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The stochastic effective theory approach, often called stochastic inflation, is widely used in cosmology
to describe scalar field dynamics during inflation. The existing formulations are, however, more qualitative
than quantitative because the connection to the underlying quantum field theory (QFT) has not been
properly established. A concrete sign of this is that the QFT parameters depend on the renormalization
scale, and therefore the relation between the QFTand stochastic theory must have explicit scale dependence
that cancels it. In this paper we achieve that by determining the parameters of the second-order stochastic
effective theory of light scalar fields in de Sitter to linear order in the self-coupling constant λ. This is done
by computing equal-time 2-point correlators to one-loop order both in QFT using dimensional
regularization and the MS renormalization scheme and the equal-time 4-point correlator to leading order
in both theories, and demanding that the results obtained in the two theories agree. With these parameters,
the effective theory is valid when m ≲H and λ2 ≪ m4=H4, and therefore it is applicable in cases where
neither perturbation theory nor any previously proposed stochastic effective theories are.

DOI: 10.1103/PhysRevD.109.045017

I. INTRODUCTION

The mathematical framework that one uses to describe
the dynamics of inflation is scalar quantum field theory
(QFT) in de Sitter spacetime [1–9]. Specifically, the long-
distance behavior of scalar fields is directly related to
inflationary observables [10]. Spectator fields that existed
during inflation can become observationally relevant in the
present day and thus warrant further study. Examples of
their application include curvature and isocurvature per-
turbations [11–13], dark matter generation [14–17] and
primordial black hole abundance [18,19], electroweak
vacuum decay [20–24], and gravitational-wave background
anisotropy [25].
Scalar QFT cannot be solved exactly so one has to turn to

approximate methods. For example, when one considers a
quartic self-interacting theory, with coupling λ, of a scalar
field with nonzero mass m, the standard approach is to
perform a perturbative expansion in small λ about the free
field solution. However, such a perturbative expansion is
only valid in the regime λ ≪ m4=H4, where H is the
Hubble parameter, because the expansion fails to converge
beyond this limit [26–29]. This is an infrared (IR) problem

and so is particularly prevalent when one is interested in the
long-distance dynamics of the fields, and so one must look
for alternative methods [30–41].
The focus of this paper will be one such method; the

stochastic effective theory of the long-distance behavior of
scalar fields in de Sitter. The premise is that, for sufficiently
light fields m≲H, long wavelength field modes are
stretched by the expanding spacetime to such a degree
that they can be considered classical. The remaining short
wavelength modes remain quantum, but their contribution
to the long-wavelength dynamics can be summarized by a
statistical noise contribution. This method was pioneered
by Starobinsky and Yokoyama [42,43], who derived
stochastic equations from the slow-roll “overdamped”
(OD) equations of motion that govern the inflaton using
a cutoff method to separate the long and short wavelength
modes. Stochastic inflation has since become a powerful
tool for performing computations relating to the inflaton
[44–55,55–58,58,59,59,60,60,61,61–71]. However, due to
the nature of the slow-roll equations, it is limited to the
regime m ≪ H and λ ≪ m2=H2. These conditions are
satisfied if the scalar field in question is the inflaton
existing in slow-roll, but there are plenty of scenarios
where one might wish to go beyond this regime, particu-
larly if one is interested in studying spectator fields
[16,17,19,72,73].
This can be achieved with a second-order stochastic

effective theory [48,53,57,74,75], in which case the sto-
chastic dynamics takes place in phase space, and no slow-
roll assumption is needed. However, in the existing
literature on both first-order and second-order stochastic
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theories, the parameters of this stochastic effective theory
have not been computed beyond tree level. In particular, the
mass parameter m2

S of the stochastic theory has been taken
to be equal to the renormalized mass parameter m2

R of the
quantum field theory. Obviously, this cannot be accurate
because m2

R depends on the arbitrary renormalization scale
M, and there is nothing in the stochastic theory that can
cancel this dependence. This introduces a relative error of
order OðλH2=m2Þ in the stochastic theory, limiting its
range of validity and meaning that it cannot be used to
compute precise quantative predictions.
In this paper we extend the approach used in

Refs. [74,75], to compute the parameters of the stochastic
effective theory to full one-loop order in perturbation
theory. This calculation does not suffer from the infrared
problem to the same extent as direct perturbative calcu-
lations of observables, and it gives a relation between the
two theories that cancels the renormalization scale depend-
ence explicitly. Instead of using a cutoff approach to derive
our stochastic equations, we consider second-order sto-
chastic equations that resemble the classical equations of
motion for a scalar field in de Sitter, but with general
stochastic parameters; the stochastic mass mS, stochastic
coupling λS and the noise contributions σ2ij. One can apply
standard techniques to solve these equations to compute
stochastic correlation functions, which can be compared
with perturbative QFT correlators to determine what the
stochastic parameters should be for the stochastic theory to
be promoted to an effective theory of scalar fields in de
Sitter. This method was first introduced for free fields in
Ref. [74] before being extended to include self-interactions
in Ref. [75].
In Ref. [75], the matching between the stochastic theory

and perturbative QFT was done by comparing the equiv-
alent 2-point functions. On the perturbative QFT side, this
required us to renormalize the theory because the OðλÞ
correction to the Feynman propagator is ultraviolet (UV)
divergent. In Ref. [75], we only considered the correction
term to leading order such that λ ≪ m4=H4, which meant
we could neglect a detailed discussion of renormalization
schemes. We found that the stochastic parameters required
to reproduce such a term were simply equal to those found
in Ref. [74] for free fields. The result was a stochastic
effective theory that was valid in the regime m≲H and
λ ≪ m2=H2. However, this does not give a full account of
the OðλÞ contributions to the stochastic parameters. In this
paper, we perform a more detailed analysis of the UV
renormalization on the QFT side, which can then be
matched by stochastic results to give full expressions for
the stochastic parameters to OðλÞ. Additionally, we will
also consider the connected 4-point function in both
approximations such that we can compute the relation
between the stochastic coupling λS and its QFT counterpart
λ. Thus, we will extend the regime of our stochastic theory
to m≲H and λ2 ≪ m4=H4.

We start by giving a full account of perturbative QFT in
Sec. II. We introduce the free field 2-point functions in
Sec. II A before outlining the in-in path integral formalism
in Sec. II B. We then perform the UV renormalization of the
2-point function using the MS scheme of dimensional
regularization in Sec. II C, with further details of the
calculation in Appendix A. This amounts to a mass
redefinition in order to absorb the UV divergent terms.
As a result of dimensional regularization, the mass param-
eter becomes dependent on the renormalization scaleM. To
round out the QFT, we compute the connected 4-point
function in Sec. II D. In Sec. III, we move onto the second-
order stochastic theory. This follows the same procedure as
in Ref. [75], except now the matching procedure is
performed using the fully UV-renormalized QFT results.
We also include the computation of the stochastic con-
nected 4-point function in Sec. III A 3, which is compared
with its QFT counterpart to find an expression for λS.
Finally, we perform a comparison between results from
perturbative QFT, OD stochastic theory, and second-order
stochastic theory, including both the new results from this
paper and the old results from Ref. [75]. Additionally, we
discuss how theM-dependence of the stochastic parameters
becomes important. We conclude with some remarks
in Sec. V.

II. QUANTUM FIELD THEORY
IN de Sitter SPACETIME

We begin by considering a perturbative approach to
scalar QFT in de Sitter spacetime. We will consider a
spectator scalar field ϕðt;xÞ with a scalar potential VðϕÞ in
a de Sitter background parametrized by the scale factor

a ¼ eHt ¼ −
1

Hη
; ð1Þ

where H ¼ 1
a
da
dt is the Hubble parameter, which is constant,

and t and η are physical and conformal time, respectively.
They are related by

η ¼ −
1

H
e−Ht: ð2Þ

The action for scalar fields in de Sitter is given by

S½ϕ� ¼
Z

d4xaðtÞ3
�
1

2
ϕ̇2 −

1

2

ð∇xϕÞ2
aðtÞ2 − VðϕÞ

�
: ð3Þ

Introducing the field momentum πðt;xÞ, the equations of
motion are given by�

ϕ̇

π̇

�
¼

� π

−3Hπ − ∇2
xϕ

aðtÞ2 − V 0ðϕÞ
�
; ð4Þ

where primes and dots denote derivatives with respect
to ϕ and t, respectively. Throughout this paper, we will
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consider a field with mass m and a quartic self-interaction
parametrized by λ such that the potential is VðϕÞ ¼
1
2
m2ϕ2 þ 1

4
λϕ4. Additionally, we include a nonminimial

coupling to gravity ξ, which is absorbed into the mass term
such that m2 ¼ m2

0 þ 12ξH2.

A. Free scalar QFT

We will first consider free fields such that λ ¼ 0.
Following standard procedures of second quantization
[1–4], the mode functions in the Bunch-Davies vacuum
are given by

ϕkðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

4HaðtÞ3
r

Hð1Þ
ν

�
k

aðtÞH
�
; ð5aÞ

πkðtÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

16HaðtÞ3
r �

3HHð1Þ
ν

�
k

aðtÞH
�
þ k
aðtÞ

�
Hð1Þ

ν−1

�
k

aðtÞH
�
−Hð1Þ

νþ1

�
k

aðtÞH
���

; ð5bÞ

where k ¼ jkj, ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4 −m2=H2

p
andHð1Þ

ν ðzÞ are the Hankel functions of the first kind. Note that there is an equivalent
set of solutions using the Hankel functions of the second kind Hð2Þ

ν ðzÞ.
The quantities we are interested in are correlation functions: expectation values of the Bunch-Davies vacuum state. The

most basic of these is the scalar field 2-point function, which is computed in k-space as

h0jϕ̂ðt;kÞϕ̂ðt0;k0Þj0i ¼ ϕkðtÞϕ�
k0 ðt0Þ

¼ π

4HaðtÞ3=2aðt0Þ3=2H
ð1Þ
ν

�
k

aðtÞH
�
Hð2Þ

ν

�
k0

aðt0ÞH
�
: ð6Þ

We can perform the Fourier transform to obtain the 2-point function in coordinate space as

h0jϕ̂ðt;xÞϕ̂ðt0;x0Þj0i ¼
Z

đ3ke−ik·ðx−x0Þh0jϕ̂ðt;kÞϕ̂ðt0;kÞj0i: ð7Þ

Computing this integral [2–4,76,77] results in the positive (þ) and negative (−) frequency Wightman functions in the
Bunch-Davies vacuum

Δþðx; x0Þ ≔ h0jϕ̂ðt;xÞϕ̂ðt0;x0Þj0i

¼ H2

16π2
ΓðαÞΓðβÞ2F1

�
β; α; 2; 1þ ðη − η0 − iϵÞ2 − jx − x0j2

4ηη0

�
; ð8aÞ

Δ−ðx; x0Þ ≔ h0jϕ̂ðt0;x0Þϕ̂ðt;xÞj0i

¼ H2

16π2
ΓðαÞΓðβÞ2F1

�
β;α; 2; 1þ ðη − η0 þ iϵÞ2 − jx − x0j2

4ηη0

�
; ð8bÞ

where ΓðzÞ is the Euler-gamma function, 2F1ða; b; c; zÞ is
the hypergeometric function, and α¼3=2−ν, β¼3=2þν.
The iϵ prescription indicates the pole about which we
perform our contour integration in the complex plane. Note
that I have used conformal time η here, defined in Eq. (2),
for convenience. From the equation of motion (4), the
Wightman functions obey the equation,

ð□dS þm2 ∓ iϵÞΔ�ðx; x0Þ ¼ 0; ð9Þ

where □dS ¼ ∂
2
t þ 3H∂t −

∇2
x

aðtÞ2.

Physical correlators must be invariant under the de Sitter
group. This means that the behavior of such correlators
can be written purely in terms of a de Sitter invariant
combination of the spacetime coordinates. The quantity in
question is

yðx;x0Þ ¼ ðη− η0Þ2− jx−x0j2
2ηη0

¼ coshðHðt− t0ÞÞ−H2

2
eHðtþt0Þjx−x0j2 − 1: ð10Þ

We can write the Wightman functions in terms of the
de Sitter invariant by expanding about small ϵ to give
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Δþðx;x0Þ ¼ H2

16π2
ΓðαÞΓðβÞ2F1

�
β;α;2;1þ y

2

�

þ iH2

32π
ð4ν2− 1Þ2F1

�
β;α;2;−

y
2

�
θðyÞθðt0 − tÞ;

ð11aÞ

Δ−ðx;x0Þ ¼ H2

16π2
ΓðαÞΓðβÞ2F1

�
β;α;2;1þ y

2

�

þ iH2

32π
ð4ν2 − 1Þ2F1

�
β;α;2;−

y
2

�
θðyÞθðt− t0Þ;

ð11bÞ

where we have introduced the Heaviside function θðzÞ.
Henceforth, I will drop the iϵ prescription. From the
Wightman functions, we can build our other scalar 2-point
correlators. For convenience, we define

AðyÞ ¼ H2

16π2
ΓðαÞΓðβÞ2F1

�
β; α; 2; 1þ y

2

�
; ð12aÞ

BðyÞ ¼ H2

32π
ð4ν2 − 1Þ2F1

�
β; α; 2;−

y
2

�
θðyÞ: ð12bÞ

Then, we define various other 2-point functions in Table I.
The most relevant 2-point function for this paper is the

time-ordered function, called the Feynman propagator for
free fields. It is given by

iΔFðx; x0Þ ≔ h0jTϕ̂ðt;xÞϕ̂ðt0;x0Þj0i

¼ H2

16π2
ΓðαÞΓðβÞ2F1

�
β; α; 2; 1þ y

2

�
; ð13Þ

where TðT̃Þ is the (anti)time ordered operator. It obeys the
equation

ð□dS þm2ÞiΔFðx; x0Þ ¼ −
i

aðtÞ3 δ
ð4Þðx − x0Þ: ð14Þ

One can study the leading IR behavior of the Feynman
propagator by considering the asymptotic expansion about
large y. The leading terms in such an expansion are1

iΔFðx; x0Þ ¼ H2

16π2

�
Γð2νÞΓð3

2
− νÞ

Γð1
2
þ νÞ

�
−
y
2

�
−3
2
þν

þ Γð−2νÞΓð3
2
þ νÞ

Γð1
2
− νÞ

�
−
y
2

�
−3
2
−ν
�
þ � � � : ð15Þ

The leading IR behavior of the timelike (equal-space)
Feynman propagator is then given by

h0jTϕ̂ðt;xÞϕ̂ðt0;xÞj0i ¼ H2

16π2
Γð2νÞΓðαÞð−4Þα

Γð1
2
þ νÞ e−αHðt−t0Þ

þ H2

16π2
Γð−2νÞΓðβÞð−4Þβ

Γð1
2
− νÞ e−βHðt−t0Þ

þ � � � : ð16Þ

B. The in-in formalism

Having laid the foundations with free fields, we now
turn our attention to the more interesting situation where
we include interactions such that λ ≠ 0. The addition of
the interaction means we cannot straightforwardly com-
pute the scalar correlators; the equations of motion (4)
cannot be solved analytically. Instead, we will consider a
perturbative approach where one performs a small-λ
expansion about the free solution that we computed in
the last section.
We will use the in-in2 path integral formalism, where we

begin in some initial vacuum state—the in state j0−i—
evolve our system to some intermediate state before
evolving back to the in state [78–81]. The in-in generating
functional is defined by

TABLE I. The 2-point functions for free fields, built out of the Wightman functions (11).

Name Symbol Correlator Form □dS þm2 ¼
Hadamard ΔHðx; x0Þ h0jfϕ̂ðt; xÞϕ̂ðt0;x0Þgj0i 2AðyÞ þ iBðyÞ 0
Causal ΔCðx; x0Þ −ih0j½ ˆϕðt; xÞ ϕ̂ðt0;x0Þ�j0i BðyÞðθðt0 − tÞ − θðt − t0ÞÞ 0
Advanced ΔAðx; x0Þ −iθðt0 − tÞh0j½ϕ̂ðt; xÞϕ̂ðt0;x0Þ�j0i BðyÞθðt0 − tÞ 1

aðtÞ3 δ
ð4Þðx − x0Þ

Retarded ΔRðx; x0Þ iθðt − t0Þh0j½ϕ̂ðt;xÞϕ̂ðt0;x0Þ�j0i BðyÞθðt − t0Þ 1
aðtÞ3 δ

ð4Þðx − x0Þ
Feynman iΔFðx; x0Þ h0jTϕ̂ðt;xÞϕ̂ðt0;x0Þj0i AðyÞ − i

aðtÞ3 δ
ð4Þðx − x0Þ

Dyson iΔDðx; x0Þ h0jT̃ ϕ̂ðt;xÞϕ̂ðt0;x0Þj0i AðyÞ þ iBðyÞ i
aðtÞ3 δ

ð4Þðx − x0Þ

1Note that for m >
ffiffiffi
2

p
H, there are other terms in the

asymptotic expansion that dominate more than the second term
in Eq. (15). For this paper, we are interested in light fields m ≲H
so this will never be the case.

2Also known as Schwinger-Keldysh or closed time path.
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Z½Jþ; J−� ¼ J−h0−j0−iJþ

¼
Z

Dψh0−jT̃ei
R

−∞
t�

dt
R

d3x
ffiffiffiffi−gp

J−ðxÞϕ̂ðxÞjψi

× hψ jTei
R

t�
−∞

dt
R

d3x
ffiffiffiffi−gp

JþðxÞϕ̂ðxÞj0−i; ð17Þ

where J� are external sources that source the evolution
from/to j; i0−, respectively, and we take the normalization
Z½J; J� ¼ 1. In the path integral representation, we intro-
duce two auxiliary fields, ϕþ and ϕ−, to differentiate the
contributions from the two paths. The in-in generating
functional is then given by

Z½Jþ; J−� ¼
Z

Dϕþ
Z

Dϕ−eiðSþ½ϕþ�þJþx ϕþ
x −S−½ϕ−�−J−x ϕ−

x Þ;

ð18Þ

where S�½ϕ�� ¼ S½ϕ��with the�iϵ prescription, with S½ϕ�
defined in Eq. (3). Further, we have introduce the de Witt
condensed notation for convenience, where repeated indi-
ces represent integrals over the spacetime coordinate: for
example, Jxϕx ¼

R
d4x

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞp

JðxÞϕðxÞ. All scalar corre-
lators can be built from the in-in generating functional via

h0−jT̃½ϕ̂ðx1Þ…ϕ̂ðxnÞ�T½ϕ̂ðx01Þ…ϕ̂ðx0mÞ�j0−i

¼ ð−iÞn−m δnþmZ½Jþ; J−�
δJ−ðx1Þ…δJ−ðxnÞδJþðx01Þ…δJþðx0mÞ

����
J�¼0

:

ð19Þ

The Bunch-Davies vacuum states considered in Sec. II A,
j0i, are really the in state j0−i. Henceforth, I will drop the
subscript “−” on the vacuum state.
The free in-in generating functional is given by3

Zð0Þ½Jþ; J−� ¼ e−
1
2
ðJþx iΔF

xx0J
þ
x0−J

þ
x Δ−

xx0J
−
x0−J

−
xΔþ

xx0J
þ
x0þJ−x iΔD

xx0J
−
x0 Þ ð20Þ

such that all the free field 2-point functions given in Table I
can be computed using the in-in formalism via Eq. (19). To
include quartic self-interactions, we write the generating
functional as

Z½Jþ; J−� ¼ e
−iλ

4
d4x

ffiffiffiffi−gp ð δ4

δJþðxÞ4−
δ4

δJ−ðxÞ4ÞZð0Þ½Jþ; J−�: ð21Þ

Applying Eqs. (19)–(21), we can compute scalar correla-
tors for this self-interacting theory.

C. Two-point QFT correlation functions to OðλÞ
The quantity of most interest for this work is the time-

ordered 2-point function. Equation (13) gives us this

quantity for free fields; now, we will add corrections from
interactions in a perturbative manner. By expanding
Eq. (21) to leading order in small coupling λ, the generating
functional to OðλÞ is given by

Z½Jþ; J−� ¼
�
1 − i

λ

4

Z
d4x

ffiffiffiffiffiffi
−g

p

×
�

δ4

δJþðxÞ4 −
δ4

δ4J−ðxÞ
��

Zð0Þ½Jþ; J−�: ð22Þ

Using Eq. (19), the time-ordered 2-point function to
OðλÞ is

h0jTϕ̂ðx1Þϕ̂ðx2Þj0i ¼ iΔFðx1; x2Þ

þ 3iλhϕ̂2i
Z

d4zaðtzÞ3

× ½iΔFðz; x1ÞiΔFðz; x2Þ
− Δþðz; x1ÞΔþðz; x2Þ�
þOðλ2Þ: ð23Þ

The first line is just the free Feynman propagator (13)
while the second line gives the contribution to OðλÞ,
which is yet to be computed, and we have used the fact
that iΔFðz; zÞ ¼ iΔDðz; zÞ ¼ hϕ̂2i. Note that for the time-
ordered correlation functions, the Feynman propagators are
sourced by Jþ while the Wightman functions are sourced
by J−.
The OðλÞ contribution to the 2-point function can be

computed in a similar way to the standard procedure in
Minkowski, by making a correction to the mass. Applying
the operator□dS þm2 to the 2-point function (23), we find
that at one-loop order it obeys the equation,

ð□dS þm2
B þ 3λhϕ̂2iÞh0jTϕðx1Þϕðx2Þj0i

¼ −
i

aðtÞ3 δ
ð4Þðx1 − x2Þ; ð24Þ

where the bare mass ism2
B ¼ m2

0;B þ 12ξBH2. We infer that
the 2-point function to OðλÞ can be computed simply by
replacing the mass m in the propagator by the Hubble-rate
dependent effective mass

m2
effðHÞ ¼ m2

B þ 3λhϕ̂2i; ð25Þ

i.e.,

h0jTϕ̂ðx1Þϕ̂ðx2Þj0i ¼ iΔFðx1; x2Þ
���
m2¼m2

effðHÞ
: ð26Þ

It is important to note that the effective mass m2
effðHÞ

is finite, but both the bare mass m2
B and the field variance

hϕ̂2i are ultraviolet divergent. Therefore, the calculation

3Note that we can simplify Eq. (20) further since
Jþx Δ−

xx0J
−
x0 ¼ J−xΔþ

xx0J
þ
x0 .
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requires regularization and renormalization. In order to
make our effective theory directly applicable to particle
physics theories, we want to use dimensional regularization
and the MS renormalization scheme, which is the con-
vention in particle physics.
In dimensional regularization, one takes the number of

spacetime dimensions to be d ¼ 4 − ϵ. When one then
takes the limit d → 4, the UV divergence appears as a
1=ϵ pole. For our purposes, we need the full expression
for the field variance, including finite terms, and we are
not aware of such a calculation in the literature.
Therefore, we present it in full detail in Appendix A.
The result is

hϕ̂2i ¼ 2H2 −m2
B

16π2

�
2

ϵ
þ ln

4πμ2

aðtÞ2H2
− γE þ 1−ψ ð0Þ

�
3

2
− νB

�

−ψ ð0Þ
�
3

2
þ νB

��
; ð27Þ

where νB ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
9
4
− m2

B
H2

q
, ψ ð0ÞðzÞ is the polygamma function,

γE is the Euler-Mascheroni constant, and μ is an arbitrary
energy scale.
The next step is renormalization, which involves absorb-

ing the divergence into the mass parameter. In the MS
scheme of dimensional regularization, the renormalized
mass is given by

m2
R ¼m2

0;Rþ12ξRH2

¼m2
Bþ

3λð2H2−m2
BÞ

16π2

�
2

ϵ
− γEþ ln

�
4πμ2

M2

��
þOðλ2Þ;

ð28Þ

where M is the renormalization scale. Explicitly, we must
renormalize both the scalar mass and the nonminimal
coupling respectively as

m2
0;R ¼ m2

0;B −
3λm2

0;B

16π2

�
2

ϵ
− γE þ ln

�
4πμ2

M2

��
þOðλ2Þ;

ð29aÞ

ξR ¼ ξB þ 3λð1
6
− ξBÞ

16π2

�
2

ϵ
− γE þ ln

�
4πμ2

M2

��
þOðλ2Þ:

ð29bÞ

We see that it is crucial to include the nonminimal coupling
term for the renormalization counterterms to be indepen-
dent ofH. Finally, we can now express the effective mass in
Eq. (26) in terms of the MS renormalized mass m2

R as

m2
effðHÞ ¼ m2

R þ 3λð2H2 −m2
RÞ

16π2

�
1 − ψ ð0Þ

�
3

2
− νR

�

− ψ ð0Þ
�
3

2
þ νR

�
þ ln

M2

aðtÞ2H2

�
: ð30Þ

Note that the explicit dependence on the renormalization
scale M cancels the implicit dependence through m2

R, and
therefore the effective mass m2

effðHÞ is renormalization
scale independent, as it must be.
For comparison with the stochastic approach, we will be

interested in the long-distance behavior of the 2-point
function (26). Focusing on spacelike separations, the
leading term in the asymptotic expansion about long
distances is

h0jϕ̂ðt; 0Þϕ̂ðt;xÞj0i ¼ H2

16π2
Γð3=2 − νRÞΓð2νRÞ43=2−νR

Γð1=2þ νRÞ
�
1þ 3λð2H2 −m2

RÞ
32π2νRH2

× ðln 4þ ψ ð0Þð3=2 − νRÞ − 2ψ ð0Þð2νRÞ þ ψ ð0Þð1=2þ νRÞÞ

×

�
1 − ψ ð0Þð3=2 − νRÞ − ψ ð0Þð3=2þ νRÞ þ ln

�
M2

aðtÞ2H2

���

× jHaðtÞxj−
2ΛðQFTÞ

1
H þOðλ2Þ; ð31Þ

where the exponent4 is

ΛðQFTÞ
1 ¼

�
3

2
− νR

�
H þ 3λð2H2 −m2

RÞ
32π2νRH

�
1 − ψ ð0Þ

�
3

2
− νR

�
− ψ ð0Þ

�
3

2
þ νR

�
þ ln

M2

aðtÞ2H2

�
þOðλ2Þ: ð32Þ

4We introduce the notation ΛðQFTÞ
1 as a precursor to that used for the spectral expansion method in the stochastic theories.
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In principle, we could extend the calculation to higher
orders in λ, albeit with increasing levels of complexity.
However, there is a problem that stems from the IR limit
hidden amongst our results. To see this, we expand the
2-point function (31) to leading order in small-mass
m2 ≪ H2 to give

h0jϕ̂ðt; 0Þϕ̂ðt;xÞj0i ¼
�

3H4

8π2m2
R
−

27λH8

64π4m6
R

�

× jHaðtÞxj−
2m2

R
3H2−

3λH2

4π2m2
R : ð33Þ

One can see that both corrections to the amplitude and
exponent are of relative order λH4

m4
R

in this small-mass

expansion. In order for the sum to converge at higher
orders in λ, we require λH4

m4
R
≪ 1. This is not a priori true

since our perturbation theory takes λ to be the small
parameter about which we expand. Thus, perturbative
QFT is limited to the following region in the parameter
space; λ ≪ 1 and λ ≪ m4=H4. Therefore, to leading order
in λH4=m4, the long-distance behavior of the spacelike
field correlator is5

h0jϕ̂ðt; 0Þϕ̂ðt;xÞj0i ¼
�
H2

16π2
Γð3=2 − νRÞΓð2νRÞ43=2−νR

Γð1=2þ νRÞ
−

27λH8

64π4m6
R
þO

�
λH6

m4
R

��

× jHaðtÞxj−ð3−2νRÞ−
3λH2

4π2m2
R
þOðλÞ

; ð34Þ

This is as far as perturbative QFT will take us for 2-point
correlation functions. In order to go beyond this, we must
employ alternative methods, such as the stochastic effective
theory of scalar fields in de Sitter.

D. Four-point QFT correlation functions to OðλÞ
To round out our discussion of perturbative QFT, we will

briefly consider the 4-point functions. For this paper, we
will largely consider them as a tool for computing

stochastic parameters and so do not go into a huge amount
of detail. However, it is important to recognize that these
objects are computationally challenging and our work has
raised some questions surrounding this, which we will
touch on at the end of this section.
Using the Schwinger-Keldysh formalism outlined in

Sec. II B, we can combine Eq. (19) with (20) and (21)
to obtain the time-ordered 4-point scalar correlation func-
tion to OðλÞ as

h0jTϕ̂ðx1Þϕ̂ðx2Þϕ̂ðx3Þϕ̂ðx4Þj0i ¼ iΔFðx1; x2ÞiΔFðx3; x4Þ þ ½2 more permutations�

þ 3iλhϕ̂2iiΔFðx3; x4Þ
Z

d4zaðtzÞ3½iΔFðz; x1ÞiΔFðz; x2Þ − Δþðz; x1ÞΔþðz; x2Þ�

þ ½5 more permutations�

− 6iλ
Z

d4zaðtzÞ3½iΔFðz; x1ÞiΔFðz; x2ÞiΔFðz; x3ÞiΔFðz; x4Þ

− Δþðz; x1ÞΔþðz; x2ÞΔþðz; x3ÞΔþðz; x4Þ�: ð35Þ

The first line after the equality sign is the free part, composed of a combination of Feynman propagators. The next three
lines are a similar combination but this time occur at OðλÞ, thus containing the OðλÞ piece of the 2-point function (23),
multiplied by the free Feynman propagator. The final lines indicate the new contribution to the 4-point function that first
appears atOðλÞ. These terms make up the connected 4-point function, which wewill focus on here. Explicitly, this is related
to the 2-point functions by

h0jTϕ̂ðx1Þϕ̂ðx2Þϕ̂ðx3Þϕ̂ðx4Þj0iC ¼ h0jTϕ̂ðx1Þϕ̂ðx2Þϕ̂ðx3Þϕ̂ðx4Þj0i
− h0jTϕ̂ðx1Þϕ̂ðx2Þj0ih0jTϕ̂ðx3Þϕ̂ðx4Þj0i
− h0jTϕ̂ðx1Þϕ̂ðx3Þj0ih0jTϕ̂ðx2Þϕ̂ðx4Þj0i
− h0jTϕ̂ðx1Þϕ̂ðx4Þj0ih0jTϕ̂ðx2Þϕ̂ðx3Þj0i; ð36Þ

5Note that it was this 2-point function that was used in Ref. [75]. A key extension in this work is that we now consider Eq. (31) when
we match the perturbative QFT and stochastic 2-point functions. This introduces theM-dependence into the stochastic theory, which is
an important UV effect even at long distances.

STOCHASTIC PARAMETERS FOR SCALAR FIELDS IN … PHYS. REV. D 109, 045017 (2024)

045017-7



where the subscript “C” stands for “connected”. To
compute this quantity, we must perform the z-integral in
Eq. (35). Since the integrand is composed of a series of
hypergeometric functions, doing an analytic calculation is
extremely difficult. Moreover, attempts at a numerical
computation have proved fruitless due to the existence
of poles in the integrand. Unfortunately, unlike its 2-point
counterpart, the 4-point integral cannot be solved by a mass
redefinition. We can make some progress by moving
from position to momentum k-space, as outlined in
Ref. [41,82,83], where computations simplify and the pole
structure is no longer a problem. For this purpose, we will
focus on equal-time 4-point functions. The Fourier trans-
form goes as

Gð4Þ
C ðη; fxigÞ ¼

Y4
i¼1

�Z
đ3kie−iki·xi

�

× G̃ð4Þ
C ðη; fkigÞ�δ ð3Þ

�X4
i¼1

ki

�
; ð37Þ

where �δ ð3ÞðkÞ ¼ ð2πÞ3δð3ÞðkÞ and we use the shorthand

notation for the connected 4-point function Gð4Þ
C ðη; fxigÞ,

with fxig ¼ ðx1;x2;x3;x4Þ, and the “tilde” indicates
equivalent quantities in k-space. Note that we will use
conformal time in the following calculations, as defined
in Eq. (2). The equal-time connected 4-point function in
k-space is given by

G̃ð4Þ
C ðη; fkigÞ ¼ −6iλ

Z
0

−∞
dηz

1

ðHηzÞ4
�
iΔ̃Fðηz; η;k1ÞiΔ̃Fðηz; η;k2ÞiΔ̃Fðηz; η;k3ÞiΔ̃Fðηz; η;k4Þ

− Δ̃þðηz; η;k1ÞΔ̃þðηz; η;k2ÞΔ̃þðηz; η;k3ÞΔ̃þðηz; η;k4Þ
	
; ð38Þ

where the Wightman function in k-space is given by Eq. (6) and the Feynman propagator is found by using its definition in
Table I. Using the time ordering, one can simplify the integral such that

G̃ð4Þ
C ðη; fkigÞ ¼

Z
η

−∞
Fðη; ηz; fkigÞ; ð39Þ

where

Fðη; ηz; fkigÞ ¼ −6iλ
1

ðHηzÞ4
�
Δ̃−ðηz; η;k1ÞΔ̃−ðηz; η;k2ÞΔ̃−ðηz; η;k3ÞΔ̃−ðηz; η;k4Þ

− Δ̃þðηz; η;k1ÞΔ̃þðηz; η;k2ÞΔ̃þðηz; η;k3ÞΔ̃þðηz; η;k4Þ
	
; ð40Þ

and Δ̃−ðηz; η;kÞ is the complex conjugate of Δ̃þðηz; η;kÞ.
This integral is hard to solve in general. Analytic solutions are difficult because the integrand is a product of Hankel

functions whilst the oscillatory behavior of the integrand in the limit ηz → −∞ make numerical computations challenging.
However, for the purposes of this paper, we are only interested in the long-distance behavior of the correlator. Assuming that
that all four momenta ki ∀ i∈ f1; 2; 3; 4g are of the same order of magnitude, which we denote by k, we can therefore
assume that −kη ≪ 1. We then separate the integral at some intermediate time η0 ¼ −Λ=k < η, where Λ ≪ 1 such that
−kη0 ≪ 1. Then, the 4-point function can be written as

G̃ð4Þ
C ðη; fkigÞ ¼

Z
η0

−∞
dηzFðη; ηz; fkigÞ þ

Z
η

η0

dηzFðη; ηz; fkigÞ; ð41Þ

Considering the kη ≪ −1 limit of the Wightman functions,

Δ̃�ðηz; η;kÞ ≃
π

4HaðηÞ3=2aðηzÞ3=2
Hð1Þ=ð2Þ

νR ð−kηzÞ
�

2−νR

νRΓðνRÞ
ð−kηÞνR � i

2νRΓðνRÞ
π

ð−kηzÞ−νR
�
; ð42Þ

one observes that the first term in Eq. (41) is proportional to the power law k−3−4νR. We show this more explicitly in
Appendix B.
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For the second term, we can make use of the approximation −kηz ≪ 1 to write the Wightman functions as

Δ̃�ðηz;η;kÞ≃
π

4HaðηÞ3=2aðηzÞ3=2
�
4νRΓðνRÞ2

π2
ðηzηÞ−νRk−2νR � i

1

πνR

��
η

ηz

�
νR
−
�
ηz
η

�
νR
��

: ð43Þ

Substituting Eq. (43) into the second term of Eq. (41), one can compute the integral to give

G̃ð4Þ
C ðη; fkigÞ ≃Oðk−3−4νRÞ − 3λ

4H5

�
4νRΓðνRÞ2

2π

�
3 1

ð3 − 4νRÞð3 − 2νRÞ
ð−HηÞ9−6νR

×

��
k1k2k3
H3

�
−2νR þ

�
k1k3k4
H3

�
−2νR þ

�
k2k3k4
H3

�
−2νR þ

�
k1k2k4
H3

�
−2νR

�
; ð44Þ

where the first term includes contributions from the first
term of Eq. (41) and from the lower limit of the second
integral, which are both of the same order Oðk−3−4νRÞ. This
is actually the leading contribution in the IR limit for light
fields, over the second term in Eq. (44), which is of order
Oðk−6νRÞ. All other contributions are subdominant to k−6νR .
For a deeper discussion of this, see Appendix B.
It is challenging to get analytic results for the leading

term Oðk−3−4νRÞ, especially in coordinate space, because it
will depend on all 4 kis simultaneously and thus the δ-
function arising in the Fourier transform (37) will result in a
mixing of momenta. On the other hand, the Oðk−6νRÞ
contribution will deal with the δ-function trivially because
each term only ever depends on 3 of the 4 momenta. For

this work, it is sufficient to have an analytic expression for
one of the leading IR terms so that we can do a comparison
with the stochastic approach. However, this does leave
the door open for more careful analysis of the 4-point
functions.
To convert Eq. (44) to coordinate space, we can use the

Fourier transform (37), using the result [41],

Z
đ3ke−ik·xkw−3 ¼ 1

ð2πÞ3
23−2νRπ3=2Γð5

2
− νRÞ

ð3
2
− νRÞΓðνRÞ

x−w; ð45Þ

to obtain the equal-time connected 4-point function in
coordinate space,

h0jϕ̂ðt;x1Þϕ̂ðt;x2Þϕ̂ðt;x3Þϕ̂ðt;x4Þj0i ¼ …þ 3λH4

π15=2
ΓðνRÞ3Γð52 − νRÞ3

ð4νR − 3Þð3 − 2νRÞ4
jHaðtÞxj−9þ6νR ; ð46Þ

where jxj ¼ jxi − xjj ∀ i ≠ j, i; j∈ f1; 2; 3; 4g and the “…þ” indicates the other leading IR contribution
OðjHaðtÞxj−6þ4νRÞ. Note that, for light fields, this contribution is given by

h0jϕ̂ðt;x1Þϕ̂ðt;x2Þϕ̂ðt;x3Þϕ̂ðt;x4Þj0i
���
m2≪H2

¼ …þ 81λH12

128π6m8
R
jHaðtÞxj−

2m2
R

H2 : ð47Þ

III. SECOND-ORDER STOCHASTIC
EFFECTIVE THEORY

We will now consider the second-order stochastic
effective theory, which was introduced in Refs. [74,75].
We again consider a scalar field with a massmS and quartic
self-interaction λS, where the subscript “S” stands for
“stochastic”, to differentiate from the QFT quantities
introduced above. The stochastic equations are then
given by

�
ϕ̇

π̇

�
¼

�
π

−3Hπ −m2
Sϕ − λSϕ

3

�
þ
�
ξϕ

ξπ

�
ð48Þ

with a white noise contribution

hξiðtÞξjðt0Þi ¼ σ2ijδðt − t0Þ: ð49Þ

The noise amplitudes σ2ij are left unspecified for the time
being, other than the fact that they do not depend on the
spacetime coordinates and that they are symmetric, pre-
serving the reality of the noise. The form of the stochastic
parametersmS, λS and σ2ij will be determined by comparing
stochastic correlators with their perturbative QFT counter-
parts. We will choose these quantities to be the same,
promoting our stochastic theory from something general to
an effective theory of QFT.
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A. The second-order stochastic correlators

1. The spectral expansion

The time-evolution of the 1-point probability distribution
function (1PDF) Pðϕ; π; tÞ associated with the stochastic
equations (48) is described by the Fokker-Planck equation

∂tPðϕ; π; tÞ ¼
�
3H − π∂ϕ þ ð3Hπ þ V 0ðϕÞÞ∂π þ

1

2
σ2ϕϕ∂

2
ϕ

þ σ2ϕπ∂ϕ∂π þ
1

2
σ2ππ∂

2
π

�
Pðϕ; π; tÞ

¼ LFPPðϕ; π; tÞ; ð50Þ

where LFP is the Fokker-Planck operator. For a space of
functions ffjðf; fÞ < ∞g with the inner product

ðf; gÞ ¼
Z

∞

−∞
dϕ

Z
∞

−∞
dπfðϕ; πÞgðϕ; πÞ; ð51Þ

we define the adjoint of the Fokker-Planck operator, L�
FP, as

ðLFPf; gÞ ¼ ðf;L�
FPgÞ: ð52Þ

Note that all integrals over ϕ and π have the limits ð−∞;∞Þ
unless otherwise stated. Explicitly,

L�
FP ¼ π∂ϕ − ð3Hπ þ V 0ðϕÞÞ∂π

þ 1

2
σ2ϕϕ∂

2
ϕ þ σ2ϕπ∂ϕ∂π þ

1

2
σ2ππ∂

2
π: ð53Þ

The 1PDF can be written as a spectral expansion

Pðϕ; π; tÞ ¼ Ψ�
0ðϕ; πÞ

X∞
N¼0

cNΨNðϕ; πÞe−ΛNt; ð54Þ

where ΛN and Ψð�Þ
N ðϕ; πÞ are the respective eigenvalues

and (adjoint) eigenstates to the (adjoint) Fokker-Planck
operator

LFPΨNðϕ; πÞ ¼ −ΛNΨNðϕ; πÞ; ð55aÞ

L�
FPΨ�

Nðϕ; πÞ ¼ −ΛNΨ�
Nðϕ; πÞ; ð55bÞ

and cN are coefficients. We consider eigenstates that obey
the biorthogonality and completeness relations

ðΨ�
N;ΨN0 Þ ¼ δN0N; ð56aÞX

N

Ψ�
Nðϕ; πÞΨNðϕ0; π0Þ ¼ δðϕ − ϕ0Þδðπ − π0Þ; ð56bÞ

and there exists an equilibrium state Peqðϕ; πÞ ¼
Ψ�

0ðϕ; πÞΨ0ðϕ; πÞ obeying ∂tPeqðϕ; πÞ ¼ 0. All sums of
this form run fromN ¼ 0 toN ¼ ∞. Note that theΨ�

0ðϕ; πÞ
eigenstate, corresponding toΛ0 ¼ 0, is a constant, such that
Eq. (54) obeys the Fokker-Planck equation (50).6

To obtain stochastic correlators, we introduce the
transfer matrix Uðϕ0;ϕ; π0; π; t − t0Þ between ðϕ0; π0Þ ¼
ðϕðt0;xÞ; πðt0;xÞÞ and ðϕ; πÞ ¼ ðϕðt;xÞ; πðt;xÞÞ, which is
defined as the Green’s function of the Fokker-Planck
equation

∂tUðϕ0;ϕ; π0; π; t − t0Þ ¼ LFPUðϕ0;ϕ; π0; π; t − t0Þ ð57Þ
for all values of ϕ0 and π0. Then, the time-dependence of
the 1PDF is given by

Pðϕ;π;tÞ¼
Z

dϕ0

Z
dπ0Pðϕ0;π0;t0ÞUðϕ0;ϕ;π0;π;t− t0Þ:

ð58Þ

From Eq. (54), making use of the relations (56), we find
that the transfer matrix can be written with the spectral
expansion as

Uðϕ0;ϕ; π0; π; t − t0Þ ¼
Ψ�

0ðϕ; πÞ
Ψ�

0ðϕ0; π0Þ
X
N

Ψ�
Nðϕ0; π0Þ

×ΨNðϕ; πÞe−ΛNðt−t0Þ: ð59Þ

2. Two-point stochastic correlation functions

We can write an equilibrium 2-point probability distri-
bution function (2PDF) as

P2ðϕ0;ϕ;π0;π;t− t0Þ¼Pðϕ0;π0;t0ÞUðϕ0;ϕ;π0;π;t− t0Þ
¼Ψ�

0ðϕ;πÞΨ0ðϕ0;π0Þ
X
N

Ψ�
Nðϕ0;π0ÞΨNðϕ;πÞe−ΛNðt−t0Þ; ð60Þ

where we take Pðϕ0; π0; t0Þ ¼ Peqðϕ0; π0Þ. Then, the 2-point timelike (equal-space) stochastic correlator between some
functions fðϕ0; π0Þ and gðϕ; πÞ is given by

6This is convenient when one considers the simplified case for free fields e.g., Eq. (79). In this case, the nonadjoint and adjoint
eigenstates only differ by a factor of a Gaussian.
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hfðϕ0; π0Þgðϕ; πÞi ¼
Z

dϕ0

Z
dϕ

Z
dπ0

Z
dπP2ðϕ0;ϕ; π0; π; t − t0Þfðϕ0; π0Þgðϕ; πÞ

¼
X
N

f0NgN0e−ΛNðt−t0Þ; ð61Þ

where

fNN0 ¼ ðΨN; fΨ�
N0 Þ: ð62Þ

We can compute spacelike correlators by defining an equilibrium 3-point probability distribution function (3PDF), where
we evolve both ðϕ1; π1Þ and ðϕ2; π2Þ to ðϕ0; π0Þ independently, as

PðSÞ
3 ðϕ0;ϕ1;ϕ2; π0; π1; π2; t0; t1; t2Þ ¼ Pðϕ0; π0; t0ÞUðϕ0;ϕ1; π0; π1; t1 − t0ÞUðϕ0;ϕ2; π0; π2; t2 − t0Þ

¼ Ψ0ðϕ0; π0ÞΨ�
0ðϕ1; π1ÞΨ�

0ðϕ2; π2Þ
Ψ�

0ðϕ0; π0Þ
X
N

Ψ�
Nðϕ0; π0ÞΨNðϕ1; π1Þ

×
X
N0

Ψ�
N0 ðϕ0; π0ÞΨN0 ðϕ2; π2Þe−ðΛNðt1−t0ÞþΛN0 ðt2−t0ÞÞ; ð63Þ

where the superscript (S) indicates that it is the 3PDF used to define spacelike correlators.7 For more details, see Ref. [75].
To evaluate the spacelike (equal-time) stochastic correlators, we compute the 3-point function between two timelike
separated points t1 and t2 and the time coordinate tr, defined as

tr ¼ −
1

H
ln ðHjx1 − x2jÞ: ð64Þ

The spacelike stochastic correlator between the functions fðϕðt;x1Þ; πðt;x1ÞÞ and gðϕðt;x2Þ; πðt;x2ÞÞ is given by
integrating over ϕr and πr as

hfðϕ; π; t;x1Þgðϕ; π; t;x2Þi ¼
Z

dϕr

Z
dϕ1

Z
dϕ2

Z
dπr

Z
dπ1

Z
dπ2P3ðϕr;ϕ1;ϕ2; πr; π1; π2; tr; t1; t2Þ

× fðϕ1; π1Þgðϕ2; π2Þ

¼
Z

dϕr

Z
dπr

Ψ0ðϕr; πrÞ
Ψ�

0ðϕr; πrÞ
X
NN0

Ψ�
Nðϕr; πrÞΨ�

N0 ðϕr; πrÞfNgN0 jHaðtÞðx1 − x2Þj−
ΛNþΛN0

H : ð65Þ

3. Four-point stochastic correlation functions

We can similarly compute 4-point functions via the spectral expansion. For the timelike 4-point functions, we write the
equilibrium 4-point probability distribution function (4PDF) as

PðTÞ
4 ðϕ1;ϕ2;ϕ3;ϕ4; π1; π2; π3; π4; t1; t2; t3; t4Þ
≔ Pðϕ1; π1; t1ÞUðϕ1;ϕ2; π1; π2; t2 − t1ÞUðϕ2;ϕ3; π2; π3; t3 − t2ÞUðϕ3;ϕ4; π3; π4; t4 − t3Þ
¼ Ψ0ðϕ1; π1ÞΨ�

0ðϕ4; π4Þ
X
N

Ψ�
Nðϕ1; π1ÞΨNðϕ2; π2Þ

X
N0

Ψ�
N0 ðϕ2; π2ÞΨN0 ðϕ3; π3Þ

×
X
N00

Ψ�
N00 ðϕ3; π3ÞΨN00 ðϕ4; π4Þ; ð66Þ

where the superscript (T) indicates we are using this 4PDF to compute timelike correlators. Assuming that
t1 < t2 < t3 < t4, and that Pðϕ1; π1; t1Þ ¼ Peqðϕ1; π1Þ, the timelike 4-point correlation function is given by

7We could similarly define a 3PDF for computing timelike correlators, where the evolution would be from ðϕ0; π0Þ to ðϕ1; π1Þ toðϕ2; π2Þ i.e., chronologically along a line of constant spatial coordinate (assuming t0 < t1 < t2).
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hf1ðϕ1; π1Þf2ðϕ2; π2Þf3ðϕ3; π3Þf4ðϕ4; π4Þi ¼
Y4
i¼1

Z
dϕi

Z
dπiP

ðTÞ
4 ðϕ1;ϕ2;ϕ3;ϕ4; π1; π2; π3; π4; t1; t2; t3; t4Þ

× f1ðϕ1; π1Þf2ðϕ2; π2Þf3ðϕ3; π3Þf4ðϕ4; π4Þ
¼

X
N00N0N

ðf1Þ0Nðf2ÞNN0 ðf3ÞN0N00 ðf4ÞN000e
−ΛNðt2−t1Þ−ΛN0 ðt3−t2Þ−ΛN00 ðt4−t3Þ: ð67Þ

In a similar computation to the 2-point function, we can compute the spacelike 4-point function. Now, we define the
“spacelike” equilibrium 5-point probability distribution function (5PDF) as

PðSÞ
5 ðϕ0;ϕ1;ϕ2;ϕ3;ϕ4; π1; π2; π3; π4; t0; t1; t2; t3; t4Þ
≔ Pðϕ0; π0; t0ÞUðϕ0;ϕ1; π0; π1; t1 − t0ÞUðϕ1;ϕ2; π1; π2; t2 − t0ÞUðϕ2;ϕ3; π2; π3; t3 − t0Þ
×Uðϕ3;ϕ4; π3; π4; t4 − t0Þ

¼ Ψ0ðϕ0; π0Þ
Ψ�

0ðϕ0; π0Þ3
Y4
i¼1

�
Ψ�

0ðϕi; πiÞ
X
N

Ψ�
Nðϕ0; π0ÞΨNðϕi; πiÞ

�
: ð68Þ

Using the tr coordinate in Eq. (64) and assuming jxj ¼ jxi − xjj ∀i ≠ j, the spacelike stochastic 4-point function between
some functions fiðϕ; πÞ, i∈ f1; 2; 3; 4g, is given by

hf1ðϕ1; π1Þf2ðϕ2; π2Þf3ðϕ3; π3Þf4ðϕ4; π4Þi

¼
Z

dϕr

Z
dπr

Y4
i¼1

Z
dϕi

Z
dπiP

ðSÞ
5 ðϕr;ϕ1;ϕ2;ϕ3;ϕ4; πr; π1; π2; π3; π4; tr; t1; t2; t3; t4Þ

× f1ðϕ1; π1Þf2ðϕ2; π2Þf3ðϕ3; π3Þf4ðϕ4; π4Þ

¼
Z

dϕr

Z
dπr

Ψ0ðϕr; πrÞ
Ψ�

0ðϕr; πrÞ3
Y4
i¼1

�X
N

Ψ�
Nðϕr; πrÞðfiÞN0jHaðtÞxj−ΛN

H

�
: ð69Þ

B. Comparison with perturbative QFT

Now that we have developed the formalism for the
stochastic theory, we will now promote it to an effective
theory of the IR behavior of scalar fields in de Sitter
spacetime. To do this, we will compare the stochastic and
QFT correlators and choose the stochastic parameters such
that they match. This procedure was first outlined in
Refs. [74,75].

1. Free stochastic parameters

We will begin by considering free fields, which was first
done in Ref. [74]. It will prove convenient to change our
field variables from ðϕ; πÞ to ðq; pÞ, with the transforma-
tion �

p

q

�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1 − αS
βS

q �
1 αSH
1

βSH
1

��
π

ϕ

�
; ð70Þ

where αS ¼ 3
2
− νS and βS ¼ 3

2
þ νS with νS ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
9
4
− m2

S
H2

q
. All

of the formalism introduced in the previous section can also

be applied to ðq; pÞ variables. In particular the Fokker-
Planck operators are given by

LFP ¼ Lð0Þ
FP þ λLð1Þ

FP ; ð71aÞ

L�
FP ¼ Lð0Þ�

FP þ λLð1Þ�
FP ; ð71bÞ

where the free part is given by

Lð0Þ
FP ¼ αH þ αHq∂q þ

1

2
σ2qq∂

2
q þ βH þ βHp∂p

þ 1

2
σ2pp∂

2
p þ σ2qp∂q∂p; ð72aÞ

Lð0Þ�
FP ¼ −αHq∂q þ

1

2
σ2qq∂

2
q − βHp∂p

þ 1

2
σ2pp∂

2
p þ σ2qp∂q∂p; ð72bÞ

and the interacting part is given by
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Lð1Þ
FP ¼ λ

ð1 − α
βÞ2

�
−

1

βH
pþ q

�
3
�
∂p þ

1

βH
∂q

�
; ð73aÞ

Lð1Þ�
FP ¼ −Lð1Þ

FP : ð73bÞ

The ðq; pÞ noise amplitudes are written in terms of their
ðϕ; πÞ counterparts as

σ2qq ¼
1

1 − α
β

�
1

β2H2
σ2ππ þ

2

βH
σ2ϕπ þ σ2ϕϕ

�
; ð74aÞ

σ2qp ¼ 1

1 − α
β

�
1

βH
σ2ππ þ

�
1þ α

β

�
σ2ϕπ þ αHσ2ϕϕ

�
; ð74bÞ

σ2pp ¼ 1

1 − α
β

ðσ2ππ þ 2αHσ2ϕπ þ α2H2σ2ϕϕÞ: ð74cÞ

Following the work of Ref. [74], we compute the stochastic
free-field correlator as

hϕðt; 0Þϕðt;xÞi ¼ 1

1 − αS
βS

�
σ2qq
2HαS

jHaðtÞxj−2αS

þ σ2pp
2H3β3S

jHaðtÞxj−2βS

−
2σ2qp
3H2βS

jHaðtÞxj−3
�
; ð75Þ

and match it to the free Feynman propagator (15) to obtain
an expression for the free stochastic parameters

mð0Þ
S ¼ m; ð76aÞ

σð0Þ2qq ¼ σ2ð0ÞQ;qq ¼
H3αν

4π2β

Γð2νÞΓð3
2
− νÞ43

2
−ν

Γð1
2
þ νÞ ; ð76bÞ

σð0Þ2qp ¼ σ2ð0ÞQ;qp ¼ 0; ð76cÞ

σð0Þ2pp ¼ σ2ð0ÞQ;pp ¼


σ2ðNLOÞð0Þpp ¼ H5β2ν

4π2
Γð−2νÞΓð3

2
þνÞ432þν

Γð1
2
−νÞ

0

: ð76dÞ

mð0Þ
S and σ2ð0Þqq are matched such that the leading-order

exponent and amplitude in the Feynman propagator are

reproduced while σ2ð0Þqp noise is chosen such that there is an
analytic continuation from timelike to spacelike stochastic
correlators, a behavior prevalent in QFT. However, the
choice of σ2pp is arbitrary. In this paper, we focus on two
possible choices: that the subleading term in the Feynman

propagator is reproduced [σ2Q;pp ¼ σ2ðNLOÞpp ] or that the
subleading term in the stochastic field 2-point function

vanishes (σ2Q;pp ¼ 0). We will see later that this choice does
not impact physical results.

Since σ2ð0Þqp ¼ 0, the variables p and q separate and so we
now use two indices ðr; sÞ∈ f0;∞g, corresponding to p
and q respectively, as opposed to justN. Thus, the free field
eigenequations are given by

Lð0Þ
FPΨ

ð0Þ
rs ðq; pÞ ¼ −Λð0Þ

rs Ψð0Þ
rs ðq; pÞ; ð77aÞ

Lð0Þ�
FP Ψð0Þ�

rs ðq; pÞ ¼ −Λð0Þ
rs Ψð0Þ�

rs ðq; pÞ; ð77bÞ

where the Λð0Þ
rs and Ψð0Þð�Þ

rs ðq; pÞ are the free eigenvalues
and (adjoint) eigenstates, respectively. The eigenvalues of
Eq. (77) are

Λð0Þ
rs ¼ ðsαþ rβÞH ð78Þ

while the normalized eigenstates can be written in terms of
the Hermite polynomials HnðxÞ as

Ψð0Þ
rs ðq; pÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2rþsr!s!
p

�
αβH2

π2σ2qqσ
2
pp

�
1=4

Hs

� ffiffiffiffiffiffiffi
αH
σ2qq

s
q

�

×Hr

� ffiffiffiffiffiffiffi
βH
σ2pp

s
p

�
e
− αH
σ2qq

q2− βH

σ2pp
p2

; ð79aÞ

Ψð0Þ�
rs ðq; pÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2rþsr!s!
p

�
αβH2

π2σ2qqσ
2
pp

�
1=4

Hs

� ffiffiffiffiffiffiffi
αH
σ2qq

s
q

�

×Hr

� ffiffiffiffiffiffiffi
βH
σ2pp

s
p

�
: ð79bÞ

For the case where σ2pp ¼ 0, the eigenstates can be
written as8

lim
σ2pp→0

Ψð0Þ
rs ðq; p̃Þ ¼ ð−1Þ−rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2rþsr!s!
p

�
αH
σ2qq

�
1=4

δðrÞðp̃ÞHs

×

� ffiffiffiffiffiffiffiffiffiffi
αH
σ2qq

q

s �
e
− αH
σ2qq

q2

; ð80aÞ

lim
σ2pp→0

Ψð0Þ�
rs ðq; p̃Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2r

2sr!s!

r �
αH
π2σ2qq

�
1=4

p̃rHs

×

� ffiffiffiffiffiffiffiffiffiffi
αH
σ2qq

q

s �
; ð80bÞ

where p̃ ¼
ffiffiffiffiffiffi
βH
σ2pp

q
p and superscript (r) indicates we are

taking the rth derivative of the δ-function. These are well

8To take the limit, we have used the identity

limϵ→0
ð−1Þ−nð ffiffi

2
p

ϵÞn−1ffiffi
π

p Hnð xffiffi
2

p
ϵ
Þe− x2

2ϵ2 ¼ δðnÞðxÞ.
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behaved eigenstates if we use ðq; p̃Þ as our variables, with
which we have the biorthogonality and completeness
relations.

2. Stochastic 2-point functions to OðλSÞ
We will now move to the more interesting case of an

interacting theory. To relate the stochastic correlators to the
perturbative results of QFT, we expand our solutions to the
eigenproblem (55) in terms of the ðq; pÞ variables to OðλSÞ

Λrs ¼ Λð0Þ
rs þ λSΛ

ð1Þ
rs þOðλ2SÞ; ð81aÞ

Ψð�Þ
rs ðq; pÞ ¼ Ψð0Þð�Þ

rs ðq; pÞ þ λSΨ
ð1Þð�Þ
rs ðq; pÞ þOðλ2SÞ:

ð81bÞ

Using the eigenequations with the biorthogonality con-
ditions for ðq; pÞ, equivalent to Eqs. (55) and (56), theOðλÞ
terms in the eigenvalues and eigenstates are given by

Λð1Þ
rs ¼ −ðΨð0Þ�

rs ;Lð1Þ
FPΨ

ð0Þ
rs Þ; ð82aÞ

Ψð1Þ
rs ðq; pÞ ¼

X
r0s0

Ψð0Þ
r0s0 ðq; pÞ

ðΨð0Þ�
r0s0 ;L

ð1Þ
FPΨ

ð0Þ
rs Þ

Λð0Þ
r0s0 − Λð0Þ

rs

; ð82bÞ

Ψð1Þ�
rs ðq; pÞ ¼

X
r0s0

Ψð0Þ�
r0s0 ðq; pÞ

ðΨð0Þ
r0s0 ;L

ð1Þ�
FP Ψð0Þ�

rs Þ
Λð0Þ
r0s0 − Λð0Þ

rs

; ð82cÞ

where for Eqs. (82b) and (82c), r0 ≠ r and s0 ≠ s. One can
then compute the spacelike stochastic 2-point correlator to
OðλSÞ using Eq. (65) as

hfðq1; p1Þgðq2; p2Þi ¼
Z

dqr

Z
dpr

X
r0rs0s

�
Ψð0Þ

00 ðqr; prÞ
Ψð0Þ�

00 ðqr; prÞ
Ψð0Þ�

rs ðqr; prÞΨð0Þ�
r0s0 ðqr; prÞfð0Þrs g

ð0Þ
r0s0

þ λ

�
Ψð1Þ

00 ðqr; prÞ
Ψð0Þ�

00 ðqr; prÞ
Ψð0Þ�

rs ðqr; prÞΨð0Þ�
r0s0 ðqr; prÞfð0Þrs g

ð0Þ
r0s0

−
Ψð1Þ�

00 ðqr; prÞΨð0Þ
00 ðqr; prÞ

Ψð0Þ�
00 ðqr; prÞ2

Ψð0Þ�
rs ðqr; prÞΨð0Þ�

r0s0 ðqr; prÞfð0Þrs g
ð0Þ
r0s0

þ Ψð0Þ
00 ðqr; prÞ

Ψð0Þ�
00 ðqr; prÞ

Ψð1Þ�
rs ðqr; prÞΨð0Þ�

r0s0 ðqr; prÞfð0Þrs g
ð0Þ
r0s0

þ Ψð0Þ
00 ðqr; prÞ

Ψð0Þ�
00 ðqr; prÞ

Ψð0Þ�
rs ðqr; prÞΨð1Þ�

r0s0 ðqr; prÞfð0Þrs g
ð0Þ
r0s0

þ Ψð0Þ
00 ðqr; prÞ

Ψð0Þ�
00 ðqr; prÞ

Ψð0Þ�
rs ðqr; prÞΨð0Þ�

r0s0 ðqr; prÞfð1Þrs g
ð0Þ
r0s0

þ Ψð0Þ
00 ðqr; prÞ

Ψð0Þ�
00 ðqr; prÞ

Ψð0Þ�
rs ðqr; prÞΨð0Þ�

r0s0 ðqr; prÞfð0Þrs g
ð1Þ
r0s0

��

× jHaðtÞðx1 − x2Þj
−

�
Λð0Þrs þΛð0Þ

r0s0
H þλ

Λð1Þrs þΛð1Þ
r0s0

H

�
: ð83Þ

We also wish to incorporateOðλSÞ effects into our stochastic parameters so we expand them about the free parameters (76)
such that

m2
S ¼ m2

R þ λm2ð1Þ
S ; ð84aÞ

σ2qq ¼
H3ð3=2 − νRÞνR
4π2ð3=2þ νRÞ

Γð2νRÞΓð32 − νRÞ43
2
−νR

Γð1
2
þ νRÞ

þ λSσ
2ð1Þ
qq þOðλ2SÞ; ð84bÞ

σ2qp ¼ λσ2ð1Þqp þOðλ2SÞ; ð84cÞ

σ2pp ¼ λσ2ð1Þpp þOðλ2SÞ: ð84dÞ
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Note that because we are now considering an interacting theory, we have to use the renormalized mass mR, given in

Eq. (30). Additionally, for simplicity, we will consider the case where σ2ð0Þpp ¼ 0 for this section, though we will compare
with the other case later.
Using Eq. (65), we can compute the spacelike q − q, q − p, p − q, and p − p stochastic 2-point functions. Converting

these to ðϕ; πÞ variables using Eq. (70), we then write the spacelike stochastic field 2-point function to OðλSÞ as

hϕðt; 0Þϕðt;xÞi ¼
�
H2

16π2
Γð3

2
− νRÞΓð2νRÞ43

2
−νR

Γð1
2
þ νRÞ

þ λ

� ð3þ 2νRÞσ2ð1Þqq

4νRHð3 − 2νRÞ

þ 3ð3 − 4νRÞH4ΓðνRÞ2Γð32 − νRÞ2
32π5νRm2

��
jHaðtÞxj−2Λ01

H

þ λσ2ð1Þpp

H3νRð3þ 2νRÞ2
jHaðtÞxj−2Λ10

H − λ

�
σ2ð1Þqp

3H2νR
þH4ΓðνRÞ2Γð52 − νRÞ2

8π5νRm2

�
× jHaðtÞxj−3; ð85Þ

where the exponents are

Λ01 ¼ αSH þ λS
3Hβ3R

32π2νRβ
3
R

Γð2νRÞΓð32 − νRÞ43
2
−νR

Γð1
2
þ νRÞ

þOðλ2SÞ; ð86aÞ

Λ10 ¼ βSH − λS
3Hβ3R

32π2νRβ
3
R

Γð2νRÞΓð32 − νRÞ43
2
−νR

Γð1
2
þ νRÞ

þOðλ2SÞ; ð86bÞ

and we have used the free-matched stochastic parameters (76).

3. Stochastic 4-point functions to OðλSÞ
Using the perturbative eigenspectrum computed above, we can also compute the 4-point function toOðλSÞ. Wewill focus

on the connected piece to compare with its QFT counterpart (36) so we can use the free stochastic parameters from Eq. (76)
and, for simplicity, we will make the choice σ2Q;pp ¼ 0.
In general, the equal-space stochastic 4-point functions are given by Eq. (67). We will again switch from ðϕ; πÞ variables

to ðq; pÞ using Eq. (70). The only nonzero 4-point functions that are relevant are

hqðt1Þqðt2Þqðt3Þqðt4Þi ¼ q00;01q01;00q00;01q01;00e−Λ01ðt2−t1Þ−Λ00ðt3−t2Þ−Λ01ðt4−t3Þ

þ q00;01q01;02q02;01q01;00e−Λ01ðt2−t1Þ−Λ02ðt3−t2Þ−Λ01ðt4−t3Þ

þ q00;03q03;02q02;01q01;00e−Λ03ðt2−t1Þ−Λ02ðt3−t2Þ−Λ01ðt4−t3Þ

þ q00;01q01;02q02;03q03;00e−Λ01ðt2−t1Þ−Λ02ðt3−t2Þ−Λ03ðt4−t3Þ; ð87aÞ

hpðt1Þqðt2Þqðt3Þqðt4Þi ¼ p00;01q01;00q00;01q01;00e−Λ01ðt2−t1Þ−Λ00ðt3−t2Þ−Λ01ðt4−t3Þ

þ p00;01q01;02q02;01q01;00e−Λ01ðt2−t1Þ−Λ02ðt3−t2Þ−Λ01ðt4−t3Þ

þ p00;03q03;02q02;01q01;00e−Λ03ðt2−t1Þ−Λ02ðt3−t2Þ−Λ01ðt4−t3Þ

þ p00;01q01;02q02;03q03;00e−Λ01ðt2−t1Þ−Λ02ðt3−t2Þ−Λ03ðt4−t3Þ; ð87bÞ

hqðt1Þpðt2Þqðt3Þqðt4Þi ¼ q00;01p01;00q00;01q01;00e−Λ01ðt2−t1Þ−Λ00ðt3−t2Þ−Λ01ðt4−t3Þ

þ q00;01p01;02q02;01q01;00e−Λ01ðt2−t1Þ−Λ02ðt3−t2Þ−Λ01ðt4−t3Þ

þ q00;03p03;02q02;01q01;00e−Λ03ðt2−t1Þ−Λ02ðt3−t2Þ−Λ01ðt4−t3Þ

þ q00;01p01;02q02;03q03;00e−Λ01ðt2−t1Þ−Λ02ðt3−t2Þ−Λ03ðt4−t3Þ; ð87cÞ
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hqðt1Þqðt2Þpðt3Þqðt4Þi ¼ q00;01q01;00p00;01q01;00e−Λ01ðt2−t1Þ−Λ00ðt3−t2Þ−Λ01ðt4−t3Þ

þ q00;01q01;02p02;01q01;00e−Λ01ðt2−t1Þ−Λ02ðt3−t2Þ−Λ01ðt4−t3Þ

þ q00;03q03;02p02;01q01;00e−Λ03ðt2−t1Þ−Λ02ðt3−t2Þ−Λ01ðt4−t3Þ

þ q00;01q01;02p02;03q03;00e−Λ01ðt2−t1Þ−Λ02ðt3−t2Þ−Λ03ðt4−t3Þ; ð87dÞ

hqðt1Þqðt2Þqðt3Þpðt4Þi ¼ q00;01q01;00q00;01p01;00e−Λ01ðt2−t1Þ−Λ00ðt3−t2Þ−Λ01ðt4−t3Þ

þ q00;01q01;02q02;01p01;00e−Λ01ðt2−t1Þ−Λ02ðt3−t2Þ−Λ01ðt4−t3Þ

þ q00;03q03;02q02;01p01;00e−Λ03ðt2−t1Þ−Λ02ðt3−t2Þ−Λ01ðt4−t3Þ

þ q00;01q01;02q02;03p03;00e−Λ01ðt2−t1Þ−Λ02ðt3−t2Þ−Λ03ðt4−t3Þ: ð87eÞ

Using the free eigenspectrum (78) and (80), one can compute these explicitly as

hqðt1Þqðt2Þqðt3Þqðt4Þi ¼
��

σ2Q;qq

2αH

�2

−
6λSβ

H2αðα − βÞ2
�
σ2Q;qq

2αH

�3�
e−αHðt4þt2−t3−t1Þ

þ
�
2

�
σ2Q;qq

2αH

�2

−
24λSβ

H2αðα − βÞ2
�
σ2Q;qq

2αH

�3�
e−αHðt4þt3−t2−t1Þ

þ 3λSβðσ2Q;qqÞ3
32H5α4ν2

e−αHðt4þt3þt2−3t1Þ þ 3λSβðσ2Q;qqÞ3
32H5α4ν2

e−αHð3t4−t4−t2−t1Þ; ð88aÞ

hpðt1Þqðt2Þqðt3Þqðt4Þi ¼ −
λSβ

2

Hðα − βÞ2
�
σ2Q;qq

2αH

�3

e−αHðt4þt2−t3−t1Þ −
2λSβ

2

Hðα − βÞ2
�
σ2Q;qq

2αH

�3

e−αHðt4þt3−t2−t1Þ

−
3λSβ

2ðσ2Q;qqÞ3
32H5α3ð3αþ βÞν2 e

−αHðt4þt3þt2−3t1Þ; ð88bÞ

hqðt1Þpðt2Þqðt3Þqðt4Þi ¼
3λSβ

2

Hðα − βÞ3
�
σ2Q;qq

2αH

�3

e−αHðt4þt2−t3−t1Þ −
4λSβ

2

Hðα − βÞ2
�
σ2Q;qq

αH

�3

e−αHðt4þt3−t2−t1Þ; ð88cÞ

hqðt1Þqðt2Þpðt3Þqðt4Þi ¼
3λSβ

2

Hðα − βÞ3
�
σ2Q;qq

αH

�3

e−αHðt4þt2−t3−t1Þ þ 12λSβ
2

Hðα − βÞ3
�
σ2Q;qq

2αH

�3

e−αHðt4þt3−t2−t1Þ; ð88dÞ

hqðt1Þqðt2Þqðt3Þpðt4Þi ¼ −
λSβ

2

Hðα − βÞ2
�
σ2Q;qq

αH

�3

e−αHðt4þt2−t3−t1Þ þ 6λSβ
2

Hðα − βÞ3
�
σ2Q;qq

2αH

�3

e−αHðt4þt3−t2−t1Þ

þ 3λSβ
3ðσ2Q;qqÞ3

16H4α3ð3α − βÞν2 e
−αHð3t4−t3−t2þt1Þ: ð88eÞ

We can then compute the timelike stochastic field 4-point function by converting back to ðϕ; πÞ variables to get

hϕðt1Þϕðt2Þϕðt3Þϕðt4Þi ¼
λSβ

3ð2β2 þ 21β − 72Þðσ2Q;qqÞ3
4H5α4ðα − βÞ5 e−αHðt2−t1þt4−t3Þ þ 3λSβ

3ðβ2 þ β − 6Þðσ2Q;qqÞ3
2H5α4ðα − βÞ5 e−αHðt3−t1þt4−t2Þ

þ 3λSβ
3ð4αþ βÞðσ2Q;qqÞ3

128H5α4ð3αþ βÞν4 e−αHðt4þt3þt2−3t1Þ −
3λSβ

3ðσ2Q;qqÞ3
64H5α4ð3α − βÞν3 e

−αHð3t4−t3−t2þt1Þ: ð89Þ
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In a similar definition to the QFT, we can define the connected stochastic 4-point function as

hϕðt1Þϕðt2Þϕðt3Þϕðt4ÞiC ¼ hϕðt1Þϕðt2Þϕðt3Þϕðt4Þi − hϕðt1Þϕðt2Þihϕðt3Þϕðt4Þi
− hϕðt1Þϕðt3Þihϕðt2Þϕðt4Þi − hϕðt1Þϕðt4Þihϕðt2Þϕðt3Þi; ð90Þ

Thus, we can write the timelike stochastic connected field 4-point function as

hϕðt1Þϕðt2Þϕðt3Þϕðt4ÞiC ¼ λSβ
3ð2β2 þ 21β − 81Þðσ2Q;qqÞ3

4H5α4ðα − βÞ5 e−αHðt2−t1þt4−t3Þ þ 3λSβ
3ðβ2 þ β − 9Þðσ2Q;qqÞ3
2H5α4ðα − βÞ5 e−αHðt3−t1þt4−t2Þ

þ 3λSβ
3ð4αþ βÞðσ2Q;qqÞ3

128H5α4ð3αþ βÞν4 e−αHðt4þt3þt2−3t1Þ −
3λSβ

3ðσ2Q;qqÞ3
64H5α4ð3α − βÞν3 e

−αHð3t4−t3−t2þt1Þ: ð91Þ

We can also compute the equal-time stochastic connected 4-point function at OðλSÞ. Using Eq. (69), and recalling that
jxj ¼ jxj − xij ∀i ≠ j, we find that the only nonzero spacelike ðq; pÞ correlators that are relevant are

hqðx1Þqðx2Þqðx3Þqðx4Þi ¼
Z

dqr

Z
dpr

Ψ0ðqr; prÞ
Ψ�

0ðqr; prÞ3
ðΨ�

1ðqr; prÞq10Þ4jHaðtÞxj−4Λ1
H

þ
Z

dqr

Z
dpr

Ψ0ðqr; prÞ
Ψ�

0ðqr; prÞ3
ðΨ�

1ðqr; prÞq10Þ3ðΨ�
3ðqr; prÞq30ÞjHaðtÞxj−3Λ1þΛ3

H ; ð92aÞ

hqðx1Þqðx2Þqðx3Þpðx4Þi ¼ hqðx1Þqðx2Þpðx3Þqðx4Þi
¼ hqðx1Þpðx2Þqðx3Þqðx4Þi
¼ hpðx1Þqðx2Þqðx3Þqðx4Þi

¼
Z

dqr

Z
dpr

Ψ0ðqr; prÞ
Ψ�

0ðqr; prÞ3
ðΨ�

1ðqr; prÞq10Þ3ðΨ�
3ðqr; prÞp10ÞjHaðtÞxj−4Λ1

H

þ
Z

dqr

Z
dpr

Ψ0ðqr; prÞ
Ψ�

0ðqr; prÞ3
ðΨ�

1ðqr; prÞq10Þ3ðΨ�
3ðqr; prÞp30ÞjHaðtÞxj−3Λ1þΛ3

H : ð92bÞ

Then we can use the eigenspectrum (78) and (80) to obtain

hqðx1Þqðx2Þqðx3Þqðx4Þi ¼
�
3ðσ2Q;qqÞ2
4H2α2

−
3λSβðσ2Q;qqÞ3
H5α4ðα − βÞ2

�
jHaðtÞxj−4α þ 3λSβðσ2Q;qqÞ3

2H5α4ðα − βÞ2 jHaðtÞxj−6α; ð93aÞ

hpðx1Þqðx2Þqðx3Þqðx4Þi ¼
9λSβ

2ðσ2Q;qqÞ3
8H4α3ðα − βÞ3 jHaðtÞxj−4α þ 3λSβ

2ðσ2Q;qqÞ3
4H4α3ðα − βÞ2ð3α − βÞ jHaðtÞxj−6α: ð93bÞ

Thus, the spacelike stochastic field 4-point function is

hϕðx1Þϕðx2Þϕðx3Þϕðx4Þi ¼
�

3β2ðσ2Q;qqÞ2
4H2α2ðα − βÞ2 −

9λSβ
3ð2α − βÞðσ2Q;qqÞ3
2H5α4ðα − βÞ5

�
jHaðtÞxj−4α þ 3λSβ

6ðσ2Q;qqÞ3
16H5α4ν3ðβ − 3αÞ jHaðtÞxj−6α:

ð94Þ

Then we can use Eq. (90) (replacing ti with xi) to get the connected spacelike stochastic 4-pt function to OðλSÞ as

hϕðx1Þϕðx2Þϕðx3Þϕðx4ÞiC ¼ −
9λSβ

3ðσ2Q;qqÞ3
4H5α4ðα − βÞ4 jHaðtÞxj−6þ4ν þ 3λSβ

6ðσ2Q;qqÞ3
16H5α4ν3ðβ − 3αÞ jHaðtÞxj−9þ6ν: ð95Þ
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In the light field limit m ≪ H, the spacelike 4-point function is given by

hϕðx1Þϕðx2Þϕðx3Þϕðx4ÞiC
���
m2≪H2

¼ 81λSH12

128π6m6
jHaðtÞxj−2m2

H2 −
243λSH12

256π6m8
jHaðtÞxj−4m2

3H2 ; ð96Þ

which is the same as the near-massless QFT spacelike 4-point function (47) for λS ¼ λ.

4. Stochastic parameters to OðλÞ
We can now compute the OðλÞ stochastic parameters by

comparing the OðλSÞ stochastic 2-point and 4-point func-
tions with their QFT counterparts. The procedure for
matching our 2-point functions remains unchanged from
the free case. We again have our three conditions (plus a
choice) for the stochastic results to match perturbative QFT:
(i) the leading exponents match; (ii) the leading prefactors
match; (iii) the analytic continuation between spacelike and
timelike correlators is preserved; and (iv) either the sub-
leading terms match or it vanishes in the stochastic
correlators. We will consider both cases presented by
(iv), though as stated these are not unique choices. For
the following, I will consider the latter choice; the former is
dealt with in Appendix C. We will see that the choice does
not affect the physical results, as indeed it should not.
However, we now have a fifth stochastic parameter to

contend with λS which can be matched to its QFT
counterpart by considering the connected 4-point function.

By equating the spacelike stochastic 4-point function (95),
using the free stochastic parameters (76), to the spacelike
quantum 4-point function (46), we find that the term
OðjHaðtÞxj−9þ6ν are equal for any value of m if

λS ¼ λþOðλ2Þ: ð97Þ
Thus, at this order, the λ parameters in both quantum and
stochastic theories are the same and we will drop the
subscript S henceforth. We note that the second-order
stochastic theory also gives us an expression of
OðjHaðtÞxj−6þ4νÞ, which we know also appears in the
QFT counterpart (46), denoted by the “…þ”. Thus, the
stochastic theory gives us a way of computing this term
explicitly, which is difficult to do in perturbative QFT.
We can now turn our attention to the 2-point functions,

and the other 4 OðλÞ stochastic parameters. In order for the
stochastic spacelike 2-point function (85) to reproduce the
perturbative QFT 2-point function (31), the parameters
must have the values

m2
S ¼m2

Rþ
3λH2

16π2

�
−
4Γð3=2− νRÞΓðνRÞffiffiffi

π
p þ

�
2−

m2
R

H2

��
1−ψ ð0Þð3=2− νRÞ−ψ ð0Þð3=2þ νRÞþ ln

�
M2

aðtÞ2H2

���
þOðλ2Þ;

ð98aÞ

σ2qq ¼
2H3Γð1þ νRÞΓð52 − νRÞ

π5=2ð3þ 2νRÞ
þ λH3Γð3=2 − νRÞΓðνRÞ

16π7=2ð3þ 2νRÞ2
�
3ð−3þ 2νRÞΓð3=2 − νRÞΓð2νRÞ

þ 3 × 4−3þνR

νR
ð−1þ 4ν2RÞΓð1=2þ νRÞ

�
4
m2

R

H2
− 12νR − 4

m2
R

H2
νR ln 4 − 4

m2
R

H2
νRψ

ð0Þð3=2 − νRÞ

þ 8
m2

R

H2
νRψ

ð0Þð2νRÞ − 4
m2

R

H2
νRψ

ð0Þð1=2þ νRÞ
��

−1 − ln

�
M2

aðtÞ2H2

�
þ ψ ð0Þð3=2 − νRÞ þ ψ ð0Þð3=2þ νRÞ

��
þOðλ2Þ; ð98bÞ

σ2qp ¼ 3λH4ð−3þ 2νRÞΓð3=2 − νRÞ2ΓðνRÞ2
32νRπ

5
þOðλ2Þ; ð98cÞ

σ2pp ¼ Oðλ2Þ: ð98dÞ

Note that the mass parameter is now dependent on the renormalization scale M. Using these parameters in our
second-order stochastic equations (48) gives us a second-order stochastic theory of quartic self-interacting scalar QFT
in de Sitter.
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These expressions still have an IR problem, but it is
milder than that of perturbative QFT. Expanding the OðλÞ
terms to leading order in m2=H2, we have

m2
S ¼m2

Rþ
3λH2

8π2

�
2γE − ln4þ ln

�
M2

aðtÞ2H2

��
þOðλm2

RÞ;

ð99aÞ

σ2qq ¼
2H3Γð1þ νRÞΓð52 − νRÞ

π5=2ð3þ 2νRÞ
þ λH5ð−8þ 3 ln 4Þ

32π4m2
R

þOðλH3Þ; ð99bÞ

σ2qp ¼ −
3λH6

32π4m2
R
þOðλH4Þ; ð99cÞ

σ2pp ¼ 0þOðλ2Þ: ð99dÞ

We see that the sum will converge when λ ≪ m2=H2;
however, since we have corrected at this order, the error
associated with the stochastic parameters is actually
Oðλ2H4

m4 Þ. Thus, the second-order stochastic theory is limited
to λ2 ≪ m4=H4. This is a limitation of the matching
procedure required to obtain the stochastic parameters,
since we rely on the results of perturbative QFT. Crucially,
the IR problem is less serious in our stochastic approach
compared with perturbative QFT; Oðλ2H4=m4Þ as opposed
to OðλH4=m4Þ.
Converting our stochastic noise back to using the ðϕ; πÞ

variables, our stochastic parameters are given by

m2
S ¼m2

R þ
3λH2

8π2

�
2γE − ln4þ ln

�
M2

aðtÞ2H2

��
þOðλm2

RÞ

ð100aÞ

λS ¼ λþOðλ2Þ ð100bÞ

σ2 ¼ H3ΓðνRÞΓð52 − νRÞ
2π5=2

0
B@ 1 − 2m2

R
Hð3þ2νRÞ

− 2m2
R

Hð3þ2νRÞ
4m4

R
ð3þ2νRÞ2H2

1
CA

þ λ

0
B@

3H5ð−2þln 4Þ
32π4m2

R
þOðH3Þ − 3H6

32π4m2
R
þOðH4Þ

− 3H6

32π4m2
R
þOðH4Þ OðH5Þ

1
CA:

ð100cÞ

Thus, using the stochastic parameters (100) elevates the
stochastic theory (48) to an IR effective theory of quartic
self-interacting scalar QFT in de Sitter.

IV. COMPARISON WITH OTHER
APPROXIMATIONS

A. Regimes of validity

One of the strengths of the stochastic approach is that one
can employ numerical techniques to compute correlation
functions. For the second-order theory, one can use a matrix
diagonalization scheme to compute the eigenspectrum non-
perturbatively. This method is outlined in Ref. [74]. Thus,
the only limitation is the perturbative computation of the
stochastic parameters. Conversely, the perturbative method
outlined in Sec. II for QFT does not have an associated
nonperturbative scheme; all results are purely perturbative.
Thus, the second-order stochastic theory can be used to go
beyond perturbative QFT. Additionally, the second-order
theory extends the regime of validity of the overdamped
stochastic theory pioneered by Starobinsky and Yokoyama
[42,43]. For more details on this method, see Ref. [72,74].
For the massive, quartic self-interacting scalar field

theory considered here, the regime of these three approx-
imations is

Perturbative QFT : λ ≪
m4

H4
; λ ≪ 1; ð101aÞ

OD stochastic : λ ≪
m2

H2
; m ≪ H; ð101bÞ

Second-order stochastic : λ2 ≪
m4

H4
; m≲H: ð101cÞ

Wemake a graphical comparison of these regimes in Fig. 1.
For the purposes of making the boundaries obvious,

FIG. 1. This shows the regimes in which we expect our
approximations to work. Perturbative QFT, OD stochastic and
second-order (SO) stochastic are expected to work in the blue
left-hashed, green right-hashed, and orange regions respectively.
Note that there is some overlap. The pure white space is where
none of these approximations work.
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we choose “≪ 1” to mean “< 0.2”, though in reality we
would not expect these boundaries to be so clear cut.
The blue left-hashed region represents the parameter

space described by perturbative QFT. We can see that for
light fields m≲H, this region is entirely covered by the
second-order stochastic theory. This is unsurprising given
that the stochastic correlators were found directly from the
2-point functions of perturbative QFT. Beyond the light
field limit, perturbative QFT continues to extend (though it
is still limited to λ ≪ 1—it is after all a perturbative
theory!). This extension is not covered by either stochastic
approaches as they both require light fields.
The overdamped stochastic approach—the green, right

hashed region—is resigned to near-masslessm ≪ H fields,
but does go beyond perturbative QFT due to the non-
perturbative methods available to it. Further, it is far simpler
to compute stochastic correlation functions than their QFT
counterparts, hence its popularity within its regime of
validity.
The OD stochastic approach is encompassed by the

second-order stochastic effective theory, as represented by
the orange region in Fig. 1. However, the second-order
stochastic effective theory goes further, also encompassing
perturbative QFT entirely in the light field limit. We can
also see that there is a large chunk of the parameter space,
even for near-massless fields, that is only covered by the
second-order stochastic theory. The introduction of OðλÞ
corrections to the stochastic parameters means it goes
beyond the OD approach, even in the limit m ≪ H, while
the nonperturbative methods available mean that it can
extend beyond perturbative QFT.9 This suggests that the
second-order stochastic effective theory can be used to
probe hitherto untapped regions of the parameter space.

B. Comparing approximations with OðλÞ
stochastic parameters

In Ref. [75], we performed a careful analysis of how the
three approximations compare with each other. Now, we
wish to update that analysis to incorporate the updated
stochastic parameters. There are two important changes that
we have made here that will effect the results. The first is
that we have OðλÞ corrections to the stochastic parameters,
which were not included in the previous paper [75]. The
second is that now we have done the renormalization more
carefully and so we have a renormalization-scale dependent
mass parametermRðMÞ, which must be chosen when doing
numerical computations.
We will revisit the two examples discussed in Secs. B1

and B2 of Ref. [75] by computing the exponent for the
leading term in the long-distance behavior of the scalar
2-point functions. For QFT, this corresponds to the quantity

given in Eq. (32) to OðλH4

m4 Þ while, for the two stochastic
approximations—OD and second-order—the quantities in

question are the first-excited eigenvalues, ΛðODÞ
1 and ΛðSOÞ

1 ,
of their respective spectral expansions. They are computed
numerically. Note that the result used in Ref. [75] for the
OD stochastic theory is the same as the one here, other than
the fact we now use mRðMÞ instead of m.
We plot Λ1 for all three approximations as a function of

the coupling λ for fixed m2
R=H

2 and scaleM ¼ aðtÞH. The
first example will be for m2

R=H
2 ¼ 0.1 (Fig. 2), where we

are in a regime where the OD stochastic approach is valid,
while the second will be for m2

R=H
2 ¼ 0.3 (Fig. 4), where

we expect it to fail. In both examples, we expect perturba-
tive QFT to hold for small λ and fail as λ increases, since it
is in this regime that λ → m4=H4. These two approxima-
tions are given by the yellow dotted (OD stochastic) and
blue dashed (perturbative QFT).
Using similar reasoning, the second-order stochastic

theory should be expected to hold for small λ and begin
to fail as we increase λ in both plots. This is a less severe
failure as the breakdown is now for λ2 → m4

R=H
4. We will

also consider how the choice of the σ2pp noise amplitude
affects our results. The red and green lines represent the

choices σ2pp ¼ 0 and σ2pp ¼ σ2ðNLOÞpp respectively. For both
cases, we also consider the free (dot-dashed) and OðλÞ
(solid) stochastic parameters, given in Eq. (76) and (98)/(C1)
respectively, so we can ascertain the effect that interacting
stochastic parameters have on the results. Indeed, we will see
that interactions are crucial so that physical results such
as Λ1 are not dependent on our choice of σ2pp.

FIG. 2. A plot of the first excited eigenvalue Λ1 as a function of
λ for m2

R=H
2 ¼ 0.1 with the choice M ¼ aðtÞH, using perturba-

tive QFT (blue, dashed), OD stochastic (yellow, dotted) and
second-order stochastic approaches. Dot-dashed and solid lines
indicate the second-order stochastic parameters are free (76)
and interacting (100) respectively, with the noise choice

σ2pp ¼ σ2ðNLOÞpp (green) and σ2pp ¼ 0 (red).

9Note that, due to the matching procedure, it is still limited to
the region λ ≪ 1 as the stochastic parameters are found pertur-
batively.
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1. Example 1: m2=H2 = 0.1

The first example is for m2
R=H

2 ¼ 0.1. This is chosen
because the mass is sufficiently small such that the OD
stochastic approach will be valid beyond perturbative QFT.
Consider Fig. 2. This plot is identical to that Fig. 3 in
Ref. [75] other than the fact we have now also added two
curves where we have introduced OðλÞ effects in our
stochastic parameters (solid red and green). Thus, the
analysis given there about the three approximations still
holds; perturbative QFT quickly breaks down as λ
increases, while the second-order and OD stochastic
theories continue to agree. However, the new feature is
that the new solid lines agree for all values of λ plotted here,
despite the fact that our choice of σ2pp is different; red and

green indicate σ2pp ¼ 0 and σ2pp ¼ σ2ðNLOÞpp respectively.
Thus, we find that this choice does not affect physical
results once you include the OðλÞ effects, as indeed they
should not. However, for free stochastic parameters, this
choice does affect the result; therefore, it is important to
incorporate these new OðλÞ effects for the theory to be
reliable.
It is worth noting that the excellent agreement between

the second-order and OD stochastic results is due to the
choice of renormalization scale M ¼ aðtÞH. One can see
from Eq. (100a) that the stochastic massmS depends on the
renormalization scale as ∼ lnð M2

aðtÞ2H2Þ, which vanishes for

the choice M ¼ aðtÞH. Thus, it is not surprising that the
second-order and OD stochastic approaches agree.
However, if one were to choose the renormalization scale
differently, the agreement would not be so good. For
example, if one chooses M ¼ 5aðtÞH, the renormalized
mass parameter (28) will no longer equal 0.1; it will have
some shift of OðλÞ. The second-order stochastic theory
accounts for this shift via the M-dependence in the
stochastic mass mS parameter (100a), whereas the OD
theory does not because it does not incorporate any UV
renormalization. Thus, the two will be different for such a
choice. Figure 3 shows the effect of a different choice up to
M ¼ 5aðtÞH. One can see that there is very little change to
Λ1 for the second-order theory and that the change is much
larger for the OD case. Thus, even in the regime where
mR ≪ H, where the OD stochastic theory is deemed to be
valid, it still has some error associated with UV
renormalization.

2. Example 2: m2=H2 = 0.3

For completeness, we also include the example where
m2

R=H
2 ¼ 0.3 for M ¼ aðtÞH, where Λ1 as a function of λ

is given in Fig. 4. This plot is identical to that of Fig. 4 in
Ref. [75] except we have now included OðλÞ effects to the
stochastic parameters in the two new solid lines (red of

σ2pp ¼ 0 and green for σ2pp ¼ σ2ðNLOÞpp ). Again, the analysis
remains the same: the perturbative QFT diverges from the

second-order as λ increases while the OD stochastic theory
never works well because the fields are too heavy. Further,
in a similar way to the previous example, we see that the
introduction of OðλÞ effects causes the choice of σ2pp to be
irrelevant. This consolidates the point that this choice does
not affect physical results, but only when we have included
the relevant OðλÞ effects.

FIG. 3. The first excited eigenvalue Λ1 as a function of λ for
mRðaðtÞHÞ2=H2 ¼ 0.1. The red and green lines show results
from second-order and OD stochastic theories respectively. The
solid and dot-dashed lines are for renormalization scale choices
M ¼ aðtÞH and M ¼ 5aðtÞH respectively. The green shaded
region indicates the size of the error that choosing the scale has on
the OD stochastic approach. The equivalent red region is
negligible because the second-order theory accounts for it via
renormalization.

FIG. 4. A plot of the first excited eigenvalue Λ1 as a function of
λ for m2=H2 ¼ 0.3 using perturbative QFT (blue, dashed), OD
stochastic (yellow, dotted) and second-order stochastic ap-
proaches. Dot-dashed and solid lines indicate the second-order
stochastic parameters are free and interacting respectively, with

the noise choice σ2pp ¼ σ2ðNLOÞpp (green) and σ2pp ¼ 0 (red).

STOCHASTIC PARAMETERS FOR SCALAR FIELDS IN … PHYS. REV. D 109, 045017 (2024)

045017-21



V. CONCLUDING REMARKS

We have shown that the second-order stochastic theory is
a valid effective theory of the long-distance behavior of
scalar fields in de Sitter, within the regime of validity m≲
H and λ2 ≪ m4=H4. This extends the work started in
Refs. [74,75] to incorporate the full OðλÞ correction to the
stochastic parameters, which includes a complete discus-
sion of the UV renormalization at this order. Notably, we
have found a stochastic theory that incorporates a depend-
ence on the renormalization scale M in such a way that
physical results are M-independent. This is not true for the
widely used overdamped stochastic approach.
While this is the final installment in a trilogy of papers,

there is plenty of study left in the second-order stochastic
theory. Currently, this theory has only been tested on
perturbative QFT to one-loop order. One could extend this
theory to incorporate more loops, but the renormalization
procedure becomes increasingly complex. We would
expect that the matching procedure used to determine
the stochastic parameters would still be valid here and that
the computational challenge comes from perturbative QFT.
Additionally, we note that if one were to move away from
equilibrium, other effects would arise for higher loops, such
as secular growth [84–86]. We have chosen to study
equilibrium solutions for this paper; however, it would
be interesting to consider solutions away from equilibrium
to test the robustness of the second-order stochastic theory.
One could more rigorously test the effective theory by

comparing it to other QFT approximations such as the 1=N
approximation [87,88] or Monte-Carlo simulations [89].
However, the main outstanding question is whether one can
derive the stochastic parameters from an underlying micro-
scopic picture, as opposed to using the matching procedure
discussed here, which relies on an alternative method—in

this case, perturbative QFT—being available. It is not clear
to us how one should proceed in this direction.
In spite of these formal questions, the second-order

effective theory already has uses in inflationary cosmology.
Its numerical tools mean that it can generate novel results in
this field; directions could include precision calculations of
curvature and isocurvature perturbations or extensions to
primordial black hole abundance computations. It is clear
that this method has the potential to be an important tool in
the arsenal of inflationary cosmologists.
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APPENDIX A: DIMENSIONAL
REGULARIZATION IN de Sitter SPACETIME

In this appendix, we compute the scalar field variance in
de Sitter spacetime with Hubble rate H, using dimensional
regularization. This involves taking the number of space-
time dimensions to be d ¼ 4 − ϵ, and then taking the
limit d → 4.
Before we begin, it is useful to note that the calculation is

straightforward with point-splitting regularization [4].
Taking the coincident point limit of the Feynman propa-
gator (13) from the spacelike direction such that x ¼ ðt;xÞ
and x0 ¼ ðt; 0Þ, the field variance becomes

hϕ̂2iPS ≔ iΔFðx; 0Þ
����
jHaðtÞxj→0

¼ −
1

4π2aðtÞ2jxj2 þ
2H2 −m2

B

16π2

�
2 ln

2

HaðtÞjxj þ 1 − 2γE þ ψ ð0Þ
�
3

2
− νB

�
þ ψ ð0Þ

�
3

2
þ νB

��
; ðA1Þ

where νB ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
9
4
− m2

B
H2

q
, ψ ð0ÞðzÞ is the polygamma function and γE is the Euler-Mascheroni constant. The subscript “PS”

indicates it is computed using point splitting.
To carry out the same calculation in dimensional regularization, we consider the k-space integral (7), which gives

hϕ̂2i ¼ π

4HaðtÞ3
Z

đ3k

����Hð1Þ
ν

�
k

aðtÞH
�����2; ðA2Þ

where đ3k ¼ d3k
ð2πÞ3. In dimensional regularization, the number of space dimension becomes D ¼ 3 − ϵ, and therefore

we have

hϕ̂2iDR ¼ πμϵ

4HaðtÞ3
Z

đDk

����Hð1Þ
ν

�
k

aðtÞH
�����2; ðA3Þ
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where μ is introduced as the regularization scale and the subscript “DR” indicates that we have defined this integral via
dimensional regularization. This integral cannot be computed analytically, and therefore we split it in two pieces,

hϕ̂2iDR ¼ μϵ
Z

đDk

�
1

2aðtÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ δ2

p þ
2H2 −m2

B þ δ2

aðtÞ2

4ðk2 þ δ2Þ3=2
�

þ
Z

đ3k

�
π

4HaðtÞ3
����Hð1Þ

ν

�
k

aðtÞH
�����2 − 1

2aðtÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ δ2

p −
2H2 −m2

B þ δ2

aðtÞ2

4ðk2 þ δ2Þ3=2
�
; ðA4Þ

where δ is an arbitrary energy scale.10 The sum of the two contributions will of course give a δ-independent result. The first
line is ultraviolet divergent but can be easily computed in dimensional regularization, whereas the second line is finite and
can therefore be computed in three dimensions.
Computing the divergent integral in the first line of Eq. (A4) and taking the limit ϵ → 0, we obtain

hϕ̂2iDR ¼ 2H2 −m2
B

16π2

�
2

ϵ
− γE þ ln

�
4πμ2

δ2

��
−

δ2

16π2aðtÞ2

þ
Z

đ3k

�
π

4HaðtÞ3
����Hð1Þ

ν

�
k

aðtÞH
�����2 − 1

2aðtÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ δ2

p −
2H2 −m2

B þ δ2

aðtÞ2

4ðk2 þ δ2Þ3=2
�
: ðA5Þ

The remaining integral in Eq. (A5) is finite, and it can be computed using the point-splitting result in Eq. (A1). We first note
that the point-splitting regularized variance can be written as

hϕ̂2iPS ¼
π

4HaðtÞ3 lim
jxj→0

Z
đ3keik·x

����Hð1Þ
ν

�
k

aðtÞH
�����2: ðA6Þ

Next, we repeat the split to divergent and finite integrals in Eq. (A4),

hϕ̂2iPS ¼ lim
jxj→0

Z
đ3keik·x

�
1

2aðtÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ δ2

p þ
2H2 −m2

B þ δ2

aðtÞ2

4ðk2 þ δ2Þ3=2
�

þ
Z

đ3k

�
π

4HaðtÞ3
����Hð1Þ

ν

�
k

aðtÞH
�����2 − 1

2aðtÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ δ2

p −
2H2 −m2

B þ δ2

aðtÞ2

4ðk2 þ δ2Þ3=2
�

¼ −
1

4π2aðtÞ2jxj2 þ
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B − 2H2

16π2

�
2 ln

δjxj
2

þ 2γE

�
−
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16π2a2
;

þ
Z

đ3k
�

π

4HaðtÞ3
����Hð1Þ

ν

�
k

aðtÞH
�����2 − 1
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ δ2

p −
2H2 −m2

B þ δ2

aðtÞ2

4ðk2 þ δ2Þ3=2
�
; ðA7Þ

Comparing Eqs. (A5) and (A7), we can see that the difference between the point-splitting and dimensional regularization
results is simply

hϕ̂2iDR − hϕ̂2iPS ¼
2H2 −m2

B

16π2

�
2

ϵ
þ ln πμ2jxj2 þ γE

�
þ 1

4π2aðtÞ2jxj2 : ðA8Þ

Using the point-splitting result from Eq. (A1), we can therefore write the field variance in dimensional regularization as

hϕ̂2iDR ¼ 2H2 −m2
B

16π2

�
2

ϵ
þ ln

4πμ2

aðtÞ2H2
− γE þ 1 − ψ ð0Þ

�
3

2
− νB

�
− ψ ð0Þ

�
3

2
þ νB

��
: ðA9Þ

10Note that we cannot choose δ ¼ 0 because dimensional regularization would then give a zero result for the first line.
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APPENDIX B: THE IR BEHAVIOR OF THE CONNECTED 4-POINT FUNCTION

In this appendix, we will consider more carefully the IR limit of the connected quantum 4-point function of Sec. II D.
We start with the k-space 4-point function, given in Eq. (39) as

G̃ð4Þ
C ðη; fkigÞ ¼ −6iλ

Z
η

−∞
dηz

1

ðHηzÞ4
ðΔ̃−ðηz; η;k1ÞΔ̃−ðηz; η;k2ÞΔ̃−ðηz; η;k3ÞΔ̃−ðηz; η;k4Þ

− Δ̃þðηz; η;k1ÞΔ̃þðηz; η;k2ÞΔ̃þðηz; η;k3ÞΔ̃þðηz; η;k4ÞÞ: ðB1Þ

For the purposes of studying the general features of the IR limit, we will take ki ¼ k∀ i. Using the k-space Wightman
function (6), the 4-point function becomes11

G̃ð4Þ
C ðη; fkigÞ ¼ −6iλ

Z
η

−∞
dηz

1

ðHηzÞ4
π4

256H4
ð−HηÞ6ð−HηzÞ62iIm½Hð1Þ

ν ð−kηÞ4Hð2Þ
ν ð−kηzÞ4�: ðB2Þ

Defining the quantities K ¼ −kη and Kz ¼ −kηz, the integral can be written as

G̃ð4Þ
C ðη; fkigÞ ¼

3λπ4H4ð−ηÞ6
64k3

Z
∞

K
dKzK2

zIm½Hð1Þ
ν ðKÞ4Hð2Þ

ν ðKzÞ4�: ðB3Þ

Since we are interested in the IR behavior, we take the limit K ≪ 1 such that we can use the asymptotic behavior of the
Hankel functions

Hð1Þ
ν ðKÞ ≃ 2−ν

Γð1þ νÞK
ν − i

2νΓðνÞ
π

K−ν ðB4Þ

such that

G̃ð4Þ
C ðη; fkigÞ ¼

3λπ4H4ð−ηÞ6
64k3

Z
∞

K
dKzK2

z

�
24νΓðνÞ4

π4
K−4νIm½Hð2Þ

ν ðKzÞ4� þ
22þ2νΓðνÞ3
π3Γð1þ νÞK

−2νRe½Hð2Þ
ν ðKzÞ4�

�
: ðB5Þ

While this integral cannot be computed in general, we can get some information about the IR behavior of the 4-point
function. Consider the split of the integral

G̃ð4Þ
C ðη;fkigÞ¼

3λπ4H4ð−ηÞ6
64k3

�Z
Λ

K
þ
Z

∞

Λ

�
dKzK2

z

�
24νΓðνÞ4

π4
K−4νIm½Hð2Þ

ν ðKzÞ4�þ
22þ2νΓðνÞ3
π3Γð1þνÞK

−2νRe½Hð2Þ
ν ðKzÞ4�

�
; ðB6Þ

for some parameter Λ < 1. Focusing on the IR limit of the integral, K < Kz < Λ, we can take the limit Kz < 1 such that we
can use the approximate form of the Wightman functions (43)

Δ̃�ðηz; η;kÞ ≃
π

4HaðηÞ3=2aðηzÞ3=2
�
4νΓðνÞ2

π2
ðηzηÞ−νk−2ν � i

1

πν

��
η

ηz

�
ν

−
�
ηz
η

�
ν
��

: ðB7Þ

Then, we can compute the IR region of the integral (B6) to find that the 4-point function will have the following behavior:

G̃ð4Þ
C ðη; fkigÞ ∼ K−6ν þ K−3−4ν þ K−3−2ν: ðB8Þ

The K−6ν is just the term that we found in Eq. (44) and comes from the Kz → K limit. The other two contributions come
from the limit Kz → Λ. Converting these to coordinate space via a Fourier transform, one finds that

Gð4Þ
C ðη; fxigÞ ∼ jHaðηÞxj−9þ6ν þ jHaðηÞxj−6þ4ν þ jHaðηÞxj−6þ2ν: ðB9Þ

11We will just use ν instead of νR here. As this is an OðλÞ quantity, the nontrivial part of the renormalized mass does not feature.
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Since ν ≤ 3=2, it is immediately clear that the final term is
subleading. However, for near-massless fields, ν ∼ 3=2, the
first and second terms give a similar contribution. As one
increases the mass of the field, the second term is in fact the
leading contribution over the first term. So, it appears that
the contribution computed in Sec. II D is subleading.
However, for this work, we only care about the 4-point
function as a comparison tool between the stochastic theory
and QFT so we can use this subleading term is it appears in
the stochastic 4-point function.

APPENDIX C: SECOND-ORDER STOCHASTIC
PARAMETERS FOR MATCHING WITH

NLO TERM

For completeness, we will also include the matched
stochastic parameters if we choose to reproduce the NLO
term in the asymptotic expansion of the 2-point function in
perturbative QFT. This choice does not make a difference to
physical results. Repeating the procedure outlined in
Sec. III B 4, one obtains the stochastic parameters to
OðλH2=m2Þ as

m2
S ¼ m2

R þ λH2

8π2

�
−14þ 6γE − 3 ln 4þ 3 ln

�
M2

aðtÞH2

��
þOðλm2

RÞ ðC1aÞ

σ2qq ¼
H3αRνR
4π2βR

Γð2νRÞΓð32 − νRÞ43
2
−ν

Γð1
2
þ νRÞ

þ λH5ð−8þ 3 ln 4Þ
32π4m2

R
þOðλH3Þ; ðC1bÞ

σ2qp ¼ −
51λH6

32π4m2
R
þOðλH4Þ; ðC1cÞ

σ2pp ¼ H5β2RνR
4π2

Γð−2νRÞΓð32 þ νRÞ43
2
þνR

Γð1
2
− νRÞ

−
9λH7ð−1þ 6 ln 4Þ

4π4m2
R

þOðλH5Þ: ðC1dÞ
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