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We develop a new regularization method for the stress-energy tensor and the two-point function of free
quantum scalar fields propagating in cosmological spacetimes. We proceed by extending the adiabatic
regularization scheme with the introduction of two additional mass scales. By setting them to the order of
the physical scale of the studied scenario, we obtain ultraviolet-regularized quantities that do not distort the
power spectra amplitude at the infrared scales amplified by the expansion of the Universe. This is not
ensured by the standard adiabatic approach. We also show how our proposed subtraction terms can be
interpreted as a renormalization of coupling constants in the Einstein equations. We finally illustrate our
proposed regularization method in two scenarios of cosmological interest: de Sitter inflation and geometric
reheating.
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I. INTRODUCTION

Quantum field theory in curved spacetime provides the
most adequate framework to study the dynamics of
quantum fields propagating on classical background space-
times [1–4]. A fundamental implication of the theory is the
one of gravitational particle production, which takes place
e.g. when the Universe expands nonadiabatically [5–7] or
near the event horizon of a black hole [8]. In the cosmo-
logical context, this provides a natural mechanism for the
excitation of metric fluctuations during inflation [9–12],
which constitute the seeds for the formation of structure in
the Universe [13,14]. The excited tensor perturbations also
constitute a relevant source of primordial gravitational
waves, whose amplitude is observationally upper bounded
by cosmic microwave background experiments [15].
Gravitational effects can also play an important role in
the production of particles at the end of inflation [16] or
during reheating [17]. For a recent review on cosmological
particle production, see Ref. [18].
An essential problem when working with quantum fields

in curved spacetimes is the one of renormalization, which is
challenging even for free fields. For instance, if we consider
a free scalar field ϕ and compute the expectation value of its
stress-energy tensor hTμνðxÞi, we find new ultraviolet
divergences that are not present in flat spacetime, and
hence cannot be removed by a normal ordering procedure.
A similar problem appears in the two-point function

hϕðxÞϕðx0Þi when evaluated at coincident spacetime points
x → x0. Several regularization and renormalization meth-
ods to deal with these divergences have been developed for
quantum fields in curved spacetimes; see e.g. [1,3] for
standard textbooks on the subject.
In this work we focus on regularization in cosmo-

logical spacetimes, described by Friedmann-Lemaître-
Robertson-Walker (FLRW) metrics. An extensively used
regularization scheme in these spacetimes is adiabatic
regularization [19–21], which is based on an adiabatic
WKB-like expansion of the field modes. Given an
unregularized quantity, one can identify its ultraviolet-
divergent contributions by expanding it adiabatically up
to a certain order, and then subtracting the obtained terms to
obtain a finite expression. Despite being specific to FLRW
metrics, the method is equivalent to general curved back-
ground constructions [22,23], which ensures that observ-
ables are constructed in a local covariant way. It is also
very convenient to use in numerical computations (see e.g.
[24–26]) and can also be applied to the construction of
preferred vacuum states [27,28]. The method has been
extended to the regularization of spin-1=2 fields [29–32]
and spin-1 fields [33].
However, although the subtraction terms obtained

through the adiabatic expansion successfully remove the
ultraviolet divergences, it has been shown that they can
distort the amplitude at infrared scales, especially in the
case of light scalar fields. For example, the regularized
power spectrum of a light field in de Sitter spacetime
(m ≪ H) gets significantly suppressed at scales k≳ am,
and it is exactly zero in the massless limit m → 0 [34].
These results can potentially change the standard
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observable predictions of slow-roll inflation [35–37], and
have been critically examined in several works [38–43] (see
also [44]). This is still considered an open problem, as
reflected by more recent studies that have tackled this issue
from different perspectives. For example, in [45] it was
emphasized that different renormalizations can be found by
expressing the subtraction terms in de Sitter space as
counterterms in the Lagrangian. In [46], an infrared cutoff
was introduced in the adiabatic subtraction terms to tame
the infrared distortions, and in [47] the authors developed a
different method based on a resummation of the entire
adiabatic expansion.
In any case, it is important to emphasize that the

regularization program is in principle ambiguous, and
different methods can indeed produce different results.
This is already the case of perturbative quantum field
theory in Minkowski spacetime, where this ambiguity is
encapsulated in the renormalized coupling constants (we
will later come back to this point in the case of the
gravitational coupling constants). Motivated by this idea,
in Ref. [48] we developed a new regularization method for
the two-point function at coincident spacetime points,
based on an extension of the standard adiabatic scheme.
We proposed a new set of subtraction terms that success-
fully cancel the ultraviolet divergences but also minimize
the introduced distortions at momenta scales k≲M,
where M is an arbitrary mass scale fixed by our choice
of regularization scheme. This new method is compatible
with the ambiguities allowed by the renormalization pro-
gram and is consistent with local covariance (unlike e.g.
introducing a hard infrared cutoff in the adiabatic sub-
traction terms, as shown in the Appendix of [48]). Our
scheme yields, for a light scalar field in de Sitter space
(m ≪ H), a scale-invariant regularized power spectrum

ΔðregÞ
ϕ ≃H2=ð4π2Þ at super-Hubble scales.
In this work we continue the program initiated in

Ref. [48], by extending the method to the regularization
of the scalar field’s stress-energy tensor. As we shall see, in
this case the subtraction terms will depend instead on two
arbitrary mass scales M2 and M4, which minimize the
infrared distortions if they take sufficiently large values. As
we shall see, their minimum required value to overcome the
problem of the infrared distortions is around the physical
scale of the studied scenario, e.g. the Hubble parameter for
de Sitter inflation or the inflaton’s oscillation frequency for
geometric reheating (see Sec. V for more details). For this
reason, we have named our proposed regularization scheme
physical scale adiabatic regularization (PSAR).
The structure of the paper is as follows. In Sec. II we

present the different equations describing the dynamics of
scalars field in cosmological spacetimes and review the
standard adiabatic regularization method. In Sec. III we
present our proposed PSAR method and apply it to the
regularization of the stress-energy tensor and the two-point
function. In Sec. IV we interpret our regularization scheme

in terms of the renormalization of coupling constants,
which we then fix according to a physically motivated
renormalization condition. In Sec. V we illustrate our
proposed regularization method in two scenarios of cos-
mological interest: de Sitter expansion and geometric
reheating after inflation. In Sec. VI we discuss our results
and conclude.

II. SCALAR FIELD IN A COSMOLOGICAL
SPACETIME

The aim of this work is to reexamine the regularization of
expectation values built from free scalar fields propagating
in cosmological spacetimes. Let us first introduce the basic
equations describing their dynamics. The action of a scalar
field ϕ can be written as,

Sϕ½ϕ; gμν� ¼
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
gμν∂μϕ∂νϕ − ðξRþm2Þϕ2

�
;

ð1Þ

where g is the determinant of the spacetime metric gμν and
m2 is the mass squared of the field. We have included a
nonminimal coupling between the field and the Ricci scalar
R, whose strength is parametrized by the dimensionless
constant ξ. The equation of motion is

ð□þ ξRþm2Þϕ ¼ 0; ½□≡∇μ∇μ�; ð2Þ

and its stress-energy tensor can be written as
(a; b; c ¼ 0; 1; 2; 3)

Tab ≡ 2jgj−1=2 δSϕ
δgab

¼∇aϕ∇bϕ−
1

2
gab∇cϕ∇cϕþ gab

m2

2
ϕ2

− ξ

�
Rab −

1

2
Rgab

�
ϕ2 þ ξðgab∇c∇cϕ

2 −∇a∇bϕ
2Þ:

ð3Þ

In the particular case of the spatially flat FLRW metric
ds2 ¼ a2ðτÞðdτ2 − dx2Þ (where τ denotes the conformal
time coordinate), Eq. (2) reads as ( 0 ≡ d=dτ)

ϕ00þ2
a0

a
ϕ0−∇2ϕþm2ϕþξRðτÞϕ¼0; RðτÞ¼6

a00

a3
: ð4Þ

Let us now quantize our scalar field. We do this by
upgrading the field to an operator and performing the
following decomposition in terms of field modes:
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ϕðx; τÞ ¼ 1

ð2πÞ3
Z

d3k
aðτÞ

�
AkχkðτÞeik·x þ A†

kχ
�
kðτÞe−ik·x

�
;

ð5Þ

where A†
k and Ak are creation and destruction operators

obeying the commutation relations ½Ak; A
†
k0 � ¼ δk;k0 . The

field modes χk are solutions of the equation of motion,

χ00k þ
�
k2 þm2a2 þ

�
ξ −

1

6

�
a2R

�
χk ¼ 0; ð6Þ

and must also obey the following normalization condition
in order to ensure the standard canonical commutation
relations:

χkχ
�0
k − χ0kχ

�
k ¼ i: ð7Þ

A particular solution for χk defines a vacuum state j0i
through the condition Akj0i ¼ 0. We can then use the
above decomposition to build the two-point function
between two spacetime points x ¼ ðτ;xÞ and x0 ¼ ðτ0;x0Þ
as follows:

hϕðxÞϕðx0Þi≡ h0jϕðxÞϕðx0Þj0i

¼ 1

ð2πÞ3
Z

d3k
χkðτÞ
aðτÞ

χ�kðτ0Þ
aðτ0Þ e

ikðx−x0Þ: ð8Þ

We are concerned with the regularization of this quantity at
coincident spacetime points x → x0, as in this limit it

contains quadratic and logarithmic ultraviolet divergences.
Similarly, we can express the expectation value of the scalar
field’s stress-energy tensor in the following perfect fluid
form:

hTabi≡ h0jTabðxÞj0i ¼ −gabhpi þ ðhpi þ hρiÞuaub; ð9Þ

where ua ¼ ða−1; 0; 0; 0Þ is the four-velocity of a comoving
observer, and ρ and p are the energy and pressure densities
of the fluid respectively. In general, both expectation values
hρi and hpi contain quartic, quadratic, and logarithmic
ultraviolet divergences.
Let us now write expressions for hϕ2i, hρi and hpi in

terms of integrals over momenta. By defining conformally
rescaled field mode amplitudes as hk ≡ χk=a, we obtain the
following expressions:

hϕ2i ¼ 1

ð2πÞ3
Z

d3khϕ2
ki; hϕ2

ki≡ jhkj2; ð10Þ

hρi ¼ 1

ð2πÞ3
Z

d3khρki;

hρki≡ 1

2a2

�
jh0kj2 þ ðk2 þm2a2Þjhkj2

þ 6ξ

�
a02

a2
jhkj2 þ

a0

a
ðhkh0�k þ h�kh

0
kÞ
��

; ð11Þ

hpi ¼ 1

ð2πÞ3
Z

d3khpki;

hpki≡ 1

2a2

�
jh0kj2 −

�
k2

3
þm2a2

�
jhkj2 − 2ξ

�
ð2 − 12ξÞ a

00

a
−
a02

a2

�
jhkj2

þ2ξ

�
a0

a
ðhkh0�k þ h�kh

0
kÞ − 2jh0kj2 þ ð2k2 þ 2m2a2Þjhkj2

��
: ð12Þ

These expressions allow us to define unregularized power
spectra Δc (for c ¼ ϕ2; ρ; p) associated to these quantities
as follows:

hϕ2i ¼
Z

d log kΔϕ2ðkÞ; Δϕ2ðkÞ≡ k3

2π2
hϕ2

ki; ð13Þ

hρi ¼
Z

d log kΔρðkÞ; ΔρðkÞ≡ k3

2π2
hρki; ð14Þ

hpi ¼
Z

d log kΔpðkÞ; ΔpðkÞ≡ k3

2π2
hpki; ð15Þ

where we have used d3k≡ 4πk3d log k due to isotropy.

Equations (13), (14) and (15) are divergent in the
ultraviolet, so a regularization method needs to be per-
formed in order to cancel these divergences and obtain
finite quantities. We can achieve this by subtracting an
appropriately chosen set of subtraction terms Sc (for
c ¼ ϕ2; ρ; p) inside the momentum integrals. We denote
the resulting regularized expectation values as h∶c∶i. We
can then write

h∶ϕ2∶ i≡ 1

ð2πÞ3
Z

d3kðhϕ2
ki − Sϕ2Þ

→ ∶Δϕ2∶ðkÞ≡ k3

2π2
ðhϕ2

ki − Sϕ2Þ; ð16Þ

PHYSICAL SCALE ADIABATIC REGULARIZATION IN … PHYS. REV. D 109, 045015 (2024)

045015-3



h∶ρ∶i≡ 1

ð2πÞ3
Z

d3kðhρki − SρÞ

→ ∶Δρ∶ðkÞ≡ k3

2π2
ðhρki − SρÞ; ð17Þ

h∶p∶i≡ 1

ð2πÞ3
Z

d3kðhpki − SpÞ

→ ∶Δp∶ðkÞ≡ k3

2π2
ðhpki − SpÞ; ð18Þ

where for each expectation value we have defined its
regularized power spectrum ∶Δc∶. If the chosen subtrac-
tion terms have the appropriate ultraviolet behavior, they
should cancel the UV divergences of the unregularized
quantity, and hence the resulting regularized spectra should
behave as ∶Δc∶ ∼ k−α with α > 0 for large k. Note that the
regularized stress-energy tensor can be built from the
regularized energy and pressure densities as

h∶Tab∶i ¼ −gabh∶p∶i þ ðh∶p∶i þ h∶ρ∶iÞuaub: ð19Þ

A. Adiabatic regularization

Let us now review the adiabatic regularization method
for scalar fields [5–7], which allows us to obtain a set of
subtraction terms with the appropriate ultraviolet behavior.
The method is based on a WKB-like adiabatic expansion of
the field modes, which up to nth order takes the form

χðnÞk ≡ ahðnÞk ∼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2WðnÞ
k ðτÞ

q e−i
R

τ WðnÞ
k ðτ0Þdτ;

WðnÞ
k ≡ ωð0Þ

k þ ωð1Þ
k þ � � � þ ωðnÞ

k : ð20Þ

The superscripts in the different ωðjÞ
k terms (with

j ¼ 0;…n) indicate their adiabatic order, defined as the
number of time derivatives of the scale factor they contain
(e.g. a000 is of order three, while a02a00 is of order four). We

fix the zeroth order of the expansion to ωð0Þ
k ¼ ω≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2a2
p

. By substituting (20) into (6) and solving
the equation iteratively for increasingly higher adiabatic
orders, we can derive the expansion up to any finite order n,

obtaining this way a unique expression of χðnÞk . The first
terms of the expansion are

ωð0Þ
k ¼ ω; ð21Þ

ωð1Þ
k ¼ ωð3Þ

k ¼ 0; ð22Þ

ωð2Þ
k ¼ 1

2
ω−1=2 d2

dτ2
ω−1=2 þ 1

2
ω−1

�
ξ −

1

6

�
a2R; ð23Þ

ωð4Þ
k ¼ 1

4
ωð2Þω−3=2 d2

dτ2
ω−1=2 −

1

2
ω−1ðωð2Þ

k Þ2

−
1

4
ω1=2 d2

dτ2
�
ω−3=2ωð2Þ�: ð24Þ

In order to obtain the subtraction terms that regularize a
given expectation value, we must first write it as an integral
of an expression of field modes over momenta, like in
Eqs. (16)–(18). We then replace the modes χk in such an
expression by the expansion (20), and expand it up to the
maximum order that guarantees ultraviolet convergence.
Due to dimensional reasons, the stress-energy tensor
requires an adiabatic expansion up to fourth order, while
the two-point function only requires an expansion up to
second order. The adiabatic subtraction terms for the two-
point function are

Sϕ2 ¼ �hϕ2
ki½χð2Þk ��ð0−2Þ ¼ �

1

2a2Wk

�ð0−2Þ

¼ 1

2a2ω
−
ðξ − 1

6
ÞR

4ω3
−

3

16

ω02

a2ω5
þ ω00

8a2ω4
; ð25Þ

where the superscript (0 − n) over a given quantity indi-
cates that orders from 0 to n of its expansion are included.
Similarly, the subtraction terms for the energy and pressure
densities can be obtained as1

Sρ ≡
�hρki½χð4Þk ��ð0−4Þ; Sp ≡

�hpki½χð4Þk ��ð0−4Þ: ð26Þ

One can check that the resulting regularized stress-energy
tensor is conserved, and that it vanishes in the limit of
Minkowski spacetime (which we denote as M) for the
Poincaré-invariant vacuum state, i.e., h∶Tμν∶ ijM ¼ 0.
Before moving on, it is convenient to define a zeroth-

order-subtracted power spectrum for each quantity, in
which only the zeroth-order adiabatic term has been
subtracted from the unregularized expression, i.e.,

Δð0sÞ
c ðkÞ≡ k3

2π2
ðhcki − Sð0Þ

c Þ; c ¼ ρ; p;ϕ2: ð27Þ

Note that in Minkowski spacetime we have Δð0sÞ
c jM ¼ 0,

i.e. this construction successfully removes the vacuum
contribution. However, Eq. (27) is still ultraviolet divergent
in generic FLRW spacetimes: the one of the two-point
function still has a residual logarithmic divergence, while
the ones of the stress-energy tensor still have both quadratic
and logarithmic ones.

1Here we do not write explicit expressions for these subtraction
terms, but we can provide a Mathematica notebook containing
them upon request.
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III. REGULARIZATION WITHOUT
INFRARED DISTORTIONS

In this paper wewish to construct a regularization scheme
for the stress-energy tensor that removes its ultraviolet
divergences, while simultaneously fulfilling the following
three conditions:

(i) It must yield h∶Tab∶ ijM ¼ 0 in the Minkowskian
limit. In other words, the regularization scheme must
be equivalent to the well-known normal-ordering
prescription in Minkowski spacetime.

(ii) The regularized stress-energy tensor must be con-
served, i.e. ∇ah∶Tab∶ i ¼ 0.

(iii) The regularization procedure must not significantly
distort the amplitude of the power spectra (17)
and (18) at the momenta scales amplified by the
nonadiabatic expansion of the Universe. More spe-
cifically, we require that ∶Δc∶ðkÞ ≈ Δð0sÞ

c ðkÞ (with
c ¼ ρ; p) for all infrared modes k≲ kþ, where kþ is
the maximum amplified momentum.

The standard adiabatic scheme reviewed in Sec. II A
does indeed satisfy conditions (i) and (ii). However, it
fails to satisfy condition (iii). The reason is apparent
if we inspect e.g. the subtraction terms for the two-point
function (25): for momenta k≳ am, contributions to the
momentum integral from second- and higher-order terms of
the expansion behave as ∼k2 · ω−q=2 ∼ k2−q with q≳ 3.
Therefore, if the maximum amplified physical momentum
is larger than the field mass ma≲ kþ, the subtractions will
introduce spurious infrared distortions. We shall see an
example of this in Sec. VA, where we consider a field with
mass m ≪ H (where H is the Hubble parameter) propa-
gating in de Sitter spacetime. In this scenario we have
kþ ≈H, so the adiabatic scheme does indeed introduce
unwanted distortions.
The root of the problem lies in the zeroth-order term of the

expansion, which in the standard adiabatic approach is set to

ωð0Þ
k ¼ ω ¼ ðk2 þ a2m2Þ1=2. It is thus desirable to construct

a regularization scheme that incorporates the advantages of
adiabatic regularization but also gets rid of this assumption,
so that we are able to reproduce the spectrum at infrared
scales. A first step in this direction was taken by some of us
in [48], where we developed such a construction for the
regularized two-point function at coincident spacetime
points. Here we generalize our results to the more compli-
cated regularized stress-energy tensor.
Note that an important result in renormalization theory in

curved spacetime is that two different regularization meth-
ods for the stress-energy tensor compatible with locality
and covariance (or more generally satisfying the Wald
axioms [2]) can differ by a finite amount of geometrical
terms

h∶Tab∶ i − gh∶Tab∶i ¼ αgab þ βGab þ γð1ÞHab; ð28Þ

where fα; β; γg are three dimensionless parameters, Gab

is the Einstein tensor, and ð1ÞHab ¼ 2R;ab − 2gab□R −
1
2
gabR2 þ 2RRab is a higher-order geometrical tensor.2

We can make use of this arbitrariness to construct an
alternative subtraction scheme that is equivalent to adiabatic
regularization up to the geometrical terms in (28). Since
adiabatic regularization has been shown to be equivalent to
methods in general curved spacetimes [22,23], the new
method will also be equivalent to these up to geometric
arbitrariness. In the following section we show how to
incorporate the allowed arbitrariness in the subtraction terms
of hρi, hpi and hϕ2i.

A. Construction of the PSAR method

We now construct an alternative regularization method
that fulfills all three conditions of the above list, using as a
basis the arbitrariness allowed by Eq. (28). Our starting
point is the work carried out in Ref. [49], in which the
standard adiabatic expansion was generalized with the
introduction of an arbitrary mass scale μ, obtaining this
way a generalized “off-shell” type of prescription for
adiabatic regularization. We denote this new approach as
μ-adiabatic regularization. In order to illustrate this
method, it is convenient to rewrite the field mode equa-
tion (6) as follows:

χ00k þ
�
ω2
μ − μ2a2 þm2a2 þ

�
ξ −

1

6

�
a2R

�
χk ¼ 0;

ωμ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ μ2a2

q
; ð29Þ

where the mass parameter μ has been introduced. As in the
standard adiabatic procedure, we expand the field modes
with the WKB-like template

χ̄ðnÞk ≡ ah̄ðnÞk ∼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2W̄ðnÞ
k ðτÞ

q e−i
R

τ W̄ðnÞ
k ðτ0Þdτ;

W̄ðnÞ
k ≡ ω̄ð0Þ

k þ ω̄ð1Þ
k þ � � � þ ω̄ðnÞ

k ; ð30Þ
but now the zeroth order of the expansion is fixed to be

ω̄ð0Þ
k ¼ ωμ (the overline notation will be used to denote

terms constructed from this generalized μ-adiabatic expan-
sion). Higher-order terms of the expansion can be obtained
by substituting the ansatz (30) into (29) and solving order
by order, where the rest of the parentheses of (29) must be
considered of adiabatic order two (i.e. in this expansion
both m2 and μ2 are of order two). We obtain

ω̄ð0Þ
k ¼ ωμ; ð31Þ

2Note that if we were working in a general curved back-
ground, we would need to include a second higher-order tensor
ð2ÞHab¼R;ab−1

2
gab□R−□Rab−1

2
gabRabRabþ2RcdRcdab in (28).

However, ð2ÞHab is proportional to ð1ÞHab in an FLRW spacetime
so it is not independent.
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ω̄ð1Þ
k ¼ ω̄ð3Þ

k ¼ 0; ð32Þ

ω̄ð2Þ
k ¼ 1

2
ω−1=2
μ

d2

dτ2
ω−1=2
μ

þ 1

2
ω−1
μ

	�
ξ −

1

6

�
a2Rþ a2m2 − a2μ2



; ð33Þ

ω̄ð4Þ
k ¼ 1

4
ω̄ð2Þ
k ω−3=2

μ
d2

dτ2
ω−1=2
μ −

1

2
ω−1
μ

�
ω̄ð2Þ
k

�
2

−
1

4
ω1=2
μ

d2

dτ2
�
ω−3=2
μ ω̄ð2Þ

k

�
: ð34Þ

Note that these terms coincide with the standard adiabatic
ones (21)–(24) for the choice μ ¼ m.
The μ-dependent subtraction terms for the two-point

function are obtained, as before, by expanding hϕ2
ki up to

second order,

Sϕ2 ≡ hϕ2
kið0−2Þ

¼ 1

2a2ωμ
þ ðμ2 −m2Þ

4ω3
μ

−
ðξ − 1

6
ÞR

4ω3
μ

−
3

16

ω02
μ

a2ω5
μ
þ ω00

μ

8a2ω4
μ
: ð35Þ

Similarly, one could in principle construct subtraction
terms for the stress-energy tensor by simply expanding

hρkið0−4Þ and hpkið0−4Þ up to fourth order. However, one can
show that the regularized stress-energy tensor obtained this
way is not conserved. We can solve this issue by modifying
the subtraction terms as follows:

S̄ρ ≡ hρkið0−4Þ þ
μ2

2a2
hϕ2

kið4Þ; ð36Þ

S̄p ≡ hpkið0−4Þ −
ð1 − 4ξÞμ2

2a2
hϕ2

kið4Þ; ð37Þ

where the extra terms in Sρ and Sp are chosen such that the

condition ∇ah∶Tab∶ i ¼ 0 holds. Observe that the sub-
traction terms Sϕ2 , S̄ρ and S̄p coincide with the standard
adiabatic ones Sϕ2 , Sρ and Sp for μ ¼ m.
Note that some of the fourth-order subtraction terms

obtained with (36) and (37) will be finite after integration in
momenta and can be integrated out. They are hence not
strictly necessary in order to remove the ultraviolet diver-
gences of the stress-energy tensor. In that regard, it is
convenient to decompose the subtraction terms as S̄c ¼
S̄ðdÞc þ S̄ðfÞc for c ¼ ρ, p, where S̄ðdÞc contains all the

divergent subtraction terms, and S̄ðfÞc is composed by the
finite terms that can be expressed as geometric tensors after
integration in momenta. The regularized stress-energy
tensor can then be written as,

h∶Tab∶ i ¼
Z

d log k
�
−ðΔp − S̄pÞgab þ ðΔp − S̄p þ Δρ − S̄ρÞuaub

�
¼

Z
d log k

�
−ðΔp − S̄ðdÞ

p Þgab þ ðΔp − S̄ðdÞ
p þ Δρ − S̄ðdÞ

ρ Þuaub
�þ TðfÞ

ab þ
ðξ − 1

6
Þ

288π2
ð1ÞHab; ð38Þ

where in the second line we have defined the following geometric tensor:

TðfÞ
ab ≡ 1

64π2

�
1

45
RacRc

b −
1

45
RRab −

1

135
∇a∇bR −

1

90
RcdRcdgab þ

1

135
R2gab þ

1

135
□Rgab

�
: ð39Þ

Let us explicitly write the divergent part of the subtraction terms. For the energy density we obtain the following sum of
zeroth-, second-, and fourth-order terms:

S̄ðdÞ
ρ ≡ S̄ðd;0Þ

ρ þ S̄ðd;2Þ
ρ þ S̄ðd;4Þ

ρ ; ð40Þ

S̄ðd;0Þ
ρ ¼ −

μ2

4ωμa2
þ ωμ

2a4
þ m2

4ωμa2
−

μ4

16ω3
μ
þ μ2m2

8ω3
μ
−

m4

16ω3
μ
; ð41Þ

S̄ðd;2Þ
ρ ¼

�
ξ −

1

6

��
−
9μ4a02

4ω5
μa2

−
3μ2a02

4ω3
μa4

−
3a02

2ωμa6
þ 9μ2m2a02

4ω5
μa2

−
3m2a02

4ω3
μa4

�
; ð42Þ

S̄ðd;4Þ
ρ ¼

�
ξ −

1

6

�
2
�
27μ2a02a00

2ω5
μa5

þ 9a02a00

ω3
μa7

−
9að3Þa0

2ω3
μa6

þ 9a002

4ω3
μa6

�
: ð43Þ
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For the pressure density we obtain

S̄ðdÞ
p ≡ S̄ðd;0Þ

p þ S̄ðd;2Þ
p þ S̄ðd;4Þ

p ; ð44Þ

S̄ðd;0Þ
p ¼ −

μ6a2

16ω5
μ
−

μ2

12ωμa2
þ ωμ

6a4
þ μ4m2a2

8ω5
μ

−
μ2m4a2

16ω5
μ

−
m2

12ωμa2
−

μ4

48ω3
μ
−
μ2m2

24ω3
μ
þ m4

16ω3
μ
; ð45Þ

S̄ðd;2Þ
p ¼

�
ξ −

1

6

��
−
15μ6a02

4ω7
μ

−
3μ2a02

4ω3
μa4

þ 3μ4a00

2ω5
μa

þ μ2a00

2ω3
μa3

−
3a02

2ωμa6
þ a00

ωμa5
þ 15μ4m2a02

4ω7
μ

−
3μ2m2a02

2ω5
μa2

−
3μ2m2a00

2ω5
μa

−
m2a02

4ω3
μa4

þ m2a00

2ω3
μa3

�
; ð46Þ

S̄ðd;4Þ
p ¼

�
ξ −

1

6

�
2
�
45μ4a02a00

2ω7
μa3

þ 18μ2a02a00

ω5
μa5

−
9μ2að3Þa0

ω5
μa4

−
27μ2a002

4ω5
μa4

þ 12a02a00

ω3
μa7

−
15að3Þa0

2ω3
μa6

−
15a002

4ω3
μa6

þ 3að4Þ

2ω3
μa5

�
: ð47Þ

One can show that the difference between the stress-
energy tensors regularized with the adiabatic and μ-adia-
batic approaches can be written as in Eq. (28), where α, β
and γ depend on μ. Therefore, both methods satisfy the
Wald axioms. More generally, Eq. (28) allows us to
introduce different arbitrary mass scales at zeroth, second,
and fourth adiabatic orders, which we denote as M0, M2

and M4 respectively. We can then change the subtraction
terms as follows:

fS̄ðd;0Þ
ρ ðμÞ;S̄ðd;0Þ

p ðμÞg → fS̄ðd;0Þ
ρ ðM0Þ;S̄ðd;0Þ

p ðM0Þg; ð48Þ

fS̄ðd;2Þ
ρ ðμÞ;S̄ðd;2Þ

p ðμÞg → fS̄ðd;2Þ
ρ ðM2Þ;S̄ðd;2Þ

p ðM2Þg; ð49Þ

fS̄ðd;4Þ
ρ ðμÞ;S̄ðd;4Þ

p ðμÞg → fS̄ðd;4Þ
ρ ðM4Þ;S̄ðd;4Þ

p ðM4Þg: ð50Þ
Let us now analyze if these subtraction terms fulfill

the three conditions listed above. Regarding condition
(ii), the resulting regularized stress-energy tensor is conserved
by construction. Regarding condition (i), the correct
Minkowskian limit is satisfied only if we fix M0 ¼ m at
zeroth order, so we impose that condition from now on.
Finally, regarding condition (iii), these terms guarantee that
the distortions introduced at infrared scales areminimized for
large enough values ofM2 andM4 (we will illustrate this in
two specific examples in Sec. V). Therefore, we define our
definitive subtraction terms for the regularized stress-energy
tensor as follows:

S̃ðdÞ
ρ ¼ ω

2a4
þ
�
ξ −

1

6

��
9M2

2m
2a02

4a2w5
2

−
3m2a02

4a4w3
2

−
9M4

2a
02

4a2w5
2

−
3M2

2a
02

4a4w3
2

−
3a02

2a6w2

�
þ
�
ξ −

1

6

�
2
�
27M2

4a
02a00

2a5w5
4

þ 9a02a00

a7w3
4

−
9að3Þa0

2a6w3
4

þ 9a002

4a6w3
4

�
; ð51Þ

S̃ðdÞ
p ¼ −

m2

6a2ω
þ ω

6a4
þ
�
ξ −

1

6

��
3M4

2a
00

2aw5
2

þ M2
2a

00

2a3w3
2

þ a00

a5w2

−
15M6

2a
02

4w7
2

−
3M2

2a
02

4a4w3
2

−
3a02

2a6w2

�
þ
�
ξ −

1

6

��
−
3m2M2

2a
00

2aw5
2

þ m2a00

2a3w3
2

þ 15m2M4
2a

02

4w7
2

−
3m2M2

2a
02

2a2w5
2

−
m2a02

4a4w3
2

�
þ
�
ξ −

1

6

�
2
�
3að4Þ

2a5w3
4

−
27M2

4a
002

4a4w5
4

−
15a002

4a6w3
4

−
9M2

4a
ð3Þa0

a4w5
4

−
15að3Þa0

2a6w3
4

þ 45M4
4a

02a00

2a3w7
4

þ 18M2
4a

02a00

a5w5
4

þ 12a02a00

a7w3
4

�
; ð52Þ

where we have defined ω≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2a2

p
, w2 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

2a
2

p
and w4 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

4a
2

p
.
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We name this new regularization method physical scale
adiabatic regularization, since the two extra parameters are
conceived to be of order of the physical energy scale of the
system we are trying to probe, as we shall see in Sec. IV.
This method does not only provide a consistent regulari-
zation mechanism, but it is also physical in the sense that it
does not act on the infrared amplification of the quantum
fluctuations, but only on the ultraviolet part. Note that the
difference between the stress-energy tensors regularized
with the adiabatic and PSAR schemes can be written as in
Eq. (28), and hence the PSAR scheme is also compatible
with the Wald axioms.
A similar exercise can be carried out for the two-point

function at coincident spacetime coordinates. The subtrac-
tion terms provided by the μ-regularization prescription
have been given in Eq. (35). Analogously to the stress-
energy tensor, we set μ ¼ m in the zeroth-order terms in
order to get ∶Δϕ2∶ jM ¼ 0 in the Minkowskian limit, as
well as remove the last two subtraction terms because they
only provide a finite contribution (see Ref. [48] for details).
We then have

fSϕ2 ≡ 1

2a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2a2

p −
ðξ − 1

6
ÞR

4ðk2 þM2a2Þ3=2 ; ð53Þ

whereM is an arbitrary mass scale. Equations (51)–(53) are
the most important results of this work.

IV. RENORMALIZATION CONDITIONS AND
COUPLING CONSTANTS

We have constructed a regularized stress-energy tensorgh∶Tab∶iM that depends on the vector of arbitrary param-
eters M ¼ ðM2;M4Þ through the subtraction terms
(51)–(52). However, these parameters are in principle
completely arbitrary and hence not physical, so we need

to impose some renormalization conditions on gh∶Tab∶ iM
in order to fix their observational value consistently. The

quantity gh∶Tab∶ iM couples to the gravitational field via the
semiclassical Einstein equations,

Gab þ Λgab þ αð1ÞHab ¼ −8πG
� gh∶Tab∶iM þ Tclas

ab

�
; ð54Þ

where we have included a term proportional to the second-
order curvature tensor ð1ÞHab because it is necessary for

reabsorbing the divergences of gh∶Tab∶ iM. We have also
added an unspecified classical stress-energy tensor Tclas

ab in
the source term for completeness. We wish to impose
renormalization conditions so that the coupling constants
fG;Λ; αg in the Einstein equations can be exchanged by
their physical values fGo;Λo; αog observed today.
Let us consider a massive scalar field with mass m such

that R ≪ m2 at late times in the evolution of the Universe,
where R includes all possible combinations of curvature

tensors (e.g. R, RabRab, etc.). We can then use the adiabatic
expansion (20) to approximate the modes χk at these late
times. If we fix M2 ¼ M4 ¼ m for now, the subtraction
terms in the PSAR scheme coincide with the standard
adiabatic ones. It is hence not difficult to show that

gh∶Tab∶ im ¼ h∶Tab∶i ≈m−2Tab þOðm−4Þ; ð55Þ

where m ¼ ðm;mÞ and Tab is a tensor of adiabatic order
six and therefore of dimension six. Therefore, in the late-
time regimeR ≪ m2 we can neglect the contribution of the
quantum vacuum to the stress-energy tensor, and the
semiclassical Einstein equations reduce to the classical
ones used to measure the coupling constants fGo;Λo; αog,

Gab þ Λogab þ αo
ð1ÞHab ¼ −8πGoTclas

ab : ð56Þ

In general we have

Gab þ Λogab þ αo
ð1ÞHab ¼ −8πGo

� gh∶Tab∶ im þ Tclas
ab

�
;

ð57Þ

which is valid also when R≳m2 (like in many early-
Universe scenarios).
We are now interested in incorporating the quantum

regularized stress-energy tensor at arbitrary scales M2 and
M4. We then need to change the coupling constants
adequately,

Gab þ ΛðMÞgab þ αðMÞð1ÞHab

¼ −8πGðMÞ� gh∶Tab∶ iM þ Tclas
ab

�
: ð58Þ

The difference between the stress-energy tensors regular-
ized at scales M and m can be computed to be

gh∶Tab∶iM − gh∶Tab∶im

¼ ξ − 1
6

16π2

�
m2 −M2

2 þm2 log

�
M2

2

m2

��
Gab

þ ðξ − 1
6
Þ2

8π2
log

�
M2

4

m2

�
ð1ÞHab: ð59Þ

By subtracting Eq. (57) from (58) and substituting (59) into
the resulting expression, we can obtain the following
relations between the running couplings constants (which
depend on M) and their observed values today:

GðM4Þ ¼
Go

1þ Goðξ−1
6
Þ

2π

�
M2

2 −m2 −m2 logðM2
2

m2Þ
� ; ð60Þ

ΛðM2Þ ¼
Λo

Go
GðM2Þ; ð61Þ
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αðM2;M4Þ ¼
GðM2Þ
Go

�
αo −

ðξ− 1=6Þ2
π

log

�
M2

4

m2

��
: ð62Þ

The running of the coupling constants must be evaluated on
a case-by-case basis. Taking into account that Go ¼ m2

p,
one can see that the change in the gravitational coupling
constant is negligible if ðξ − 1

6
ÞðM2=mpÞ2 ≪ 1, and hence

in the cosmological constant Λ via Eq. (61). For example,
in Sec. VA we will consider the case of a scalar field with
m ≪ H and minimal coupling ξ ¼ 0 in de Sitter space,
where H is the Hubble parameter. As we shall see, we need
to fix M2 ∼Hð≪ mpÞ in order to minimize the infrared
distortions, so this condition holds and the change in the
coupling constants is negligible.
The running of the couplings with scaling μ ∼H has

been widely studied in several works [50–52] (including
also fermions [53]) in the context of the running vacuum
model, see [54] for a review. The possible cosmological
consequences have also been studied in [55,56].
We can show that the trace of the vacuum expectation

value of the stress-energy tensor is given by

gh∶Ta
a∶ iM ¼

�
3

�
ξ −

1

6

�
□þm2

��
h∶ϕ2∶iM −

R
288π2

�
þ Traa −

ðm2 −M2
2Þðξ − 1=6Þ
16π2

R

þm2ðξ − 1=6Þ
8π2

R log

�
M
M2

�
þ 3ðξ − 1=6Þ2

8π2
□R log

�
M
M4

�
; ð63Þ

where we have defined

Traa ≡ 1

64π2

�
−

1

45
RabRab þ 1

135
R2 þ 1

45
□R

�
−
ðξ − 1=6Þ2

32π2
R2: ð64Þ

One can observe that the relation between the trace of the
stress-energy tensor and the two-point function is still
maintained at the quantum level, up to renormalization
freedom and the contribution of (64), which is nothing but
the well-known trace anomaly in the conformal coupling
limit ξ ¼ 1=6.
Finally, let us address an important consequence of

result (59). Let us recall that standard adiabatic regulari-
zation has been shown to be equivalent to Hadamard/
DeWitt-Schwinger regularization in four dimensions; see
Refs. [22,57]. Since the difference between the stress-
energy tensors regularized with the PSAR method and the
standard adiabatic one is a sum of covariant tensors, we can
affirm that the PSAR method also yields a covariant stress-
energy tensor.

V. EXAMPLES

In this section we apply our proposed PSAR method
to two cosmological scenarios of interest: a light scalar
field propagating in de Sitter spacetime (see Sec. VA),
and a scalar field nonminimally coupled to curvature getting
excited through a process of geometric reheating after
inflation (see Sec. V B). In these examples we define the
regularized power spectrum for the energy and pressure
densities as ∶Δc∶≡k3ðhcki−SðdÞ

c Þ=ð2π2Þ (where c ¼ ρ; p),
such that the regularized power spectrum takes the following
form [see Eq. (38)]:

gh∶Tab∶i ¼
Z

d log kð−∶Δp∶gab þ ð∶Δp∶þ ∶Δρ∶ÞuaubÞ

þ TðfÞ
ab þ

ðξ − 1
6
Þ

288π2
ð1ÞHab: ð65Þ

Note that we do not include the finite contributions from the

geometric tensors TðfÞ
ab and ð1ÞHab in the power spectrum

definitions. The reason is that we are only interested in the
generation of quantum fluctuations/particle production due
to the quantum state, while these geometric contributions do
not depend on it. These are usually understood as vacuum
polarization. The possible consequences of these terms in
the inflationary phase have been already investigated in
e.g. [12,58].

A. De Sitter expansion

Let us consider a scalar field propagating on a perfect de
Sitter spacetime with constant Hubble parameter H. The
scale factor evolves as aðτÞ ¼ −ðHτÞ−1 with −∞ < τ < 0,
and the field mode equation (6) can be written as

χ00k þ
�
k2 þm2

H þ 12ξ − 2

τ2

�
χk ¼ 0; mH ≡ m

H
: ð66Þ

This equation has two independent solutions. Here we
consider the Bunch-Davies solution [59],

χk¼
−i

ffiffiffiffiffi
πτ

p
2

e−
π
2
ImðνÞHð1Þ

ν ð−kτÞ; ν≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
−m2

H−12ξ

r
;

ð67Þ

which defines the unique maximally symmetric vacuum
state which respect to the underlying symmetries of de
Sitter spacetime, satisfies the Hadamard condition [60],
recovers the positive-frequency Minkowskian solution for
large momenta, and obeys the normalization condition (7).3

3Note that the Bunch-Davies vacuum in the massless field case
generates a well-known infrared divergence in the two-point
function (see e.g. [61,62]) so the solution is usually modified to
overcome this divergence.
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Let us now use our PSAR method to compute the regularized power spectra of the energy and pressure densities of the
quantized scalar field, defined by the subtraction terms (51) and (52) respectively. We set ξ ¼ 0 for simplicity. We obtain the
following expressions:

∶Δρ∶ ¼ H4x3

64π2

�
πe−πImðνÞð4ðm2

H þ x2ÞjHνðxÞj2 þ j3HνðxÞ þ xðHν−1ðxÞ −Hνþ1ðxÞÞj2Þ

−16ðm2
H þ x2Þ12 − 4ð6M4

2H þM2
2Hð5x2 − 2m2

HÞ þ x2ðm2
H þ 2x2ÞÞ

ðM2
2H þ x2Þ52 −

24M2
4H

ðM2
4H þ x2Þ52

�
; ð68Þ

∶Δp∶ ¼ H4x3

192π2

�
−πe−πImðνÞð4ð3m2

H þ x2ÞjHνðxÞj2 − 3j3HνðxÞ þ xðHν−1ðxÞ −Hνþ1ðxÞÞj2Þ

−
16x2

ðm2
H þ x2Þ12 þ

4ð20M4
2Hx

2 þ 7M2
2Hx

4 þ 2x6Þ
ðM2

2H þ x2Þ72 þ 12x2ðM2
4Hð10 − 4m2

HÞ þm2
Hx

2Þ
ðM2

4H þ x2Þ72
�
; ð69Þ

where we have defined the dimensionless parameters

x≡ k
aH

; mH≡m
H
; M2H≡M2

H
; M4H≡M4

H
: ð70Þ

Note that the first line in both Eqs. (68) and (69) corresponds to the unregularized spectra, while the second line contains the
zeroth-, second-, and fourth-order subtraction terms. These expressions get simplified in the light field limit m ≪ H,

∶Δρ∶ ≃þH4x2

8π2

�
1 −

6M4
2Hxþ 5M2

2Hx
3 þ 2x5

2ðM2
2H þ x2Þ52 −

3M2
4Hx

ðM2
4H þ x2Þ52

�
½m ≪ H�;

∶Δp∶ ≃ −
H4x2

24π2

�
1 −

10M4
2Hx

3 þ 14M2
2Hx

5 þ 2x7

ðM2
2H þ x2Þ72 −

15M2
4Hx

3

ðM2
4H þ x2Þ72

�
½m ≪ H�: ð71Þ

In Fig. 1 we show the power spectra of the energy
and pressure densities (top and bottom panels respectively)
for a scalar field with mass m ¼ 0.05H. The black lines
in each panel depict the unregularized spectra, while in

gray we depict the zeroth-order subtraction terms Δð0Þ
c ≡

k3Sð0Þ
c =ð2π2Þ (for c ¼ ρ; p). The difference between both

quantities corresponds to the zeroth-order-subtracted spec-

trum Δð0sÞ
c defined in Eq. (27), and is depicted in red. Note

that the quartic ultraviolet divergence of the unregularized
spectra gets canceled by the zeroth-order subtraction terms,

but Δð0sÞ
c still has quadratic and logarithmic divergences.

We can observe that the exponential expansion mainly
amplifies super-Hubble modes x≡ k=ðaHÞ≲ 1, for which

we have Δc=Δ
ð0Þ
c ≫ 1. As explained in Sec. III, we require

our regularized spectrum to obey ∶Δc∶ ≃Δð0sÞ
c ≡Δc−Δð0Þ

c

for those amplified modes, which is guaranteed by our
proposed PSAR scheme for large enough values of M2H
and M4H.

In order to illustrate this, in Fig. 1 we plot the PSAR-
regularized spectrum ∶Δc∶ for the symmetric choiceM2H ¼
M4H ≡MH and different values MH ¼ 0.05; 1; 30 (blue

lines). For comparative purposes, we also plot the power
spectrum regularized with the standard adiabatic method
(orange line). Note that as expected, the four regularized
power spectra are convergent in the ultraviolet, as they behave
as ∶Δc∶ ∼ k−2 for large values of k. We can clearly see that
the PSAR scheme with MH ¼ 0.05ð¼ mHÞ gives very
similar results to the standard adiabatic one. Both regulariza-
tions distort the power spectra at the infrared scales
0.005≲ x≲ 1, and in fact, ∶Δc∶ has a different sign than

Δð0sÞ
c at these scales. However, in the PSAR scheme we have

an arbitrary parameterMH that we can arbitrarily increase in
order to tame the infrared distortions. The choice MH ¼ 1
only distorts the spectra at scales 0.1≲ x≲ 1, while for
MH ¼ 30 the spectra at scales x≲ 1 are basically undistorted.
Therefore, the latter seems themost optimal choice. Note that
we could choose even larger values ofMH, but thenwewould
be including momenta belonging to the ultraviolet tail. In the
limit MH → ∞ we recover the divergent zeroth-order-sub-
tracted spectrum at all scales.
Let us now consider the regularized power spectrum of

the two-point function. With the PSAR scheme we obtain
[cf. Eq. (37) of Ref. [48] ]
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∶Δϕ2 ≔
H2x3

4π2

�
πe−

π
2
Im½ν�jHð1Þ

ν ðxÞj2

−
1

ðm2
H þ x2Þ12 −

1

ðM2
H þ x2Þ32

�
; ð72Þ

where MH ≡M=H. We obtain the unregularized spectrum
by taking only the first term inside the parentheses, while
the second and third terms correspond to the second- and
fourth-order subtraction terms, which remove the quadratic
and logarithmic divergences respectively. In the massless
limit m ≪ H, the regularized power spectrum is simply

∶Δϕ2 ≔
H2

4π2

�
1 −

x3

ðM2
H þ x2Þ32

�
; ½m ≪ H�; ð73Þ

so it is approximately scale invariant ∶Δϕ2∶ ≃H2=ð4π2Þ
for scales x≲MH.
As an example, in Fig. 2 we show, for a field with mass

m ¼ 0.05H, different unregularized and regularized spectra
for the two-point function. Note that the zeroth-order-

regularized power spectrum Δð0sÞ
ϕ2 is approximately scale

invariant [in fact, we have exactly Δð0sÞ
ϕ2 ¼ H2=ð4π2Þ for

m ¼ 0]. As first noticed in [34], adiabatic regularization
significantly suppresses the amplitude of the power spec-
trum as super-Hubble scales mH ≲ xð≲1Þ. However, this
can be avoided by using the PSAR scheme withMH ≳ 1, as
observed in the figure.

B. Geometric reheating

Let us now consider the regularization of a free
scalar field after inflation when it is nonminimally coupled
to the scalar curvature. This scenario was originally studied
in Ref. [17], which coined the term “geometric reheating”
(see also [63,64]). In this setup, the postinflationary
oscillations of the inflaton give rise to tachyonic oscilla-
tions of the Ricci scalar, which generate field instabilities
similar to the tachyonic preheating phenomenon studied
in [65]. This has been recently studied as a mechanism
for dark matter production in the early Universe [66–70].
In order to fully capture the nonlinear dynamics of geo-
metric reheating, one would need to simulate the fields
with lattice simulations [71]. However, here we restrict
ourselves to a linearized analysis, which is a good
approximation at early times (when backreaction effects
from the excited field onto the background fields can be
neglected).
Let us denote as Φ the inflaton field sourcing the

inflationary expansion of the Universe. As an example
we consider an inflationary chaotic model with quadratic
potential VðΦÞ ¼ 1

2
m2

ΦΦ2. We take the inflaton as homo-
geneous, Φ ¼ ΦðτÞ, which is a valid approximation during

FIG. 1. Power spectra of the energy density (top panel) and
pressure density (bottom panel) for a scalar field of mass
m ¼ 0.05H in de Sitter space with Hubble parameter H. In each
panel we show, from top to bottom, the following quantities: the
unregularized spectra (black line), the zeroth order subtraction
term (gray), the difference between the two quantities (i.e., the
zeroth-order-subtracted spectrum, in red), the spectra regularized
with our proposed PSAR scheme for different choices of M2H ¼
M4H ¼ MH (blue lines), and the spectra regularized with the
adiabatic scheme (orange). The dashed pattern indicates that the
quantity is negative.

FIG. 2. Power spectra of the two-point function for a scalar field
of mass m ¼ 0.05H in de Sitter space with Hubble parameter H.
The color coding is the same as in Fig. 1.
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the initial oscillations. The coupled equations of motion for
the inflaton and scale factor are

Φ00 þ 2HΦ0 þm2
Φa

2Φ ¼ 0; ð74Þ

H2ðτÞ≡
�
a0

a

�
2

¼ 1

3m2
p

�
1

2
Φ02 þ 1

2
m2

Φa
2Φ2

�
; ð75Þ

and the evolution of the Ricci scalar is given by

RðτÞ ¼ 6
a00

a3
¼ 1

m2
p

�
2m2

ΦΦ2 −
Φ02

a2

�
: ð76Þ

We fix our initial conditions at the time when inflation
ends τ�, defined when the first slow-roll parameter becomes
ϵvðτ�Þ ¼ 1. This condition holds when Φðτ�Þ ¼

ffiffiffi
2

p
mp. In

order to obtain the inflaton time derivative at this time
Φ0ðτ�Þ, we solve the coupled equations (74)–(75) with
initial conditions deep inside the slow-roll regime, and
evolve them until τ ¼ τ�. From this we obtain
Φ0ðτ�Þ ≃ −0.75mΦmp. We also set aðτ�Þ ¼ 1.
In Fig. 3 we show the evolution of Φ ¼ ΦðτÞ and

R ¼ RðτÞ after the end of inflation. The Ricci scalar
oscillates between positive and negative values: it attains
its local (positive) maxima when Φ0 ¼ 0, while it attains its
local (negative) minima whenΦ ≃ 0. If the quantized scalar
χ has a nonminimal coupling to curvature ξ > 1=6, its
effective mass becomes negative during part of each
inflaton oscillation. This triggers a tachyonic amplification
of the field modes. More specifically, we can write the field
mode equation (6) as a Mathieu equation, which has a well-
studied structure of resonance bands for which the field
modes grow exponentially [17]. As expected, the resonance
is stronger for larger values of ξ.
In order to track the amplification of the quantized scalar

field modes after inflation, we numerically solve the field
mode equation (6) for the Ricci scalar (76) in the light field

limit m2 ≪ ðξ − 1
6
ÞhRiTΦ

(where h…iTΦ
denotes an oscil-

lation average), for different values of ξ∈ ½1=3; 10�. More
specifically, we solve the field mode equation for a set of
103 logarithmically spaced discrete momenta within the
interval κ ≡ k=mϕ ∈ ½10−2; 50�, which allows us to track the
evolution of the different power spectra. The equations are
solved with the scipy.solve_ivp method available in the
SCIPY package of PYTHON.
The initial conditions for the field modes must be

carefully chosen so that they have the correct behavior
in the ultraviolet limit (if not, the subtraction terms will not
cancel the ultraviolet divergences). We can achieve this by
means of the μ-adiabatic expansion introduced in (30).
More specifically, we set as initial conditions the following
fourth-order adiabatic vacuum state:

χkðτ�;μ0Þ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Wk
ð0−4Þðτ�;μ0Þ

q ;

χ0kðτ�;μ0Þ¼−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wk

ð0−4Þðτ�;μ0Þ
2

s
−

Wk
0ð0−4Þðτ�;μ0Þ

ð2Wk
ð0−4Þðτ�;μ0ÞÞ3=2

;

ð77Þ
where we set the arbitrary mass scale μ0 to the effective
mass at the end of inflation μ0 ≡ ðξ − 1

6
Þa2ðτ�ÞRðτ�Þ. One

can show that Wk
ð2Þðτ�; μ0Þ=Wk

ð0Þðτ�; μ0Þ < 1.42 and
Wk

ð4Þðτ�; μ0Þ=Wk
ð0Þðτ�; μ0Þ < 1.28 for all considered

momenta and coupling constants, so higher orders in the
expansion only provide small corrections to the zeroth-
order initial condition.
In Fig. 4 we depict different unregularized and regular-

ized power spectra for the two-point function of a scalar
field in the light field limit m2 ≪ ðξ − 1

6
ÞhRiTΦ

(in practice
we impose exactly m ¼ 0 in the numerical solver). We
show the cases ξ ¼ 1=3 (top panel) and ξ ¼ 10 (bottom
panel), and depict the spectra when the Ricci scalar attains a
local minimum for the eighth time (this corresponds
approximately to four inflaton oscillations). In the case
ξ ¼ 10, a structure of several peaks gets imprinted in the

zeroth-order-subtracted spectrum Δð0sÞ
ϕ2 ≡ Δϕ2 − Δð0Þ

ϕ2 at

momenta scales κ ≡ k=mΦ ≲ 10, due to the resonance
bands of the field mode equation. In these peaks we have

Δϕ2=Δð0Þ
ϕ2 ≳ 1. For ξ ¼ 1=3, a structure of peaks also gets

formed, but in this case the resonance is much weaker and

we have Δϕ2=Δð0Þ
ϕ2 ≪ 1 even in the peaks.

In both panels of Fig. 4 we depict the spectra regularized
with the standard adiabatic method (orange) and the PSAR
method for values M ¼ 0.01mΦ, 0.1mΦ, mΦ (blue lines).
As expected, both methods get rid of the ultraviolet
divergences. However, as explained in Sec. III, we require

our regularization schemes to obey ∶Δϕ2∶ ≃ Δð0sÞ
ϕ2 at all

amplified infrared modes (i.e. at the peaks of the spectra).

FIG. 3. Time evolution of the inflaton amplitude Φ=mp (red)
and the Ricci scalar R=m2

Φ after quadratic chaotic inflation. The
solid/dashed pattern in each line represents positive/negative
values.
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We can observe that the standard adiabatic scheme com-
pletely distorts the amplitude of the power spectrum at
momenta κ ≲ 0.5, and in fact, the most infrared band for
ξ ¼ 10 completely vanishes after regularization. However,
if we use the PSAR method, the infrared distortions
introduced by regularization are significantly less impor-
tant. In fact, for the choiceM ≳mΦ we have almost exactly

∶Δϕ2∶ ≃ Δð0sÞ
ϕ2 at all momenta κ ≲ 10.

Finally, we show in Fig. 5 several (unregularized and
regularized) power spectra for the energy and pressure
densities (top and bottom panels respectively). We consider
again a light scalar field, and we fix ξ ¼ 5 in both cases.
The above analysis on the effects of the regularization
scheme at infrared scales also applies for these quantities.
We can observe that the standard adiabatic method distorts
the spectrum at scales κ ≲ 1, and as for the two-point
function, the most infrared peak present in Δc completely
vanishes in the adiabatic-regularized spectra. However, if

we use the PSAR method, we have almost exactly ∶Δρ∶ ≃
Δð0sÞ

ρ and ∶Δp∶ ≃ Δð0sÞ
p at all momenta κ ≲ 10.

VI. SUMMARY AND DISCUSSION

During the last decades, the development of a self-
consistent renormalization program for free quantum fields
in curved spacetimes compatible with covariance and local-
ity has been successfully achieved for scalars, fermions and
vector fields. The different designed methods produce
unique stress-energy tensors and two-point functions up
to arbitrary finite geometrical terms as expressed in Eq. (28).
The ambiguous subtracted divergent terms can then be
reabsorbed in the coupling constants in the Einstein equa-
tions, which can be measured experimentally. Although a
mathematical framework for this method has been success-
fully established, less effort has been made in the develop-
ment of an efficient methodology to do actual computations,
both analytically and numerically. This work has aimed to
fill in this gap in the context of cosmological spacetimes.
Even in the simplest case of free scalar fields, the

expectation value of the stress-energy tensor (or the
two-point function at coincident spacetime points) has

FIG. 5. Power spectra of the energy and pressure densities (top
and bottom panels respectively) for a scalar field in the light field
limit m2 ≪ ðξ − 1=6ÞhRiTΦ

with ξ ¼ 5, as a function of
κ ≡ k=mΦ. The spectra are computed at the time where the Ricci
scalar achieves its eighth minimum. We use the same color
coding as in Fig. 4.

FIG. 4. Power spectra of the two-point function for a scalar field
in the light field limit m2 ≪ ðξ − 1=6ÞhRiTΦ

with ξ ¼ 1=3 (top
panel) and ξ ¼ 10 (bottom panel), as a function of κ ≡ k=mΦ.
The spectra are computed when the Ricci scalar achieves its
eighth minimum. In each panel we show the unregularized
spectra (black line), the zeroth-order subtraction term (gray),
the zeroth-order-subtracted one (27) (red), the spectra regularized
with the adiabatic scheme (orange), and the spectra regularized
with our proposed PSAR scheme for different choices ofM (blue
lines). The dashed pattern indicates negative values of the
quantity.
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ultraviolet divergences that cannot be removed through a
normal ordering procedure as in Minkowski spacetime. A
well-established regularization method when working in
cosmological spacetimes is adiabatic regularization, which
allows to identify the divergent terms of any quantity by
means of an adiabatic expansion of the field modes. The
method is compatible with locality and covariance, and is
equivalent to regularization methods for generic curved
backgrounds when particularized to FLRW spacetimes
[22,23]. It is also feasible to use in numerical computations;
see e.g. [24–26]. However, the adiabatic subtraction terms
for a given quantity can substantially modify the amplitude
of its power spectrum at the momenta scales amplified by
the nonadiabatic expansion, which we expect to be classical
and then not affected by the quantum subtraction terms. We
have denoted these modifications as “infrared distortions”
(in contrast with the ultraviolet tail, which is the one we
expect to remove through regularization).
The aim of this work has been to build a new regulari-

zation method that both includes the ambiguities allowed
by Eq. (28) and allows to build observables without
infrared distortions. The result has been the set of sub-
traction terms (51)–(52) (for the stress-energy tensor) and
(53) (for the two-point function), derived in Sec. III. The
method is equivalent to the normal-ordering procedure in
Minkowski spacetime, produces a conserved stress-energy
tensor, and allows to construct regularized observables
without infrared distortions. We have named our proposed
method physical scale adiabatic regularization, in order to
differentiate it with respect to the standard scheme. Our
method includes a set of arbitrary mass scales (M;M2;M4),
allowed by Eq. (28), which can tame the infrared dis-
tortions of any observable if set large enough. Moreover, in
Sec. IV we have interpreted the subtraction terms as
redefinitions of the coupling constants set by an appropri-
ately chosen renormalization condition. Finally, in Sec. V
we have illustrated our method in two examples of
cosmological interest: a scalar field propagating in a de
Sitter space, and a scalar field being excited after inflation
through a process of geometric reheating.

Let us now comment about possible extensions and
applications of our work. First, in this work we have
developed the PSAR method for scalar fields, but it would
be interesting to extend our proposed method to other field
species such as fermions. The standard adiabatic expansion
for spin-1=2 fields was introduced in Refs. [29–32] and,
unlike scalars, it is not based on aWKB template. However,
it is not clear to us if a method to minimize infrared
distortions is possible (or even physically meaningful) in
this case: their occupation number is always nk < 1 due to
Pauli blocking, so there is not such a clear hierarchy
between infrared and ultraviolet modes like there is for
scalars. Similarly, it would be interesting to generalize our
method to quantized fields coupled to homogeneous time-
dependent backgrounds like in preheating scenarios,
including both scalar preheating [72–74] and fermionic
preheating [75–78]. Adiabatic expansions for these scenar-
ios have been developed for scalars [79] and fermions [80],
which could be a nice starting point to build a PSARmethod
for these setups. Our method could also be potentially
extended to the case of quantum fields with interactions to
classical electric fields [81–83].
Finally, it would be interesting to apply our regulariza-

tion method to the inflationary correlation functions. Their
regularity at infrared scales has been extensively studied in
the literature (see e.g. [4,84,85] and references therein) but
ultraviolet effects are typically neglected. Our results
suggest that this might be a reasonable assumption.
However, note that here we have restricted ourselves to
free scalar fields evolving in fixed FLRWmetrics, while for
such a study we would need to consider both field
interactions and metric perturbations.
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