient we need for it to be a sensible model of a
realistic probe.

1. A field localized by a quadratic potential

We now consider the specific example of a relativistic
quantum scalar field in 3þ 1 dimensional Minkowski
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spacetime under the influence of the following quadratic
potential:

VðxÞ ¼ jxj2
2l4

: ð16Þ

The parameter l has dimensions of length and is inversely
proportional to the strength of the confining potential. The
equation of motion is then given by

�
∂μ∂

μ −m2 −
jxj2
l4

�
ϕDðxÞ ¼ 0: ð17Þ

In order to find a basis of solutions to the equations
of motion, we look for solutions of the form
ϕDðxÞ ¼ e−iEtΦðxÞ, so that the equation turns into an
eigenvalue problem:

�
E2 þ∇2 −m2 −

jxj2
l4

�
ΦðxÞ ¼ 0: ð18Þ

The normalizable solutions to this equation are related
to the three-dimensional harmonic oscillator, and are
found to be

ΦnðxÞ ¼
1ffiffiffiffiffiffiffiffi
2ωn

p fnxðxÞfnyðyÞfnzðzÞ; ð19Þ

with n ¼ ðnx; ny; nzÞ being a vector of non-negative integer
components, and

fmðuÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2mm!

p e−
u2

2l2

π
1
4

ffiffiffi
l

p Hmðu=lÞ; ð20Þ

where Hm denotes the mth Hermite polynomial. The
eigenfrequencies ωn are given by

ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2

l2

�
nx þ ny þ nz þ

3

2

�s
: ð21Þ

The corresponding quantum field then admits an expansion
as in Eq. (15).

2. A field in a cubic cavity

It is also possible to define a potential which represents a
perfectly reflecting cavity. In order to describe a field in a
cubic box of side d, Ud ¼ ½0; d�3, we consider the potential

VðxÞ ¼
�

0; x∈Ud;

∞; x ∉ Ud:
ð22Þ

This potential makes it so that the field is free inside the
box, but is set to zero outside of its walls, effectively
implementing Dirichlet boundary conditions. A basis of

spatial solutions of the wave equation with this potential
can then be written as

ΦnðxÞ ¼
1ffiffiffiffiffiffiffiffi
2ωn

p fnxðxÞfnyðyÞfnzðzÞ; ð23Þ

where the functions fnðuÞ are given by

fnðuÞ ¼
ffiffiffi
2

d

r
sin

�
πnu
d

�
; ð24Þ

and the corresponding eigenfrequencies are

ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ π2

d2
ðn2x þ n2y þ n2zÞ

s
: ð25Þ

The field can be canonically quantized in the same way as
we do for fields under the influence of finite potentials, with
the difference that the modes in this case are only nonzero
in Ud, so that they are compactly supported in space for
each t.

B. Relativistic local probes

We now focus on the case where the localized field
ϕ̂DðxÞ is coupled to a free Klein-Gordon field ϕ̂ðxÞ which
will be the target of the measurement. In this case, the
localized field ϕ̂D acts as a relativistic probe that can be
used to infer properties about the target field ϕ̂. This setup
was detailed in [45], where it was studied in which way
each individual mode of the probe field behaves as a
smeared harmonic oscillator UDW detector. Here we will
briefly review this setup so that we can later apply it to the
case where two localized quantum fields couple to a free
Klein-Gordon field in Sec. IV.
Let ϕ be a free Klein-Gordon field in 3þ 1 dimensional

Minkowski spacetime, and consider ϕD to be a field
localized by a potential VðxÞ, as described in Sec. III A.
We will consider the two fields to be coupled linearly in a
finite region of spacetime, so that the system of the two
fields is described by the Lagrangian

L ¼ −
1

2
∂μϕD∂

μϕD −
m2

D

2
ϕ2
D − VðxÞϕ2

D

−
1

2
∂μϕ∂

μϕ −
m2

2
ϕ2 − λζðxÞϕDϕ: ð26Þ

The constants mD and m represent the masses of the fields
ϕD and ϕ, respectively. The function ζðxÞ defines the shape
of the spacetime region where the interaction takes place,
and λ is a coupling constant.
For λ ¼ 0, the Lagrangian of Eq. (26) describes two

noninteracting fields, each of which can be quantized using
standard techniques, with the quantization of the field ϕD
being performed as in Sec. III A. For small values of λ one
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can then treat the two interacting fields perturbatively, using
the scalar interaction Hamiltonian density

ĥIðxÞ ¼ λζðxÞϕ̂DðxÞϕ̂ðxÞ; ð27Þ

which generates time evolution in the interaction picture
according to the unitary time evolution operator

ÛI ¼ T exp

�
−i
Z

dVĥIðxÞ
�
: ð28Þ

We consider the two fields to be completely uncorrelated
before the interaction, and we initialize the probe field in its
ground state: ρ̂0 ¼ j0Dih0Dj ⊗ ρ̂ϕ, where j0Di denotes the
vacuum state associated to the quantization procedure
outlined in Sec. III A. To make the calculations simpler,
we also assume that ρ̂ϕ is a zero-mean Gaussian state (also

called quasifree) of the field ϕ̂, although the formalism
applies to arbitrary initial states of the target field. This state
can then be time evolved using the unitary time evolution
operator of Eq. (28), resulting in the final state

ρ̂f ¼ ÛI ρ̂0Û
†
I : ð29Þ

Since we access the information about the field ϕ̂ indirectly
by measuring the localized detector field ϕ̂D, we trace
over the free Klein-Gordon field ϕ̂, so that we are left with
the state

ρ̂D ¼ trϕðÛI ρ̂0Û
†
I Þ: ð30Þ

To leading order in perturbation theory, this state is found to
be given by [45]

ρ̂D ¼ j0Dih0Dj þ λ2
Z

dVdV 0ζðxÞζðx0ÞWðx; x0Þ

×
�
ϕ̂Dðx0Þj0Dih0Djϕ̂DðxÞ

− ϕ̂DðxÞϕ̂Dðx0Þj0Dih0Djθðt − t0Þ
− j0Dih0Djϕ̂DðxÞϕ̂Dðx0Þθðt0 − tÞ

�
; ð31Þ

where, as before, Wðx; x0Þ ¼ trϕðϕ̂ðxÞϕ̂ðx0Þρ̂ϕÞ is the two-
point correlation function (or Wightman function) of the
quantum field ϕ̂ that we aim to probe.
We can further assume that we only have access to a

limited number of modes of the detector field ϕ̂D. For
simplicity, we will focus on the case where we only
have access to one mode of the field, labeled by the
multi-index N. In this case, it is possible to trace Eq. (31)
over all the other modes of the field, so that we find the final
state in the mode N to be [45]

ρ̂N ¼ ρ̂N;0 þ λ2
Z

dVdV 0Wðx; x0Þ
�
Q̂Nðx0Þρ̂N;0Q̂NðxÞ

− Q̂NðxÞQ̂Nðx0Þρ̂N;0θðt − t0Þ
− ρ̂N;0Q̂NðxÞQ̂Nðx0Þθðt0 − tÞ

�
þOðλ4Þ; ð32Þ

where ρ̂N;0 ¼ j0Nih0Nj is the zero occupation number state
of the mode N, and

Q̂NðxÞ ¼ ζðxÞΦNðxÞðe−iωNtâN þ eiωNtâ†NÞ ð33Þ

is the quadrature operator of the mode N that couples to the
quantum field ϕ̂ðxÞ. Indeed, in [45], it was shown that to
leading order in the coupling constant, the full result in
Eq. (32) is reproduced by coupling the mode N of ϕ̂D to
the target field according to the effective interaction
Hamiltonian weight

ĥeffðxÞ ¼ λðΛðxÞe−iΩtâN þ Λ�ðxÞeiΩtâ†NÞϕ̂ðxÞ: ð34Þ

Here, Ω ¼ ωN is the frequency of the quantum harmonic
oscillator representing mode N of ϕ̂D, and ΛðxÞ is an
effective spacetime smearing function, given by the product
of the interaction region ζðxÞ and the spatial part of the
mode function,

ΛðxÞ ¼ ζðxÞΦNðxÞ: ð35Þ

That is, each individual mode of the field ϕ̂D behaves as a
harmonic oscillator particle detector with interaction region
determined by the shape of the interaction between the
fields and the localization of the mode.
We remark that the results of this section can be

straightforwardly generalized to include arbitrarily many
modes of the probe field as detector degrees of freedom,
and for a much more general class of initial states for the
probe field not necessarily given by j0Dih0Dj. For an
explicit verification of this fact using the Schwinger-
Keldysh formalism to describe the dynamics of probe
and target field, see Ref. [56].

IV. FULLY RELATIVISTIC ENTANGLEMENT
HARVESTING

In this section we apply the method outlined in Sec. III to
the case where two localized fields are coupled to a free
scalar quantum field. In particular, we are interested in the
protocol of entanglement harvesting detailed in Sec. II,
where two detectors couple to a free quantum field in
spacelike separated regions of spacetime in an attempt to
extract entanglement present in the field.
Although entanglement harvesting from the vacuum of a

quantum field using nonrelativistic particle detectors has
been studied in a plethora of works in relativistic quantum
information, one could reasonably question whether the
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effective nonrelativistic description of the detectors may
be contaminating the results. For example, it was argued
in [44] that, as a consequence of the Reeh-Schlieder
theorem, localized states of free quantum fields are mixed,
so that for any localized detectors, there exists a threshold
for the strength of interactions that can entangle localized
states. This would not allow local systems to harvest
entanglement perturbatively. However, this claim was
addressed in [57], where it was argued that the argument
of [44] would only apply to specific situations which would
generally not correspond to physical setups. In particular,
notice that the localized quantum field theories that we
considered in Sec. III allow for localized pure states. This is
a simple example where the arguments of [44] would not
apply. For more details regarding the purity of states of
localized QFTs we refer the reader to Appendix B.
More recently, in [58], the authors studied entanglement

between spatial modes in a quantum field theory, and
argued that most individual pairs of spacelike separated
modes of a quantum field in 3þ 1 dimensions are not
entangled. This begs the question of whether nonrelativistic
particle detectors become entangled as a consequence of
their effective description, and not due to entanglement
previously present in the quantum field.4

Overall, it is not unreasonable to question whether it is
possible to extract entanglement from spacelike separated
spacetime regions of a quantum field. While the limits of
validity of particle detector models are well understood
by now, until there is a fully relativistic example of
entanglement harvesting, one could still question whether
the phenomenon is a mere consequence of the effective
theory used for the local probes. To address this, in this
section we will show that two localized quantum fields
can become entangled by interacting with another free
field in spacelike separated interaction regions, thus
showcasing a fully relativistic example of entanglement
harvesting.

A. A general framework for entanglement harvesting
with localized quantum fields

Consider two localized real scalar quantum fields ϕ̂AðxÞ
and ϕ̂BðxÞ in 3þ 1 dimensional Minkowski spacetime,
under the influence of confining potentials VAðxÞ and
VBðxÞ, according to the description of Sec. III A. We then
consider that there are two vacuum states j0Ai and j0Bi
associated to each field, defined according to the quantiza-
tion procedure outlined in Sec. III. As a consequence of the
confining potentials, both fields will have discrete modes
labeled by nA and nB. Each of these fields will linearly
interact with a free Klein-Gordon field ϕ̂ðxÞ, so that the

interaction Hamiltonian density of the full theory can be
written as

ĥIðxÞ ¼ λðζAðxÞϕ̂ðxÞϕ̂AðxÞ þ ζBðxÞϕ̂ðxÞϕ̂BðxÞÞ; ð36Þ

where ζAðxÞ and ζBðxÞ are spacetime smearing functions
that are localized in time.
By picking initial states for the system of the three fields

ϕ̂AðxÞ, ϕ̂BðxÞ, and ϕ̂ðxÞ, one can then compute the final
state of the system of the probe fields by tracing over ϕ̂. In
Appendix A we perform these calculations by considering
the initial state ρ̂0 ¼ j0Aih0Aj ⊗ j0Bih0Bj ⊗ ρ̂ϕ, where ρ̂ϕ
is a zero mean Gaussian state for the field ϕ̂ðxÞ. Moreover,
we will assume that we only have access to the modes
labeled by NA and NB for the respective fields ϕ̂AðxÞ and
ϕ̂BðxÞ. Tracing over all other modes of both fields, we then
show (again, in Appendix A) that, to leading order in
perturbation theory, the final state for the modes of the
fields is exactly the same as one would obtain by consid-
ering harmonic oscillator particle detector models. That is,
the same final state for the modes can be obtained
by considering two quantum harmonic oscillators that
interact with the field ϕ̂ðxÞ according to the interaction
Hamiltonian density

ĥeffðxÞ ¼ λQ̂A
NA
ðxÞϕ̂ðxÞ þ λQ̂B

NB
ðxÞϕ̂ðxÞ; ð37Þ

where

Q̂A
NA
ðxÞ ¼ ΛAðxÞe−iΩAtâANA

þ Λ�
AðxÞeiΩAtâA†NA

; ð38Þ

Q̂B
NB
ðxÞ ¼ ΛBðxÞe−iΩBtâBNB

þ Λ�
BðxÞeiΩBtâB†NB

; ð39Þ

with âANA
, âA†NA

, âBNB
, and âB†NB

being the creation and
annihilation operators associated with excitations in the
modes NA and NB for the respective fields ϕ̂AðxÞ and
ϕ̂BðxÞ. As in Sec. III, the spacetime smearing functions are
given by the product of ζAðxÞ and the spatial mode ΦA

NA
ðxÞ

and ζBðxÞ and the mode ΦB
NB
ðxÞ:

ΛAðxÞ ≔ ζAðxÞΦA
NA
ðxÞ; ð40Þ

ΛBðxÞ ≔ ζBðxÞΦB
NB
ðxÞ: ð41Þ

In essence, the analogy between particle detectors and
modes of localized quantum field theories presented in [45]
and reviewed in Sec. III also holds when multiple localized
quantum fields are considered. In particular, this means that
every result previously studied in entanglement harvesting
using particle detectors can be mapped to the case where
localized modes of suitable quantum field theories interact
with a quantum field. This, in fact, could also be alter-
natively seen from the path integral approach of [56], as the

4In fact, the discussions with the authors of [58] have partially
motivated this research. To see how multipartite entanglement of
spatial modes of a QFT allow detectors to harvest entanglement
we refer to the work in preparation [59].
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arguments used there apply unchanged for any number of
modes selected as “detector” degrees of freedom, as long as
the modes in question are decoupled in the free dynamics of
the theory.
Interestingly, since at leading order in perturbation

theory different modes of the probe fields do not interact
with each other, each pair of modes may acquire some
amount of entanglement, and not only the two modes
labeled by NA and NB. This means that the localized fields
harvest more entanglement than the amount that a model of
two harmonic oscillator particle detectors would predict.
Indeed, far from overestimating the amount of entangle-
ment that localized quantum fields can harvest, particle
detector models provide a lower bound to the amount of
leading order entanglement that suitably localized quantum
fields would harvest.
An implication of the results above is that it is possible

to find fully relativistic quantum field theories such that
modes of two localized fields can become entangled after
interacting with a free field, even if the interaction regions
are spacelike separated. In order to find these fields and
modes, it is enough to prescribe potentials and functions
ζAðxÞ and ζBðxÞ such that one mode in each field matches
the setup considered in any entanglement harvesting pro-
tocol considered in the literature. This shows that the
protocol of entanglement harvesting can indeed be imple-
mented by fully relativistic theories.

B. Examples

For concreteness, we now present specific examples of
entanglement harvesting using two localized quantum field
theories. Specifically, we consider the lowest energy modes
of 1) fields under the influence of quadratic potentials
and 2) fields in cubic boxes with Dirichlet boundary
conditions, as described in Secs. III A 1 and III A 2. We
will see that indeed it is possible for these localized quantum
fields to extract entanglement from the vacuum of a free
Klein-Gordon field in 3þ 1 Minkowski spacetime.
As our first example of fully relativistic entanglement

harvesting, we consider two localized quantum fields in
Minkowski spacetime under the influence of potentials
VAðxÞ ¼ jxj2=2l4 and VBðxÞ ¼ VAðx − LÞ, where L ¼ jLj
denotes the proper distance between the centers of the
trapping potentials. In essence, the two quantum fields are
identical, apart from a spatial shift in the potentials that
confine them. Under these assumptions, the energy levels
of each field take the form of Eq. (21), with their lowest
energy levels being ω0A ¼ ω0B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 3=l2

p
.

Both fields will interact with a free scalar field ϕ̂ðxÞ
according to the interaction Hamiltonian of Eq. (37),
where the functions ζAðxÞ and ζBðxÞ will conveniently
be prescribed as

ζAðxÞ ¼ ζBðxÞ ¼ e−
πt2

2T2 : ð42Þ

This corresponds to interactions that are adiabatically
switched on, and peak at t ¼ 0. The effective time of the
switching is controlled by the timescale T. The reason
that we consider ζAðxÞ ¼ ζBðxÞ independent of the
spatial coordinates is that the effective spacetime region
where the localized fields interact with ϕ̂ðxÞ is defined
by the product of ζAðxÞ with the mode localization of
the fields. The spatial localization of the modes together
with the time localization of ζAðxÞ then gives an overall
interaction which is localized in spacetime for each
mode.
We consider the three fields to start in their respective

ground states, j0Ai ⊗ j0Bi ⊗ j0i, and we assume that we
only have access to the localized fields’ mode excitations
with the lowest energy, ω0A ¼ ω0B ≡ Ω. In Appendix A,
we explicitly compute the final state of these modes of the
fields, ρ̂D, as well as the entanglement in this state as
measured by its negativity. In essence, the negativity takes
the same form of Eq. (11), and in the case where the
excitation probabilities are the same (as we are considering
here), it becomes

N ðρ̂DÞ ¼ maxð0; jMj − LÞ þOðλ4Þ; ð43Þ

where the L and M terms are given by

L ¼ λ2
Z

dVdV 0ΛAðxÞΛAðx0Þe−iΩðt−t0ÞWðx; x0Þ;

¼ λ2
Z

dVdV 0ΛBðxÞΛBðx0Þe−iΩðt−t0ÞWðx; x0Þ;

M ¼ −λ2
Z

dVdV 0ΛAðxÞΛBðx0ÞeiΩðtþt0ÞGFðx; x0Þ;

ð44Þ

with Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 3=l2

p
and the spacetime smearing func-

tions are given by

ΛAðxÞ ¼ ζAðxÞΦA
0A
ðxÞ ¼ e−

πt2

2T2

�
1

πl2

�3
4 e−

jxj2
2l2

ðm2 þ 3
l2Þ1=4

;

ΛBðxÞ ¼ ζBðxÞΦB
0B
ðxÞ ¼ ΛAðt; x − LÞ: ð45Þ

We then see that the effective size of the interaction region
can be estimated by looking at the standard deviation of the
space dependent Gaussian function in Eq. (45). In this case,
the spatial size of the interaction region can be estimated to
be σ ∼ l, so that smaller values of the parameter l that
defines the confining potential corresponds to more local-
ized detectors.
Motivated by the discussion of entanglement harvesting,

we focus on the case where the interaction regions are
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approximately spacelike separated,5 so that entanglement
acquired by the localized modes via communication can be
neglected. For this reason we consider L ¼ 5T in the
specific example that we explore here, where we verified
that the effect of communication is 6 orders of magnitude
smaller than the effects arising from vacuum entanglement
harvesting [11,54]. In Fig. 1 we plot the entanglement
acquired by the localized modes as a function of their
energy gap. The plot is what is expected for the behavior of
entanglement harvesting in the Minkowski vacuum, where
there is a threshold in the energy gap below which no
entanglement can be extracted. For ΩT above this thresh-
old, the entanglement peaks and quickly decays. The
behavior seen in Fig. 1 is identical to that of a UDW
detector with a Gaussian spacetime smearing function, as
expected (for comparison, see e.g., [60]).
Finally, in Fig. 2 we consider the case where two massive

fields in cubic cavities of size length d with Dirichlet
boundary conditions interact with a free massless scalar
field. The box localization was discussed in Sec. III A 2.
We consider the same choices of ζAðxÞ and ζBðxÞ as
in Eq. (42). We also restrict the localized fields to the
lowest energy mode 1A ¼ 1B ¼ ð1; 1; 1Þ, with energy
ωA
1A

¼ ωB
1B

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 3π2=d2

p
. To ensure that communica-

tion between the detectors is negligible, we pick d ∼ 0.5T
and consider the distance between the cavities to be given
by L ¼ 5T. The negativity in this case can be seen in Fig. 2
as a function of the energy gap of the 1A, 1B modes of the
fields. The behavior of the negativity is similar to most
cases of entanglement harvesting in spacelike separated
regions. We see more entanglement in this setup due to the
smaller choice of L, which can be taken in this case because

the communication between the detectors is naturally
smaller due to the compact support of the modes in space.
Figures 1 and 2 showcase examples where two com-

pletely relativistic (microcausal) localized quantum field
theories can extract entanglement from the vacuum of a free
field. This proves that entanglement harvesting is not a
consequence of any features of effective nonrelativistic
theories, and it is indeed a prediction of quantum field
theory.

C. Entanglement harvesting with one probe field

It is also possible to model entanglement harvesting with
two effectively localized particle detectors that both emerge
from a single probe quantum field. This is conceptually
closer to situations where the probes whose entanglement
we wish to test at the end of the experiment are identical—
such as, for instance, using two electrons held in two
distinct positions as probes of the electromagnetic field. In
fact, it is relatively straightforward to see how this can be
achieved by noting that Sec. III immediately generalizes to
the case where the confining potential may actually localize
the field in multiple regions instead of just one.
It is indeed possible to treat a field defined in a set with

multiple connected components U ¼ U1 ∪ … ∪ Un using
the formalism of Sec. III in each connected component Ui.
Indeed, when multiple connected components are present,
the equations of motion in each of them decouple,
effectively giving rise to different quantum fields ϕ̂iðxÞ
defined in each of the sets Ui, as the Hilbert space for the
theory factors as a tensor product of noninteracting fields
localized in each region Ui.
This can be done in an approximate sense even when

one does not strictly have multiple connected components
but instead the potential yields strongly supported modes
in two sufficiently separated regions—for example, if the
potential has two regions of minima separated by a
sufficiently large potential wall. In this case the probe field

FIG. 1. The negativity of the state of two localized quantum
fields confined by a quadratic potential when restricted to their
lowest energy after interacting with a massless scalar field. The
negativity is plotted as a function of the energy of the modes
Ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 3=l2

p
. The time duration of the interaction T is used

as a scale. The separation between the detectors’ interaction
regions for these plots is L ¼ 5T.

FIG. 2. The negativity of the state of two localized quantum
fields in boxes of sides d when restricted to their lowest energy
mode after spacelike interaction with a massless scalar field. The
negativity is plotted as a function of the energy of the localized
mode,Ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 3π=d2

p
. The time duration of the interaction T

is used as a scale. The separation between the detectors’
interaction regions for these plots is L ¼ 4.5T.

5Even though the Gaussian tails of the switching are technically
infinitely long, using these switchings is effectively equivalent to
considering compactly supported switchings. For more details
about effective communication from Gaussian tails and how the
use of Gaussians is justified, we refer the reader to [11,43].
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approximately factors as two noninteracting infinite towers
of harmonic oscillators localized around two distinct
regions of space, each of which could equivalently be
treated as emerging from a quantum field of its own.
For concreteness, let us assume that the local minima

of the potential VðxÞ are found in two finite spatial
regions RA and RB, and that the potential goes to infinity
as we move away from both regions. Say that, in RA and
RB, the potential locally behaves as VAðxÞ and VBðxÞ
respectively, where VAðxÞ and VBðxÞ are both confining
potentials of their own. Now, the field can be approx-
imately split as

ϕ̂DðxÞ ≃ ϕ̂AðxÞ þ ϕ̂BðxÞ; ð46Þ

where both ϕ̂AðxÞ and ϕ̂BðxÞ can be written in a mode
expansion as in Eq. (15), with the spatial mode functions
ΦA;B

nA;BðxÞ corresponding to spatially localized profiles asso-
ciated to the potentials VA;BðxÞ and localized around
regions RA;B respectively. The assumption that the potential
barrier and spatial separation between the regions RA and
RB are sufficiently large then translates to the condition that
the overlap between any two modes associated to distinct
regions is negligible, i.e.,Z

ddxΦA
nAðxÞΦB

nBðxÞ ≃ 0 ∀ nA; nB: ð47Þ

We can interpret this as showing that, when the potential
yields strongly supported modes in two sufficiently sepa-
rated regions, the probe field essentially factors as two
noninteracting infinite towers of harmonic oscillators
localized around two distinct regions of space, each of
which could equivalently be treated as emerging from a
distinct quantum field. The condition given by Eq. (47)
guarantees that the creation and annihilation operators of
the modes supported in each separate region approximately
commute. The vacuum state for the probe field can then
be approximated as a tensor product of the local vacua of
the independent theories on each localization region. In
summary, within these approximations, this procedure is
mathematically the same as quantizing two independent
fields, each under the influence of a different trapping
potential with only one minimum in either RA or RB. This
shows how one can conceptualize entanglement harvesting
setups where each particle detector is obtained as a different
localized mode of one single quantum field. From this point
onward, the math that led to the results in Figs. 1 and 2
remains unchanged.

V. CONCLUSIONS

We studied the protocol of entanglement harvesting in
the case where the probes harvesting entanglement from the
field are modeled as localized fully relativistic quantum

fields themselves, in contrast to the commonly employed
treatment where the probes are modeled as nonrelativistic
particle detectors.
In particular, we found examples where modes of the two

localized probe fields become entangled after interacting
with a free Klein-Gordon field when the regions of
interaction of each field are spacelike separated. This
showcases a protocol for extracting spacelike entanglement
from the vacuum of a free quantum field where not only the
fields, but also the probes are fully relativistic, contrary to
the intuitions derived in [44].
We also showed how to reduce two localized QFT

probes to particle detector models, extending the results
of [45] to situations where more than one localized field is
probing a free QFT. Indeed, we verified that the commonly
employed particle detector models provide an accurate
description for these scenarios, approximating the fully
relativistic results at leading order.
Moreover, we showed that—at leading order in pertur-

bation theory—the entanglement that the fully relativistic
probes can harvest is actually bounded from below by the
results obtained when the probes are harmonic-oscillator
Unruh-DeWitt detectors, further legitimizing the use of
particle detector models to study this kind of protocols.
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APPENDIX A: TWO FIELDS IN CAVITIES
INTERACTING WITH A KLEIN-GORDON FIELD

Denote the field in each cavity by ϕ̂A and ϕ̂B, and the
free field that they both interact with by ϕ̂ in the regions
defined by the supports of ζAðxÞ and ζBðxÞ, respectively.
The interaction Hamiltonian density of the theory will be
prescribed as

ĥIðxÞ ¼ λðζAðxÞϕ̂ðxÞϕ̂AðxÞ þ ζBðxÞϕðxÞϕ̂BðxÞÞ: ðA1Þ
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We now write the ϕA;B fields with the spacetime smearing
functions as

ζAðxÞϕ̂AðxÞ ¼
X
n

ζAðxÞðuAn ðxÞâAn þ uA�n ðxÞâA†n Þ

¼
X
n

Q̂A
n ðxÞ ðA2Þ

ζBðxÞϕ̂BðxÞ ¼
X
n

ζBðxÞðuBn ðxÞâBn þ uB�n ðxÞâB†n Þ

¼
X
n

Q̂B
n ðxÞ; ðA3Þ

where uAn ðxÞ ¼ e−iω
A
n tΦA

n ðxÞ, uBn ðxÞ ¼ e−iω
B
n tΦB

n ðxÞ, and
the field expansion will depend on the specific boundary
conditions and equations of motion. We are working under
the assumption that the field has discrete energy levels,
so that the sums above are discrete. The field expansions
automatically define states j0Ai and j0Bi, which are

annihilated by all operators âAn and âBn , respectively. We
can then write the Hamiltonian interaction density as

ĥIðxÞ ¼ λϕ̂ðxÞ
X
n

ðQ̂A
n ðxÞ þ Q̂B

n ðxÞÞ: ðA4Þ

In perturbation theory, we then get

Û ¼ T exp

�
−i
Z

dVĥIðxÞ
�

¼ 1þ Ûð1Þ þ Ûð2Þ þOðλ3Þ;

ðA5Þ

where

Ûð1Þ ¼ −i
Z

dVĥIðxÞ

¼ −iλ
Z

dVϕ̂ðxÞ
X
n

ðQ̂A
n ðxÞ þQB

n ðxÞÞ: ðA6Þ

Ûð2Þ ¼ −
Z

dVdV 0ĥIðxÞĥIðx0Þθðt − t0Þ ðA7Þ

¼ −
Z

dVdV 0ϕ̂ðxÞϕ̂ðx0Þθðt − t0Þ
X
nm

ðQ̂A
n ðxÞQ̂A

mðx0Þ þ Q̂B
n ðxÞQ̂B

mðx0Þ þ Q̂A
n ðxÞQ̂B

mðx0Þ þ Q̂B
n ðxÞQ̂A

mðx0ÞÞ: ðA8Þ

The final state will be given by

ρ̂f ¼ Ûρ̂0Û
† ¼ ρ̂0 þ Ûð1Þρ̂0 þ ρ̂0Û

ð1Þ† þ Ûð1Þρ̂0Ûð1Þ† þ Ûð2Þρ̂0 þ ρ̂0Û
ð2Þ† þOðλ3Þ: ðA9Þ

We will assume that ρ̂0 ¼ j0A0Bih0A0Bj ⊗ ρ̂ϕ ¼ ρ̂0;AB ⊗ ρ̂ϕ and that trϕðÛð1Þρ̂0Þ ¼ 0, so that the OðλÞ terms do not
contribute to the partial state of the cavities A and B. We then only need to compute trϕðÛð1Þρ̂0Ûð1Þ† þ Ûð2Þρ̂0 þ ρ̂0Û

ð2Þ†Þ.
We have

trϕðÛð1Þρ̂0Ûð1Þ†Þ

¼ λ2
Z

dVdV 0Wðx0;xÞ
X
nm

ðQ̂A
n ðxÞρ̂0;ABQ̂A

mðx0ÞþQ̂B
n ðxÞρ̂0;ABQ̂B

mðx0ÞþQ̂A
n ðxÞρ̂0;ABQ̂B

mðx0ÞþQ̂B
n ðxÞρ̂0;ABQ̂A

mðx0ÞÞ; ðA10Þ

and

trϕðÛð2Þρ̂0Þ ¼ −λ2
Z

dVdV 0Wðx; x0Þθðt − t0Þ

×
X
nm

ðQ̂A
n ðxÞQ̂A

mðx0Þρ̂0;AB þ Q̂B
n ðxÞQ̂B

mðx0Þρ̂0;AB þ Q̂A
n ðxÞQ̂B

mðx0Þρ̂0;AB þ Q̂B
n ðxÞQ̂A

mðx0Þρ̂0;ABÞ; ðA11Þ

where Wðx; x0Þ ¼ trðρ̂ϕϕ̂ðxÞϕ̂ðx0ÞÞ. Notice that

ρ̂0;AB ¼ j0A0Bih0A0Bj ¼ ⊗
nm
j0An 0Bmih0An 0Bmj ¼ ρ̂D;0 ⊗

n;m>1
j0An 0Bmih0An 0Bmj; ðA12Þ

where j0An i and j0Bn i denotes the ground states of each harmonic of each cavity, and

ρ̂D;0 ¼ j0A1 0B1 ih0A1 0B1 j ðA13Þ
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is the ground state of the first harmonic in each cavity.
We then trace out all cavity modes except for the first
harmonic. That is, we will compute the density operator
trϕ;Hðρ̂fÞ ¼ trHðtrϕðÛð1Þρ̂0Ûð1Þ† þ Ûð2Þρ̂0 þ ρ̂0Û

ð2Þ†ÞÞ,
where trH denotes the trace over all cavity harmonics,
except the first, for fields A and B.
Overall, we will need to compute the trace of quantities

of the form trHðQ̂A
n ðxÞQ̂A

mðx0Þρ̂0;ABÞ. We know that since
Q̂I

nðxÞ ¼ ðuInðxÞâIn þ uI�n ðxÞâI†n Þ for I ¼ A;B. Therefore,
the products of the form Q̂I

nðxÞQ̂I
mðx0Þ will only give

nondiagonal elements if n ¼ m. When n ¼ m ≠ 1, we have

trAðQ̂A
n ðxÞQ̂A

n ðx0Þj0An ih0An jÞ ¼ h0An jQ̂A
n ðxÞQ̂A

n ðx0Þj0An i
¼ ζAðxÞζAðx0ÞuAn ðxÞuA�n ðx0Þ

ðA14Þ

and

trBðQ̂B
n ðxÞQ̂B

n ðx0Þj0Bn ih0Bn jÞ ¼ h0Bn jQ̂B
n ðxÞQ̂B

n ðx0Þj0Bn i
¼ ζBðxÞζBðx0ÞuBn ðxÞuB�n ðx0Þ:

ðA15Þ

We find that for n and m different from 1,

trHðQ̂I
nðxÞQ̂J

mðx0Þρ̂0;ABÞ
¼ δnmδIJζIðxÞζJðx0ÞuInðxÞuJ�m ðx0Þρ̂D;0; ðA16Þ

where trHðQ̂A
n ðxÞQ̂B

mðx0Þρ̂0;ABÞ ¼ 0 automatically, as it fac-
tors into expectation values of creation and annihilation
operators in A and B evaluated at the vacuum. Finally, notice
that when n ¼ m ¼ 1we do not need to trace over it, because
H encompasses every harmonic except for the first one.

Putting the results above together, we then find that

trHðtrϕðÛð1Þρ̂0Ûð1Þ†ÞÞ

¼ λ2
Z

dVdV 0Wðx0; xÞ
�
Q̂A

1 ðxÞρ̂D;0Q̂A
1 ðx0Þ þ Q̂B

1 ðxÞρ̂D;0Q̂B
1 ðx0Þ þ Q̂A

1 ðxÞρ̂D;0Q̂B
1 ðx0Þ þ Q̂B

1 ðxÞρ̂D;0Q̂A
1 ðx0Þ

þ
X
n>1

ðζAðxÞζAðx0ÞuAn ðxÞuA�n ðx0Þ þ ζBðxÞζBðx0ÞuBn ðxÞuB�n ðx0ÞÞρ̂D;0
�

ðA17Þ

and

trHðtrϕðÛð2Þρ̂0ÞÞ

¼ −λ2
Z

dVdV 0Wðx; x0Þθðt − t0Þ
�
Q̂A

1 ðxÞQ̂A
1 ðx0Þρ̂D;0 þ Q̂B

1 ðxÞQ̂B
1 ðx0Þρ̂D;0 þ Q̂A

1 ðxÞQ̂B
1 ðx0Þρ̂D;0 þ Q̂B

1 ðxÞQ̂A
1 ðx0Þρ̂D;0

þ
X
n>1

ðζAðxÞζAðx0ÞuAn ðxÞuA�n ðx0Þ þ ζBðxÞζBðx0ÞuBn ðxÞuB�n ðx0ÞÞρ̂D;0
�
: ðA18Þ

The last term trHðtrϕðρ̂0Ûð2Þ†ÞÞ is simply the conjugate of the term above. Notice that the terms proportional to ρ̂D;0 will
cancel when all terms are added together. This can be seen from explicit calculation using θðt − t0Þ þ θðt0 − tÞ ¼ 1, or
simply by noticing that each term in the Dyson expansion is traceless due to trace preservation.
The products of terms Q̂I

1ðxÞQ̂J
1ðx0Þ is given by

Q̂I
1ðxÞQ̂J

1ðx0Þ ¼ ζIðxÞζJðx0ÞðuI1ðxÞâIn þ uI�1 ðxÞâI†n ÞðuJ1ðx0ÞâJn þ uJ�1 ðx0ÞâJ†n Þ ðA19Þ

¼ ζIðxÞζJðx0ÞðuI1ðxÞuJ1ðx0ÞâInâJn þ uI�1 ðxÞuJ1ðx0ÞâI†n âJn þ uI1ðxÞuJ�1 ðx0ÞâInâJ†n þ uI�1 ðxÞuJ�1 ðx0ÞâI†n âJ†n Þ: ðA20Þ

We then define the spacetime smearing functions

ΛAðxÞ ≔ ζAðxÞuA1 ðxÞ; ðA21Þ

ΛBðxÞ ≔ ζBðxÞuB1 ðxÞ; ðA22Þ

so that the Q̂I
1ðxÞ terms read simply as

Q̂A
1 ðxÞ ¼ ΛAðxÞâA1 þ Λ�

AðxÞâA†1 ; ðA23Þ

Q̂B
1 ðxÞ ¼ ΛBðxÞâB1 þ Λ�

BðxÞâB†1 : ðA24Þ
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We then see that the final state of the fields A and B can be
written as

ρ̂D ¼ trϕ;Hðρ̂fÞ
¼ ρ̂D;0 þ trϕ

�
Ûð1Þ

I ρ̂D;0Û
ð1Þ†
I þ Ûð2Þ

I ρ̂D;0 þ ρ̂D;0Û
ð2Þ†
I

�
þOðλ4Þ; ðA25Þ

where

Ûð1Þ
I ¼ −i

Z
dVĥeffðxÞ; ðA26Þ

Ûð2Þ
I ¼ −

Z
dVdV 0ĥeffðxÞĥeffðx0Þθðt − t0Þ; ðA27Þ

with

ĥeffðxÞ ¼ λQ̂A
1 ðxÞϕ̂ðxÞ þ λQ̂B

1 ðxÞϕ̂ðxÞ
¼ λðΛAðxÞâA1 þ Λ�

AðxÞâA†1 þ ΛBðxÞâB1
þ Λ�

BðxÞâB†1 Þϕ̂ðxÞ: ðA28Þ

This is exactly the leading order result when one considers
the interaction of two harmonic oscillators interacting with
a quantum field ϕ̂ðxÞ. That is, the final state of the modes
can be written as

ρ̂D ¼ trϕðÛIðρ̂D;0 ⊗ ρ̂ϕÞÛ†
I Þ þOðλ4Þ;

ÛI ¼ T exp

�
−i
Z

dVĥeffðxÞ
�
: ðA29Þ

The leading order computations can then be carried on
analogously to harmonic oscillator particle detectors (for
details on this calculation, see e.g., [61]).

APPENDIX B: ESTIMATING LEVELS
OF MIXEDNESS

An important objection was raised in [44] against the
possibility of harvesting at weak coupling with local modes
of a relativistic field theory. This objection is ultimately a
consequence of the fact that, due to the Reeh-Schlieder
property, the reduced state of a relativistic field on any
single mode in a compactly supported region is mixed, and
having the probes initialized in a mixed state is known to
hinder entanglement harvesting [57]. However, the pres-
ence of a potential that effectively traps the field in a
localized region of space can drastically reduce the initial
mixedness in the probe, thus bringing the localized mode
closer to its ground state. In particular, if we have access
to a localized quantum field and we use one of the normal
modes of the field as the detector observable, the
objection disappears altogether since the initial state of

the probe is pure by construction if the global state for the
field is the vacuum.
More generally, in order to address these claims quanti-

tatively in more detail, we can evaluate how fast the
mixedness of a given localized mode varies with the size
of the mode’s support, at a fixed strength of the potential.
Let us consider a probe field ϕD in Minkowski space, and
take the field mode defined at an instant of time t ¼ 0 by
the quadratures

Q̂ ¼
Z

ddxϕ̂Dð0; xÞfðxÞ; ðB1Þ

P̂ ¼
Z

ddxπ̂Dð0; xÞfðxÞ; ðB2Þ

where π̂Dðt; xÞ ¼ ∂tϕ̂Dðt; xÞ is the conjugate momentum to
ϕ̂D, and fðxÞ is a strongly localized function satisfyingZ

ddxfðxÞ2 ¼ 1: ðB3Þ

The L2ðRdÞ normalization is of course chosen in order to
guarantee ½Q̂; P̂� ¼ i1. The mixedness of this mode is fully
characterized by the symplectic eigenvalue of its covariance
matrix—which is simply the covariance matrix of the
full probe field reduced to this chosen degree of freedom.
Since there are no correlations between position and
momentum of the field, this symplectic eigenvalue acquires
a simple expression,

ν ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hQ̂2ihP̂2i

q
; ðB4Þ

where the expectation values above are taken with respect
to the global vacuum state of the probe field. By expanding
the probe field on its basis of normal modes, we can write

Q̂ ¼
X
n

cnϕ̂n; ðB5Þ

P̂ ¼
X
n

cnπ̂n; ðB6Þ

where

cn ¼
Z

ddxfðxÞvnðxÞ; ðB7Þ

and vnðxÞ form a basis of real functions built from the
spatial profiles ΦnðxÞ, that can be chosen to be orthonor-
mal. The normalization condition for fðxÞ and the fact that
the basis fvnðxÞg is orthonormal then implies thatX

n

c2n ¼ 1: ðB8Þ
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The global state of the field is just the tensor product of the
ground states of each of the basis modes,

j0Di ¼ ⊗
n
j0ni; ðB9Þ

and we know that for each mode we have

hϕ̂2
ni ¼

1

2ωn
; ðB10Þ

hπ̂2ni ¼
ωn

2
: ðB11Þ

Therefore, the expectation values hQ̂2i and hP̂2i can be
very simply written as

hQ̂2i ¼ 1

2

X
n

c2n
ωn

; ðB12Þ

hP̂2i ¼ 1

2

X
n

ωnc2n: ðB13Þ

By plugging this into (B4), we obtain

ν ¼
��X

n

c2n
ωn

��X
m

ωmc2m

�	
1=2

: ðB14Þ

The expression above makes it clear that ν satisfies ν ≥ 1
(as it must) thanks to the Cauchy-Schwarz inequality,

jjujj · jjvjj ≥ jhu; vij; ðB15Þ

where we take u and v to be vectors with components
un ¼ cn=

ffiffiffiffiffiffi
ωn

p
and vn ¼ ffiffiffiffiffiffi

ωn
p

cn respectively, hu; vi is the
standard Euclidean inner product, and we note that

hu; vi ¼
X
n

c2n ¼ 1: ðB16Þ

Furthermore, by recalling that the Cauchy-Schwarz
inequality is saturated only when u and v are proportional
to each other, we see that ν ¼ 1 (i.e., the chosen mode of
the field is pure) only when its spatial profile fðxÞ has
nonzero overlap exclusively with basis modes of the same
eigenfrequency. If fðxÞ includes eigenfunctions associated
with more than one frequency, the reduced state of the
mode ðQ̂; P̂Þ is mixed.
For a free field in Minkowski space, one can choose the

basis of normal modes of the field to consist of plane waves
(or sines/cosines if we want so select real spatial profiles),
in which case cn is directly related to the Fourier transform
of fðxÞ. Since any compactly supported function in

position space cannot be compactly supported in Fourier
space, it follows that any localized spatial profile will
necessarily include nonzero coefficients of arbitrarily high
frequencies—which, according to the last comment made
on the previous paragraph, means that the symplectic
eigenvalue for the reduced state of the local mode
ðQ̂; P̂Þ must be strictly larger than 1. This is a very simple
particular case of the general fact stated in [44] that any
mode of a free field theory that only has nonzero support
over a finite region of space is necessarily mixed.6

By adiabatically turning on an external confining poten-
tial, however, one can systematically take the localized
mode closer to a true normal mode of the field, and thus
effectively bring it closer to its ground state. For concrete-
ness, let us now consider a localized mode whose spatial
profile is given by

fðxÞ ¼ 1

πd=4σd=2
e−jxj2=2σ2 ; ðB17Þ

where σ is a quantity with dimensions of length which
determines the effective size of the spatial profile of the
mode (i.e., the radius of the region where the mode is
strongly supported). The probe field will be placed in an
external potential VðxÞ given by

VðxÞ ¼ jxj2
2l4

: ðB18Þ

The spatial profile for lowest-frequency mode of the field in
this case is simply given by

v0ðxÞ ¼
1

πd=4ld=2 e
−jxj2=2l2 : ðB19Þ

Now, it should be clear that the spatial profile fðxÞ simply
corresponds to the wave function for the ground state of a
harmonic oscillator of different natural frequency—i.e.,
a squeezed ground state. From our knowledge of the
quantum harmonic oscillator, this immediately allows us
to write down what the overlap coefficients cn are. In terms
of the quantum numbers in Cartesian coordinates
n ¼ ðn1;…; ndÞ∈Nd in d spatial dimensions, we have
that only the all-even ones contribute,

c22n ¼ 1

ðcosh rÞd
�
tanh2 r

4

�P
i
ni Yd

i¼1

�ð2niÞ!
ðni!Þ2

�
; ðB20Þ

6Note that, even considering this observation, the impact on
entanglement harvesting is less than one might be led to believe at
first. As noted in [57], even in flat space, it is possible to build a
sequence of localized field modes whose symplectic eigenvalues
can be made arbitrarily close to 1. Therefore, although perfect
purity is never attained in a strict sense, there is no nontrivial
lower bound to the purity of a local mode, even if its spatial
profile is compactly supported.
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and the squeezing parameter r is related to the length scales
σ and l by

r ¼ log

�
σ

l

�
: ðB21Þ

Finally, we recall that the normal frequencies of the probe
field are determined by

ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2

l2

�Xd
i¼1

ni þ
d
2

�vuut : ðB22Þ

Putting this all together, we can write down the symplectic
eigenvalue of the local mode with spatial profile (B17) as

ν2 ¼ 1

ðcosh2 rÞd

0
B@X

n∈Nd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2

l2

�
2
Xd
i¼1

ni þ
d
2

�vuut �
tanh2 r

4

�P
i
ni Yd

i¼1

�ð2niÞ!
ðni!Þ2

�1CA

×

0
B@X

n∈Nd

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2

l2 ð2
P

d
i¼1 ni þ d

2
Þ

q �
tanh2 r

4

�P
i
ni Yd

i¼1

�ð2niÞ!
ðni!Þ2

�1CA: ðB23Þ

By replacing
P

ni ¼ n, we can turn each expectation value into a single sum, and write

ν2 ¼ 1

ðcosh2 rÞd
 X∞

n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2l2 þ 4nþ d

p �
tanh2 r

4

�
n

FdðnÞ
��X∞

n¼0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2l2 þ 4nþ d

p
�
tanh2 r

4

�
n

FdðnÞ
!
; ðB24Þ

where we define

FdðnÞ ¼
X
n∈Nd;P

ni¼n

Yd
i¼1

�
2ni
ni

�
: ðB25Þ

The series can thenbe evaluated numerically,with the result in
1, 2, and 3 dimensions being displayed in Fig. 3. We see that,
for a fixed value of the ratio σ=l, the mode deviates from
purity faster in higher dimensions, but for a reasonably large
interval—with σ andl differing by almost a factor of 10—the
symplectic eigenvalue ν stays within 5% of perfect purity.
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