
Krylov spaces for truncated spectrum methodologies

Márton K. Lájer * and Robert M. Konik †

Division of Condensed Matter Physics and Material Science, Brookhaven National Laboratory,
Upton, New York 11973-5000, USA

(Received 10 September 2023; accepted 6 November 2023; published 26 February 2024)

We propose herein an extension of truncated spectrum methodologies, a nonperturbative numerical
approach able to elucidate the low energy properties of quantum field theories. TSMs, in their various
flavors, involve a division of a computational Hilbert space, H, into two parts, one part, H1 that is “kept”
for the numerical computations, and one part, H2, that is discarded or “truncated.” Even though H2 is
discarded, truncated spectrum methodologies will often try to incorporate the effects of H2 in some
effective way. In these terms, we propose to keep the dimension ofH1 small. We pair this choice ofH1 with
a Krylov subspace iterative approach able to take into account the effects ofH2. This iterative approach can
be taken to arbitrarily high order and so offers the ability to compute quantities to arbitrary precision.
In many cases it also offers the advantage of not needing an explicit UV cutoff. To compute the matrix
elements that arise in the Krylov iterations, we employ a Feynman diagrammatic representation that is then
evaluated with Monte Carlo techniques. Each order of the Krylov iteration is variational and is guaranteed
to improve upon the previous iteration. The first Krylov iteration is akin to the next-to-leading order
approach of Elias-Miró et al. [NLO renormalization in the Hamiltonian truncation, Phys. Rev. D 96,
065024 (2017)]. To demonstrate this approach, we focus on the (1þ 1d)-dimensional ϕ4 model and
compute the bulk energy and mass gaps in both the Z2-broken and unbroken sectors. We estimate the
critical ϕ4 coupling in the broken phase to be gc ¼ 0.2645� 0.002.
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I. INTRODUCTION

The nonperturbative study of quantum field theories
(QFTs) is one of the great challenges of contemporary
physics. There are several approaches available to study
nonperturbative aspects of QFTs, each having their own
successes and limitations. Examples include the lattice
Monte Carlo approach [1,2], the functional renormalization
group [3,4], equal-time [5,6] and light cone Hamiltonian
truncation methodologies [7–9], tensor networks (matrix
product states) in both their discrete form [10–12] and their
continuous incarnation [13–16], large-N expansions [17],
Borel resummations and resurgence [18–22], the conformal
bootstrap [23–25] and integrability [26–28]. The above
methods have achieved spectacular successes, including the
reproduction of the hadronic spectrum in quantum chromo-
dynamics with lattice Monte Carlo methods [2], the precise
values for the critical exponents in the 3D Ising conformal

field theory from the conformal bootstrap [25], and an
efficient algorithm for computing the anomalous dimen-
sions of general operators in planar N ¼ 4 super Yang-
Mills theory from integrability.
Nonetheless a large number of questions remain open,

and difficulties remain to solve. To give a few examples, it
is generally difficult to compute scattering amplitudes and
other matrix elements in a fully nonperturbative way,
especially when the asymptotic states involve bound states
or topological excitations. This holds even for a simple
model like the 1þ 1d ϕ4 theory. The control of such matrix
elements is potentially important as baryons (and nuclei)
appear as solitons in the low-energy chiral effective (e.g.
Skyrme) models used in nuclear physics [29–31]. Progress
is possible with Hamiltonian methods, where the Lüscher
formula provides direct access to elastic 2 → 2 scattering
below the inelastic threshold, while spectral sums of form
factors can be used to obtain scattering information above
threshold [9].
It is also hard to analyze systems out of thermodynamic

equilibrium. Circumstances in which this occurs include
relativistic heavy ion collisions, the nucleosynthesis of the
early Universe [32], as well as experiments involving
ultracold quantum gases [33,34]. A simple example when
the real time dynamics of a (1þ 1)-dimensional QFT can
be studied directly with Hamiltonian methods is the
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calculation of overlaps and expectation values after a
sudden quench [35–43].
Finally, it is challenging to study systems at finite particle

density and zero temperature. For example, the phase
diagram of high-Tc superconductor cuprates are often
enriched by a quantum critical point at T ¼ 0, around which
the long wavelength excitations are described by the spin-
fermion model: an effective ð2þ 1ÞD field theory involving
scalar bosons interactingwith nonrelativistic fermions in the
presence of a Fermi sea. The study of such models by path
integral methods is hindered by the so-called sign problem,
while conventional Hamiltonian approaches face difficulties
due to the enormous dimensionality of the truncated Hilbert
space needed to reach sensible accuracy.
It is anticipated [44,45] that these difficulties will be

overcome with the eventual development of quantum
computers. However, despite rapid progress in this direc-
tion, a nontrivial simulation of any quantum field theory on
a physical quantum computer is still some ways in the
future. Development of new methods serves a double
purpose: on the one hand, they may break new paths
towards the solution of the above challenges. On the other
hand, they are interesting in the pursuit of finding the
optimal classical algorithms to benchmark the evolving
quantum computers on simpler toy models.
Of the methods listed above, truncated spectrummethod-

ologies (TSMs) are perhaps the least explored, particularly
for QFTs in two or more spatial dimensions. TSMs are a
Hamiltonian approach that is essentially the Rayleigh-Ritz
variational principle applied to a QFT. Two distinct variants
of TSMs exist, one where the standard equal time quan-
tization is employed [5,6], and where light cone quantiza-
tion is employed [7,8]. We focus here on the first. TSM is a
numerical approach well suited to study the low-energy
spectrum as well as vacuum expectation values and matrix
elements of operators. As such, it aims to be an alternative
to lattice Monte Carlo methods, especially in situations
where the latter is plagued by the sign problem.
The method was originally proposed by Yurov and

Zamolodchikov [5] to study the relevant perturbation of
the nonunitary Lee-Yang conformal minimal model. TSMs
were soon extended to relevant perturbations of other
conformal minimal models [46–48], deformations of the
c ¼ 1 boson [49,50], and eventually to perturbations of a
noncompact boson [51–54].
TSMs have been used extensively in the context of

(1þ 1)-dimensional field theories, where they are com-
monly employed to calculate the bound state spectrum [47],
matrix elements [55,56], two-point correlation functions
[57], elastic S-matrix phases [54,58] and even inelastic
information [59], entanglement entropy [60–63] and more.
Recently, they have even been extended to study QFTs on
an anti–de Sitter background [64]. Due to their finite
volume formulation, equal-time TSMs provide a conven-
ient way to compute the finite volume corrections to

various observables [55,56,65–67]. Recently, TSMs have
also been extended to 2þ 1D models in both the light
cone [9,68] and the equal-time [69] framework.
In particular, TSMs are well suited to study the spectrum

and matrix elements of bound states and topological exci-
tations. For example, the kink-antikink elastic scattering
phase can be obtained in the strongly coupled regime of the
broken phase ϕ4 model [54]. TSMs are also an ideal tool to
study QFTs subject to sudden (or gradual) changes of the
couplings in the Hamiltonian or the environment, called
quenches [35,36,40]. Real-time correlators in the presence of
these quenches are available to be computedwithTSMs [57].
Periodic driving and Floquet dynamics was analyzed in [70].
False vacuum decay was studied in [43].
However, it is generally difficult to implementHamiltonian

truncations for systems featuring more than one space
dimensions, multiple fields and/or gauge constraints. In this
paper, we present an incarnation of Hamiltonian truncation
that aims to improve on the majority of the aforementioned
issues.
TSMs are typically applied to a problem where the

Hamiltonian comes in two parts:

Ĥ ¼ Ĥ0 þ V̂: ð1Þ
Here Ĥ0 is some Hamiltonian over which one has complete
control (i.e. Ĥ0 is that of a conformal field theory with
known structure constants or of a free boson or fermion).
The space of eigenstates of Ĥ0 often provides the computa-
tional basis under which TSMs play out. The second term
of the Hamiltonian, V̂, is some interaction whose effects
one is trying to understand. To begin to apply the TSM to
understanding this problem, one first makes a division of
the computational Hilbert space, H, into two parts,

H ¼ H1 ⊕ H2: ð2Þ
In the simplest (and original) form of TSMs, this division is
predicated upon energy as determined by Ĥ0. In this
particular case, H1 then consists of a finite basis of
emphasized states and the effects of the (infinite dimen-
sional)H2 are ignored entirely. For example in the study of
the relevant perturbation of the Lee-Yang conformal
minimal model [5], the computational Hilbert space, H
consists of the Lee-Yang conformal field theory space of
states, H1 consists of conformal states with energy (as
defined by the conformal Hamiltonian) less than some
cutoff, and H2 all states above this cutoff. In this way the
TSM reduces the solution of a quantum field theory to an
exact diagonalization. More sophisticated versions of the
TSM build on this crude (but surprisingly often accurate)
approximation by computing how the discarded part of the
Hilbert space, H2, affects the physics. Taking into account
the effects of H2 can be done purely numerically in the
spirit of a numerical renormalization group [71] or ana-
lytically where the effects of integrating out H2 leads to a
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new effective Hamiltonian defined on H1 [72–76]. It is at
this stage, in how to deal with H2, that we offer a novel
approach.
In most applications of TSMs, the dimension ofH1 is on

the order of 103 to 107. Here we instead explore keeping the
dimension ofH1 small, less than 100.Keeping dimH1 small
mandates that we account for the effects of H2. Here we
propose to do so by using a Krylov subspace iterative
approach. In principle, this iterative approach can be taken to
arbitrarily high order and so offers the ability to compute
quantities to arbitrary precision.While dimH2 ¼ ∞, at each
Krylov order we do not need to introduce an explicit UV
cutoff on the Hilbert space. We are able to avoid doing so
becausewe compute thematrix elements that arise at a given
Krylov iteration by employing a Feynman diagrammatic
representation that is then evaluated with Monte Carlo
techniques. In general these diagrams can be regularized
with conventional UV cutoffs from the perturbative liter-
ature. In particular, in the 1þ 1dϕ4model they areUV finite
after normal ordering and do not require the introduction of a
cutoff to be evaluated. Importantly each Krylov iteration is
variational and is guaranteed to improve upon the previous
iteration. The first Krylov iteration is akin to the next-to-
leading order (NLO) approach of Elias-Miró et al. [72].
The paper is organized as follows. In Sec. II we begin

with an overview of the truncated spectrum methodology
and its bipartition of the computational Hilbert space. We
show how the notion of a “tail” state, first introduced in a
TSM context by Ref. [72], arises from this partition. We
then show how the tail states can be computed through an
iterative, continued fraction approach. This approach
involves writing the tail states in terms of a Krylov
subspace formed by the action of products of a resolvant
operator T̂. We give a variational estimate to each iteration
of the continued fraction, which is in turn a variational
estimate of the ground state energy of each symmetry
sector, i.e., guaranteed to form an upper bound on the exact
energy, and that each iteration of the continued fraction
improves upon that before. The discussion in Sec. II is
model agnostic.
In Sec. III we then turn to applying it to the ϕ4 model in

1þ 1d. There we provide a brief review of the properties of
the model in both its unbroken and broken phase. We
then turn to defining the computational space of states and
the division of the Hilbert space, H into two parts,
H ¼ H1 ⊕ H2. We discuss in particular a division termed
“zero-mode separation,” where H1 consists of the zero-
mode eigenstates that arise from a ϕ4 Hamiltonian shorn of
its oscillator modes.
Having established the computational basis that we will

use, we turn to numerical details on how the TSM
Hamiltonian is evaluated in the Krylov subspace. The first
detail that we discuss is how matrix elements of the
Hamilitonian are computed. Here we show that these
matrix elements can be written in terms of standard ϕ4

Feynman diagrams and that these diagrams in turn can be
evaluated through Monte Carlo methods. Formally, the
exact ground state energy E� ¼ E appears explicitly in the
Krylov Hamiltonian. Thus in principle finding the eigene-
nergies of this Hamiltonian must be done in a self-
consistent manner. However we will argue that E� is
essentially a parameter of the Krylov basis and can be
traded for another set of states with no explicit dependence
on E�. This will allow us to choose a basis arising as a
natural tensor product of the zero-mode states and the states
with oscillators.
Having finished with how we will implement the method

in the context of ϕ4, we then turn to results. In Sec. IV we
discuss results for the broken phase of the model. There we
present results for the kink mass and the value of the critical
coupling. In Sec. V we present results on ϕ4’s disordered
phase, both the ground state energy and the mass of the first
excited state. In Sec. VI we demonstrate that our method
likely provides a better estimate of the low-lying eigen-
vectors in the theory (as opposed to eigenenergies) than
traditional truncated spectrum methods.
In the final section, Sec. VII, we turn to the discussion of

the method. We consider two points. In the first, we can in
principle compute the method at arbitrary high Krylov
iterative order. However in practice, we are limited by the
ability to perform the numerical evaluation of n-point
functions of the ϕ4 interaction. In this paper the highest
Krylov order that we go to is 3. While we have some
understanding of how to extrapolate in Krylov order, this
issue remains in general open. In the second, we discuss the
prospects of applying the method to higher-dimensional
field theories. We believe that the method, because it
employs Feynman diagrammatic representations, has a
good chance of being generalized to at least linear sigma
models in 2þ 1D. We consider this to be an exciting
possibility. While applications of TSMs to 2þ 1D QFTs
have only recently appeared, TSMs have been applied to
1þ 1d QFTs for over three decades.

II. TRUNCATED SPECTRUM METHODS

A. Overview

QFT is essentially quantum mechanics combined with
Lorentz invariance. More precisely, a QFT can be imagined
as a limit of a quantum mechanics system as the number of
degrees of freedom is taken to infinity. An immediate
consequence of this is that numerical methods developed
for quantum mechanics are potentially applicable to QFT
problems as well.
One such method is the Rayleigh-Ritz-Löwdin approach

coming from quantum chemistry [77–79]. In the context
of quantum field theories with infinite dimensional
Hilbert spaces, this approach often comes with the moniker
“truncated spectrum methods” or in its more narrow appli-
cation to perturbed conformal field theories in 1þ 1d,
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“truncated conformal spectrum approaches” [5,46]. Let us
write our infinite dimensional Hilbert space in which our
quantum field theory operates as

H ¼ fjciig∞i¼1; ð3Þ

where we suppose the jcii are orthonormal. Now let Ĥ be a
Hamiltonian defined on this spacewith eigenstates fjψ iig∞i¼1

and their corresponding eigenenergies Ei:

Ĥjψ ii ¼ Eijψ ii: ð4Þ

Since H is infinite dimensional, there is generally no easy
way to approximate jψ ii and Ei to arbitrary precision. To
alleviate this problem, one can divide the Hilbert space into
two parts:

H ¼ H1 ⊕ H2: ð5Þ

Here H1 is a finite dimensional subspace and has been
chosen to contain, in some sense, the most “important” states
in the basis fjciig∞i¼1 for the problem. We will return to this
notion of “importance” later in the paper.
With this division, the Schrödinger equation for our

Hamiltonian becomes, in block form,�
Ĥ11 Ĥ12

Ĥ21 Ĥ22

��
c1
c2

�
¼ E

�
c1
c2

�
: ð6Þ

Here the vector ðc1c2Þ should be understood, schemati-
cally, as a vector in the bipartite Hilbert space:

ðc1c2Þ ¼
X
i∈H1

αijcii þ
X
i∈H2

αijcii: ð7Þ

The simplest approximation that we can make is to suppose
that Ĥ12 and Ĥ21 are small and thus can be ignored. We
then can solve the restricted, numerically finite problem, of
finding the eigenvalues of Ĥ11:

Ĥ11jψ trunc
1i i ¼ Etrunc

i jψ trunc
1i i: ð8Þ

Often this approximation is excellent. This can be seen in
problems where the Hamiltonian comes in two parts:

Ĥ ¼ Ĥ0 þ V̂: ð9Þ

Here Ĥ0 is, typically, diagonal in terms of the basis
fjciig∞i¼1, i.e.

Ĥ0jcii ¼ E0ijcii; ð10Þ

while V̂ is an operator that mixes this basis. With the
Hamiltonian in this form, it is natural to make the division

between H1 and H2 on the basis of the states jcii as
determined by Ĥ0: H1 is composed of a finite set of low
energy states:

H1 ¼ spanfjcii; E0i < Etruncg; ð11Þ

while H2 consists of the complement: H2 ¼ HnH1. This
form of the Hamiltonian was present in two of the first uses
of truncated spectrum methodologies to study properties of
perturbed conformal field theories, [5,46]. Here the dimen-
sion of H1 was kept to be very small, a few tens, yet the
answers generated were accurate to several significant
figures. Here the reason why the methodology worked
so well was because the operator V̂ was highly relevant, i.e.
V̂12 was in some sense small and only mixed the two parts
of the Hilbert space weakly. But it will often be the case that
one wants to understand theories where V̂12 is not small.
In cases where it is not possible to ignore the mixing of

H1 and H2 induced by Ĥ12=Ĥ21, we need a strategy to
incorporate the effects of this mixing. Such strategies can
be numerical or they can be analytical. Numerically, it is
possible to adapt a Wilsonian numerical renormalization
group to the problem [71]. Analytically, a common way to
improve precision is to perform perturbation theory to
leading order in V̂:

δEtrunc
i ¼ hψ trunc

1i jV̂12

1

Etrunc
i −H0;22

V̂21jψ trunc
1i i: ð12Þ

This is of course not standard perturbation theory in V̂. This
operator’s effects in mixing states in H1 are being
accounted for exactly. What is instead being treated
perturbatively in V̂ is the mixing between H1 and H2.
While computing this correction can sometimes improve

the results, often it does not. In response, one could imagine
going further and computing higher corrections in the
mixing between the two parts of the Hilbert space.
However, it can be that the perturbative series in V̂ is
asymptotic. This is the case in studying the ϕ4 perturbation
of a scalar real field in 1þ 1d [72]. It is also the case in
applying truncated spectrum methods to the sinh-Gordon
model [58]. We thus want to develop a framework where
these corrections can be analyzed systematically and sense
made of any asymptotic series.
The first step is to recast the exact problem so that it a

finite dimensional one. The full Schrödinger equation reads
when broken into components as

Ĥ11jc1i þ Ĥ12jc2i ¼ Ejc1i;
Ĥ21jc1i þ Ĥ22jc2i ¼ Ejc2i: ð13Þ

We can eliminate jc2i from this equation leaving us with a
single Schrödinger equation for the first N1 ≡ dimH1

eigenvalues and eigenstates of the problem:

MÁRTON K. LÁJER and ROBERT M. KONIK PHYS. REV. D 109, 045016 (2024)

045016-4



Ejc1i ¼ ðĤ11 þdΔHÞjc1i;dΔH≡ Ĥ12

1

E − Ĥ22

Ĥ21: ð14Þ

While we have recast the problem into a finite dimensional
one, it is still in general intractable because we cannot

compute the matrix elements of dΔH.
To begin to attack this issue, we take the stance of

Ref. [72]: we recognize that if one is interested in the
obtaining the exact values of the first N1 eigenvalues of the
problem, one does not need to deal with the infinite part of
Hilbert space,H2, in its entirety. Rather the subspace ofH2

defined by

Ht ≡ span

�
1

E − Ĥ22

Ĥ21jcii
�

N1

i¼1

⊂ H2 ð15Þ

is sufficient. Following Ref. [72], we call the states in this
span, “tail” states.
Considering the problem in the expanded (but still finite

dimensional) spaceH1 ∪ Ht, we can write the Hamiltonian
in the form

�
Ĥ11 Ĥ1t

Ĥt1 Ĥtt

��
c1
ct

�
¼ EĜ

�
c1
ct

�
; Ĝ¼

�
1 0

0 Ĝtt

�
;

Ĥ1t ¼ Ĥ12P̂t; Ĥt1 ¼ P̂tĤ21; Ĥtt ¼ P̂tĤ22P̂t; ð16Þ

where P̂t is a projector ontoHt and Ĝtt is the inner product
matrix of the tail states—while the basis in H1 is ortho-
normal, the tail states are not so. While this recasting of the
problem does not in itself solve our problem—not being

able to compute the matrix elements of dΔH amounts to be
unable to write down the exact form of the tail states—it
does provide us with a basis for finding systematic, iterative
approximations for the tail states. This we do in the next
section.

B. Tail states as continued fractions

Here we construct in an iterative fashion expressions for
the tail states that have a continued fraction form. The basis
on which we develop the continued fraction will be to
exploit the division of the Hamiltonian into a “free” part Ĥ0

and an interacting part V̂ as in Eq. (9). Our presentation
here is based on Ref. [80].
The exact tail states

jTli≡ 1

E − Ĥ22

V̂21jcli; l ¼ 1;…; N1; ð17Þ

can be rewritten implicitly as

jTli ¼
1

E − Ĥ0;22

V̂21jcli þ
1

E − Ĥ0;22

V̂22jTli;

≡ jtl;0i þ T̂jTli: ð18Þ

We can think of jtl;0i as a zero order in V̂22 approximation
to the full tail state jTli while T̂jTli encapsulates the first
and higher order terms of jTli in V̂22. Our goal here is to
develop such terms systematically.
To do so, we want to define an operator, T̂l;1, which

separates from jTli the contribution of jtl;0i, i.e.

T̂l;1jtl;0i ¼ 0: ð19Þ
The operator that does this is

T̂l;1 ¼ T̂ −
T̂jtl;0ihtl;0jT̂
htl;0jT̂jtl;0i

: ð20Þ

We can use this definition to write the exact tail state as
jTli as

jTli ¼ jtl;0i þ
1

1 − T̂l;1

T̂jtl;0i
htl;0jT̂jTli
htl;0jT̂jtl;0i

: ð21Þ

Equation (21) is almost what we are looking for in terms of
isolating the next correction beyond jtl;0i to the tail state
jTli in the form of a continued fraction. The only problem
with it is that jTli appears on both sides of this equation. To
evade this, we multiply Eq. (21) with htl;0jT̂ from the left
and rearrange terms to yield

jTli ¼ jtl;0i þ
htl;0jT̂jtl;0i

htl;0jT̂jtl;0i − htl;0jT̂jTl;1i
jTl;1i; ð22Þ

where we have defined jTl;1i as

jTl;1i ¼
1

1 − T̂l;1

jtl;1i; jtl;1i≡ T̂jtl;0i: ð23Þ

At the next order of approximation, we can write

jTl;1i ≈ jtl;1i if kT̂l;1T̂jtl;0ik ≪ 1; ð24Þ

giving us an approximate for the exact tail state jTli:

jTli ¼ jtl;0i þ
htl;0jT̂jtl;0i

htl;0jT̂jtl;0i − htl;0jT̂jtl;1i
jtl;1i: ð25Þ

We can continue this expansion by repeating the process
with jTl;1i. We define an operator T̂l;2 that projects from
jTl;1i the contribution of jtl;1i:

T̂l;2 ¼ T̂l;1 −
T̂l;1jtl;1ihtl;1jT̂l;1

htl;1jT̂l;1jtl;1i
; T̂l;2jtl;1i ¼ 0: ð26Þ
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As before we can then write

jTl;1i ¼ jtl;1i þ
htl;1jT̂l;1jtl;1i

htl;1jT̂l;1jtl;1i − htl;1jT̂l;1jTl;2i
jTl;2i;

jTl;2i ¼
1

1 − T̂l;2

jtl;2i; jtl;2i ¼ T̂l;1jtl;1i: ð27Þ

Here we have the option of approximating jTl;2i as jtl;2i,
valid if

kT̂l;2jtl;2ik ≪ 1:

We can continue this process iteratively, defining a
sequence of states jTl;ni; jtl;ni and operators, T̂l;n defined as

T̂l;n ¼ T̂l;n−1 −
T̂l;n−1jtl;n−1ihtl;n−1jT̂l;n−1

htl;n−1jT̂l;n−1jtl;n−1i
;

0 ¼ T̂l;nþ1jtl;ni;

jTl;ni ¼ jtl;ni þ
htl;njT̂l;njtl;ni

htl;njT̂l;njtl;ni − htl;njT̂l;njTl;nþ1i
jTl;nþ1i;

jTl;ni ¼
1

1 − T̂l;n

jtl;ni;

jtl;ni ¼ T̂l;n−1jtl;n−1i: ð28Þ

This sequence approximating the exact tail states can be
terminated at finite order by making the approximation

jTl;nþ1i ≈ jtl;nþ1i ¼ T̂l;njtl;ni: ð29Þ

We stress that the correction to jTli beyond jtl;0i is not
merely one higher order in V̂ but is some resummation of
terms in powers of V̂. The resulting “expansion” is much
better behaved than naive perturbation theory, with a
bounded residual norm. This can be seen as follows.
Notice that the vectors fjtl;ki; 0 ≤ k ≤ nþ 1g span the
Krylov subspace of dimension nþ 2, although they have a
tridiagonal Gram matrix. The approximation Eq. (29) is
equivalent to projecting the matrix T̂ into this Krylov
subspace. Then the recursion in Eq. (28) constructs the
solution to the projected counterpart of Eq. (18). Without
loss of generality, we assume that the system Eq. (18) is real
(for complex Hermitian Ĥ one needs to separate the real
and imaginary parts). In turn, the solution of the projected
system is equivalent to minimizing the residual norm
kð1 − T̂ÞjTli − jtl;0ik with the vector jTli restricted to
the Krylov subspace [81]. This residual norm is guaranteed
to be a nonincreasing function of the Krylov dimension.
Whenever the operator ð1−T̂Þ−1¼ðĤhh−EÞ−1ðĤ0;hh−EÞ
is bounded, boundedness of the residual norm implies the
boundedness of the error norm kjTli − ð1 − T̂Þ−1jtl;0ik.

C. A variational improvement

The takeaway point of the above calculation is that we
have recast the exact tail states jTli as a linear combination
of states

jTli ¼
XNT

k¼1

τlkjt̃lki ð30Þ

with basis vectors

jt̃lki ¼ T̂k−1 1

E − Ĥ0;22

V̂21jcli: ð31Þ

In the above, we have truncated our approximation for the
tail states at order NT. The iterative procedure described in
the previous section gives the form of the nonperturbative
coefficients τlk. However rather than compute the coeffi-
cients out to some order, we are going to treat them as
variational parameters that are chosen so as to minimize the
energy.
We do so by starting from a tail-extended basis given by

the combination of the original low energy Hilbert space,
H1, with jt̃lki:

H1 ∪ fjt̃lki; l ¼ 1;…; N1; k ¼ 1;…; NTg: ð32Þ

This computational basis has dimension N1ðNT þ 1Þ.
Because these basis states are not necessarily orthogonal,
we set up a generalized eigenvalue problem in block matrix
form as

0BBBBBBBBB@

H11 Hð1Þ
1t Hð2Þ

1t … HðNTÞ
1t

Hð1Þ
t1 Hð11Þ

tt Hð12Þ
tt

..

.

Hð2Þ
t1 Hð21Þ

tt Hð22Þ
tt

..

.

..

. . .
. ..

.

HðNT Þ
t1 … … … HðNTNT Þ

tt

1CCCCCCCCCA

0BBBBBBBB@

c1
t̃1
t̃2

..

.

t̃NT

1CCCCCCCCA

¼E

0BBBBBB@

1 0 0 … 0

0 Gð11Þ Gð12Þ … Gð1NT Þ

0 Gð21Þ Gð22Þ …

..

. . .
.

0 GðNT1Þ � � � � � � GðNTNTÞ

1CCCCCCA

0BBBBBB@

cl
t̃1
t̃2

..

.

t̃NT

1CCCCCCA: ð33Þ

Recalling that the operator T̂ was defined in Eq. (18) as

T̂ ¼ 1

E − Ĥ0;22

V̂22; ð34Þ
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the matrix elements of the block matrices H11, H
ðnÞ
1t , H

ðnmÞ
tt

are defined as

H11;ll0 ¼ hcljĤ11jcli;

HðnÞ
1t;ll0 ¼ hcljV̂12T̂

n−1 1

E −H0;22
V̂21jcli;

HðnmÞ
tt;ll0 ¼ hcljV̂12

1

E −H0;22
ðT̂n−1Þ†Ĥ22

× T̂m−1 1

E −H0;22
V̂21jcli;

¼ HðnþmÞ
1t;ll0 − Hðnþm−1Þ

1t;ll0 þ EGðnmÞ
ll0 ; ð35Þ

and the nontrivial elements of the Gram matrices are
defined by

GðnmÞ
ll0 ¼ hcljV̂12T̂

n−1
�

1

E −H0;22

�
2

ðT̂m−1Þ†V̂21jc0li: ð36Þ

D. The NLO approximation of Ref. [72] and beyond

As we have stated, Ref. [72] introduced the idea of
working with a basis formed from H1 and the span of the
tail states, Ht. However Ref. [72] did not attempt to
construct the exact tail states of Eqs. (22) and (28).
Instead they examined the leading approximation to the
tail states of the form

jt̃l1i ¼
1

E −H0;22
H21jcli ð37Þ

and set up the truncated Hamiltonian as

 
H11 Hð1Þ

1t

Hð1Þ
t1 Hð11Þ

tt

!�
c1
t̃1

�
¼ E

�
1 0

0 Gð11Þ

��
cl
t̃1

�
ð38Þ

They termed this approximation NLO. In this paper we will
also explore variational approximations that go two orders
beyond this—taking the eigenvalue problem in (33) with
N ¼ 2—we term this 2NLO.

0B@H11 Hð1Þ
1t Hð2Þ

1t

Hð1Þ
t1 Hð11Þ

tt Hð12Þ
tt

Hð2Þ
t1 Hð21Þ

tt Hð22Þ
tt

1CA
0B@cl
t̃1
t̃2

1CA¼E

0B@1 0 0

0 Gð11Þ Gð12Þ

0 Gð21Þ Gð22Þ

1CA
0B@cl
t̃1
t̃2

1CA
ð39Þ

and N ¼ 3 (we term this 3NLO)

0BBBBB@
H11 Hð1Þ

1t Hð2Þ
1t Hð3Þ

1t

Hð1Þ
t1 Hð11Þ

tt Hð12Þ
tt Hð13Þ

tt

Hð2Þ
t1 Hð12Þ

tt Hð22Þ
tt Hð23Þ

tt

Hð3Þ
t1 Hð13Þ

tt Hð32Þ
tt Hð33Þ

tt

1CCCCCA
0BBB@

cl
t̃1
t̃2
t̃3

1CCCA

¼ E

0BBB@
1 0 0 0

0 Gð11Þ Gð12Þ Gð13Þ

0 Gð21Þ Gð22Þ Gð23Þ

0 Gð31Þ Gð32Þ Gð33Þ

1CCCA
0BBB@

cl
t̃1
t̃2
t̃3

1CCCA ð40Þ

To this point, this section has presented a general
formalism independent of particular models and particular
choices of H1 and H2. For a model with the simple

structure of Eq. (9), matrix elements of HðnmÞ
tt;ll0 involve

nþmþ 1 powers of the interaction: at most 3 at NLO
order, 5 at 2NLO, and 7 at 3NLO. In the next section, we
turn to these issues in the context of the ϕ4 scalar field
theory.

III. IMPLEMENTING THE METHODOLOGY
ON THE ϕ4 THEORY

The discussion in Sec. II was completely general and
was presented independent of any model. It also did not
specify certain crucial implementation details that would be
needed in any actual application of the methodology. In
particular, it did not indicate how we intended to divide the
computational Hilbert space into H1 and H2. And we did
not discuss how we are going to compute the matrix

elements of HðnÞ
1t , H

ðnÞ
t1 , and HðnmÞ

tt . We take up these tasks
in this section in the context of the ϕ4 theory.

A. Review of ϕ4 theory

The two-dimensional ϕ4 theory corresponds to the
normal ordered Hamiltonian

Ĥ ¼ Ĥ0 þ V̂;

Ĥ0 ¼
Z

dx∶
π̂ðxÞ2
2

þ ð∂xϕ̂Þ2
2

þm2
0

2
ϕ̂ðxÞ2∶m0;∞;

V̂ ¼
Z

dx∶
�
g2 −

m2
0

2

�
ϕ̂ðxÞ2 þ g4ϕ̂ðxÞ4∶m0;∞; ð41Þ

where g4 > 0 and the normal ordering is understood with
respect to the mass scale m0 and at infinite volume. The
Hamiltonian is invariant against the global Z2 transforma-
tion ϕ̂ðxÞ → −ϕ̂ðxÞ in addition to Poincaré invariance and
spatial parity symmetry. Classically, separating the quad-
ratic term into two pieces is of course redundant. In the
quantum theory, different choices for Ĥ0 are connected by
finite a renormalization of the couplings.
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In finite volume, L, Lorentz symmetry is lost but
translation invariance persists. The periodic finite volume
mode expansion of the field ϕ̂ takes the form

ϕ̂ðτ;xÞ¼
X∞
n¼−∞

1ffiffiffiffiffiffiffiffiffiffiffi
2Lωn

p ðâneiknx−ωnτþ â†ne−iknxþωnτÞ; ð42Þ

with wave number kn ¼ 2πnL−1 and frequency ωn ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ k2n
p

, n∈Z. The finite volume oscillators are subject
to the usual Fock commutation relations,

½ân; â†m� ¼ δnm: ð43Þ

The Hilbert space in which Ĥ acts can be built up from the
vacuum j0i using the creation operators â†n. A general Fock
basis vector takes the form

jψ…;n−1;n0;n1;…i ¼
Y∞

k¼−∞
ðâ†kÞnk j0i: ð44Þ

In practice it is more feasible to work with operators normal
ordered at finite volume L. Strictly speaking this yields a
different regularization scheme. The schemes can be
connected by applying finite, volume-dependent correc-
tions to the coefficients g2 and g4. A derivation for these
corrections is provided in Appendix B. The explicit form of
the Hamiltonian, expressed with finite volume normal
ordering, reads

Ĥ ¼
Z

dx∶
π̂2

2
þ ð∂xϕ̂Þ2

2
þ ĝ2ϕ̂ðxÞ2 þ g4ϕ̂ðxÞ4∶m0;L

þ E0ðm0; LÞ; ð45Þ

where we introduced

g02 ¼ g2 þ 6g4zðm0LÞ;

E0ðm0; LÞ ¼ m0e0ðm0LÞ þ L

�
g2 −

m2
0

2

�
zðm0LÞ

þ 3Lg4zðm0LÞ2: ð46Þ

The functions zðxÞ and e0ðxÞ are defined in Eqs. (B10) and
(B14), respectively.
The model possesses two phases. Classically, for g2 > 0,

the ground state is invariant with respect to the parity Z2

symmetry, while for g2 < 0 the symmetry is spontaneously
broken. In the quantum model, the situation is more
complicated due to the presence of the additional energy
scale m introduced by normal ordering. In particular,

a duality emerges between a theory with gð1Þ2 ¼ m2
1

2
and

another one with gð2Þ2 ¼ − m2
2

4
, the normal ordering scales

fixed to m1 and m2, respectively, provided that the

dimensionful quartic coupling agrees gð1Þ4 ¼ gð2Þ4 and
the relation

log
g4
m2

1

−
πm2

1

3g4
¼ log

g4
m2

2

þ πm2
2

6g4
ð47Þ

holds [53]. This is called the Chang duality and is a weak-
strong duality in the quartic coupling. A consequence is
that the Ising critical point and the broken phase can be
reached starting from the symmetric phase and increasing
the quartic coupling g4 at fixed g2. We provide a collection
of estimates for the location of the critical point in the
literature in Table I.

1. Symmetry preserving phase

In the symmetry preserving phase, there is a single,
self-interacting excitation that correspond to the elementary
fluctuations of the field. The bulk energy density, E0, has
been calculated to 8 loops in [18], yielding (g ¼ g4=ðm2

0Þ)

E0

m0

¼ −
21ζð3Þ
16π3

g2 þ 27ζð3Þ
8π4

g3

− 0.116125964ð91Þg4 þ 0.3949534ð18ÞÞg5
− 1.629794ð22Þg6 þ 7.85404ð21Þg7
− 43.02ð21Þg8 þOðg9Þ: ð48Þ

This is an asymptotic series, which can be resummed using
Borel techniques.
The physical mass M is given by the energy difference

of the lowest-energy one-particle state and the vacuum. It
can be obtained from the position of the pole in the
interacting two-point function, which, in turn, is accessible

TABLE I. Results for the critical point both in broken and
unbroken phases from the literature.

References Method Broken gc Unbroken gc

[18] PT+Borel resum 0.2620(45) 2.807(34)
[19] hϕi PT+Borel 0.290(20) 2.64(11)
[54] Fock space TSM 0.2656(86) 2.780(60)
[72] Fock space TSMþRG 0.2683(44) 2.760(30)
[10] MPS I 0.26707(28) 2.7690(20)
[10] MPS II 0.26797(11) 2.7625(8)
[82] LMC 0.2645(20)(11) 2.788(15)(8)
[83] LMCþ Borel 0.2697(15) 2.750(10)
[84] LMC 0.26779(49) 2.7638(35)
[12] TRG 0.2730(21) 2.728(14)
[85] OPT 0.2657(35) 2.779(25)
[86] Gilt-TNR 0.26672(32) 2.7715(23)
[87] Boundary MPS 0.266343(11) 2.774250(78)

This work 0.2645(20) 2.788(15)

MÁRTON K. LÁJER and ROBERT M. KONIK PHYS. REV. D 109, 045016 (2024)

045016-8



through a coupling expansion. The expansion is given
as [18]

M2

m2
0

¼ 1−
3

2
g2þ

�
9

π
þ63ζð3Þ

2π3

�
g3−14.655869ð22Þg4

þ65.97308ð43Þg5−347.8881ð28Þg6
þ2077.703ð36Þg7−13771.04ð54Þg8þOðg9Þ; ð49Þ

which is again a Borel resummable asymptotic series.

2. Symmetry broken phase

In infinite volume, where symmetry breaking is exact,
there is a doubly degenerate ground state. In finite
volume, instanton effects restore the symmetry, but the
energy splitting of the two vacua remains on the order of
e−MKL, where MK is the kink mass, given semiclassically
(g2 < 0, jg2j ≫ g4) as [88,89]

MK ¼ 2jg2j3=2
3g4

−2jg2j1=2
�
3

2π
−

1

4
ffiffiffi
3

p
�
þO

�
g4

jg2j1=2
�
: ð50Þ

The broken phase is enriched by a number of mesons,
resonances and topological kinks: The exact structure of the
spectrum also depends on the coupling. The bulk energy
density in the broken sector can be calculated by expanding
in the fluctuations around either vacua. Its perturbative
expansion in the coupling starts as [19]

Λ
m2

0

¼−
�
ψ ð1Þð1=3Þ

4π2
−
1

6

�
g−0.042182971ð51Þg2

−0.0138715ð74Þg3−0.01158ð19Þg4þOðg5Þ: ð51Þ

This series is also Borel resummable, but the naive series
provides a robust estimate in the weakly coupled branch
(g2 < 0, jg2j ≫ g4) of the broken phase.

B. The computational space of states

We now turn to how we will set up our computational
space of states. The first step in doing so is specify how we
are dividing the Hilbert space of the ϕ4 theory into two, i.e.
how we are choosing H1 and H2 in Eq. (5).
H1 consists of states in the zero mode sector of the

theory, i.e. states involving no oscillator modes, ân; n ≠ 0.
To explain this further, we follow [53,54] and single out the
zero mode part of the field ϕ̂ and its conjugate π̂:

ϕ̂ðxÞ ¼ ϕ0 þ ϕ̃ðxÞ; π̂ ¼ π0 þ π̃ðxÞ: ð52Þ

In Eq. (52) and in the following, we apply the following
notation. For an operator A acting only on the zero mode
subspace, we omit the hat. For an operator B̃ acting only in
the oscillator subspace, we apply a wide tilde. Whenever a

hatless operator is added to a wide tilded operator, it is
understood that they are tensored with the unity in the other
subspace, so that the addition is meaningful.
We then divide the Hamiltonian Ĥ into a zero modeHZM

and nonzero mode ĤNZM part:

Ĥ ¼ HZM þ ĤNZM;

HZM ¼ H0;ZM þ VZM;

ĤNZM ¼ H̃ðmÞ
0;osc þ V̂0;

V̂ ¼ V̂0 þ VZM; ð53Þ
with the free parts defined by

H0;ZM ¼ m0a
†
0a0;

H̃ðm0Þ
0;osc ¼

Z
dx∶

π̃2

2
þ ð∂xϕ̃Þ2

2
þm2

0

2
ϕ̃2∶m0;L;

¼
X
n≠0

ωnã
†
nãn: ð54Þ

There is some freedom in how one distributes V̂ between
VZM and V̂0 which we exploit in this work. One choice for
this division is given in Sec. III B 1.
We first describe our choice for H1 and H2 as described

in Eq. (5). Our choice for H1 is given by

H1 ¼ fjmi ⊗ j0̃igNZM
m¼1;

HZMjmi ¼ EðZMÞ
m jmi: ð55Þ

In forming H1, we use a finite dimensional subspace
spanned by the first NZM lowest energy eigenvectors of
HZM. HZM is an interacting Hamiltonian with a discrete
spectrum. The determination of the eigenstates jmi is easily
done numerically. To do so, we need to choose a basis in
which to represent jmi. Here we choose a massive oscillator
basis. Having specified H1, H2 then consists of all states
with nontrivial oscillator content, any states involving a
nonzero number of ã†n.
We now turn to specifying our tail state basis. For each

jmi∈H1, we define a sequence of tails given by [see
Eq. (31)]

jt̃mki ¼ T̂k−1 1

E − Ĥ0;22

V̂21jmi;

T̂ ¼ 1

E − Ĥ0;22

V̂22;

Ĥ0;22 ¼ P̂⊥ðHZM þ H̃ðmÞ
0;oscÞP̂⊥;

Ĥ21 ¼ P̂⊥Ĥð1 − P̂⊥Þ;
V̂22 ¼ P̂⊥V̂0P̂⊥; ð56Þ

where P⊥ is a projector onto H2.
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1. “Conventional” tails

An obvious choice for separation of V̂ intoVZM and V̂0 is
to take

VZM ¼ G2L∶ϕ2
0∶m0

þ g4L∶ϕ4
0∶m0

þ E0ðm0; LÞ;

V̂0 ¼
X4
n¼2

gn

Z
dx∶ϕ̃ðxÞn∶m0;L; ð57Þ

where we used the notations

g4 ¼ g41; g3 ¼ 4g4ϕ0; g2 ¼ G21þ 6g4∶ ϕ2
0∶m0

;

G2 ¼ g02 −
m2

0

2
: ð58Þ

In the above g02 and E0ðm0; LÞ are defined in Eq. (46). In
order to complete the computation we need to specify the
matrix elements of our basis. At first tail order [see
Eq. (38)], we can substitute the projected operators with
the unprojected ones in the relevant matrix elements. This is
because the extra terms induced by the projectors always
involve one-point functions of operators ∶ϕ̃n∶ for some
n ≥ 1, which are all zero. We obtain the following matrix
elements

ðH11Þmm0 ¼ hmjHZMjm0i ¼EðZMÞ
m δmm0 ;

ðHð1Þ
1t Þmt̃m01

¼hmjV̂12jt̃m01i

¼ hmjV̂0 1

E−HZM− H̃ðmÞ
0;osc

V̂0jm0i;

ðHð1Þ
t1 Þt̃m1m0 ¼ ht̃m1jV̂21jm0i ¼ ðHð1Þ

1t Þm0 t̃m1
;

ðHð1Þ
tt Þt̃m1 t̃m01

¼ht̃m1jV̂22jt̃m01i

¼ hmjV̂0 1

E−HZM− H̃ðmÞ
0;osc

V̂0 1

E−HZM− H̃ðmÞ
0;osc

× V̂0jm0i;
ðGð11ÞÞt̃m1 t̃m01

¼ht̃m1jt̃m01i

¼ hmjV̂0 1

ðE−HZM− H̃ðmÞ
0;oscÞ2

V̂0jm0i: ð59Þ

We provide similar expressions for the matrix ele-
ments involved in the eigensystem at second tail order
in Appendix C [see Eq. (39)]. In turn, these expressions can
be transformed into Euclidean multipoint functions of the
interaction V̂0 by using the integral representationZ

∞

0

τre−M̂τ ¼ r!

M̂rþ1
: ð60Þ

In particular, for the matrix element ðHð1Þ
1t Þmt̃m01

we obtain

ðHð1Þ
1t Þmt̃m01

¼ −L
Z

∞

0

dτe−E
ðZMÞ
m τ

Z
L

0

dx

× ðh∶ϕ̃2ðτ; xÞ∶∶ϕ̃2ð0Þ∶ihmjg2ðτÞg2ð0Þjm0i
þ h∶ϕ̃3ðτ; xÞ∶∶ϕ̃3ð0Þ∶ihmjg3ðτÞg3ð0Þjm0i
þ g24h∶ϕ̃4ðτ; xÞ∶∶ϕ̃4ð0Þ∶iÞ: ð61Þ

In order to implement our scheme we need to make a
choice for NZM. This choice is unproblematic. The lowest
eigenvalues of the full problem converge quickly in the
number, NZM, of kept zero-mode states. Typically NZM can
be kept to a number less than 10. And at least in certain
cases, the zero-mode Hamiltonian, HZM, encodes much of
the physics of the full problem. In such cases the effects of
the oscillator modes on the physics of the problem can be
considered as perturbative. We have found that this choice
of separation ofH1 andH2 works in both the unbroken and
broken phases of the theory.
In Fig. 1 we provide an example of our use of these tails.

There we compute the ground state energy in the unbroken
phase up to the third tail order for a nontrivial value g4 as a
function of NZM [90]. We see that after NZM exceeds 6, the
result reaches an asymptotic value.

2. Using numerically efficient tail states

The vanilla method described in the first part of this
section suffers from three technical drawbacks. First, the
computational basis is not a simple tensor product of states
inH1 and states built by acting with oscillator modes above
the oscillator vacuum. The evaluation of matrix elements
using Monte Carlo results in a linear algebra that scales
cubically with the number, NZM of zero mode states kept.

FIG. 1. The values of the ground state energy for the first three
tail orders computed at g4 ¼ 1.5, L ¼ 10 for different choices of
NZM. Blue, orange, green dots correspond to the first, second, and
third Krylov orders, respectively. The results appear to converge
rapidly as a function of NZM. We compare our results to data
provided to us by the authors of [72] (here shown as a dashed
black line with error bounds shown in gray).
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Second, the tail states depend on the coupling g4 in a
complicated way and so a separate computation is needed
for each value of g4 to be investigated. Third, the tails
depend explicitly on the exact energy level E�, which has to
be tuned self-consistently, and is in principle different for
the ground state and for excited states. These three draw-
backs make the method as described computationally
expensive.
We can avoid these issues if we define our tails with the

following choice for VðUÞ
ZM and V̂0ðUÞ. The superscript (U)

appears here to emphasize a different separation of V̂ as
compared to Eq. (57). We choose

VðUÞ
ZM¼−H0;ZMþE�;

V̂0ðUÞ ¼
Z

dx∶G2ϕ̂ðxÞ2þg4ϕ̂ðxÞ4∶m0;LþH0;ZM−E�: ð62Þ

We also alter our choice for our computational basis. We
change H1 to

H1 ¼ fjpi ⊗ j0̃igNZM
p¼1;

H0;ZMjpi ¼ EðZMÞ
p jpi: ð63Þ

Here EZM
p ¼ m0p. Now H1 consists of a basis of free

oscillator states jpi.
Neglecting for a moment the cutoff, NZM, in the zero-

mode subspace, tails of order K obtained with VðUÞ
ZM of

Eq. (62) can be written as a linear combination (lj ≥ 1)

jt̃pKi ¼
X∞
p0¼1

XK
Q¼1

XP
Q
j¼1

lj¼K

X4
kj¼2

cpKp0Q;fkg;flg · jp0i⊗ jt̃Q;fkg;flgi;

jt̃Q;fkg;flgi≡
YQ
j¼1

1

ð−H̃0;oscÞlj
∶ϕ̃kj∶ j0̃i; ð64Þ

where cpKp0Q;fkg;flg are numerical coefficients and j0̃i is the
ground state of H̃ðmÞ

0;osc. Rather than work with the tail states
jt̃pKi, we will use the larger set jp0i ⊗ jt̃Q;fkg;flgi directly as
a basis. One can see that this basis choice is a tensor product
of the zero-mode space and the space of oscillator states.
This will lead to a dramatic simplification in our numerical
evaluation of matrix elements.
Using states of the form jp0i ⊗ jt̃Q;fkg;flgi represents a

change of basis but it is not expected to spoil the
convergence of the method (see also Appendix A). In fact
this extension of the basis improves on the accuracy
through the increase of the dimension of the variational
basis. However one issue seen with this choice of basis is
that the Gram matrix rapidly becomes degenerate, particu-
larly at higher Krylov orders. To alleviate this issue we will
impose an extra restriction on the tails and use only lj ¼ 1

states (i.e. states that involve only single inverse powers of

H̃ðmÞ
0;osc in our numerical basis). We will refer to the resulting

subspace as the universal tail space.
The further reduction of this tail space to one spanned by

tails with at most K denominators will be called the
universal tail space of order K. Accordingly, when it does
not lead to confusion, henceforth we simplify the notation
of the lj ¼ 1 tails, specifying them by the list of operator
powers kl only: jt̃Q;fkg;flgi≡ jt̃fk1…kKgi. Note that the
resulting basis still has significantly higher dimensionality
than the number of conventional tails. At order K, the total
number of conventional tails is KNZM, while the dimension
of the full universal tail space truncated at order K
is NZM

P
K
q¼0 3

q ¼ NZMð3Kþ1 − 1Þ=2.
We reproduced the quantity depicted in Fig. 1 with

universal tails in Fig. 2. The error bars are smaller in the
latter plot, as more integrand evaluations were possible due
to the simpler numerics. In turn, this made possible to
explore various extrapolation approaches in Krylov orders,
which we discuss further in Secs. III C 3 and VA.
With higher denominator tails omitted, the method still

remains variational, but in principle prone to a small
systematic error due to the neglected basis states. We show
in Fig. 3 that, after normalizing to unity, the overlaps of all
lj > 1 tails appearing in Eq. (64) up to K ¼ 3 on the
universal tail space of order 2 is close to 1. While Fig. 3
includes tails from only the even parity sector, the situation
is entirely analogous in the odd sector. Thus the neglected
states lie almost entirely in the space of states that we do

FIG. 2. The values of the ground state energy for the first three
tail orders computed at g4 ¼ 1.5, L ¼ 10 using the approximate
tails for different choices of NZM. We again compare our results
with those found in [72]. Blue, orange, green dots correspond to
1, 2, and 3 Krylov orders, respectively. Also shown is the power
law extrapolation using statistically generated eigenvalues (red)
and its empirical improvement (purple). Again, the results
indicate rapid convergence as a function of Nkept. We compare
our results to data provided to us by the authors of [72] (here
shown as a dashed black line with error bounds shown as a thick
gray line around it). Here NMC;0 ¼ 108, Niter ¼ 50.
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keep. Further, since the tails jt̃Q;fkg;flgi are independent of
the couplings, so are their overlaps. Therefore, no signifi-
cant errors are expected to arise from omitting the higher
power denominators.
As another test of this modified computation basis, we

test our ability to represent the “conventional” tails in (56)
[with VZM defined in Eq. (57)] in our new basis. In Fig. 4,
we see that the overlaps of first order “conventional” tails
are close to one. These overlaps are defined as

ht̃m1jP̂Ujt̃m1i ¼
X
I;J;p;q

om1;p;IðG−1
U ÞIJδpqom1;q;J; ð65Þ

om1;p;fk1;…kKg ¼ ht̃m1jðjpi ⊗ jt̃fk1;…kKgiÞ; ð66Þ

where the indices I, J run over all universal tails up to order
K, and GU is the inner product matrix between universal
tails,

ðGUÞfk1;…kK1g;fk01;…k0K2g
¼ ht̃fk1;…kK1gjt̃fk01;…k0K2gi: ð67Þ

This remains true for a wide range of couplings, E�
parameters, and volumes. This completes a numerical
demonstration that replacing our original tail states with
jpi ⊗ jt̃fkgi is a very good approximation.
A particularly suitable form of the Hamiltonian is

gained by emphasizing its tensor product structure
relative to this new basis. Introducing the shorthand Ṽn ¼R
L
0 ∶ ϕ̃ðxÞn∶m0;Ldx, the Hamiltonian Ĥ can be written as

Ĥ ¼ ðH0;ZM þ VZMÞ ⊗ 1̃þ 1 ⊗ H̃0;osc

þ
X4
n¼2

gn ⊗ Ṽn; ð68Þ

with VZM as defined in Eq. (57) and gn defined in Eq. (58).
In our new basis, the needed matrix elements can be
reduced into matrix elements of Ṽn and 1̃ between the
universal tails:

ðH11Þpp0 ¼ δpp0 ðEð0Þ
p þ E0ðm0; LÞÞ þ G2Lð∶ϕ2

0∶ Þpp0 þ g4Lð∶ϕ4
0∶Þpp0 ;

ðHð1Þ
1t Þp;p0⊗t̃k

¼ δpp0 ðG2h0̃jṼ2jt̃ki þ g4h0̃jṼ4jt̃kiÞ þ 4g4ðϕ0Þpp0 h0̃jṼ3jt̃ki þ 6g24ð∶ϕ2
0∶Þpp0 h0̃jṼ2jt̃ki;

ðHð1Þ
t1 Þp⊗t̃k;p0 ¼ ðHð1Þ

1t Þp0;p⊗t̃k
;

ðHð11Þ
tt Þp⊗t̃k1 ;p

0⊗t̃k2
¼ ðH11Þpp0 ht̃k1 jt̃k2i þ δpp0 ðG2ht̃k1 jṼ2jt̃k2i þ g4ht̃k1 jṼ4jt̃k2i þ ht̃k1 jH̃ðmÞ

0;oscjt̃k2iÞ
þ 4g4ðϕ0Þpp0 ht̃k1 jṼ3jt̃k2i þ 6g24ð∶ϕ2

0∶Þpp0 ht̃k1 jṼ2jt̃k2i; ð69Þ

FIG. 3. Overlaps of normalized higher denominator tails with
the universal tail space of order 2 (see main text). Even parity
sector, m0L ¼ 10. Tails jt̃Q;fkg;flgi corresponding to numbered
points are as follows: (1) jt̃1;f2g;f2gi, (2) jt̃1;f4g;f2gi, (3) jt̃1;f2g;f3gi,
(4) jt̃1;f4g;f3gi, (5) jt̃2;f22g;f12gi, (6) jt̃2;f24g;f12gi, (7) jt̃2;f33g;f12gi,
(8) jt̃2;f42g;f12gi, (9) jt̃2;f44g;f12gi, (10) jt̃2;f22g;f21gi, (11) jt̃2;f24g;f21gi,
(12) jt̃2;f33g;f21gi, (13) jt̃2;f42g;f21gi, (14) jt̃2;f44g;f21gi. Note that
points 3 through 14 only appear in K ¼ 3 tails.

FIG. 4. Overlaps of normalized conventional first order tails in
the broken sector with g4 ¼ 1.5, mL ¼ 10, and E� ¼ −0.878,
with the universal tail space of ordersK ¼ 1 (blue dots) andK ¼ 2
(orange dots). Tails built upon the 10 zero-mode eigenstates with
lowest energy are shown sorted by increasing ZM energy.
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where the oscillator space matrix elements take the form

h0̃jṼnjt̃ki ¼ −ht̃njH̃ðmÞ
0;oscjt̃ki;

¼ L
Z

L

0

dxh0̃j∶ϕ̃n∶ðxÞ 1

−H̃ðmÞ
0;osc

∶ϕ̃k∶ð0Þj0̃i;

ht̃njt̃ki ¼ L
Z

L

0

dxh0̃j∶ϕ̃n∶ðxÞ 1

ðH̃ðmÞ
0;oscÞ2

∶ϕ̃k∶j0̃i;

ht̃ljṼnjt̃ki ¼ L
Z

∞

0

d2τ
Z

L

0

d2x;

× h0̃j∶ϕ̃l∶ðτ2 þ τ1; x1Þ∶ϕ̃n∶ðτ1; x2Þ∶ϕ̃k∶j0̃i:
ð70Þ

In the last line we transformed the energy denominators
into multipoint functions with the aid of Eq. (60). Note that

the oscillator space matrix representation of H̃ðmÞ
0;osc and the

inner product matrix are actually diagonal between first
order universal tails.
The use of the basis vectors (64) in calculating the matrix

elements of the effective Hamiltonian reduces to calculating
general n-point functions of ∶ϕ̃n∶. Matrix elements involv-
ing higher tail orders contain disconnected pieces. As with
the original tail states, we provide the explicit expressions for
thematrix elements needed to carry out the computationwith
second order tail states in Appendix D.
We show a demonstration of the precision that we obtain

with these approximated tail states in Fig. 2. One can see that
both the energy estimates and the error bars have improved
compared to Fig. 1. The improvement in computed energies
is due to the larger variational basis. The error bars have
decreased in part due to auspicious error propagation from
matrix elements to the lowest eigenvalues, in part due to
cheaper evaluation costs as we were able to increase the
number of integral evaluations by an order of magnitude.
The matrix elements that we need to evaluate can be

represented in terms of Feynman diagrams. To see this, we
introduce the multi-index quantity

Vin;…;i0ðτn;…;τ1;τ0Þ

¼L
Z

L

0

dnx

× h0̃j∶ϕ̃inðτn;xnÞ∶…∶ϕ̃i1ðτ1;x1Þ∶∶ϕ̃i0ðτ0;0Þ∶j0̃i ð71Þ
for an (nþ 1)-point function (n ≥ 1) of the integrated field
powers. In terms of Vin;…;i0 , the matrix elements can be
written as

ht̃ijH̃ðmÞ
0;oscjt̃ji ¼

Z
∞

0

dτVijðτ; 0Þ;

ht̃ijṼjjt̃ki ¼
Z

∞

0

d2τVijkðτ2 þ τ1; τ1; 0Þ;

ht̃ijt̃ji ¼
Z

∞

0

dττVijðτ; 0Þ: ð72Þ

In turn, the multipoint functions can be evaluated with
Wick’s theorem, yielding a diagrammatic structure similar
to a perturbative calculation. We list the simplest matrix
elements below, while the general Feynman rules are
discussed in Appendix C 3.

VNNðτÞ ¼ N!L
Z

L

0

dxðΔ̃ð2Þ
L ðτ; xÞÞN

V222ðτ2; τ1Þ ¼ 8L
Z

L

0

d2xΔ̃ð2Þ
L ðτ2 − τ1; x2 − x1Þ·

× Δ̃ð2Þ
L ðτ2; x2ÞΔ̃ð2Þ

L ðτ1; x1Þ;

V444ðτ2; τ1Þ ¼ 1728L
Z

L

0

d2xðΔ̃ð2Þ
L ðτ2 − τ1; x2 − x1ÞÞ2

× ðΔ̃ð2Þ
L ðτ2; x2ÞÞ2ðΔ̃ð2Þ

L ðτ1; x1ÞÞ2: ð73Þ

In the next subsection, we examine the explicit form of the

propagator Δ̃ð2Þ
L , given in Eq. (78) below. The diagrammatic

representations of certain representative Vin;…;i0 are given
in Fig. 5.

FIG. 5. Feynman diagrams with three insertions in the oscillator
sector at first Krylov order. (a) V222, (b) V224, (c) V233, (d) V244,
(e) V334, (f) V444 [see also Eq. (73)]. Permutations of the indices
lead to the same diagrams with permuted τ arguments.
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3. Finite volume propagator of ϕ4

In our implementation of Krylov space methods for ϕ4,
we simultaneously use both the Hamiltonian formulation of
ϕ4 together with a Feynman diagrammatic description. We
need to set the conventions of the finite volume propagator
that appears in such diagrams.
For the moment we will work in general space-time

dimension. Our action for the Lagrangian of a free massive
scalar field is

SðDÞ
m ¼ 1

2

Z
dDxð∂ϕÞ2 þm2

0ϕ
2: ð74Þ

The corresponding two-point function in infinite volume
then takes the form:

ΔðDÞðrÞ ¼ hTτϕðx1Þϕðx2Þi;

¼ ð2πÞ−D
2

�
m0

r

�D
2
−1
K−D

2
þ1ðm0rÞ; ð75Þ

where Tτ indicates ordering with respect to an arbitrarily
chosen Euclidean time direction τ, r ¼ jx1 − x2j is the
Euclidean distance, and KνðxÞ is the modified Bessel
function of the second kind.
In the special case D ¼ 1, Eq. (74) describes a single

harmonic oscillator with frequency m0 and mass 1. The
propagator DðDÞ from Eq. (75) reduces to

Δð1ÞðτÞ ¼ 1

2m0

e−m0τ: ð76Þ

As our computations for D ¼ 2 will be done in finite
volume, we need the corresponding finite volume propa-
gator. We will assume that we have either periodic (P ¼ 0)
or antiperiodic (P ¼ 1) boundary conditions. As derived in
Appendix E, in D ¼ 2 the finite volume mode expansion
leads to the propagator

Δð2Þ
L ¼ Δð2Þðτ; xÞ þ Δð2Þ

L;Δðτ; xÞ;

¼ 1

2π

h
K0

�
m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ τ2

p �
þ ð−1ÞPK0ðm0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL − xÞ2 þ τ2

q
Þ
i
þ
X∞
n¼1

δΔn;

δΔn ¼
ð−1ÞPn
2π

h
K0

�
m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnLþ xÞ2 þ τ2

q �
þ ð−1ÞPK0

�
m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððnþ 1ÞL − xÞ2 þ τ2

q �i
: ð77Þ

As we can see, in finite volume, the propagator Δð2Þ

acquires corrections that are suppressed as e−m0L. When
the zero mode is separated and the multipoint functions are
restricted to the oscillator sector, we are required to

substitute the complete propagator in Eq. (77) with a
modified one,

Δ̃ð2Þ
L ðrÞ ¼ hTτϕ̃ðx1Þϕ̃ðx2Þi;

¼ Δð2Þ
L ðrÞ − 1

2m0L
e−m0τ: ð78Þ

In practical computations, we truncate the sum in Eq. (77)
to n ≤ 3, which is a good approximation for L > 3.
Finally, we note that for small volumes, it is possible to

work in a different scheme where the unperturbed oscil-
lators are massless. In this case the oscillator mass term is
considered part of the perturbation and the modified two-
point function is given by the closed formula

Δ̃ð2Þ
0;LðrÞ ¼ −

1

4π
log

	
1þ e

−4π
L t − 2e

−2π
L t cos

�
2π

L
x

�

: ð79Þ

The benefit of the massless scheme is that the volume
dependence of the matrix elements factors out, so the
numerical integrations do not have to be repeated for each
studied volume. However, we found the precision of
massless setup strongly volume dependent and suboptimal
for the volume range of our interest. Thus we do not
elaborate upon this direction further.

C. Numerical implementation

Now that we have specified the computational bases that
we will use in evaluating ϕ4, we turn to a discussion of the
details of the numerical evaluation of the eigenvalues of the
Hamiltonian.
The numerical method proceeds as follows. We first

compute the matrix elements of Ṽn and 1̃ of Eq. (68)
between order one universal tails. We then assemble the full
Hamiltonian with a zero mode cutoff NZM and solve the
generalized eigenproblem in this 4NZM dimensional basis.
In the next step, we calculate all matrix elements involving
universal tails of second order, and repeat the diagonaliza-
tion in this larger, 13NZM dimensional basis. Finally we
also include third order tails and obtain the eigenpairs of the
resulting matrices. We thus get a series of eigenvalues as the
function of the largest order of tails kept. This set of points,
possibly supplemented by a “zero-order” approximation
with all tails neglected, serves as basis to extrapolate to
infinite Krylov order. It is useful to note that both the
conventional and universal tails are Z2 parity eigenstates,
so the even-odd particle number separation can be done
even in the tail Hamiltonian.
For all couplings examined, eigenvalues converge expo-

nentially quickly in increasing NZM. This is exemplified for
g ¼ 1.5 in Fig. 2. We found that the regimes most sensitive
to the choice of NZM are when either g2 is large and
negative and g4 is small such that ϕ acquires a large vacuum
expectation value, or when g4 is very large. On the basis of
these observation, in the following we fix NZM ¼ 40.
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The details of this method can be grouped into three
areas: (i) the evaluation of the matrix elements through
Monte Carlo methods, (ii) generating a statistics of eigen-
values to estimate their errors, and (iii) the procedure by
which we extrapolate to infinite Krylov order K ¼ ∞. We
take each in turn.

1. Evaluation of matrix elements

Matrix elements involving two-dimensional integrals are
evaluated using the numerical global adaptive method Cuhre,
in the implementation of the Cuba package [91]. Thesematrix
elements consist of Hð1Þ

1t and G11. Their estimated relative
numerical errors are negligible, on the order of 10−8. In turn,
matrix elements requiring the evaluation of at least four-
dimensional integrals are computed with the importance-
sampling Vegas method of the Cuba library. This is basically a
Monte Carlo method, in which the sampling ensemble is
updated self-consistently in a number Niter of iterations.
Inside each iteration, a Monte Carlo–type probing of the
integrand is performed with NMC;0 evaluations. The total
number of integrand evaluations is thusNeval¼NMC;0 ·Niter.
It is generally efficient to choose the value ofNiter to be a few
dozen [92]. We fix Niter ¼ 50. As a general rule, larger
dimensionality of the integrand comes with slower con-
vergence with respect to Monte Carlo evaluations.
The integrations are take place over a finite domain. The

restriction in space occurs naturally because of our working
in finite volume. We however introduce a “temporal” cutoff,
fixed to be τmax ¼ 50m0 for Vi1…in with up to 3 indices, and
τmax ¼ 40m0 for those Vi1…ins with more than 3 indices.
These choices are made so that the results are insensitive to
further increasing τmax. This is reasonable as the integrand
vanishes exponentially for large values of each of its τ
arguments, which in turn follows from the asymptotics of the
propagators and the presence of disconnected terms. Further
technical details of the numerical integration are discussed in
Appendix F.
It is easy to check the precision of numeric integrals by

imposing an artificial momentum cutoff pmax. In the
presence of a small enough pmax, the required matrix
elements can be exactly computed in an alternative way:
building up the matrix representations of the operators in
Eq. (35) directly in a truncated Fock space with appropriate
particle number and one-particle momentum cutoffs. On
the other hand, such a cutoff is easily implemented in the
integrals by replacing the propagator via restricting the sum
in the mode expansion Eq. (E3). The dependence of
numerical error on the number of evaluations for the matrix
element ht̃444jṼjjt̃44i for various values of pmax is shown in
Fig. 6. Other matrix elements behave similarly (or better).

2. Statistics for third order tail states

With the introduction of higher order tails, the inner prod-
uct matrix becomes approximately degenerate. This issue is

especially pressing in the case of universal tails. At the third
tail order, the numerical precision of matrix elements is not
sufficient for a direct computation, which manifests in
(small) negative eigenvalues of the Gram matrix.
To alleviate this problem, we generate an ensemble

of Ĥ and Ĝ matrices using the numerical integration errors
of matrix elements and repeat the eigenvalue calculation
several times, projecting out the directions corresponding to
numerically negative eigenvalues of the Gram matrix.
The result of this analysis for a sample size Ns ¼ 500 is
shown in Fig. 7. For each peak, we then refine the energy
bins until the maximum of the peak becomes less
than ðΔNΔEÞtreshold ¼ 60. Separate Gaussian fits are then
applied to the peaks. The standard deviation of these
subsequent fits provide the errors of the eigenvalues at
third order.

3. Extrapolations in K

After the eigenvalues from the three Krylov orders are
obtained, we perform a power law of the form

fðxÞ ¼ aþ b
xc

: ð80Þ

As the input has an error, we generate a new ensemble of
eigenvalues with the previously obtained errors. The fit is
repeated for each member i of the ensemble, providing a set
of extrapolations ai. ai are then averaged and their
computed standard deviation provides the final error
estimate (red error bars in Fig. 2). The result of this
extrapolation fits nicely to previous TSM results [72].

FIG. 6. Relative error of the matrix element ht̃444jṼjjt̃44i as
function of the numerical integrand evaluations, in the presence
of small momentum cutoffs: pmax ¼ 2πL−1 (blue), pmax ¼
4πL−1 (green), pmax ¼ 8πL−1 (red), at volume m0L ¼ 10. The
differences are measured and normalized with respect to the exact
matrix element obtained by linear algebra in the explicit Fock
basis for these cutoffs. The importance sampling method uses
Niter ¼ 50 iterations of updating of the sampling ensemble with
NMC;0 ¼ 108 evaluations inside each iteration.
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IV. BROKEN PHASE: “WEAK” COUPLING

We start our detailed presentation of our results for the ϕ4

theory by focusing on its broken phase. We fix g2=m2
0 ¼

−0.25 and vary g4 so that an Ising type quantum critical
point is present at a relatively small quartic coupling. The
spectrum and various physical quantities are well described
by the perturbative treatment of fluctuations around the
degenerate vacua. We consider the ground state energy, the
meson mass gap, and the vacuum expectation value of
the field, hϕi, before turning to a finite volume scaling
analysis to determine the location of the critical point.

A. Ground state energy

Figure 8 shows the coupling dependence of the bulk
energy (ground state energy per unit length) as a function of

the quartic coupling g4 ¼ gm2
0 for different system sizes L

compared to the 4-loop perturbative result in infinite
volume. There are two kinds of physical finite volume
effects that alter the finite volume eigenvalues from their
L → ∞ asymptotics. On the one hand, the doubly degen-
erate vacuum is split due to finite volume instanton effects,
which is semiclassically exponentially small in the para-
meter MKL, where MK is the kink mass [Eq. (50)]. On the
other hand, there are finite volume corrections correspond-
ing to the Casimir effect, which are exponentially small in
the parameter M̄L, M̄ being the smallest mass in the
spectrum. At small quartic coupling, M̄ is the lightest meson
massM1 and is about unity. In the regime g > 0.1, M̄ is again
the kink mass and is approximately order 1=g, before it
vanishes at the critical point, giving rise to a stronger,
inverse-power volume dependence. In the entire broken
sector, the numerics significantly outperforms raw Fock
space truncation if no extrapolations are taken into account.
On the other hand, we obtain the bulk energy in agreement
with perturbation theory, up to finite volume effects.
Since the method does not rely on building up explicit

Fock states, it is expected to perform especially well
compared to raw truncation at larger volumes. This is
indeed true. However, the numerical precision of matrix
elements are observed to decrease in increasing the volume,
which eventually restricts the applicability of the method in
the infinite volume limit.

B. Meson mass

Turning to the lightest meson, M1, it is again natural to
compare to available perturbation theory results. Here the
finite volume effects are largely analogous to the ground
state energy, apart from additional exponentially small
effects due to virtual particle pairs. F terms arise due to
vacuum polarisation: creation-annihilation of a virtual pair
with a nontrivially winding trajectory on the cylinder,
thereby scattering on the physical particle. μ terms corre-
spond to the dissolution of the particle to virtual constitu-
ents, which reassemble into the original particle after
traveling around the cylinder [65,93]. Numerical results
are shown in Fig. 9. The meson disappears from the
spectrum at around g ¼ 0.15, as then it becomes kinemat-
ically allowed to decay into a kink-antikink pair. Thus for
g > 0.15 in the broken phase, the first excited state is
actually a kink-antikink scattering state [54].

C. ϕ VEV

Since the method provides approximate eigenvectors,
matrix elements of operators can be evaluated directly. Here
we focus on the vacuum expectation value of the field ϕ in
the broken sector. In finite volume, this is actually the
matrix element of ϕ̂ between the even and odd parity
ground states. To single out the nontrivial quantum cor-
rections, we normalize with the classical expectation value

FIG. 7. Distribution of the lowest eigenvalues for 3 tail
orders, g ¼ 1.4 m0L ¼ 10, based on an ensemble of Ns ¼ 500
Hamiltonians, sampled assuming normal distributions for the
matrix elements with standard deviations from errors derived
from the Monte Carlo integration routines. The histogram is
based on calculating the lowest 10 eigenvalues per parity sector
for each matrix in the ensemble. Blue dots correspond to the even
Z2 parity sector, while orange dots correspond to the odd sector.
Energy bins of size ΔE ¼ 0.005m2

0 were used.

FIG. 8. Bulk energy measurement in the broken sector from
different volumes and compared to 4 loop L → ∞ perturbation
theory (black).
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ϕcl ¼ ð8gÞ−1=2. As the critical point is in the Ising univer-
sality class, hϕi is expected to vanish as ðg − gcÞ1=8 at
the critical point, we plotted its eighth power in Fig. 10,
against one-, two-, and three-loop perturbation theory. The
third order results and the corresponding error bars are
again obtained by creating an ensemble of NS ¼ 500
Hamiltonians and Gram matrices as described in
Sec. III C 2, projecting out any negative Ĝ eigenvalues,
and computing averages and standard deviations of hϕi
over the ensemble. We do not attempt to extrapolate the
vacuum expectation value through Krylov orders. The
outcome of the analysis is that universal tail sets of orders
K ¼ 1, 2, 3 provide results consistent with a perturbative
expansion to 1, 2, 3 loops, respectively, provided the
coupling is not in the vicinity of the critical point.
Around the critical point, finite volume effects dominate.

D. Critical point

The broken and unbroken phases of ϕ4 model are
separated by a second order phase transition. Classically,

the phase transition happens when the parameter g2
changes sign. In the quantum model, fluctuations drive
the transition and it can thus be reached via tuning
g4 ¼ gm2

0 for a fixed g2. Despite working in finite volume,
where there is no phase transition per se, truncated
spectrum methods are effective in measuring the critical
g coupling. This is because finite volume effects in the
vicinity of a critical point are well understood.
It is well known that the critical point of ϕ4 theory lies in

the Ising universality class. Therefore, in the vicinity of the
critical coupling gc, we can model the system as described
by the Ising Hamiltonian on the cylinder, modified by
relevant as well as irrelevant perturbations:

Ĥeff ¼
2π

L

�
L0 þ L̄0 −

1

24

�
þ Lα1ðg − gcÞ

�
L
2π

�
−1
ϵðz ¼ 1; z̄ ¼ 1Þ

þ Lðα2gc þ α3ðg − gcÞÞ
�
L
2π

�
−3
∂∂ϵð1; 1Þ

þ ðmore irrelevant termsÞ: ð81Þ

When the g coupling is fine-tuned to the critical point gc,
there are still irrelevant perturbations affecting the finite
volume spectrum. Fortunately, the irrelevant perturbations
can be filtered by their symmetry properties and classified
by their relevance.
In the first order of conformal perturbation theory, it is

simple to estimate the corrections by the irrelevant terms.
Since the operators are multiplied by L−2hþ1, with h being
the chiral dimension, the least irrelevant operators dominate
the large-volume spectrum, while more irrelevant ones are
suppressed by powers of L. In our analysis, we approximate
the perturbed Ising model by keeping the relevant thermal
perturbation ϵ as well as the descendant ∂∂ϵ. We restrict our
attention to the energy difference between the even and the
odd ground states and consider the volume range L ¼ 6 to
L ¼ 10. The rescaled volume-dependent gaps as function of
the coupling, for different volumesL, are depicted in Fig. 11.
The linear coupling dependence of the gap is consistent with
the assumption that in the vicinity of the critical point, the
effective Ising couplings can be approximated as linear
functions of the quartic ϕ4 coupling g.
In the absence of irrelevant terms, one would conclude

that the transition occurs at the point where the rescaled
lines cross. But this has to be corrected by the effect of the
irrelevant term. To improve the accuracy, we fit linear
functions fLðg4Þ ¼ aL þ bLg to the datasets in Fig. 11.
Equating these empirical gap functions with their theoreti-
cal approximations from conformal perturbation theory,
and separating coefficients of powers of g4, we obtain a
(generally overdetermined) system of linear equations for
the critical coupling g4c as well as the parameters αi. There
are multiple ways to reduce the resulting system into a

FIG. 9. Lowest energy gap measurement in the broken sector
from different volumes and compared to 4-loop L → ∞ pertur-
bation theory (black). At couplings g < 0.15 it corresponds to the
B1 one-particle state.

FIG. 10. hϕi measured from TSM at L ¼ 15 and compared to
L → ∞ perturbation theory.
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uniquely determined one, which provides slightly different
results for gc. The variation in these results provides an
error estimate. We so obtain an estimate of the critical point
to be gc ¼ 0.2645� 0.002. The order of performing the
extrapolation in tail orders versus taking the difference of
eigenvalues does not affect this final estimate.

V. UNBROKEN PHASE AND STRONG
COUPLING REGIME

Now we turn to the unbroken phase. Here we choose
g2 ¼ m2

0=2 and vary g4. As per the Chang duality, the
critical point appears at g ≈ 2.7, but higher orders of
perturbation theory breaks down noticeably for below
the critical point at g ≈ 0.3. In this phase, there is a single
bosonic excitation in the spectrum.

A. Empirical study of cutoff dependence
and tentative improvement on errors

Before turning to the measurement of the ground state
energy and the mass gap, let us study the tail order
extrapolation in more detail. It is difficult to determine
the extrapolating function Eq. (80) from first principles.
However, it is interesting to see how the fitted power law
exponent c varies as function of the coupling. We find that
performing the fit without any restrictions on the para-
meters a, b, c, the resulting function cðgÞ is well described
by a simple function form

cðg4Þ ¼ c1 þ
c2

gþ c3
: ð82Þ

We fitted the parameters ci, i ¼ 1, 2, 3 to the distribution of
exponents in Fig. 12, obtained by performing the fit (80) on
a set of NS ¼ 500 samples generated on the basis of the
eigenvalue uncertainties.

The proposed functional form Eq. (82) is empirical and
likely model dependent. At the same time, we find that
using the exponent cðgÞ determined from Eq. (82) in fitting
our data with Eq. (80) results in good agreement with the
data of Ref. [72]. In the following plots, we report the
results and errors both by fitting directly every sample with
Eq. (82) and alternatively, performing the fit with c con-
strained to be its Eq. (82) value.

B. Ground state energy

The TSM in its equal time formulation is essentially a
finite volume method. The form of leading terms in the
large volume expansion of the ground state energy are
known. In case of an unbroken vacuum and a single type of
massive particle, it has the structure

E0ðLÞ ¼ E0L −
M
2π

Z
∞

−∞
cosh ue−ML cosh udu

þOðe−2MLÞ: ð83Þ

In Eq. (83), E is the bulk energy (density),M is the mass of
the excitation, while the integral term is the first Lüscher
(leading exponential) correction. The value of the bulk
energy and the mass is taken from the numerics, but
knowledge of these parameters provides thevolume depend-
ence of the ground state energy E0 for intermediate to large
volumes. This is checked against TSM numerics in Fig. 13.
We show the computed ground state energy at volume

m0L ¼ 10 in the unbroken sector, as the function of the
coupling g, in Fig. 14.

FIG. 11. We present here data for the determination of
the critical value of g4. Rescaled E1 − E0 energy differences
(“vacuum splitting”) for volumes L ¼ 6 (blue), L ¼ 8 (orange),
and L ¼ 10 (green). The corresponding value in the Ising model
is shown with a horizontal black line.

FIG. 12. Fitted power law exponent to statistical ensemble of
ground state eigenvalues.
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C. Mass gap

In the top panel of Fig. 15 we show the validity of the
perturbative expansion Eq. (48). Consistently with the
asymptotic nature of the perturbative expansion, higher-
order results come with a more restricted domain of
validity. It is interesting to see how this compares to
Borel resumming the perturbative series. While conven-
tional perturbation theory breaks down spectacularly at
around g ¼ 0.2, our Krylov-enabled TSM is able to follow
the resummed result over an extended range of couplings,
as shown on the bottom panel.

VI. RESIDUAL ERROR

In performing any numerical analysis, it is vital to have
as much control on the error as possible. In truncated
spectrum methods, a commonly adapted measure of

precision is to compute the eigenvalues at special points
where the results are known “exactly” (with much more
precision) from independent approaches. While this can
give an idea on the expected performance of the method at
large, it has a number of significant drawbacks:
(1) Information comes from special points, which are

similar at best, but usually not identical to the actual
point of interest.

(2) Moreover, it is generally hard to quantify the
distance from the reference point in theory space,
and make a connection with TSM precision.

(3) Finally, the error in the eigenvalues is a rather
forgiving measure of the error, especially when
actual eigenvectors are used to measure a quantity
of interest.

In the literature of iterative eigensolver methods, it is
customary to introduce the norm R of the residual error in
the following way:

R2 ¼ hψ compjðĤ − EcompÞ2jψ compi: ð84Þ

Note the square inside the expectation value. In Eq. (84),
ψcomp is the computed (truncated) eigenvector, but Ĥ is the
entire Hamiltonian without truncation. Without the square,
one would simply get zero, as hψ compjĤjψ compi ¼ Ecomp.
Inserting a partial resolution of the identity between the

Hamiltonians results in a strong cutoff dependence, as
depicted in Fig. 16. As the action of the operator Ĥ changes
particle number by at most 4, it is easy to compute the
projected matrix element to high energy cutoffs by intro-
ducing an additional particle number cutoff on the

FIG. 13. Volume dependence of the ground state energy in the
unbroken sector, at theoretical behavior including the leading
Lüscher correction is shown with a continuous black curve. The
results for the K ¼ 1 and K ¼ 2 universal tail basis computations
are shown with blue and orange dots, respectively. (a) Coupling
g4 ¼ 0.4m2

0 (M ¼ 0.937m0, ε ¼ −0.00682m2
0). The correspond-

ing result for the free boson with mass m0 is shown for reference
with a gray dashed line. (b) Coupling g4¼ 0.8m2

0 (M¼0.8186m0,
ϵ ¼ −0.02563m2

0). K ¼ 3 results shown with green dots.

FIG. 14. Ground state energy in the unbroken sector,
m0L ¼ 10. Show are our computations of E0=m0 as function
of coupling g compared to [72] (black curve). The numerical
results corresponding to K ¼ 1, 2, 3 universal tail sets are marked
by blue, orange and green dots, respectively. The power-law
extrapolation is shown with a dashed purple line, with errors
given by the purple shaded area. Extrapolation instead by
constraining the exponent cðg4Þ to its value given by Eq. (82)
is marked by the data with red dots.
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truncated space. (Here, for the raw truncation points, we do
not separate the zero mode.) It is interesting to note the
would be dimensionality of the full Fock space with the
corresponding energy cutoff Ecut. The required dimension-
ality would be D ¼ 6.5 × 105 for first order tails, about
D ¼ 2.3 × 107 for second order tails, andD ≈ 109 for third
order tails, giving a rough estimate of the raw truncation
dimensionality needs to reproduce the precision of the
Krylov tail numerics. This is impressive in itself, but still
suffers from a significant deviation from the exact result.
Fortunately, our approach is naturally suited to calculate
the matrix elements of Ĥ2 directly, without any inherent
truncation.

FIG. 15. Mass gap in the unbroken sector, as function of coupling
g. (a) Perturbative series truncated at various orders, compared to
the Borel resummation of the perturbative series ([19]). (b) Krylov
TSM numerical data at m0L ¼ 10, compared to [72] (reference
data shown as black curve). Numerical results corresponding to
K¼ 1;2;3 universal tail sets correspond to blue, orange and green
dots, respectively. The power-law extrapolation is shown with a
dashed purple line, with errors given by the shaded area. Extrapo-
lation with the exponent c fixed by Eq. (82) results in the red dots.

FIG. 17. Norm of the residual error for the ground state. We
point out that the square of the full, infinite-dimensional QFT
Hamiltonian is sandwiched between the numeric eigenstates,
making the computation difficult for large energy cutoffs. The
largest raw energy cutoff corresponds to a 104-dimensional
truncated subspace. (a) Norm of the residual error for the ground
state as the function of the coupling g in the unbroken phase. The
results for the K ¼ 1; 2 universal tails are shown with continu-
ous blue and orange lines, respectively. Raw truncation with
different energy cutoffs yield the set of dots at the top of the figure
(Ecut ¼ 5: light gray, Ecut ¼ 7: gray, Ecut ¼ 9: black). (b) Norm
of the residual error as function of the Fock TSM energy cutoff,
for various values of g.

FIG. 16. Limitations of raw truncation (unbroken sector):
squared norm of the projection of Hj0i to a truncated Hilbert
space, normalized by its squared norm. Here j0i is the unper-
turbed vacuum as a function of the TSM energy cutoff Etrunc,
L ¼ 10, g4 ¼ 1. P̂T is a partial resolution of the identity in the
truncated Hilbert space. Also shown are the squared norms of the
projections to the universal tail spaces of first (blue), second
(orange), and third (green, with light green uncertainty) orders.
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Let us note that when δE ¼ Ecomp − Eexact is small, the
correction obtained from substituting Ecomp with Eexact in
Eq. (84) will be OðδE2Þ, which is negligible compared to
the effect coming from the square of the Hamiltonian.
Intuitively, the residual error vector estimates the error
resulting from acting with Ĥ on the truncated eigenvector
instead of its true eigenvector with eigenvalue Eexact. This
measure can be particularly relevant in measurements
which involve acting multiple powers of Ĥ to an approxi-
mate eigenvector, something that happens in computations
involving the real time dependence of observables. At small
coupling, the difference of the eigenvalues between the
interacting and the free theory are indeed minuscule.
Therefore, relying only on the precision of the eigenvalues
is deceptive when the eigenvectors are needed. The residual
norm provides a much more sensitive measure of the error.
We show the residual error corresponding to the ground

state energy in Fig. 17. A reference computation was also
performed in a conventional massive Fock-space truncated
space with an energy cutoff (with no separated zero mode).
In that basis, we evaluated the matrix elements of Ĥ2 by
expressing the squared interaction terms with normal
ordered ones and performing the nontrivial spatial integrals
where necessary. In this case, the residual error decreases
approximately linearly with the energy cutoff, at least for
the small cutoffs examined. Extrapolating this linear
tendency again gives an idea on the Fock space dimen-
sionality required to reproduce the precision of the Krylov
computation.

VII. CONCLUSION AND DISCUSSION

In this paper we have implemented a Krylov-subspace
method tailored to computing the low lying spectrum of
quantum field theories, based on the iterative procedure
originally described in [80]. It can also be seen as a
systematic improvement to the renormalization group
method of [52,72,76]. We have demonstrated the method
on the unbroken and broken sector of the two-dimensional
ϕ4 model.
The method involves the computation of multipoint

correlators in the “unperturbed” theory. In the present case,
this translates to the numerical calculation of Feynman
diagrams. Therefore we see this method as a bridge
between perturbative diagrammatics and TSMs.
Throughout this work we focused on the simplest

spectral quantities: the ground state energy and the differ-
ence between the two lowest two energy levels. However,
we remark that other physical quantities are accessible to
the method by modest and often obvious modifications. We
succeeded in reproducing the bulk energy and the mass gap
of the ϕ4 model in the unbroken sector in agreement with
Borel resummation and other TSM results. Remarkably, in
a wide range of couplings, a truncated Hamiltonian of only
dimension four (per parity sector) was sufficient to provide

a good estimate over a wide range of couplings. In the
unbroken sector, this can be contrasted to Borel resumma-
tion, which utilizes very similar Feynman diagram com-
putations in an entirely different way. We believe it is
interesting that even though tail matrix elements suffer from
the same asymptotic behavior as the perturbative series, the
diagonalization of the Hamiltonian involving these same
matrix element efficiently extracts convergent physics
from these quantities, in analogy to Borel resummation.
In the unbroken we have also reproduced the correct
finite-volume behavior of the ground state energy and
demonstrated a novel way to measure the error for TSM
eigenvectors.
Using our technique, we also analyzed the ϕ4 model in

the broken sector. We compared the bulk energy to raw
TSM truncation and a 4-loop perturbative expansion and
found reassuring agreement. We also used our code to
provide a precise estimate of the critical point in the broken
sector, 0.2645� 0.002.
While we have not pursued it here, the method indicates

promising features for possible future real-time dynamics
applications. Since the same universal tail basis provides a
very good representation of lowest energy states over an
entire range of couplings, it appears to be a natural basis to
study quenches with both suddenly and gradually changing
couplings.
This combination of Hamiltonian truncation and

Feynman diagrammatics is a new method and our presen-
tation leaves several issues that will require further elab-
oration upon in future work. Perhaps the most pressing
issue is the extrapolation of data through Krylov iteration
orders. At the moment we lack a clear physical under-
standing to motivate our extrapolation functions. We
instead relied on the empirical quality of the fits and the
consistency of the results with existing reference values
from the literature. We do however discuss convergence in
Krylov-like methods in Appendix A. We note that it is
plausible that high order matrix elements of the
Hamiltonian and the Gram matrix can be approximated
by saddle point expansions analogous to [94,95]. This
could be used to provide a better motivated extrapolation
through Krylov orders. However, the saddle point evalu-
ation of the appearing quantities is not entirely trivial and
remains to be explored in future work.
Due to the variational formulation, the computed energy

eigenvalues are non-increasing functions of the iterative
order, while at the same time always bound the true ground
state energy from above. With these constraints there still
remains the possibility that the numerical eigenvalues
plateau at some higher values than their exact counterparts.
Such discrepancy can be ruled out if the Krylov iteration
outlined in Sec. II B is guaranteed to converge to the true
solution of Eq. (18). For bounded T̂, and with jtl;0i within
the range of 1 − T̂, the minimum of the residual norm
converges to zero for large enough Krylov rank [81].
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Unfortunately, a rigorous proof involving the more inter-
esting case of unbounded operators is not available to us at
the moment, although we provide a few remarks in
Appendix A.
In any case, perturbations relevant in the renormalization

group sense, exemplified by the φ2 and φ4 terms in the φ4

model, do not mix states with different unperturbed energy
levels very strongly. Therefore to access the low-energy
physics, T̂ can be well approximated by a bounded
operator, with a cutoff Λ in momentum and another in
total particle numberN introduced. The low-energy physics
is essentially independent of these cutoffs once they are
chosen large enough. Both cutoffs can be implemented in
practice: the momentum cutoff changes the propagator,
truncating the sum of Eq. (E4), while the total particle
number can be truncated by omitting certain Feynman
diagrams with multiparticle intermediate states. The par-
ticle number cutoff does not modify the first iterations at
all, while the cutoff propagator has a smooth limit to
Eq. (78) for Λ → ∞.
For models with irrelevant perturbations, where different

energy scales are mixed so strongly that the above argu-
ment does not hold, additional care is needed. For such
models, the convergence of the Krylov iteration to the
correct eigenpairs probably depends on both the model
and the selection of the “low-energy” states starting the
iteration.
In principle there is a systematic way to eliminate any

such hypothetical fake plateaus. When in doubt, one could
always start to add oscillator Fock states to the low-energy
subspace as a means to check if the plateau reached
corresponds to the true eigenvalue. Matrix elements of
these oscillator Fock states can be calculated within the
same formalism, involving Feynman diagrams with multi-
ple external legs.
Our method easily generalizes to linear sigma models in

two dimensions. In the unbroken sector, this would entail
trivial modifications of the Feynman integrals by symmetry
factors. From the analysis of the broken symmetry phase at
strong coupling, it is presumably possible to probe non-
linear sigma models as well.
This method is easily extendable to higher dimensions

and will serve as the next test of the method. For the ϕ4

theory in 2þ 1D all that would be required would be to
replace the form of the propagator. It may however be
advantageous to implement the Feynman integrals in
momentum space, as the real space propagator suffers
from stronger singularities in higher dimensions.
The transition to momentum space could cause certain

complications in the present setup, where the partial
cancellation of disconnected pieces is implemented at
the level of the integrand, leading to better temporal
convergence. Strictly speaking the explicit projections
leading to the extra disconnected pieces are not necessary.
We might have omitted them at the cost of overlaps

between the low-energy basis states and the tails. We
opted for implementing the projectors in coordinate space
as they act as a temporal cutoff, improving the convergence
of matrix element integrals and decreasing their magnitude.
Such cancellations in coordinate space do not obviously
translate to momentum space. Fortunately, the structure
of the disconnected pieces is known and can be taken
into account by other means even if one opts for keep-
ing them.

Note added. It has been pointed out that the leading
irrelevant perturbation of the Ising model contributing to
the volume dependence in Eq. (81) is not ∂∂̄ε. This operator
can be written on the cylinder as g∂xO1ðt; xÞ þ g∂tO2ðt; xÞ
with some operators O1, O2 and coupling g. The spatial
derivative term evidently vanishes due to the periodic
boundary condition. The time derivative term can be
written as a commutator ig½H;O2�, which can only modify
the energy levels of the Hamiltonian at the second order in
g. The leading volume dependence at the critical point is
thus given by the operator TT̄ [96], with overall volume
dependence L × L−4. We thank Joan Elias Miró for this
correction. We also note that performing the fit with the
corrected volume dependence slightly changes the mea-
sured value of the critical point (within the original error
bar) to gc ¼ 0.266ð2Þ.
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APPENDIX A: RELATION TO CONVENTIONAL
KRYLOV SUBSPACE METHODS

The original idea of Krylov subspace methods is to
compress the essence of an N × N dimensional operator A
into an m ≪ N dimensional operator AðKÞ acting on K.
The Krylov subspace K is spanned by the set
fAkjri; 0 ≤ k < mg. A block Krylov subspace of block
size n is obtained by the span of the set fAkjrii; 0 ≤ k <
m; 1 ≤ i ≤ n; n > 1g for linearly independent vectors
ri; 1 ≤ i ≤ n. The solution to a linear system Ajxi ¼ jbi
can be approximated by vectors jxKi þ jδxðmÞi for which
AjδxðmÞi ⊥ K. Eigenpairs (eigenvalue-eigenvector pairs)
of A are approximated by eigenpairs of AðKÞ.
The case relevant to us is when the operator A is

diagonalizable, i.e. related to a symmetric matrix Ā by a
similarity transformation A ¼ Q−1ĀQ. If Ā is a bounded
operator with a spectrum including at most a finite number
ν of discrete negative eigenvalues, fλ−i gνi¼1, the residual
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norm of the approximate solution after iteration m is
bounded by the formula [81,97]

kAδxðmÞk ≤ kQ−1kkQjbik

×

�
λþmax − λþmin

λþmax þ λþmin

�
m−νYν

i¼1

λþmax − λ−i
jλ−i j

; ðA1Þ

where λþmax and λ
þ
min are respectively the largest and smallest

positive eigenvalues of Ā.
In our setup, the approximate tails are constructed iter-

atively from the linear system in Eq. (18), and they are
subsequently used as a variational basis for the determination
of eigenvalues. Translating to the notation of the previous
paragraph, in Eq. (18) we would replace A with T ≡
1 − T̂ ¼ ðĤ0;hh − EÞ−1ðĤhh − EÞ and take jbi≡ jtl;0i and
jxi≡ jTli. One can then see the basis vectors in Eq. (31) as
linear combinations of vectors T ijtl;0i, 0 ≤ i ≤ k − 1.
However unlike A above, in our case the operator T is
infinite dimensional and not bounded.
Due to the unbounded character of T , It is difficult to

make general statements about the convergence properties
of the Krylov iteration (although recently progress has been
made [98,99]). In particular, the bound (A1) formally gets
ill-defined as there is no λþmax. In any case it is reassuring
that even in this case the Krylov subspace only becomes
exactly degenerate in a finite number of steps if the exact
solution has been found. Indeed, if one can write T njtl;0i ¼P

n−1
k¼0 ckT

kjtl;0i with some coefficients ck, then the exact
tail is given as jTli ¼ c−10 ðT n−1 −

P
n−2
k¼0 ckþ1T

kÞjtl;0i. The
operator T is diagonalizable with Q ¼ ðĤ0;hh − EÞ1=2. We
will assume that E is strictly smaller than any eigenvalue of
Ĥ0;hh. It follows that Q is positive. Moreover, when the
parameter E is chosen to be the ground state energy in any
symmetry sector respected by both Ĥ and Ĥ0, then the
symmetrized operator T̄ ¼ QT Q−1 is actually positive
definite (in the given symmetry sector), as follows from the
variational principle.
For concreteness, let us first consider the restricted

version of Eq. (18) in the presence of both a momentum
cutoff Λ and a projection of the oscillator Hilbert space to a
subspace spanned by Fock states with at most N particles
(the zero mode is not affected by this cutoff). Then we have
a restricted problem

T N;ΛjxN;Λi ¼ jbΛi; ðA2Þ

with a bounded operator T N;Λ (the truncated Hilbert space
is finite dimensional). Two comments are in order. One is
that according our numerics, in the limit Λ → ∞, the
operator T N;Λ→∞ ≡ T N appears to remain bounded, with
asymptotic behavior λN;Λ

max → λNmax þOðΛ−2Þ. To this end,
we applied the conventional Hamiltonian truncation
approach to obtain the extremal eigenvalues of the operator

T̄ N;Λ. The largest momentum cutoff we are able to reach
depends on N, but in any case we checked this claim up to
truncated matrices up to sizes of 106 dimensions, which
means Λmax ≈ 60 for N ¼ 4 and Λmax ≈ 10 for N ¼ 10. We
believe an analytic derivation of such a bound should be
possible using the Gershgorin circle theorem, at least for
small values of N. However, here we do not attempt to
provide a proof. The second is that the limit T N is also
strictly positive definite. The latter can be seen as a
consequence of the low-energy eigenvectors ofH0;ll having
a finite weight in the ground state of H, while this ground
state is separated from the rest of the spectrum by a gap. In
the following we assume the existence of the above limit
and suppress the Λ index. (In cases when the limit does not
converge, it is still possible to reintroduce the cutoff. Then
the statements below remain valid in the presence of a finite
momentum cutoff.)
The exact solution to the equation T N jTl;Ni ¼ jtl;0i can

be written as jTl;Ni ¼ jTli þ jδTl;Ni, where jδTl;Ni is the
difference between the regularized and the full (N → ∞,
cutoff Λ) solution. It is safe to assume that kjδTl;Nik → 0

for large N, as we expect to be able to approximate the
eigenvectors arbitrarily well by systematically enlargening
the truncated Hilbert space.
At iteration m, the vectors T kjtl;0i, 0 ≤ k ≤ m are

identical to the vectors T k
N¼4ðmþ1Þjtl;0i. This is because

we build our tails on top of the oscillator vacuum, so jtl;0i
contains at most 4-particle states; on the other hand, the
application of T changes the particle number by at most 4.

Therefore, at iteration m, the approximate solution jTðmÞ
l i

can be written as

jTðmÞ
l i ¼ jTli þ jδTðmÞ

l i ¼ jTl;4ðmþ1Þi þ jδTðmÞ
l;4ðmþ1Þi;

¼ jTli þ jδTl;4ðmþ1Þi þ jδTðmÞ
l;4ðmþ1Þi; ðA3Þ

so jδTðmÞ
l i ¼ jδTl;4ðmþ1Þi þ jδTðmÞ

l;4ðmþ1Þi. In turn, we can

bound the error of the full iteration by looking at the
regularized problem. Analogously to Eq. (A1), we obtain
the bound

kT jδTðmÞ
l;N ik ≤ kQ−1kkQjtl;0ik

�
1 −

fðmÞ
m

�
m
;

fðmÞ ¼ 2m
λmin;m

λmin;m þ λmax;m
; ðA4Þ

where λmin;m and λmax;m are the extremal eigenvalues of the
operator T̄ N¼4mþ4 with T̄ N ¼ QT NQ−1. From the form
of fðmÞ in Eq. (A4) it follows that fðmÞ ≤ m. Depending
on the large-m behavior of fðmÞ, we can distinguish
three cases:
(1) fðmÞ → ∞: In this case the vanishing of the residual

norm (with respect to T ) is guaranteed, with rate
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given by Eq. (A4). This is because kQ−1k is bounded
and kQjtl;0ik ¼ Hð1Þ

1t;ll as defined in Eq. (35). In
particular, if fðmÞ ∼ α logðmÞ, this yields a power-
law bound m−α.

(2) fðmÞ → C < ∞: Eq. (A4) yields a finite asymptotic

bound, limm→∞ kT δTðmÞ
l;N k ≤ kQ−1kkQjtl;0ike−C.

(3) fðmÞ → 0: in this case the bound is essentially empty,

stating simply that kT δTðmÞ
l;N k ≤ Q−1kkQjtl;0ik.

We note that the above bound provides a sufficient, but not
necessary condition for convergence of the residual norm.
To get an idea on the actual behavior of fðmÞ in the ϕ4

model, we computed the extremal eigenvalues of T̄ in a
Fock space truncation for various momentum and particle
number cutoffs. The results shown on Fig. 18 indicate that
we are consistent with case 1, at least numerically. Note that
we calculate the eigenvalues for various particle number
cutoffsN and usem ¼ ðN − 4Þ=4 and we include fractional
values of m to increase the density of measurement points.
Many standard incarnations of Krylov subspace methods

involve a step-by-step orthogonalization of the Krylov
subspace. In higher orders, this orthonormalization pro-
cedure ensures numerical stability. In our setup, this
orthogonalization is omitted. This is because we only
consider low orders of the iteration and our matrix elements
are provided with finite errors. As different matrix elements
involve integrals of different dimensionality, the only way
to perform a Gram-Schmidt-like procedure is to integrate
first and propagate the error into the linear combinations,
which is thus expected to increase. Since we deal with the
generalized eigenvalue problem directly, in our case the
explicit orthogonalization appears to be an unnecessary
extra step.
We note in passing that there are alternative Krylov

subspace methods that could be examined. In particular, we

could have started from the original eigenvalue problem,
and set up the Krylov subspace using powers of the full
Hamiltonian Ĥ acting on eigenstates of the unperturbed
part Ĥ0. The eigenvalues could be approximated by a
Lanczos method [100–102], that could be implemented in
an approach very similar to ours. Note that the matrix
elements of powers of Ĥ numerically grow significantly
faster without the energy denominators inserted. The
operator Ĥ is evidently unbounded in the Λ → ∞ limit,
even if there is a projection to finite particle numbers.
Alternatively, we could include the energy denominator as
a preconditioner to the aforementioned Lanczos method.
We do not cover these possibilities in the present work, but
it may be useful to compare the performance of these
alternatives on different models.

APPENDIX B: NORMAL ORDERING SCHEMES

In this appendix we develop expressions where we
connect the Hamiltonian where normal ordering for infinite
volume L ¼ ∞ to normal ordering schemes in general. We
first consider the problem in full generality. According to
Wick’s theorem, we can write for any two masses m and μ,

φðxÞn ¼
Xbn=2c
k¼0

n!∶φðxÞn−2k∶m
2kk! · ðn − 2kÞ! h0mjφðxÞ

2j0mik;

¼
Xbn=2c
k¼0

n!∶φðxÞn−2k∶μ
2kk! · ðn − 2kÞ! h0μjφðxÞ

2j0μik; ðB1Þ

where the quadratic expectation values are simply calcu-
lated. In finite volume we have

h0mjφðxÞ2j0mi≡ Zðm;L;ΛÞ ¼ h0mj½φþ;φ−�j0mi;

¼ 1

2L

XLΛ2π
n¼−LΛ

2π

1

ωn
; ðB2Þ

while in infinite volume, Z, becomes

Zðm;∞;ΛÞ ¼
Z

Λ

−Λ

1

ωðkÞ dk: ðB3Þ

Let us introduce the vector with components

ψ ðmÞ
i ðxÞ≕φðxÞrþ2i∶m; 0 ≤ i ≤ bn=2c; ðB4Þ

where r ¼ 1 if n is odd and r ¼ 0 otherwise. In this
notation, Eq. (B1) can be rewritten as

AðmÞ
ij ψ ðmÞ

j ðxÞ ¼ AðμÞ
ij ψ ðμÞ

j ðxÞ; ðB5Þ

FIG. 18. Numerical evaluation of the function fðmÞ of Eq. (A4)
for various momentum cutoffs Λ, at parameters g ¼ 1, L ¼ 10,
E ¼ −0.3941. We used Fock space truncation in the even parity
sector in the presence of NZM ¼ 10 kept zero mode states.
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where

AðmÞ
ij ≡ AijðZðm;L;ΛÞÞ;

¼
� ð2iÞ!

2i−j·ð2jÞ!·ði−jÞ!Zðm;L;ΛÞi−j; for i ≥ j

0: for i < j
: ðB6Þ

The matrices Aij are of lower triangular type with unit
diagonal. They constitute a one-parameter group with the
multiplication law

AðZ1ÞAðZ2Þ ¼ AðZ1 þ Z2Þ: ðB7Þ

Therefore the relation between different normal ordered
expressions can be written compactly as

ψ ðm;L1Þ
j ðxÞ¼AjkðZðμ;L2;ΛÞ−Zðm;L1;ΛÞÞψ ðμ;L2Þ

k ðxÞ: ðB8Þ

1. Massive oscillators

We now consider the case where our oscillator modes are
massive,m ≠ 0. The explicit form of the relation for normal
ordering with mass m between finite volume L and infinite
volume takes the form

∶φ2∶m;∞ ≕φ2∶m;L þ ΔZ;

∶φ3∶m;∞ ≕φ3∶m;L þ ΔZφ;

∶φ4∶m;∞ ≕φ4∶m;L þ 6ΔZ∶φ2∶m;L þ 3ΔZ2; ðB9Þ

where ΔZ is a correction exponentially small for large
volumes with the explicit form

ΔZðmLÞ ¼ 1

2π

Z
∞

−∞

du
emL coshu − 1

: ðB10Þ

In finite volume, the kinetic term obeys the relationZ
L

0

dx
2
ðð∂xφÞ2þπðxÞ2Þ¼

Z
L

0

dx
2
∶ð∂xφÞ2þπðxÞ2∶m;L

þ 1

2L

XLΛ2π
n¼−LΛ

2π

1

ωn
ðk2nþω2

nÞ; ðB11Þ

while in infinite volume, we haveZ
∞

−∞

dx
2
ðð∂xφÞ2 þ πðxÞ2Þ ¼

Z
∞

−∞

dx
2
∶ð∂xφÞ2 þ πðxÞ2∶m;∞

þ 1

4π

Z
Λ

−Λ

1

ωðkÞ ðk
2 þ ωðkÞ2Þ;

ðB12Þ

which leads to the relation

Z
dx
2
∶ð∂xφÞ2 þ πðxÞ2∶m;∞ ¼

Z
dx
2
∶ð∂xφÞ2 þ πðxÞ2∶m;L

þme0ðmLÞ−m2L
2

ΔZðmLÞ;
ðB13Þ

where

e0ðmLÞ ¼
Z

∞

−∞

dθ
2π

cosh θ logð1 − e−mL cosh θÞ: ðB14Þ

The explicit form of the Hamiltonian, expressed with finite
volume normal ordering, reads

H ¼ me0ðmLÞ þ L

�
g2 −

m2

2

�
ΔZðmLÞ þ 3Lg4ðΔZÞ2

þ
Z

dx∶
π2

2
þ ð∂xϕÞ2

2
∶m;L

þ
Z

dx∶ðg2 þ 6g4ΔZÞϕðxÞ2 þ g4ϕðxÞ4∶m;L: ðB15Þ

At this point the zero mode can be separated

φðxÞ ¼ φ0 þ φ̃ðxÞ; π ¼ π0 þ π̃ðxÞ ðB16Þ

resulting in the following form

H ¼ me0ðmLÞ þ L

�
g2 −

m2

2

�
ΔZðmLÞ þ 3Lg4ðΔZÞ2

þma†0a0 þ
�
g2 −

m2

2
þ 6g4ΔZ

�
L∶ϕ2

0∶m

þ g4L∶ϕ4
0∶m þHðmÞ

0;osc

þ
Z

dx∶
�
g2 −

m2

2
þ 6g4ΔZ

�
ϕ̃ðxÞ2∶m;L

þ g4

Z
dx∶ðϕðxÞ4 − ϕ4

0Þ∶m;L; ðB17Þ

where

HðmÞ
0;osc ¼

Z
dx∶

π̃2

2
þ ð∂xϕ̃Þ2

2
þm2

2
ϕ2∶m;L

¼
X
n≠0

ωna
†
nan: ðB18Þ
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2. Massless oscillators

When the massless oscillator basis is used, another
renormal-ordering is necessary for the powers of ϕ̃:

Z
dx∶

π̃2

2
þð∂xϕ̃Þ2

2
∶m;L¼

Z
dx∶

π̃2

2
þð∂xϕ̃Þ2

2
∶0;L

þ
X
n≠0

�jknj
2

−
ωn

2
þ m2

4ωn

�
: ðB19Þ

The conditionally convergent sum is understood in the
presence of some cutoff jnj ≤ nmax, and nmax is sub-
sequently taken to infinity. This results is a finite limit.
The extra term on the rhs can be written in the following
integral representation

X
n≠0

jknj
2

−
ωn

2
þm2

4ω

¼ −
π

6L
−
m2

8π
Lþm

4
−me0ðmLÞ þm2

2
LΔZ: ðB20Þ

Furthermore, using the appropriately modified version of
Eq. (B8) for the powers of ϕ̃ with m1 ¼ m, m2 ¼ 0,
L1 ¼ L2 ¼ L, we obtain

∶φ̃2∶m;L ≕ φ̃2∶0;L þ Δ̃;

∶φ̃3∶m;L ≕ φ̃3∶0;L þ Δ̃φ;

∶φ̃4∶m;L ≕ φ̃4∶0;L þ 6Δ̃∶φ̃2∶0;L þ 3Δ̃2; ðB21Þ

where

Δ̃ ¼ −ΔZðmLÞ þ 1

2mL
þ γE
2π

þ 1

2π
log

�
mL
4π

�
: ðB22Þ

Expressing the Hamiltonian with the ∶∶0;L normal ordered
operators, we obtain (Δ̂ ¼ Δ̃þ ΔZ)

H ¼ −
π

6L
þm

4
−
m2

8π
Lþ Lg2Δ̂þ 3Lg4ðΔ̂Þ2

þma†0a0 þ
�
g2 −

m2

2
þ 6g4Δ̂

�
L∶ϕ2

0∶m þ g4L∶ϕ4
0∶m

þHð0Þ
0;osc þ

Z
dx½ðg2 þ 6g4Δ̂Þ∶ϕ̃ðxÞ2∶0;L

þ g4∶ ϕ̃ðxÞ4∶0;L þ 4g4∶ϕ̃ðxÞ3∶0;Lϕ0

þ 6g4∶ϕ̃ðxÞ2∶0;L∶ϕ2
0∶m�: ðB23Þ

In the above the zero mode remains normal ordered with
respect to the massive a0 while the oscillators are normal
ordered with respect to massless finite q modes, aq≠0.

APPENDIX C: TSM DETAILS OF THE
“CONVENTIONAL” TAIL STATE APPROACH

1. Matrix elements

The potential V̂0 in (57) to be integrated out has the form

V̂0 ¼
X4
n¼2

gn

Z
dx∶ϕ̃ðxÞn∶m0;L ðC1Þ

Note that the projection into the zero mode P̂∶ϕ̃ðxÞn∶ P̂
is zero for all n > 0. The matrix elements between
the emphasized subspace and the first order tails can be
written as

ðHð1Þ
1t Þmt̃m01

¼ −hmjV̂0ðτÞP̂⊥V̂0ð0Þjt̃m01i;

¼
Z

L

0

dx
Z

∞

0

dt
X4

α1;α2¼2

hmjgα1ðτÞgα2ð0Þjm0i·

Vα1α2ðτ; 0ÞeðE�−EZM
m Þτ; ðC2Þ

where the two-point function Vα1α2 was defined in Eq. (71).
Since Vα1α2 ¼ 0 for α1 ≠ α2, the sums in Eq. (C2) can be
restricted to α1 ¼ α2.
Going beyond the leading order, we get for the matrix

elements (here and in the following, Tn ¼
P

n
j¼1 τn, and we

use the notation dnτ ¼Qn
k¼1

R
∞
0 dτk)

ðHðn−1Þ
1t Þmt̃m0 ;n−1

¼ ð−1Þn−1
Z

∞

0

dn−1τ

×
X4

α1;…αn¼2

Iα1…αn
n ðfTðfτgÞgÞeðE�−EZM

m ÞTn−1

× hmjgα1ðTn−1Þ…gαnð0Þjm0i; ðC3Þ

ðGðijÞÞt̃mi;t̃m0j
¼ð−1ÞðiþjÞ

Z
∞

0

diþj−1τ

×
X4

α1;…αiþj¼2

τjI
α1…αiþj

iþj ðfTðfτgÞgÞeðE�−EZM
m ÞTiþj−1

×hmj∶gα1ðTiþj−1Þ…gαiþj
ð0Þjm0i: ðC4Þ

We give the explicit forms of the objects Ik1;…kn
n below:
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Iijk3 ðfTgÞ ¼ VijkðT2; T1; 0Þ;
Iijkl4 ðfTgÞ ¼ VijklðT3; T2; T1; 0Þ − VijðT3; T2ÞVklðT1; 0Þ;

Iijklm5 ðfTgÞ ¼ VijklmðT4;…; T1; 0Þ − VijkðT4; T3; T2ÞVlmðT1; 0Þ − VijðT4; T3ÞVklmðT2; T1; 0Þ;
Iijklmn
6 ðfTgÞ ¼ VijklmnðT5;…; T1; 0Þ − VijklðT5; T4; T3; T2ÞVmnðT1; 0Þ − VijkðT5; T4; T3ÞVlmnðT2; T1; 0Þ

− VijðT5; T4ÞVklmnðT3; T2; T1; 0Þ þ VijðT5; T4ÞVklðT3; T2ÞVmnðT1; 0Þ;
Iijklmno
7 ðfTgÞ ¼ VijklmnoðT6;…; T1; 0Þ − VijklmðT6; T5; T4; T3; T2ÞVnoðT1; 0Þ − VijklðT6; T5; T4; T3ÞVmnoðT2; T1; 0Þ

− VijkðT6; T5; T4ÞVlmnoðT3; T2; T1; 0Þ − VijðT6; T5ÞVklmnoðT4; T3; T2; T1; 0Þ
þ VijkðT6; T5; T4ÞVlmðT3; T2ÞVnoðT1; 0Þ þ VijðT6; T5ÞVklmðT4; T3; T2ÞVnoðT1; 0Þ
þ VijðT6; T5ÞVklðT4; T3ÞVmnoðT2; T1; 0Þ: ðC5Þ

Similarly to perturbation theory, the integrands in
Eqs. (C3) and (C4) simplify considerably by introducing
explicit time ordering and exploiting the resulting
permutation symmetry. However, additional care is
needed in symmetrizing the integration domain. Since

the interaction consists of multiple types of vertices
(quadratic, cubic, and quartic terms), it turned out con-
venient to keep the τ ¼ 0 operator distinguished, while the
remaining operators are assumed equivalent. In particular,
we can write

ðHð3Þ
1t Þmt̃m0 ;3

¼ −
Z

∞

0

d3T

� X4
2≤α1≤α2≤α3≤α4

3!

n2!n3!n4!
Vcomp
α1α2α3α4ðfTgÞhmjT̂ gα1ðT3Þ…gαnð0Þjm0i

�

þ 1

2
ΘðT1 −minðT2; T3ÞÞ

� X4
α1;α2¼2

Vα1α1ðT3; T2ÞVα2α2ðT1;0ÞhmjT̂ gα1ðT3Þgα1ðT2Þgα2ðT1Þgα2ð0Þjm0i
�
; ðC6Þ

where T̂ denotes time ordering so that larger time argu-
ments are arranged to the left. The variables n2, n3, n4 refer
to the number of quadratic, cubic and quartic vertices
excluding the one with zero argument, while ΘðTÞ is the
Heaviside unit step function. The compressed correlator
Vcomp
α1;…αn is obtained from Vα1;…αn in the following way. First

we remove any disconnected Feynman diagrams appearing
in Vα1;…αn . Second, we distribute diagrams which can be
transformed into each other by a permutation of the first
n − 1 vertices into equivalence classes. We choose a
representative diagram from each class so that
α1 ≤ α2 ≤ … ≤ αn−1, and multiply it with the number of
diagrams in the class. Thus extra symmetry factors corre-
sponding to this partial symmetrization are obtained by an
explicit counting of equivalent diagrams.
The subset of Feynman diagrams containing only quartic

vertices, for the lowest few orders are pictured in Figs. 19
and 20. While restricting the evaluation to topologically
different diagrams greatly reduces the complexity of
evaluations, one has to keep track of the time arguments
in the zero mode correlator, which have to be arranged
“manually” into the correct time order in their numerical
evaluation.

FIG. 19. Lowest order Feynman diagrams contributing to the
ground state energy:Oðg24Þ (a),Oðg34Þ (b). The vertex with the zero
time argument is distinguished by being colored red.
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From the viewpoint of Feynman diagrams, the n-point
functions contain disconnected pieces. [see e.g. Fig. 20(a)].
The explicit disconnected terms of Ik1…kn

n only partially
cancel these terms, as the time ordering of the latter is
partially fixed. Nonetheless, these terms combine in a nice
way. Cancellation occurs whenever the disconnected cor-
relator factors can be arranged into at least two subsets, so
that the narrowest time interval encompassing all time
arguments inside a single subset is disjoint from the
corresponding intervals of the other subsets (Fig. 21). In
other words, there is a cutoff in the separation of dis-
connected pieces. Together with the exponential decay of
the propagator, this feature ensures that the dominant
contribution to the τ integral comes from the region with
all τ variables being small. When the τ integrands are
symmetrized under τ ordering, the regions where the
disconnected terms give a contribution needs to be sym-
metrized explicitly.
The above method is suitable for calculating the ground

state and zero-momentum one-particle states of the inter-
acting theory.
Things become more complicated if one is to calculate

general excited states. One could in principle include
nontrivial oscillator states. When states having nontrivial
oscillator content are included among H1 states, one
obtains Feynman diagrams with external lines, which adds
to the complexity of calculating the associated matrix
elements.

2. Choice of E�
All “conventional” tail states depend on the energy

parameter E�. Technically E� appears as the (a priori
unknown) exact energy of the eigenvalue that we seek. In
Fig. 1, the emphasis was on the numerical convergence in
NZM and so we took E� from reference data originally
obtained with the method described in [72]. In general it is
tempting to perform a self-consistent iteration to fix
this energy parameter. However, we argue that such an
iteration is actually not favorable in general. The stage

of the derivation in which E� is identified with the
exact energy eigenvalue involves the full, nontruncated
Hamiltonian. There is no reason why an iteration in a
restricted Hilbert space should be optimal in obtaining
the eigenvalue. A better point of view may be to consider
E� as a variational parameter, and look for the optimal set of
tails by minimizing the ground state energy with respect
to E�.

3. Feynman diagrams

Practically, we generate the Feynman diagrams as
follows. In our setup the relevant diagrams have no external
legs, so we will restrict our attention to these “vacuum”
diagrams.
(1) For a given number of vertices n, generate all distinct

ordered sets of vertex ranks (number of legs) from
which at least one diagram can be assembled. For the
ϕ4 model, 2 ≤ rank ≤ 4 for each vertex and the sum
of all ranks has to be even. For example, there are six
relevant ordered sets for n ¼ 3. Henceforth we
introduce the notation ðr1; r2;…; rnÞ for the set of
diagrams having n vertices with ranks r1,…, rn.

(2) To each collection of vertices, e.g. (2, 2, 4, 4),
construct a list of all possible Feynman diagrams by
connecting the vertices in all possible ways, such
that no line starts and ends on the same vertex.
Disconnected diagrams are also kept. All possibil-
ities are easily generated in Mathematica as long as
the number of vertices is not too large.

(3) Distribute the appropriate symmetry factors to the
graphs. Each graph is multiplied by

SðgraphÞ ¼
� Q

i∈ verticesRi!Q
i;j∈ vertices;j>iPij!

�
; ðC7Þ

whereRi is the number of legs of vertex i, and Pij is
the number of propagators between vertices i and j.

FIG. 20. Feynman diagrams contributing to the ground state energy at Oðg44Þ. The multiplicities of the diagrams in (a)–(d), are 3, 6, 3,
and 3, respectively. The vertex with zero time argument is distinguished by being colored red.
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(4) If Vcomp is calculated, we select the connected
Feynman diagrams appearing in Vα1;…αn . We dis-
tribute diagrams which can be transformed into each
other by a permutation of the first n − 1 vertices into
equivalence classes. We choose a representative
diagram from each class so that α1≤α2≤…≤
αn−1, and multiply it with the number of diagrams
in the class.

(5) Finally, the integrand corresponding to a given set of
graphs is generated in real (Euclidean) space. The
formula is then exported to C++ syntax using
Mathematica’s CForm function. When the number
of diagrams approaches the order of 104, the
corresponding source code is in the order of mega-
bytes, and it becomes convenient to divide the
integrand into a number of separate C++ functions
and compile a static library. This greatly reduces
compilation time.

4. Feynman diagram data

a. First Krylov order (NLO): 2 and 3 vertices

At this order, the lowest order contributing diagrams
have vertex content (2, 2), (3, 3), and (4, 4), respectively.
There are six relevant ordered sets involving three vertices.
A single possible Feynman diagram corresponds to each
set. They are depicted in Fig. 5.

b. Second Krylov order (2NLO): 4 and 5 vertices

For 4 vertices, there are 9 different ordered rank sets. The
corresponding numbers of diagrams are shown in Table II.
For 5 vertices, there are 12 different ordered rank sets. The
respective numbers of diagrams are depicted in Table II.

c. Third Krylov order (3NLO): 6 and 7 vertices

For 6 vertices, there are 16 different ordered rank sets.
The corresponding numbers of diagrams are shown on
Table III. For 7 vertices, there are 20 different ordered rank
sets. The corresponding numbers of diagrams are shown on
Table IV.

FIG. 21. Partial cancellation of disconnected terms. (a) Partial
cancellation for the lowest order disconnected diagrams. Here
T3 ≥ T2 ≥ T1 ≥ 0. The top diagram is cancelled by the explicit
subtraction in Iijkl4 ðfτgÞ, but the other two are not. (b) An
example of higher orders (arising in I7): disconnected diagrams
with disjoint argument configurations (like the one depicted)
cancel. Here time increases from left to right (in particular,
T2 < T1.) The correlator hVðT6ÞVðT5Þi is completely separated
in its arguments from the other correlators which results in the
cancellation by VðT6; T5ÞVðT4; T3; T2; T1; 0Þ.

TABLE II. Number of diagrams with 4 and 5 vertices before
symmetrization.

4-vertex set
Number of
diagrams 5-vertex set

Number of
diagrams

(2, 2, 2, 2) 6 (2, 2, 2, 2, 2) 22
(2, 2, 2, 4) 3 (2, 2, 2, 2, 4) 21
(2, 2, 3, 3) 6 (2, 2, 2, 3, 3) 29
(2, 2, 4, 4) 6 (2, 2, 2, 4, 4) 29
(2, 3, 3, 4) 6 (2, 2, 3, 3, 4) 37
(2, 4, 4, 4) 6 (2, 2, 4, 4, 4) 46
(3, 3, 3, 3) 10 (2, 3, 3, 3, 3) 48
(3, 3, 4, 4) 10 (2, 3, 3, 4, 4) 58
(4, 4, 4, 4) 15 (2, 4, 4, 4, 4) 84

(3, 3, 3, 3, 4) 72
(3, 3, 4, 4, 4) 101
(4, 4, 4, 4, 4) 158
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APPENDIX D: MATRIX ELEMENTS
FOR UNIVERSAL TAILS

Using the notations from Appendix C, the matrix
elements of the Hamiltonian and the Gram matrix between

the universal tail states can be written as (Tn ¼
P

n
j¼1 τn,

and we use the notation dnτ ¼Qn
k¼1

R
∞
0 dτk)

ht̃i1;…;im jṼjjt̃k1;…;kni¼ð−1Þmþn

Z
dmþnτ

×Ii1;…;im;j;k1;…;kn
mþnþ1 ðfTðfτgÞgÞ;

ht̃i1;…;im jH̃ðmÞ
0;oscjt̃k1;…;kni¼−ht̃i1;…;im jṼk1 jt̃k2;…;kni

ht̃i1;…;im jt̃k1;…;kni¼ð−1Þmþn

Z
dmþn−1ττn

×Ii1;…;im;k1;…;kn
mþn ðfTðfτgÞgÞ: ðD1Þ

In the above, the quantities Ik1;…kn
n were defined in Eq. (C5).

Note that the time arguments are in explicit time order
and so the disconnected pieces do not completely cancel the
ones implicit in the n-point functions Vijk…. Since our
K ¼ 3 basis spans 40 states in the oscillator subspace, in
principle we would need to calculate a total of 4100 matrix

elements corresponding to the operators Ṽ2 Ṽ3, Ṽ4, H̃
ðmÞ
0;osc,

and the Gram matrix G̃ (their representations are symmetric
matrices). However, due to their structure, it is sufficient to
compute a total of 1312 matrix elements, 574 of which are
12-dimensional integrals.

APPENDIX E: EUCLIDEAN FINITE
VOLUME PROPAGATOR

In this appendix we compute the finite volume propa-
gators. For the massless case, the finite volume two-point
function is defined as

G0ðt; xÞ ¼ hj½φ̃þðt; xÞ; φ̃−ð0; 0Þ−�ji

¼ 1

2L

X
n≠0

eiknx−jknjt

jknj
; ðE1Þ

which can be summed up analytically to yield

G0ðt; xÞ ¼ −
1

4π
log

	
1þ e

−4π
L t − 2e

−2π
L t cos

�
2π

L
x

�

: ðE2Þ

In the massive case, the finite volume propagator
Gmðt; xÞ for a free boson of mass m is calculated in the
following way. It follows from the massive mode expansion
that Gmðt; xÞ can be written as

Gmðt; xÞ ¼
1

2L

X
n≠0

eiknx−ωnt

ωn
: ðE3Þ

In the following it will be convenient to explicitly subtract
the zero mode contribution

Gmðt; xÞ ¼
1

2L

X
n∈Z

eiknx−ωnt

ωn
−

1

2Lm
e−mt; ðE4Þ

TABLE IV. Number of diagrams with 6 vertices before and
after symmetrization. The “compressed” column indicates the
number of inequivalent connected diagram classes.

7-vertex set
Number of
diagrams

Number of
connected

Number of
compressed

(2, 2, 2, 2, 2, 2, 2) 822 360 1
(2, 2, 2, 2, 2, 2, 4) 1005 630 3
(2, 2, 2, 2, 2, 3, 3) 1402 1050 15
(2, 2, 2, 2, 2, 4, 4) 1662 1250 19
(2, 2, 2, 2, 3, 3, 4) 2159 1856 61
(2, 2, 2, 2, 4, 4, 4) 3093 2622 88
(2, 2, 2, 3, 3, 3, 3) 2878 2484 94
(2, 2, 2, 3, 3, 4, 4) 3975 3669 382
(2, 2, 2, 4, 4, 4, 4) 6453 5862 216
(2, 2, 3, 3, 3, 3, 4) 5140 4746 139
(2, 2, 3, 3, 4, 4, 4) 8188 7842 1129
(2, 2, 4, 4, 4, 4, 4) 14613 13790 372
(2, 3, 3, 3, 3, 3, 3) 6720 5940 70
(2, 3, 3, 3, 3, 4, 4) 10466 9946 503
(2, 3, 3, 4, 4, 4, 4) 18497 17960 1659
(2, 4, 4, 4, 4, 4, 4) 35865 34350 361
(3, 3, 3, 3, 3, 3, 4) 13440 12300 35
(3, 3, 3, 3, 4, 4, 4) 23453 22483 608
(3, 3, 4, 4, 4, 4, 4) 45103 43810 1103
(4, 4, 4, 4, 4, 4, 4) 93708 90075 195

TABLE III. Number of diagrams with 6 vertices before and
after symmetrization. The “compressed” column indicates the
number of inequivalent connected diagram classes.

6-vertex set
Number of
diagrams

Number of
connected

Number of
compressed

(2, 2, 2, 2, 2, 2) 130 60 1
(2, 2, 2, 2, 2, 4) 130 90 2
(2, 2, 2, 2, 3, 3) 190 150 10
(2, 2, 2, 2, 4, 4) 209 163 12
(2, 2, 2, 3, 3, 4) 262 237 29
(2, 2, 2, 4, 4, 4) 346 309 37
(2, 2, 3, 3, 3, 3) 352 306 33
(2, 2, 3, 3, 4, 4) 449 425 123
(2, 2, 4, 4, 4, 4) 691 636 68
(2, 3, 3, 3, 3, 4) 574 532 32
(2, 3, 3, 4, 4, 4) 856 828 233
(2, 4, 4, 4, 4, 4) 1430 1360 74
(3, 3, 3, 3, 3, 3) 760 640 10
(3, 3, 3, 3, 4, 4) 1093 1023 60
(3, 3, 4, 4, 4, 4) 1819 1746 175
(4, 4, 4, 4, 4, 4) 3355 3150 42
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which allows us to write Gmðt; xÞ in terms of a contour
integral

Gmðt; xÞ ¼ −
e−mt

2mL

þ 1

8π

Z
C

eipL

eipL − 1
ðeipx þ e−ipxÞ e

−t
ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p dp;

ðE5Þ

where we have also exploited the x → −x symmetry of the
sum. The contour C consists of many disconnected pieces,
encircling all poles on the real axis in the positive direction.
This contour is first deformed into two horizontal sections.
One section goes slightly below the real axis from −∞− iϵ
towards þ∞− iϵ (ϵ > 0), while the other goes above the
real axis from þ∞þ ϵ to −∞þ ϵ. From the contour, we
subtract (and then add explicitly) the large volume approxi-
mation of the sum,

Gm;∞ ¼ 1

4π

Z
∞

−∞
dp

cosðpxÞe−t
ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p ; ðE6Þ

after which the contours can be transformed into two large
semicircles, avoiding the vertical square root branch cuts
above and below the real axis.
In the following we will rely on the identity

K0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ τ2

q
Þ ¼

Z
∞

0

e−
ffiffiffiffiffiffiffiffiffi
ρ2þτ2

p
cosh θdθ;

¼ 1

2

Z
∞

−∞
e−r coshu cosh θdθ;

¼ 1

2

Z
∞

−∞
e−r cosh

2 u cosh θ−r coshu sinh u sinh θdθ;

ðE7Þ

where K0ðxÞ is the modified Bessel function of the
second kind.
Let us first study the large-volume asymptoticGm;∞ðt; xÞ.

Changing the integrationvariable top ¼ m sinh θ, we obtain

Gm;∞ ¼ 1

4π

Z
∞

−∞
cosðmx sinh θÞe−mt cosh θ: ðE8Þ

Comparing this form to the integral Eq. (E7), we obtain

Gm;∞ ¼ 1

2π
K0

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ x2

p �
: ðE9Þ

The contribution of the contours tightened around the branch
cuts can be written in the form

Gm;Δ ¼ 1

4π

Z
∞

0

4 cosðmt sinh θÞ coshðmx cosh θÞ
emL cosh θ − 1

: ðE10Þ

Expanding the denominator in the small parameter
e−mL cosh θ, we obtain an infinite series of terms of the form
(E7). In this way we get (0 < x < L)

Gmðt; xÞ ¼ Gm;∞ þGm;Δ;

¼ 1

2π
K0

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ t2

p �
þ 1

2π
K0

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL − xÞ2 þ t2

q �
þ
X∞
n¼1

δGn;

δGn ¼
1

2π
K0

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnLþ xÞ2 þ t2

q �
þ 1

2π
K0

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððnþ 1ÞL − xÞ2 þ t2

q �
: ðE11Þ

This form is manifestly periodic in x with period L.

APPENDIX F: EVALUATING THE INTEGRALS

To obtain the numerical matrix elements, the integration
was performed using the globally adaptive Cuhre algorithm
of the Cuba package. This is a very competitive algorithm for
multidimensional integrals of moderate dimensions, with
the error generally reducing as N−1

eval instead of N−1=2
eval

common in Monte Carlo methods.
The integration used around 50 million function evalu-

ations for each matrix element. This results in a relative
precision of order 10−3 for matrix elements of the third
order tail states.
For the actual computations it was advantageous to use

polar coordinates in the time subspace for (4>2)-dimensional
integrals. The parametrization that we used is as follows:

t1 ¼ r cosφ1;

t2 ¼ t1 tanφ1 cosφ2;

..

.

tD=2−1 ¼ tD=2−2 tanφD=2−2 cosD=2−1;

tD=2 ¼ tD=2−1 tanφD=2−1;

and where we introduce r ¼ R0ρ, with a rescale param-
eter R0 ¼ 40.
For the numerical integration, we have to transform the

integral into the unit hypercube. The angles are naturally
bounded as

fφ1;…;φD=2g ∈
	
0;
π

2



; ðF1Þ

while the space coordinates are bounded as

fx1;…; xD=2g ∈ ½0; L�: ðF2Þ
We also restrict ρ to the interval [0, 1], so R0 amounts
to a temporal cutoff. It is chosen so as the results are
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independent of it. For the integration, these variables are
rescaled to their barred counterparts φi; xi, so that they are
bounded in the [0, 1] interval. Thus the final Jacobi
determinant takes the form

J¼RD=2−1
0 ρD=2−1LD=2

�
π

2

�
D=2−1 YD=2−2

k¼1

ðsinφkÞD2−1−k; ðF3Þ

[note that (F3) is expressed using the nonrescaled angles,
but the integration is understood with respect to the barred
ones, hence the extra numerical prefactor.]

For the modified Bessel functions, the C++ code uses the
implementation of the ALGLIB package. A technical point is
that K0ðxÞ behaves as − ln xþ const in the x → 0 limit.
Therefore, it was necessary to define a regularized function
with a momentum cutoff δ−1cut

K̃0ðxÞ ¼
�
K0ðxÞ; x > δcut

K0ðδcutÞ; x <¼ δcut
;

and K̃0 is used instead of K0 in the numerical computations.
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