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We show that detector switching profiles consisting of trains of delta couplings are a useful
computational tool to efficiently approximate results involving continuous switching functions, both
in setups involving a single detector and multiple ones. The rapid convergence to the continuous results at
all orders in perturbation theory for sufficiently regular switchings means that this tool can be used to
obtain nonperturbative results for general particle detector phenomena with continuous switching
functions.
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I. INTRODUCTION

Performing local operations on quantum fields is a
challenging endeavor, both from the technical and the
foundational point of view [1–8]. Among the several
approaches used to implement operations and local mea-
surements of a quantum field, particle detectors—
nonrelativistic quantum systems locally coupled to quan-
tum fields—have succeeded as models of local probes in
quantum field theory (QFT), and more specifically in
relativistic quantum information (RQI). Particle detector
models have allowed us to make physical sense and
build intuition for phenomena ranging from the concept
of particle [9–14] to the entanglement structure of
QFTs [15–39]. They also have provided a basis for
modeling quantum information protocols in relativistic
setups (e.g., [40–55]), as well as for the formulation of a
measurement theory consistent with relativity [56–58].
Typically, particle detectors are coupled to a quantum

field with some strength (determined by a parameter λ), and
for a specific period of time (determined by some switching
function χ). Depending on the specific configuration,
particle detectors can be used either as emitters and
receptors of information, or as measurement devices, i.e.,
local probes that gather information about the field through
their interaction. In both cases, in order to make predictions
we need to be able to compute the final state of the detectors
after their interaction with the field. However, the full theory
including the interaction between the detector and the field
cannot be exactly solved in general, as is the case for most
interacting field theories.

A frequent avenue to circumvent the complications
mentioned above is the use of perturbation theory. In this
approach, the final state of the detectors is expanded in a
series of terms proportional to increasingly higher powers of
the coupling parameter λ. Under the assumption that the
detectors are weakly coupled to the field, the higher order
contributions can be neglected, leaving a truncated series as
the final result. Despite its popularity, the perturbative
approach has its limitations. To start with, a proof that
the perturbative series is convergent in all regimes is still
missing for particle detector models. Even when we are in a
regime of coupling strengths for which the perturbative
series converges, the truncated result is an approximation
whose error is not known a priori, and can only be trusted
to be accurate for “small enough” coupling parameters.
Furthermore, there are many physical situations where one
needs to go beyond leading order in perturbation theory,
which can be technically challenging. Finally, nonpertur-
bative effects in the model cannot in general be understood
using perturbative methods.
These limitations call for the use of nonperturbative

techniques. One way to proceed is to work in specific
scenarios where the evolution of the detectors and the field
can be calculated exactly. One of those scenarios is found in
the context of continuous-variable quantum mechanics (see,
e.g., [59,60] for reviews). Specifically, when the quantum
field has both infrared and ultraviolet cutoffs, it can be
reduced to (or approximated by) a lattice, so that if the
detectors and the field are initially in a so-called Gaussian
state (i.e., the Wigner function describing their joint state is
Gaussian), and if their coupling is linear, then the evolution
can be solved exactly using Gaussian methods [61,62].
Another scenario where calculations can be carried out
nonperturbatively is when the coupling between the
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detectors and the field consists of sudden interactions, i.e.,
one or several delta couplings [43,46,47,63–66]. In this
case, as we will review in Secs. II A and III A, the evolution
can always bewritten as a sequence of known unitaries, and,
moreover, these unitaries can often be exactly evaluated
(see, e.g., [52,67–69]).
In this paper we devise an efficient nonperturbative

method that applies to particle detectors that couple to the
quantum field continuously in time. Given the physical
relevance of these scenarios, and the fact that so far they
have been mostly analyzed perturbatively, these techniques
may allow us to explore possible new nonperturbative
phenomena in the study of the dynamics induced by time-
extended couplings, such as, e.g., in the Unruh effect or
entanglement harvesting, among many others.
The paper is organized as follows: in Secs. II and III we

develop, respectively, the nonperturbative method for setups
involving a single and multiple particle detectors. For each
case, we first review the formalism of delta coupling
interactions, we then proceed to show how they can be
used to approximate the dynamics of continuous couplings,
and conclude stating the approximation result that guaran-
tees the efficiency of the method, whose proof can be found
in Appendices A and B. In Sec. IV, we demonstrate the
method by applying it to specific scenarios involving one
and two detectors. Finally, our conclusions are presented
in Sec. V.

II. SINGLE DETECTOR CASE

In this section we describe the setup of a single particle
detector interacting with a quantum field through a sequence
of delta couplings, and we explain how it can be used to
approximate the phenomenology of setups involving con-
tinuous detector-field couplings.

A. Setup

We consider a localized nonrelativistic quantum
system (i.e., a particle detector [9,10,70,71]), moving in
a general (1þ d)-dimensional globally hyperbolic space-
time ðM; gÞ, whose center of mass follows a trajectory
xðτÞ parametrized by its proper time τ. The detector is
modeled as a quantum system with free Hamiltonian Ĥfree.
We also consider that we are within the regime in which the
detector can be assumed to be Fermi-Walker rigid to a
good degree of approximation [72], and that, therefore, in
the reference frame defined by a set of Fermi normal
coordinates for the detector’s center of mass z ¼ ðτ; zÞ, its
shape is kept constant. This assumption is commonly made
in particle detector models [71,73–76], and it is regarded as
a physically realistic approximation in many experimental
setups [77,78].
The detector is weakly coupled to a quantum field ϕ̂, and

its coupling can be described in the interaction picture by

the Hamiltonian weight1 [76]

ĥintðτ; zÞ ¼ λχðτÞ½FðzÞμ̂†αðτÞÔαðτ; zÞ þ H:c:�: ð1Þ

Here, λ is the coupling strength of the interaction, and χ
and F are the switching and smearing functions that
modulate the coupling in time and space, where in
particular F depends on the shape of the detector (and,
in general, can be complex [21,71,79–81]). μ̂α and Ôα are
arbitrary tensor operators of the detector and the field,
respectively, and α is a general multi-index (for example
made of several spacetime indices). This is the most
general interaction Hamiltonian weight that we can write
for a Fermi-Walker rigid particle detector coupled to a
field. In particular, for a monopolar coupling with a real
scalar field one recovers the Unruh-DeWitt model, but this
interaction also covers multipolar couplings with real/
complex, scalar/vector/tensor, bosonic/fermionic fields.
In the case of multiple sudden interactions, the detector

couples to the field via a train of delta couplings at a
sequence of times fτj; j ¼ 1;…; Ng, N ≥ 1, and the
switching function is thus given by

χðτÞ ¼
XN
j¼1

ηjδðτ − τjÞ; ð2Þ

where ηj is the strength with which the detector couples to
the field at time τj. With the interaction Hamiltonian weight
given by Eq. (1), the evolution operator in the interaction
picture is given by

Û¼T τexp

�
−i

Z
dzĥintðzÞ

�

¼T τexp
�
−iλ

XN
j¼1

ηj

�
μ̂†α;j

Z
dz

ffiffiffiffiffiffiffiffi−gj
p

FðzÞÔα
j ðzÞþH:c:

��

¼T τ

YN
j¼1

exp

�
−iληj

�
μ̂†α;j

Z
dz

ffiffiffiffiffiffiffiffi−gj
p

FðzÞÔα
j ðzÞþH:c:

��
;

ð3Þ

where gj ≡ det gμνðτj; zÞ is the determinant of the space-

time metric at ðτj; zÞ, and similarly μ̂†α;j ≡ μ̂†αðτjÞ, and

Ôα
j ðzÞ≡ Ôαðτj; zÞ. T τ exp and T τ respectively denote

the time-ordered exponential and the time ordering oper-
ation with respect to the detector’s proper time τ, which is
an acceptable choice of time-ordering parameter as long as
we are in the regime of validity of the detector

1Notice that the Hamiltonian weight is a scalar, which
upon multiplication by the geometric factor

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðzÞp

yields
the Hamiltonian density, where gðzÞ is the determinant of the
metric at z.
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approximation, where the detector model is effectively
covariant [82]. In particular, writing

Ûj≔ exp

�
−iληj

�
μ̂†α;j

Z
dz

ffiffiffiffiffiffiffiffi−gj
p

FðzÞÔα
j ðzÞþH:c:

��
; ð4Þ

we can write

Û ¼ ÛN � � � Û1: ð5Þ

Notice that the Ûj operators do not commute with each
other, but the action of the time ordering operation in
Eq. (3) yields Eq. (5). After the interaction, the joint state
of the detector and the field is

ρ̂ ¼ Ûρ̂0Û
†; ð6Þ

where ρ̂0 is the initial detector-field state. In particular, the
final state of the detector after the interaction results from
tracing over the field degrees of freedom, i.e.,

ρ̂D ¼ TrϕðÛρ̂0Û
†Þ ¼ TrϕðÛN � � � Û1ρ̂0Û

†
1 � � � Û†

NÞ: ð7Þ

B. Approximation results

Let us consider a single detector that couples to the field
through a switching function ξðτÞ that is bounded, and
continuous except for maybe a finite number of points (in
the following, we call this switching function regular). For
this regular scenario, the joint evolution of the field and the
detector is given by the unitary

Ûξ ¼ T τ exp

�
−i

Z
dzĥξintðzÞ

�

¼ T τ exp

�
−iλ

Z
dτξðτÞ

×

�
μ̂†αðτÞ

Z
dz

ffiffiffiffiffiffi
−g

p
FðzÞÔαðτ; zÞ þ H:c:

��
; ð8Þ

where g ¼ det gμνðτ; zÞ is the determinant of the metric. The
final state of the detector is thus

ρ̂ξD ¼ TrϕðÛξρ̂0Û
†
ξÞ: ð9Þ

It turns out that this scenario can be efficiently approxi-
mated using a train of delta interactions. Specifically, let
½0; T� be the interval where ξðτÞ has its support, where in
particular we have ξð0Þ ¼ ξðTÞ ¼ 0. The idea is to
approximate the phenomenology of the regular switching
function with that of a sequence of uniformly spaced Dirac
delta pulses. Thus, we can define a train of N sudden

interactions associated with ξ and a uniform partition
P ¼ ftj ¼ Tj=N; j ¼ 0;…; Ng of the interval ½0; T� as

χξðτ;NÞ ¼ T
N

XN
j¼1

ξ

�
j − 1=2

N
T
�
δ

�
τ −

j − 1=2
N

T
�
: ð10Þ

Recalling Eq. (2), this amounts to setting

τj ¼
j − 1=2

N
T; ð11Þ

and

ηj ¼ ξðτjÞðtj − tj−1Þ ¼ ξðτjÞ
T
N
: ð12Þ

The strength of each sudden interaction is thus determined
by both the value of the switching ξ at t ¼ τj and the
duration T=N of the interval it is effectively substituting.
Let us denote with ρ̂DðNÞ the final state of the detector
according to Eq. (7) after the train of N sudden interactions
χξðτ;NÞ in Eq. (10).
Now, let us assume that the detector and the field

are initially uncorrelated, so that the initial joint state is
of the form

ρ̂0 ¼ ρ̂D;0 ⊗ ρ̂ϕ: ð13Þ

We can use perturbation theory to write

ρ̂DðNÞ ¼ ρ̂D;0 þ
X∞
k¼1

ρ̂ðkÞD ðNÞ ð14Þ

for the train of deltas, and

ρ̂ξD ¼ ρ̂D;0 þ
X∞
k¼1

ρ̂ðkÞξD ð15Þ

for the regular scenario, where ρ̂ðkÞD ðNÞ and ρ̂ðkÞξD are
proportional to λk. Then it can be shown that, for each
k∈Zþ, under the assumption that the switching function ξ,
the smearing function F, and the initial state of the field ρ̂ϕ
are sufficiently regular,2

lim
N→∞

ρ̂ðkÞD ðNÞ ¼ ρ̂ðkÞξD ; ð16Þ

2To expand on what is meant by sufficiently regular, please see
Appendix A. In short, for most choices of switching and smearing
functions, and for the initial states of the field usually employed
in the literature (e.g., Hadamard states, both in flat and curved
spacetimes), we expect the regularity condition to be satisfied.
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in the weak operator topology. In fact, the convergence
is at least as fast as 1=N. Specifically, for any linear
functional G,

G½ρ̂ðkÞξD � ¼ G½ρ̂ðkÞD ðNÞ� þOð1=NÞ: ð17Þ

Now, when ξ, F, and ρ̂ϕ are such that the conditions for
Eq. (17) are fulfilled for all k∈Zþ, then the train of deltas
approximates the regular scenario at all orders in pertur-
bation theory, since

G½ρ̂ξD� ¼ G½ρ̂DðNÞ� þOð1=NÞ ð18Þ

for any linear functional G, as long as λ is within the radius
of convergence of the Dyson series in Eqs. (14) and (15). In
particular,

lim
N→∞

ρ̂DðNÞ ¼ ρ̂ξD ð19Þ

in the weak operator topology. Notice that since it is
possible to perform nonperturbative calculations with delta
couplings (see, e.g., [67–69]), Eq. (18) allows to efficiently
approximate nonperturbative results, as opposed to the
usual perturbative approximations based on truncating the
Dyson expansion. While this is still an approximation (that
can be made arbitrarily precise by increasing the density of
delta couplings), it approximates the full sum of the
perturbative expansion, and not only up to a given order.
This is why we refer to this technique as a nonperturbative
approximation.

III. MULTIPLE DETECTORS CASE

In this section we will generalize the framework and
results of Sec. II to setups involving multiple particle
detectors coupling to a quantum field.

A. Setup

We consider D particle detectors in the general globally
hyperbolic spacetime ðM; gÞ, whose centers of mass
follow trajectories xnðτnÞ parametrized by their proper
times τn, within the regime in which each one of them
can be fairly assumed to be Fermi-Walker rigid.
Each detector is weakly coupled to a quantum field ϕ̂. In

order to jointly describe the interaction of all the detectors,
we will assume that there exists a set of coordinates ðτ; zÞ of
M such that, for each detector, there is a neighborhood
of its trajectory xnðτnÞ where the coordinates ðτ; zÞ are a set
of Fermi normal coordinates of the detector’s center of
mass. In particular, if these neighborhoods include the
supports of each detector’s smearing function, then we can
write the interaction Hamiltonian weight as

ĥintðτ;zÞ¼
XD
n¼1

λnχnðτÞ½FnðzÞμ̂†n;αðτÞÔα
nðτ;zÞþH:c:�: ð20Þ

In complete analogy with Eq. (1), here λn, χn, and Fn are
the coupling strength, the switching, and the smearing
functions of the nth detector, while μ̂αn is an arbitrary tensor
operator of the nth detector, and Ôα

n is the generic tensor
field operator it couples to.
In the case of multiple delta couplings, the switching

functions can be written as

χnðτÞ ¼
XNn

j¼1

ηn;jδðτ − τn;jÞ; ð21Þ

where Nn is the number of times that the nth detector
couples to the field, and ηn;j is the strength of the coupling
at time τn;j. With the interaction Hamiltonian weight given
by Eq. (20), the evolution operator in the interaction picture
is given by

Û ¼ T τ exp

�
−i

Z
dzĥintðzÞ

�

¼ T τ exp

�
−i

XD
n¼1

λn
XNn

j¼1

ηn;j

×

�
μ̂†n;j;α

Z
dz

ffiffiffiffiffiffiffiffiffiffi−gn;j
p

FðzÞÔα
n;jðzÞ þ H:c:

��
;

¼ T τ

Y
n;j

exp

�
−iλnηn;j

�
μ̂†n;j;α

Z
dz

ffiffiffiffiffiffiffiffiffiffi−gn;j
p

FðzÞÔα
n;jðzÞ

þ H:c:

��
; ð22Þ

where in the last equality, n is running from 1 to D,
and j runs from 1 to Nn, for each n. Here, in ana-
logy with the notation used for one detector in Sec. II A,
gn;j ≡ det gμνðτn;j; zÞ is the determinant of the met-

ric at ðτn;j; zÞ, and similarly μ̂†n;j;α ≡ μ̂†n;αðτn;jÞ, and

Ôα
n;jðzÞ≡ Ôαðτn;j; zÞ. Notice that Eq. (22) implies that

we can write Û as a product of unitaries in analogy with
Eq. (5), where each unitary of the sequence is of the form

Ûn;j ¼ exp

�
−iλnηn;j

�
μ̂†n;j;α

Z
dz

ffiffiffiffiffiffiffiffiffiffi−gn;j
p

FðzÞÔα
n;jðzÞ

þ H:c:

��
; ð23Þ

for some n, j. Notice that this amounts to ordering all the
τn;j and applying the Ûn;j following the same order. If two
times τn;j and τn0;j0 coincide, for some n ≠ n0, then, since
we can assume that both detectors do not overlap, the
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corresponding unitaries Ûn;j and Ûn0;j0 commute, and
therefore it does not matter how we decide to order them.
This is because if the supports of detectors n and n0 at
τn;j ¼ τn0;j0 do not overlap, then the field operators in Ûn;j

and Ûn0;j0 have support in spacelike separated regions, and
thus commute. Since the detector operators also commute
for being associated with different detectors (and then
defined over different Hilbert spaces), the exponents of the
exponentials that define Ûn;j and Ûn0;j0 commute, and
hence so do Ûn;j and Ûn0;j0 themselves.
Finally, after the interaction, the joint state of the D

detectors and the field is

ρ̂ ¼ Ûρ̂0Û
†; ð24Þ

where ρ̂0 is the initial state of the whole system. In
particular, the final joint state of the D detectors after
the interaction is obtained by tracing over the field degrees
of freedom,

ρ̂D ¼ TrϕðÛρ̂0Û
†Þ ¼ TrϕðÛN � � � Û1ρ̂0Û

†
1 � � � Û†

NÞ: ð25Þ

B. Approximation results

Let us consider D particle detectors under the same
conditions as in the previous subsection, except for their
coupling to the field, which now happens through switch-
ing functions ξnðτÞ that are bounded, and continuous except
for maybe a finite number of points (regular, as we called
this kind of switching in Sec. II B). For this regular
scenario, the joint evolution of all the particle detectors
and the field is given by the unitary

Ûξ ¼ T τ exp

�
−i

Z
dzĥξintðzÞ

�

¼ T τ exp

�
−i

XD
n¼1

λn

Z
dτξnðτÞ

×

�
μ̂†n;αðτÞ

Z
dz

ffiffiffiffiffiffi
−g

p
FnðzÞÔα

nðτ; zÞ þ H:c:

��
; ð26Þ

where as before g ¼ det gμνðτ; zÞ is the determinant of the
metric. The final joint state of the D detectors is

ρ̂ξD ¼ TrϕðÛξρ̂0Û
†
ξÞ: ð27Þ

As in the single detector case, it turns out that
this scenario can be efficiently approximated using a
train of delta interactions. Specifically, let us denote
with ½Tn; Tn þ ΔTn� the interval where ξnðτÞ has its
support, and in particular ξnðTnÞ ¼ ξnðTn þ ΔTnÞ ¼ 0.
We can then define the train of N sudden inter-
actions associated with ξn and a uniform partition

Pn ¼ ftn;j ¼ Tn þ jΔTn=N; j ¼ 1;…; Ng of the interval
½Tn; Tn þ ΔTn� as

χξnðτ;NÞ ¼ ΔTn

N

XN
j¼1

ξn

�
Tn þ

j − 1=2
N

ΔTn

�

× δ

�
τ − Tn −

j − 1=2
N

ΔnT

�
: ð28Þ

From Eq. (21), this means having Nn ¼ N for all n, setting

τn;j ¼ Tn þ
j − 1=2

N
ΔTn; ð29Þ

and

ηn;j ¼ ξnðτn;jÞðtn;j − tn;j−1Þ ¼ ξnðτn;jÞ
ΔTn

N
: ð30Þ

This is in complete analogy with the single detector case
presented in Sec. II B, i.e., the strength of each sudden
interaction is determined by both the value of the switching
ξn at the corresponding time, and the duration of the interval
it stands for.
Now, let us assume that, initially, the detectors and the

field are mutually uncorrelated, so that the initial joint state
is of the form

ρ̂0 ¼ ρ̂D;0 ⊗ ρ̂ϕ; ð31Þ

where ρ̂D;0 is the initial joint state of the D detectors (which
in particular can be correlated). Then, we can use pertur-
bation theory to write

ρ̂DðNÞ ¼
X
l∈ND

0

ρ̂ðlÞD ðNÞ ð32Þ

for the train of deltas (where N0 ¼ Zþ ∪ f0g), and

ρ̂ξD ¼
X
l∈ND

0

ρ̂ðlÞξD ð33Þ

for the regular scenario, where ρ̂ðlÞD ðNÞ and ρ̂ðlÞξD are
proportional to

YD
n¼1

λlnn ð34Þ

for each l∈ND
0 , and the first term for both series is just the

initial state, i.e.,

ρ̂ð0ÞD ðNÞ ¼ ρ̂ð0ÞξD ¼ ρ̂D;0: ð35Þ
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It can be shown that, for each l∈ND
0 , under the assumption

that the switching functions ξn, the smearing functions Fn,
and the initial state of the field ρ̂ϕ are sufficiently regular,3

lim
N→∞

ρ̂ðlÞD ðNÞ ¼ ρ̂ðlÞξD ð36Þ

in the weak operator topology, and the convergence is at
least as fast as 1=N, i.e., for any linear functional G,

G½ρ̂ðlÞξD � ¼ G½ρ̂ðlÞD ðNÞ� þOð1=NÞ: ð37Þ

In particular, when ξn, Fn, and ρ̂ϕ are such that the
conditions for Eq. (37) are fulfilled for all l∈ND

0 , then

G½ρ̂ξD� ¼ G½ρ̂DðNÞ� þOð1=NÞ ð38Þ

for any linear functional G, as long as λ is within the radius
of convergence of the Dyson series in Eqs. (32) and (33). In
particular, the dynamics induced by the train of deltas
approximates those of the regular scenario at all orders in
perturbation theory, i.e.,

lim
N→∞

ρ̂DðNÞ ¼ ρ̂ξD ð39Þ

in the weak operator topology. This means that the same
conclusions that we obtained for the single detector
scenario—and in particular the possibility of efficiently
approximating nonperturbative results—can be extended to
setups involving multiple detectors as well. Notice that the
density matrix that we get to approximate describes the
joint state of all the detectors, and not just one of them. This
means that we can use this technique to extract conclusions
regarding not only the state of each individual detector, but
also the correlations between them.

IV. EXAMPLES

After introducing the approximation method in Secs. II
and III, here we will use it in two specific scenarios,
involving, respectively, one and two detectors. For each
case, we will also analyze the rate of convergence of the
approximate density matrices toward the exact ones,
showing explicitly that the approximations are at least as
efficient as guaranteed by the results stated in Secs. II B
and III B (and proved in Appendix A).

A. Single detector example

In this example, we consider a two-level Unruh-DeWitt
particle detector [9,70] at rest in a (1þ 3)-dimensional

Minkowski spacetime, with ground and excited states jgi
and jei, separated by an energy gap Ω, and a Gaussian
shape,

FðxÞ ¼ 1ffiffiffiffiffi
π3

p
σ3

e−x
2=σ2 : ð40Þ

The detector is coupled to a massless scalar quantum field
via an interaction Hamiltonian

ĤintðtÞ ¼ λξðtÞμ̂ðtÞ
Z

dxFðxÞϕ̂ðt; xÞ; ð41Þ

where λ is the coupling strength as in Eq. (1), and μ̂ is the
monopole moment of the detector in the interaction picture,

μ̂ðtÞ ¼ jgiheje−iΩt þ jeihgjeiΩt: ð42Þ

The field operator ϕ̂ can be expanded in plane-wave
modes as

ϕ̂ðt; xÞ ¼
Z

dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32jkj

p ðâke−iðjkjt−k·xÞ þ H:c:Þ: ð43Þ

Finally, ξ is a switching function supported in ½0; T� that is
bounded and continuous except for maybe a finite number
of points, as in Sec. II B.
We take the detector and the field to be initially

uncorrelated and in their respective ground states,

ρ̂0 ¼ ρ̂D;0 ⊗ j0ih0j; ρ̂D;0 ¼ jgihgj: ð44Þ

Using perturbation theory, we can write the state of the
detector at the end of the interaction process as

ρ̂D ¼ ρ̂D;0 þ ρ̂ð2ÞD þOðλ4Þ; ð45Þ

where the terms of odd order in the perturbative expansion
are zero because the vacuum j0i is a zero-mean Gaussian
state, and therefore its odd-point functions are zero. Thus,
the final state of the detector is diagonal in the fjgi; jeig
basis, and can be completely characterized by the excitation
probability,

Pe ¼ hejρ̂Djei ¼ hejρ̂ð2ÞD jei þOðλ4Þ: ð46Þ

For a massless scalar quantum field, up to second order in λ
(see, e.g., [83]),

Pe ¼ λ2
Z

dk
ð2πÞ32jkj jξ̃ðjkj þ ΩÞj2jF̃ðkÞj2; ð47Þ3As in Sec. II B, see Appendix A for details on what is meant

by sufficiently regular.
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where ξ̃ and F̃ are the Fourier transforms4 of ξ and F,
respectively. For the Gaussian shape specified before,
which has spherical symmetry, we get

Pe ¼
λ2

4π2

Z
∞

0

djkjjkje−jkj2σ2=2jξ̃ðjkj þ ΩÞj2: ð49Þ

As a particular application of the result stated in
Sec. II B, Eq. (49) can be approximated by the transition
probability for a scenario where the detector couples to the
field through the train of N sudden interactions given by

χξðt;NÞ ¼ T
N

XN
j¼1

ξ

�
j − 1=2

N
T

�
δ

�
t −

j − 1=2
N

T

�
: ð50Þ

In this case, the excitation probability is given (up to second
order in λ) by

PeðNÞ¼ λ2T2

N2

XN
j;j0¼1

ξ

�
j−1=2

N
T

�
ξ

�
j0−1=2

N
T

�

×
eiΩTðj−j0Þ=N

4π2

Z
∞

0

djkjjkje−jkj2σ2=2eijkjTðj−j0Þ=N: ð51Þ

In the following we will see, for specific switching
functions ξ, how Eq. (51) approximates Eq. (49) increas-
ingly well as N increases, and does so with the predicted
efficiency.

1. Heaviside switching

The first example that we showcase is a switching
function that is constant in its support,

ξðtÞ ¼ Ið0;TÞðtÞ; ð52Þ

where Ið0;TÞ is the indicator function that equals 1 in the
interval ð0; TÞ, and zero everywhere else. In this case,

ξ̃ðkÞ ¼ 2e−ikT=2

k
sin

�
kT
2

�
: ð53Þ

From Eq. (49), we have

Pe ¼
λ2

π2

Z
∞

0

djkj jkje
−jkj2σ2=2

ðjkj þ ΩÞ2 sin
2

�ðjkj þ ΩÞT
2

�
ð54Þ

¼ λ2

π2

Z
∞

0

dκ
κe−κ

2s2=2

ðκ þ γÞ2 sin
2

�
κ þ γ

2

�
; ð55Þ

where the second line explicitly shows that the result only
depends on the dimensionless parameters γ ¼ ΩT, and
s ¼ σ=T, and we also denoted κ ¼ jkjT. Similarly, from
Eq. (51) we get the excitation probability associated with
the train of sudden interactions χξ that approximates the
Heaviside switching,

PeðNÞ¼ λ2

N2

XN
j;j0¼1

eiγðj−j0Þ=N

4π2

Z
∞

0

dκκe−κ
2s2=2eiκðj−j0Þ=N: ð56Þ

In Fig. 1a we see how PeðNÞ as given in Eq. (56)
converges to the exact value Pe given in Eq. (55), for the
case γ ¼ s ¼ 1. Moreover, Fig. 1(b) shows that the rate of
convergence of the approximation is as fast as 1=N2, which

(a) (b)

FIG. 1. (a) Excitation probability of a two-level UDW detector coupled to a quantum scalar field through a train of delta couplings
approximating a Heaviside switching, as a function of the number of couplings N. Here we set the relevant parameters γ and s to 1. The
constant red dashed line marks the value of the excitation probability for the exact Heaviside switching. (d) Logarithmic relative error of
the excitation probability for the Heaviside switching approximated by delta couplings, as a function of the number of couplings N. The
function represented by the solid cyan line is proportional to 1=N2, marking the rate of convergence of the approximation.

4The convention we followed here for the definition of the
Fourier transform is that

G̃ðvÞ ≔
Z

duGðuÞe−iu·v: ð48Þ
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is better than the minimum rate guaranteed by the approxi-
mation result of Sec. II B.

2. Truncated Gaussian switching

The second example that we consider is a Gaussian
switching where the Gaussian tails are cut beyond q times
its variance:

ξðtÞ ¼ exp

�
−
�

t
qT

−
1

2q

�
2
�
Ið0;TÞðtÞ: ð57Þ

Notice that the Gaussian reaches its maximum at t ¼ T=2,
i.e., the center of the switching’s compact support. Its
Fourier transform reads

ξ̃ðkÞ¼ ffiffiffi
π

p
qTe−ikT=2e−k

2q2T2=4Re

�
erf

�
1

2q
þ ikqT

2

��
: ð58Þ

From Eq. (49), we have

Pe ¼
λ2q2T2

4π

Z
∞

0

djkjjkje−jkj2σ2=2e−ðjkjþΩÞ2q2T2=2

× Re

�
erf

�
1

2q
þ iðjkj þ ΩÞqT

2

��
2

ð59Þ

¼ λ2q2

4π

Z
∞

0

dκ κe−κ
2s2=2e−ðκþγÞ2q2=2

× Re

�
erf

�
1

2q
þ iðκ þ γÞq

2

��
2

; ð60Þ

where, as before, we have shown the explicit dependence
on the dimensionless parameters γ ¼ ΩT, and s ¼ σ=T,
and the integration is performed with respect to the
dimensionless variable κ ¼ jkjT. Again, from Eq. (51)
we get the excitation probability associated with the
train of delta couplings χξ that yields a transition prob-
ability that approximates that of the truncated Gaussian
switching,

PeðNÞ ¼ λ2

N2

XN
j;j0¼1

e−ð2j−N−1Þ2=4q2N2

e−ð2j0−N−1Þ2=4q2N2

×
eiγðj−j0Þ=N

4π2

Z
∞

0

dκ κe−κ
2s2=2eiκðj−j0Þ=N: ð61Þ

In Fig. 2(a) we see how PeðNÞ—as given in Eq. (61)—
converges to the value of Pe given in Eq. (60), for the case
γ ¼ s ¼ q ¼ 1. Moreover, Fig. 2(b) shows that the rate of
convergence of the approximation is once more as fast as
1=N2, which is again better than the minimum rate
guaranteed by the approximation result of Sec. II B.

3. Smooth bump switching

As a third example, let us consider the switching to be
the C∞ bump function given by

ξðtÞ ¼
8<
:

exp
h
− T2

4tðT−tÞ
i

if 0 < t < T;

0 otherwise;
ð62Þ

which is compactly supported in ½0; T�, infinitely differ-
entiable on R, and reaches its maximum at t ¼ T=2.

(a) (b)

FIG. 2. (a) Excitation probability of a two-level UDW detector coupled to a quantum scalar field through a train of delta couplings
approximating a Gaussian switching truncated at q ¼ 1 variances, as a function of the number of couplings N. Here we set the relevant
parameters γ and s to 1. The constant red dashed line marks the value of the excitation probability for the exact truncated Gaussian
switching. (b) Logarithmic relative error of the excitation probability for the Gaussian switching approximated by delta couplings, as a
function of the number of couplings N. The function represented by the solid cyan line is proportional to 1=N2, marking the rate of
convergence of the approximation.
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Its Fourier transform does not admit a closed form.
However, let us define

βðtÞ ¼
8<
:

exp
h
− 1

4tð1−tÞ
i

if 0 < t < 1;

0 otherwise;
ð63Þ

which does not depend on T. This function is related to ξ by
ξðtÞ ¼ βðt=TÞ. Thus, their Fourier transforms satisfy

ξ̃ðkÞ ¼ Tβ̃ðkTÞ; ð64Þ

and hence, from Eq. (49), we can write

Pe ¼
λ2

4π2

Z
∞

0

dκ κe−κ
2s2=2jβ̃ðκ þ γÞj2; ð65Þ

which shows once again the complete dependence of Pe on
the dimensionless parameters γ and s. Meanwhile, from
Eq. (51) we get the excitation probability associated with
the train of delta couplings χξ used to approximate that of
the bump switching,

PeðNÞ ¼ λ2

N2

XN
j;j0¼1

exp

�
−

N2

4ðj − 1=2ÞðN − jþ 1=2Þ
�

× exp

�
−

N2

4ðj0 − 1=2ÞðN − j0 þ 1=2Þ
�

×
eiγðj−j0Þ=N

4π2

Z
∞

0

dκ κe−κ
2s2=2eiκðj−j0Þ=N: ð66Þ

In Fig. 3(a) we see how, for the case γ ¼ s ¼ 1, the
approximated values PeðNÞ [as given in Eq. (66)] converge
to the exact value of Pe [given in Eq. (65)]. Moreover,
Fig. 3(b) shows that the error incurred by the approximation

is upper bounded by a function that decays faster than
1=N5, much faster than the minimum rate guaranteed by the
result of Sec. II B. In fact, the increase of the rate of
convergence of the approximation in this example with
respect to the two previous ones is not surprising, since the
approximation results in [84] suggest that switching func-
tions of higher differentiability class should admit tighter
convergence bounds.

B. Two detectors example

The setup considered for this example consists of two
identical two-level Unruh-DeWitt detectors, A and B, both
at rest at positions xA and xB in a (1þ 3)-dimensional
Minkowski spacetime. We consider the ground and excited
states of both detectors to be separated by the same energy
gap Ω, and their shapes to be (normalized) hard spheres of
radius R,

FiðxÞ ¼
3

4πR3
θðR − jx − xijÞ; i ¼ A;B: ð67Þ

As in the single detector example, here we consider a linear
coupling between the detectors and a massless scalar
quantum field, given in the interaction picture by the
interaction Hamiltonian

ĤintðtÞ ¼ λξðtÞ
�
μ̂AðtÞ

Z
dxFAðxÞϕ̂ðt; xÞ

þ μ̂BðtÞ
Z

dxFBðxÞϕ̂ðt; xÞ
�
; ð68Þ

where λ is the coupling strength as in Eq. (1), μ̂i is the
monopole moment of detector i, which can be written in the
interaction picture as

(a) (b)

FIG. 3. (a) Excitation probability of a two-level UDW detector coupled to a quantum scalar field through a train of delta couplings
approximating a bump switching, as a function of the number of couplings N. Here we set the relevant parameters γ and s to 1. The
constant red dashed line marks the value of the excitation probability for the exact bump switching. (b) Logarithmic relative error of the
excitation probability for the bump switching approximated by delta couplings, as a function of the number of couplingsN. The function
represented by the solid cyan line is proportional to 1=N5.6, upper bounding the rate of convergence of the approximation.
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μ̂iðtÞ ¼ jgiiheije−iΩt þ jeiihgijeiΩt; ð69Þ

the field operator ϕ̂ can be expanded in plane-wave modes
as in Eq. (43), and finally ξ is again a switching function
supported in ½0; T� that is bounded and continuous except
for maybe a finite number of points, as in Sec. III B. Notice
that, for simplicity, in this example we have chosen the
coupling strengths and the switching functions to be the
same for both detectors, although this is of course not
necessary in the most general case.
Initially, we consider the detectors and the field to be

uncorrelated and in their ground states,

ρ̂0 ¼ jgAihgAj ⊗ jgBihgBj ⊗ j0ih0j: ð70Þ

Perturbation theory allows us to write the joint state of the
two detectors after the interaction as

ρ̂AB ¼ ρ̂AB;0 þ ρ̂ð2ÞAB þOðλ4Þ; ð71Þ

where ρ̂AB;0 ¼ jgAihgAj ⊗ jgBihgBj and, as in the single
detector case, the terms of odd order are zero because the
odd-point functions of the vacuum state of the field are
zero. In the ordered basis fjgAgBi; jgAeBi; jeAgBi; jeAeBig,
the second order contribution can be written in matrix form
as (see, e.g., [19,85])

ρ̂ð2ÞAB ¼

0
BBBB@

−LAA − LBB 0 0 M�

0 LBB L�
AB 0

0 LAB LAA 0

M 0 0 0

1
CCCCA
: ð72Þ

Now, let us restrict ourselves to the case in which the
interaction of the two detectors happens in regions of
spacetime that are spacelike separated, i.e., when

T < D − 2R; ð73Þ

where D ¼ jxA − xBj denotes the spatial distance between
the two detectors. Then, we get the following expressions
for the terms in Eq. (72):

LAA ¼LBB ¼
λ2

4π2

Z
∞

0

djkjjkjjξ̃ðjkj þΩÞj2jF̃ðjkjÞj2; ð74Þ

LAB¼
λ2

4π2D

Z
∞

0

djkjsinðjkjDÞjξ̃ðjkjþΩÞj2jF̃ðjkjÞj2; ð75Þ

M ¼ −
λ2

4π2D

Z
∞

0

djkj sinðjkjDÞξ̃ðjkj −ΩÞ

× ξ̃ðjkj þ ΩÞ�jF̃ðjkjÞj2; ð76Þ

where ξ̃ and F̃ are the Fourier transforms of the switching
function ξ and

FðxÞ ¼ 3

4πR3
θðR − jxjÞ; ð77Þ

respectively. Notice that to arrive at Eqs. (74)–(76) we
used that

FðxÞ ¼ FAðxþ xAÞ ¼ FBðxþ xBÞ; ð78Þ

as well as the spherical symmetry of F, which implies

F̃ðkÞ ¼ eik·xAF̃AðkÞ ¼ eik·xBF̃BðkÞ ¼ F̃ðjkjÞ; ð79Þ

where

F̃ðjkjÞ ¼ 3

ðjkjRÞ3 ½sinðjkjRÞ − jkjR cosðjkjRÞ�: ð80Þ

Finally, we choose the switching function for this example
to be of the Heaviside type,

ξðtÞ ¼ Ið0;TÞðtÞ; ð81Þ

with Fourier transform

ξ̃ðkÞ ¼ 2e−ikT=2

k
sin

�
kT
2

�
: ð82Þ

Equations (74)–(76) can then be written in terms of
dimensionless parameters as

LAA ¼ LBB ¼ λ2

π2

Z
∞

0

dκ
sin2½ðκ þ γÞ=2�

κ
jF̃ðκÞj2; ð83Þ

LAB ¼
λ2

π2d

Z
∞

0

dκ sinðκdÞ sin
2½ðκ þ γÞ=2�

κ2
jF̃ðκÞj2; ð84Þ

M ¼ −
λ2eiγ

2π2d

Z
∞

0

dκ
sinðκdÞðcos γ − cos κÞ

κ2 − γ2
jF̃ðκÞj2; ð85Þ

where γ ¼ ΩT, d ¼ D=T, κ ¼ jkjT, and

F̃ðκÞ ¼ 3

ðκrÞ3 ½sinðκrÞ − κr cosðκrÞ�; ð86Þ

with r ¼ R=T.
As a particular application of the approximation result of

Sec. III B, we know that Eqs. (83)–(85) can be approxi-
mated by their counterparts in the scenario where the
detectors couple to the field through the train of sudden
interactions given by
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χξðt;NÞ ¼ T
N

XN
j¼1

δ

�
t −

j − 1=2
N

T

�
: ð87Þ

The terms that approximate Eqs. (83)–(85) can then be
written as

LAAðNÞ ¼ LBBðNÞ ¼ λ2

N2

XN
j;j0¼1

1

4π2

Z
∞

0

dκ κjF̃ðκÞj2

× cos

�ðκ þ γÞðj − j0Þ
N

�
; ð88Þ

LABðNÞ ¼ λ2

N2

XN
j;j0¼1

1

4π2d

Z
∞

0

dκ sinðκdÞjF̃ðκÞj2

× cos
�ðκ þ γÞðj − j0Þ

N

�
; ð89Þ

MðNÞ ¼ −
λ2

N2

XN
j;j0¼1

eiγðjþj0Þ=T

4π2d

Z
∞

0

dκ sinðκdÞjF̃ðκÞj2

× cos

�
κðj − j0Þ

N

�
: ð90Þ

In Figs. 4–6, we see how, for the case γ ¼ 1, d ¼ 1.2, and
r ¼ 0.1, the approximated values given in Eqs. (88)–(90)
converge to the exact values given in Eqs. (83)–(85). In
particular, Figs. 4(b), 5(b), and 6(d) show that the errors
committed by the approximations are upper bounded by
functions decaying at least as fast as 1=N, in agreement with
the approximation result of Sec. III B.

V. CONCLUSION

We have shown how to efficiently approximate non-
perturbatively the time evolution of particle detectors
interacting with a quantum field for very general com-
pactly supported switching functions and arbitrary smear-
ing functions.
Specifically, we have described how to approximate the

detectors’ dynamics when they couple through compactly
supported bounded switching functions, continuous except
for maybe a finite number of points, with that of a detector
coupled through a sequence of delta couplings, which can
be evaluated nonperturbatively. The approximation con-
verges at least as fast as 1=N (where N is the number of
delta pulses), and often much faster than this for regular
enough switchings.
The fast convergence of the approximation is guaranteed

at all orders in perturbation theory as long as the detectors’
switching and smearing functions and the field’s state are
“regular enough.” This, in particular, includes the cases in
which the state of the field is Hadamard, and the switching
and smearing functions are smooth except for maybe a
finite number of points, which covers most of the relevant
scenarios in both flat and curved spacetimes.
Since this approximation scheme can be easily (and

efficiently) evaluated in current computers, we expect the
method presented here to pave the way for a number of
nonperturbative analyses of phenomena involving particle
detectors and measurements in quantum field theory.
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FIG. 6. (a), (b), and (c) Respectively, real part, imaginary part, and absolute value of theM term for a pair of identical two-level UDW
detectors coupled to a quantum scalar field in spacelike separated regions through a train of delta couplings approximating a Heaviside
switching, as a function of the number of couplings N. Here we set the relevant parameters to γ ¼ 1, d ¼ 1.2, and r ¼ 0.1. The constant
red dashed lines mark the values of the real part, imaginary part, and absolute value of the M term for the exact Heaviside switching.
(d) Logarithmic relative error of theM term for the Heaviside switching approximated by delta couplings, as a function of the number of
couplings N. The function represented by the solid cyan line is proportional to 1=N, marking the rate of convergence of the
approximation.
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FIG. 5. (a) LAB term for a pair of identical two-level UDW detectors coupled to a quantum scalar field in spacelike separated regions
through a train of delta couplings approximating a Heaviside switching, as a function of the number of couplings N. Here we set the
relevant parameters to γ ¼ 1, d ¼ 1.2, and r ¼ 0.1. The constant red dashed line marks the value of the LAB term for the exact Heaviside
switching. (b) Logarithmic relative error of the LAB term for the Heaviside switching approximated by delta couplings, as a function of
the number of couplings N. The function represented by the solid cyan line is proportional to 1=N2, marking the rate of convergence of
the approximation.
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APPENDIX A: PROOF OF THE
APPROXIMATION RESULT

In this Appendix, we prove the approximation results
stated in Eqs. (16)–(19) for a single detector, and in
Eqs. (37)–(39) for multiple detectors. The claim establishes
that each term of the Dyson series of the time-evolved
density matrix resulting from couplings with trains of
sudden interactions converges (as we increase the number
of sudden interactions) to the contribution of the same order
for the density matrix resulting from couplings with
(sufficiently regular) switching functions that the delta
interactions aim to approximate, both for setups involving
one or more particle detectors.
Let us first consider a one detector scenario with the

interaction Hamiltonian weight given by Eq. (1), i.e.,

ĥintðτ; zÞ ¼ λχðτÞ½FðzÞμ̂†αðτÞÔαðτ; zÞ þ H:c:�; ðA1Þ

where the switching function χ can be either the regular
switching, ξ, or its approximation with N sudden inter-
actions, χξðNÞ, given in Eq. (10). For the regular scenario,
the joint evolution of the field and the detector is given by
the unitary

Ûξ ¼ T τ exp

�
−i

Z
dzĥξintðzÞ

�

¼ T τ exp

�
−iλ

Z
dτξðτÞ

×

�
μ̂†αðτÞ

Z
dz

ffiffiffiffiffiffi
−g

p
FðzÞÔαðτ; zÞ þ H:c:

��
; ðA2Þ

with the final state of the detector being

ρ̂ξD ¼ TrϕðÛξρ̂0Û
†
ξÞ: ðA3Þ

Expanding in series of λ, we get

Ûξ ¼ 1þ
X∞
k¼1

ÛðkÞ
ξ and ρ̂ξD ¼ ρ̂D;0 þ

X∞
k¼1

ρ̂ðkÞξD ; ðA4Þ

where ÛðkÞ
ξ and ρ̂ðkÞξD are proportional to λk, and

ρ̂ðkÞξD ¼
X
rþs¼k

TrϕðÛðrÞ
ξ ρ̂0Û

ðsÞ†
ξ Þ: ðA5Þ

Now,

TrϕðÛðrÞ
ξ ρ̂0Û

ðsÞ†
ξ Þ ¼ ð−iÞrisλk

Z
dτ1 � � � dτrdτ01 � � � dτ0s

Yr−1
p¼1

θðτpþ1 − τpÞ
Ys−1
q¼1

θðτ0qþ1 − τ0qÞ

×
Yr
l¼1

ξðτlÞ
Ys
m¼1

ξðτ0mÞ½Wα
α0 ðτ01;…; τ0s; τ1;…; τr;FÞμ̂†αrðτrÞ � � � μ̂†α1ðτ1Þρ̂D;0μ̂

α0
1ðτ01Þ � � � μ̂α

0
sðτ0sÞ

þWα0
α ðτ01;…; τ0s; τ1;…; τrÞμ̂αrðτrÞ � � � μ̂α1ðτ1Þρ̂D;0μ̂

†
α0
1
ðτ01Þ � � � μ̂†α0sðτ0sÞ

þWα;α0 ðτ01;…; τ0s; τ1;…; τrÞμ̂αrðτrÞ � � � μ̂α1ðτ1Þρ̂D;0μ̂
α0
1ðτ01Þ � � � μ̂α

0
sðτ0sÞ

þWα;α0 ðτ01;…; τ0s; τ1;…; τrÞμ̂†αrðτrÞ � � � μ̂†α1ðτ1Þρ̂D;0μ̂
†
α0
1
ðτ01Þ � � � μ̂†α0sðτ0sÞ�; ðA6Þ

where we denoted

Wα
α0 ðt01;…; t0s; t1;…; tr;FÞ ≔ Trϕ½ρ̂ϕÔ†

α0
1
ðt01; FÞ � � � Ô†

α0s
ðt0s; FÞÔαrðtr; FÞ � � � Ôα1ðt1; FÞ�; ðA7Þ

Wα0
α ðt01;…; t0s; t1;…; tr;FÞ ≔ Trϕ½ρ̂ϕÔα0

1ðt01; FÞ � � � Ôα0sðt0s; FÞÔ†
αrðtr; FÞ � � � Ô†

α1ðt1; FÞ�; ðA8Þ

Wα;α0 ðt01;…; t0s; t1;…; tr;FÞ ≔ Trϕ½ρ̂ϕÔ†
α0
1
ðt01; FÞ � � � Ô†

α0s
ðt0s; FÞÔ†

αrðtr; FÞ � � � Ô†
α1ðt1; FÞ�; ðA9Þ

Wα;α0 ðt01;…; t0s; t1;…; tr;FÞ ≔ Trϕ½ρ̂ϕÔα0
1ðt01; FÞ � � � Ôα0sðt0s; FÞÔαrðtr; FÞ � � � Ôα1ðt1; FÞ�; ðA10Þ
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and

Ôαðt; FÞ ≔
Z

dz
ffiffiffiffiffiffi
−g

p
FðzÞÔαðt; zÞ: ðA11Þ

We can rewrite Eq. (A6) as

TrϕðÛðrÞ
ξ ρ̂0Û

ðsÞ†
ξ Þ ¼ ð−iÞrisλk

Z
Δr×Δ0

s

dτdτ0Ξðτ; τ0Þω̂ðτ; τ0;FÞ: ðA12Þ

Here,

Δr ≔ fτ ¼ ðτ1;…; τrÞ∶τ1 ∈ ½0; T�; τi ∈ ½0; τi−1�; ∀ i ¼ 2;…; rg; ðA13Þ

Δ0
s ≔ fτ0 ¼ ðτ01;…; τ0sÞ∶τ01 ∈ ½0; T�; τi ∈ ½0; τi−1�; ∀ i ¼ 2;…; sg; ðA14Þ

are triangular domains; the function Ξ is an abbreviation,

Ξðτ; τ0Þ ≔
Yr
l¼1

ξðτlÞ
Ys
m¼1

ξðτ0mÞ; ðA15Þ

and ω̂ is the operator corresponding to the expression in square brackets of Eq. (A6).
On the other hand, if we consider the evolution produced by the coupling through the train of sudden interactions

described by χξðNÞ, from Eqs. (3) and (10) we have that the joint field-detector time-evolution is given by

ÛðNÞ ¼ T τ exp

�
−iλ

T
N

XN
j¼1

ξ

�
j − 1=2

N
T

��
μ̂†α

�
j − 1=2

N
T

�Z
dz

ffiffiffiffiffiffiffiffi−gj
p

FðzÞÔα

�
j − 1=2

N
; z

�
þ H:c:

��
; ðA16Þ

with the final state of the detector thus being

ρ̂DðNÞ ¼ TrϕðÛðNÞρ̂0ÛðNÞ†Þ: ðA17Þ

Under the same conditions as before, we write

Û ¼ 1þ
X∞
k¼1

ÛðkÞðNÞ and ρ̂DðNÞ ¼ ρ̂D;0 þ
X∞
k¼1

ρ̂ðkÞD ðNÞ; ðA18Þ

where again ÛðkÞðNÞ and ρ̂ðkÞD ðNÞ are proportional to λk, and

ρ̂ðkÞD ðNÞ ¼
X
rþs¼k

TrϕðÛðrÞðNÞρ̂0ÛðsÞðNÞ†Þ: ðA19Þ

In this case, for rþ s ¼ k, we have

TrϕðÛðrÞðNÞρ̂0ÛðsÞðNÞ†Þ ¼ ð−iÞris λ
kTk

Nk

X
j∈J r

X
j0 ∈J 0

s

Yr
n¼1

ξ

�
jn − 1=2

N
T

�Ys
m¼1

ξ

�
j0m − 1=2

N
T

�

×

�
Wα

α0

�
j01 − 1=2

N
T;…;

j0s − 1=2
N

T;
j1 − 1=2

N
T;…;

jr − 1=2
N

T;F

�

× μ̂†αr

�
jr − 1=2

N
T

�
� � � μ̂†α1

�
j1 − 1=2

N
T

�
ρ̂D;0μ̂

α0
1

�
j01 − 1=2

N
T

�
� � � μ̂α0s

�
j0s − 1=2

N
T

�

þWα0
α

�
j01 − 1=2

N
T;…;

j0s − 1=2
N

T;
j1 − 1=2

N
T;…;

jr − 1=2
N

T;F

�
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× μ̂αr
�
jr − 1=2

N
T

�
� � � μ̂α1

�
j1 − 1=2

N
T

�
ρ̂D;0μ̂

†
α0
1

�
j01 − 1=2

N
T

�
� � � μ̂†α0s

�
j0s − 1=2

N
T

�

þWα;α0

�
j01 − 1=2

N
T;…;

j0s − 1=2
N

T;
j1 − 1=2

N
T;…;

jr − 1=2
N

T;F

�

× μ̂αr
�
jr − 1=2

N
T

�
� � � μ̂α1

�
j1 − 1=2

N
T

�
ρ̂D;0μ̂

α0
1

�
j01 − 1=2

N
T

�
� � � μ̂α0s

�
j0s − 1=2

N
T

�

þWα;α0
�
j01 − 1=2

N
T;…;

j0s − 1=2
N

T;
j1 − 1=2

N
T;…;

jr − 1=2
N

T;F

�

× μ̂†αr

�
jr − 1=2

N
T
�
� � � μ̂†α1

�
j1 − 1=2

N
T
�
ρ̂D;0μ̂

†
α0
1

�
j01 − 1=2

N
T
�
� � � μ̂†α0s

�
j0s − 1=2

N
T
��

; ðA20Þ

where we have used the same notation as in Eq. (A6), and

J r ≔ fj ¼ ðj1;…; jrÞ∶j1 ∈ f1;…; Ng; ji ∈ f1;…; ji−1g; ∀ i ¼ 2;…; rg; ðA21Þ

J 0
s ≔ fj0 ¼ ðj01;…; j0sÞ∶j01 ∈ f1;…; Ng; j0i ∈ f1;…; j0i−1g; ∀ i ¼ 2;…; sg: ðA22Þ

Using the notation employed in Eq. (A12), we can rewrite Eq. (A20) as

TrϕðÛðrÞðNÞρ̂0ÛðsÞðNÞ†Þ ¼ ð−iÞris λ
kTk

Nk

X
ðj; j0Þ∈J r×J 0

s

Ξðτj; τ0j0 Þω̂ðτj; τ0j0 ;FÞ; ðA23Þ

where

τj ≔
�
j1 − 1=2

N
T;…;

jr − 1=2
N

T

�

and τ0j0 ≔
�
j01 − 1=2

N
T;…;

j0s − 1=2
N

T

�
: ðA24Þ

To prove the approximation result presented in Sec. II,
we follow a generalization of the strategy used by C. K.
Chui in [84,86]. First, let us defineHðr;sÞ

ab ∶ Rr ×Rs → C as

Hðr;sÞ
ab ðτ; τ0Þ ¼ ð−iÞrisΞðτ; τ0Þωabðτ; τ0;FÞIΔr×Δ0

s
; ðA25Þ

where the dependence on r and s for Ξ and ω̂ manifests
itself in the vectors τ and τ0 having r and s components,
respectively. Here, ωab is the ða; bÞth matrix component of
ω̂ in some basis of the detector Hilbert space HD, and IX is
the indicator function for the set X, i.e., a function that
equals 1 when the argument belongs to X, and 0 otherwise.
With this definition, from Eq. (A12) we have that

½TrϕðÛðrÞ
ξ ρ̂0Û

ðsÞ†
ξ Þ�ab ¼ λk

Z
½0;T�k

dzHðr;sÞ
ab ðzÞ; ðA26Þ

where the subindices ab again denote the ða; bÞth matrix
element of the trace in the chosen basis of HD. It is worth
remarking that the presence of the indicator function in the
definition of Hab allowed us to have here the hypercube
½0; T�k as integration domain, instead of the product of
triangular domains of Eq. (A12). Meanwhile, from
Eq. (A23) we also have that

½TrϕðÛðrÞðNÞρ̂0ÛðsÞðNÞ†Þ�ab ¼ λkRðkÞ
N ½Hðr;sÞ

ab �; ðA27Þ

where RðkÞ
N is the Riemann sum associated with the uniform

partition of ½0; T�k into Nk identical cubes with tags placed
in their centers, i.e., for an arbitrary h∶ Rk → C,

RðkÞ
N ½h�≔

X
j

h

�
j1−1=2

N
T;…;

jk−1=2
N

T

�
·
Tk

Nk ; ðA28Þ

with each component of j running over f1;…; Ng. Let us
now define vðkÞN ∶ Rk → C as

vðkÞN ðzÞ ¼
X
j

Tk
Yk
i¼1

I½ji−1=2N ;1�

�
zi
T

�
− Nk

Yk
i¼1

zi; ðA29Þ
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where again each component of j runs over f1;…; Ng.
With this definition, we can write

RðkÞ
N ½Hðr;sÞ

ab � −
Z
½0;T�k

dzHðr;sÞ
ab ðzÞ ¼ 1

Nk

Z
½0;T�k

dvðkÞN Hðr;sÞ
ab ;

ðA30Þ

where the right-hand side should be understood as a

k-dimensional Riemann-Stieltjes integral of Hðr;sÞ
ab over

½0; T�k with respect to vðkÞN , as defined in Appendix B. Now,

Hðr;sÞ
ab is a product of functions including Ξ [defined in

Eq. (A15)], which is zero whenever one of its arguments is

0 or T. In particular, Hðr;sÞ
ab is zero along the boundary of

½0; T�k, so by Lemma 1 in Appendix B,

RðkÞ
N ½Hðr;sÞ

ab � −
Z
½0;T�k

dzHðr;sÞ
ab ðzÞ ¼ ð−1Þk

Nk

Z
½0;T�k

dHðr;sÞ
ab vðkÞN :

ðA31Þ

Since vðkÞN is bounded in ½0; T�k, with bound

kvðkÞN k∞ ≤
kTk

2
Nk−1; ðA32Þ

assuming Hðr;sÞ
ab is of bounded variation, we can use

Lemma 2 in Appendix B to conclude that

				RðkÞ
N ½Hðr;sÞ

ab � −
Z
½0;T�k

dzHðr;sÞ
ab ðzÞ

				 ≤
kC̃ðr;sÞ

ab

2N
Tk ≡ Cðr;sÞ

ab

N
;

ðA33Þ

where C̃ðr;sÞ
ab is the variation ofHðr;sÞ

ab in ½0; T�k. IfHðr;sÞ
ab is of

bounded variation for all pairs ðr; sÞ such that rþ s ¼ k,
from Eqs. (A5) and (A19) we get that

j½ρ̂ðkÞD ðNÞ�ab − ½ρ̂ðkÞξD �abj ≤ λk
X
k¼rþs

Cðr;sÞ
ab

N
¼ λk

CðkÞ
ab

N
; ðA34Þ

for some CðkÞ
ab , which proves Eq. (17). This also implies

lim
N→∞

½ρ̂ðkÞD ðNÞ�ab ¼ ½ρ̂ðkÞξD �ab; ðA35Þ

which proves Eq. (16). In particular, if Eq. (A33) holds at
all orders, Eqs. (18) and (19) are also satisfied for all values
of the coupling strength for which the Dyson series
converges.
In order to arrive at the bound given in Eq. (A33), we

needed to assume that Hðr;sÞ
ab is of bounded variation as a

function of its (time) arguments. Since at the end of the day
we want to use this nonperturbative tool for physical

scenarios, it is worth discussing how exotic this condition
is.
Notice first that Hðr;sÞ

ab depends on Ξ, which is a product
of the values of the switching functions at different times,
and the matrix elements ωab, which involve a linear
combination of smeared k-point correlation functions of
the field operator Ôα and the corresponding matrix element
of an operator that consists of products of μ̂ with ρ̂D;0. If the
dependence of μ̂ on time in the interaction picture only
comes from the free evolution of the detector, as it is often
the case, then we can assume that it is a smooth function of

time. That way, whether Hðr;sÞ
ab is sufficiently regular for

Eq. (A33) to hold or not ends up depending on the
switching function (through Ξ) and the state of the field
(through the smeared k-point correlation functions for the
operator Ô). By Lemma 3 in Appendix B, one sufficient

(but not necessary) condition for Hðr;sÞ
ab to be of bounded

variation is that it is of class Ck in ½0; T�k. In particular, this
can be straightforwardly extended to the case in which

Hðr;sÞ
ab is bounded, and Ck except for maybe a finite number

of points in ½0; T�k.
Now, the (continuous) switching functions typically

employed in particle detector setups (e.g., Heaviside,
Gaussian, and Lorentzian couplings) are smooth except
for maybe a finite number of points. Therefore, when ξ is
one of these common switching functions, it would suffice
that the field’s k-point correlation functions be of class Ck in

½0; T�k for Hðr;sÞ
ab to be bounded and of class Ck except for

maybe a finite number of points, for all ðr; sÞ such
that rþ s ¼ k.
Let us consider, for instance, the vacuum of a real scalar

field in (1þ 3)-dimensional Minkowski spacetime. For this
case, the odd correlation functions vanish, while the even
correlation functions can all be expressed as sums of
products of the two-point function

w2ðx1; x2Þ ¼
Z

dk
ð2πÞ32jkj e

ik·ðx1−x2Þ: ðA36Þ

If we have a linear coupling with the field amplitude, as in
the Unruh-DeWitt model [9,70], Ô ¼ ϕ̂, and the relevant
k-point functions can be given in terms of the smeared
two-point function

Wðt; t0;FÞ ¼
Z

dx dx0FðxÞFðx0Þw2ðx1; x2Þ

¼
Z

dk
ð2πÞn2jkj jF̃ðkÞj

2e−ijkjðt−t0Þ; ðA37Þ

for a given smearing function F. One very popular choice
of smearing function in the literature is the Gaussian of
variance σ2,
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GðxÞ ¼ 1ffiffiffiffiffi
π3

p
σ3

e−x
2=σ2 : ðA38Þ

With a Gaussian smearing, a straightforward calculation
using spherical coordinates yields

Wðt; t0;GÞ ¼ 1

4π2

Z
∞

0

djkjjkje−jkj2σ2=2−ijkjðt−t0Þ

¼
1 −

ffiffiffiffiffi
π
2σ2

p ðt − t0Þe−ðt−t0Þ2=2σ2 ½iþ erfið t−t0ffiffi
2

p
σ
Þ�

σ2
;

ðA39Þ

which is a smooth function of t and t0. Another common
choice is the hard sphere of radius R > 0,

SðxÞ ¼ θðR − jxjÞ: ðA40Þ

Notice that its Fourier transform

S̃ðkÞ ¼ 4π

k3
½sinðkRÞ − kR cosðkRÞ� ðA41Þ

converges to a constant when k → 0, and behaves like 1=k2

as k → ∞, so that

Wðt;t0;SÞ¼4

Z
∞

0

djkj½sinðjkjRÞ− jkjRcosðjkjRÞ�2
jkj5 e−ijkjðt−t0Þ

ðA42Þ

is convergent. It can be shown, moreover, that it is of
bounded variation, even though in this case

∂
2

∂t∂t0
Wðt;t0;SÞ

¼4

Z
∞

0

djkj½sinðjkjRÞ− jkjRcosðjkjRÞ�2
jkj3 e−ijkjðt−t0Þ ðA43Þ

fails to converge and therefore we cannot use Lemma 3 to
reach that conclusion. Thus, we see that for two of the most
common smearing functions,5 the vacuum of a real scalar
field in (1þ 3)-dimensional Minkowski satisfies the con-
dition for Eq. (A35) to hold, at all orders in perturbation
theory. Since, for two or more spatial dimensions,6 the
possible nonsmoothness of the field correlation functions
can only arise from the ultraviolet behavior of the field state,
we can argue that any Hadamard state, both in flat and
curved spacetime (barring pathological geometries), will
essentially have the same ultraviolet behavior as the

Minkowski vacuum, and therefore should in principle
satisfy the assumptions of the approximation result as well.
Finally, we can turn to the multiple detector scenario.

The proof proceeds in just the same way as for the single
detector case. For the sake of brevity and simplicity we will
not give its details here, but we argue that the procedure is
completely analogous. Specifically, the similar structure of
Eqs. (4) and (23) is revealing of how close both scenarios
are from the technical point of view. The case of multiple
detectors will in general involve products of different
switching functions and different detector operators, as
well as field correlation functions associated to potentially
different field operators, smeared over different spatial
profiles. However, one can give homologous definitions
of Ξ [cf. Eq. (A15)] and ω̂ [cf. Eq. (A6)] that lead to the
multiple detectors version of Eq. (A12). The steps that
follow are exactly those followed above for the one detector
scenario, adapted to the new integration regions, which for
the case of multiple detectors are general rectangles, instead
of the hypercubes we dealt with in the case of a single
detector.

APPENDIX B: THE n-DIMENSIONAL
RIEMANN-STIELTJES INTEGRAL

Even though the Riemann-Stieltjes integral is a basic tool
in real analysis, its generalization to the n-dimensional case
is not as popular in classical texts. Because of that, in
this appendix we present a very brief introduction to the
n-dimensional Riemann-Stieltjes integral—or rather, its
generalization to functions of complex argument—and we
prove the three Lemmas we referred to in Appendix A.
Let f;g∶Rn→C, and let R¼ ½x1;y1�× � � �× ½xn;yn�⊂Rn

be a closed rectangle in Rn. Following [87], we define

ΔðnÞ
R g ¼

X
z

ð−1Þ#xðzÞgðzÞ; ðB1Þ

where the sum runs over all z ¼ ðz1;…; znÞ∈Rn such that
zi ¼ xi or yi, for each i ¼ 1;…; n, and #xðzÞ is the number
of components of z that are equal to xi and not yi. This
definition is motivated by the fact that for the function
pðzÞ ¼ Q

n
i¼1 zi, we have

ΔðnÞ
R p ¼

Yn
i¼1

ðyi − xiÞ ¼ VolðRÞ: ðB2Þ

Now, for each i ¼ 1;…; n, consider a partition of the
interval ½xi; yi�,

Pi ¼ ftðiÞ0 ¼ xi;…; tðiÞMi
¼ yig; ðB3Þ

with a set of tags

Ti ¼ fu1;…;uMi
∶ uðiÞj ∈ ½tðiÞj−1; tðiÞj �; ∀ j¼ 1;…;Mig: ðB4Þ

5For a more detailed discussion of when and how the smearing
function regularizes the two-point distribution, see [74].

6Also for one spatial dimension, assuming that the infrared
divergences are properly regularized.
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All these partitions together induce an n-dimensional
rectangular partition P≡ P1 × � � � × Pn of the rectangle
R, formed by subrectangles

Rj ¼ ½tð1Þj1−1; t
ð1Þ
j1
� × � � � × ½tðnÞjn−1; t

ðnÞ
jn
� ⊂ R ðB5Þ

that can only overlap on their edges. Each subrectangle also
has an associated tag uj ¼ ðuj1 ;…; ujnÞ, and we can define
the norm of P as the maximum among the norms of each
Pi, i.e.,

kPk ≔ max
i¼1;…;n

kPik ¼ maxfjtðiÞj − tðiÞj−1j∶

j ¼ 1;…;Mi; i ¼ 1;…; ng: ðB6Þ

We define the Riemann-Stieltjes sum associated with
f, g, and the n-dimensional tagged partition P of the
rectangle R as

SRðf; g;PÞ ¼
X
j

fðujÞΔðnÞ
Rj
g: ðB7Þ

Hence, we say that f is Riemann-Stieltjes integrable with
respect to g in R when there exists I ∈C such that, for every
ϵ > 0, there is some δ > 0 for which

jSRðf; g;PÞ − Ij < ϵ ðB8Þ

holds whenever kPk < δ. In that case, we call I the
Riemann-Stieltjes integral of f with respect to g over R,

I ≡
Z
R
dg f: ðB9Þ

Lemma 1. Let f; g∶Rn → C, and let R ¼ ½x1; y1� × � � � ×
½xn; yn� be a rectangle inRn, such that f is integrable over R
with respect to g, and either f ¼ 0 or g ¼ 0 on the
boundary ∂R. Then, g is also integrable over R with respect
to f, and

Z
R
df g ¼ ð−1Þn

Z
R
dg f: ðB10Þ

Proof. Given ϵ > 0, since f is integrable over R with
respect to g, there exists δ > 0 such that if P ¼ P1 × � � � ×
Pn is an n-dimensional tagged partition of R with
kPk < δ, then

				SRðf; g;PÞ −
Z
R
dg f

				 < ϵ: ðB11Þ

Consider now a rectangular partition of R, P¼P1× � � �×Pn,
such that kPk < δ=2. For each one-dimensional partition

Pi ¼ ftðiÞ0 ¼ xi;…; tðiÞMi
¼ yig of the interval ½xi; yi�, with

tags fu1;…; uMi
g, consider another partition

P̄i ≔ ftðiÞ0 ¼ xi; u1;…; uMi
; tMi

¼ yig; ðB12Þ

with set of tags T̄i ¼ Pi, i.e.,

T̄i ¼ fv1;…; vMi
; vMiþ1∶ v1 ¼ t0; vj ¼ tj−1; ∀ j > 1g:

ðB13Þ

Notice in particular that the set of tags of P̄i includes
the limits of the interval, xi and yi. We can then define
a new partition P̄ ¼ P̄1 × � � � × P̄n, with set of tags
T̄ ¼ T̄1 × � � � × T̄n, which by construction satisfies
kPk < δ. Moreover, a simple calculation shows that

Sðf; g; P̄Þ ¼ ð−1ÞnSðg; f;PÞ þ Boundary terms; ðB14Þ

where the boundary terms only include sums of products of
f and g at points of the boundary ∂R. Since either f ¼ 0 or
g ¼ 0 on the boundary, the associated terms cancel out.
Equations (B11) and (B14) thus allow us to conclude that

				ð−1ÞnSRðg; f;PÞ −
Z
R
dg f

				 < ϵ; ðB15Þ

and therefore that g is integrable over R with respect to f,
with

Z
R
dfg ¼ ð−1Þn

Z
R
dg f; ðB16Þ

▪
Lemma 2. Let f; g∶Rn → C, and let R ¼ ½x1; y1� × � � � ×

½xn; yn� be a rectangle inRn. If f is bounded in R and g is of
bounded variation in R, then we have that

				
Z
R
dg f

				 ≤ kfk∞VarRðgÞ; ðB17Þ

where

kfk∞ ¼ sup
R
jfj ðB18Þ

is the optimal bound for f in R, and

VarRðgÞ ≔ sup
P

X
j

jΔðnÞ
Rj
gj ðB19Þ

is the variation of g in R, with the supremum taken over all
rectangular partitions P of the rectangle R, and the notation
used as in Eq. (B7).
Proof. Since f is integrable over R with respect to g, for

every ϵ > 0 there exists δ > 0 such that
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				SRðf; g;PÞ −
Z
R
dg f

				 < ϵ ðB20Þ

whenever kPk < δ. Now,

jSRðf; g;PÞj ¼
				
X
j

fðujÞΔðnÞ
Rj
g

				 ≤
X
j

jfðujÞjjΔðnÞ
Rj
gj

≤ kfk∞
X
j

jΔðnÞ
Rj
gj ≤ kfk∞VarRðgÞ; ðB21Þ

and

				SRðf; g;PÞ −
Z
R
dg f

				 ≥
				
Z
R
dg f

				 − jSRðf; g;PÞj; ðB22Þ

so we conclude from Eq. (B20) that

				
Z
R
dg f

				 ≤ kfk∞VarRðgÞ þ ϵ: ðB23Þ

Since Eq. (B23) holds for all ϵ > 0, this proves the
claim. ▪
Lemma 3. Let g∶ Rn → C, and let R ¼ ½x1; y1� × � � � ×

½xn; yn� be a rectangle in Rn. If g is of class CnðRÞ, then g is
of bounded variation in R, and

VarRðgÞ ¼
Z
R
dz

				
∂
ng

∂z1 � � � ∂zn

				: ðB24Þ

Proof. Consider a rectangle K¼½v1;w1�×���×½vn;wn�⊂R.
Singling out the first coordinate, we can write

ΔðnÞ
K ðgÞ ¼

X
z

ð−1Þ#vðzÞ½gðw1; zÞ − gðv1; zÞ�

¼
X
z

ð−1Þ#vðzÞgðw1; zÞ −
X
z

ð−1Þ#vðzÞgðv1; zÞ;

ðB25Þ

where z ¼ ðz2;…; znÞ∈Rn−1, and zi ¼ vi or wi for each
i ¼ 2;…; n, with #vðzÞ being as before the number of
components zi of z that are equal to vi. If we define

g1ðwÞ ≔
X
z

ð−1Þ#vðzÞgðw; zÞ; ðB26Þ

then g1 is continuously differentiable, and by the mean value
theorem there exists c1 ∈ ðv1; w1Þ such that

ΔðnÞ
K ðgÞ ¼ g01ðc1Þðw1 − v1Þ

¼ ðw1 − v1Þ
X
z

ð−1Þ#vðzÞ ∂g
∂z1

ðc1; zÞ: ðB27Þ

If n ¼ 1, we stop here. Otherwise, we can
define K1 ≔ ½v2; w2� × � � � × ½vn; wn�, and realize from
Eq. (B27) that

ΔðnÞ
K ðgÞ ¼ ðw1 − v1ÞΔðn−1Þ

K1

�
∂g
∂z1

ðc1; ·Þ
�
: ðB28Þ

Since g is of class CnðRÞ, the partial derivative is of class
Cn−1ðRÞ, and in particular so is its restriction to K1. We can
then repeat the previous argument with the partial derivative
instead of g, concluding after this second step that there
exists c2 ∈ ðv2; w2Þ such that

ΔðnÞ
K ðgÞ ¼ ðw1−v1Þðw2−v2Þ

X
z

ð−1Þ#vðzÞ ∂
2g

∂z1∂z2
ðc1; c2;zÞ;

ðB29Þ

where now z∈Rn−2 runs only over the last n − 2 compo-
nents (if any). In general, after n iterations we find that there
exists c in the interior of K such that

ΔðnÞ
K ðgÞ ¼

�Yn
i¼1

ðwi − viÞ
�

∂
ng

∂z1 � � � ∂zn
ðcÞ

¼ VolðKÞ ∂
ng

∂z1 � � � ∂zn
ðcÞ: ðB30Þ

Now, the variation of g in R is given by

VarRðgÞ ¼ sup
P

X
j

jΔðnÞ
Rj
gj; ðB31Þ

where the supremum is taken over all possible rectangular
partitions of R. By Eq. (B30), given an arbitrary partition
P of R,

X
j

jΔðnÞ
Rj
gj ¼

X
j

				
∂
ng

∂z1 � � � ∂zn
ðcjÞ

				VolðRjÞ; ðB32Þ

where each cj belongs to the interior of Rj. This corresponds
to the Riemann sum of ∂ng=∂z1 � � � ∂zn associated with the
partition P with tags cj. Since ∂ng=∂z1 � � � ∂zn is continuous,
in particular it is Riemann integrable, and therefore given any
ϵ > 0, there exists δ > 0 such that if kPk < δ, then
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Z
R
dz

				
∂
ng

∂z1 � � � ∂zn
ðzÞ

				 −
X
j

				
∂
ng

∂z1 � � � ∂zn
ðcjÞ

				VolðRjÞ
				 < ϵ:

ðB33Þ

In particular,

Z
R
dz

				
∂
ng

∂z1 � � � ∂zn
ðzÞ

				 − ϵ <
X
j

				
∂
ng

∂z1 � � � ∂zn
ðcjÞ

				VolðRjÞ

≤ VarRðgÞ: ðB34Þ

This is true for all ϵ > 0, and thus

Z
R
dz

				
∂
ng

∂z1 � � � ∂zn
ðzÞ

				 ≤ VarRðgÞ: ðB35Þ

Conversely, for any partition P,

X
j

jΔðnÞ
Rj
gj ¼

X
j

				
Z
Rj

dz
∂
ng

∂z1 � � � ∂zn
ðzÞ

				

≤
X
j

Z
Rj

dz

				
∂
ng

∂z1 � � � ∂zn
ðzÞ

				

¼
Z
R
dz

				
∂
ng

∂z1 � � � ∂zn
ðzÞ

				: ðB36Þ

The supremum taken over all possible partitions still verifies
the inequality, i.e,

VarRðgÞ ≤
Z
R
dz

				
∂
ng

∂z1 � � � ∂zn
ðzÞ

				: ðB37Þ

Combining Eqs. (B35) and (B37) gives us the desired
result. ▪
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JOSÉ POLO-GÓMEZ and EDUARDO MARTÍN-MARTÍNEZ PHYS. REV. D 109, 045014 (2024)

045014-20

https://doi.org/10.1007/BF01645807
https://doi.org/10.1103/PhysRevD.1.566
https://doi.org/10.1103/PhysRevD.1.566
https://doi.org/10.1007/BF01646620
https://arXiv.org/abs/gr-qc/9302018
https://doi.org/10.1007/s00220-020-03800-6
https://doi.org/10.1007/s00220-020-03800-6
https://doi.org/10.1103/PhysRevD.104.025012
https://doi.org/10.1103/PhysRevD.105.025003
https://arXiv.org/abs/2308.11698
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.29.1047
https://doi.org/10.1103/PhysRevD.29.1047
https://doi.org/10.1007/BF02054660
https://doi.org/10.1007/BF02054660
https://doi.org/10.1088/0264-9381/26/2/025002
https://doi.org/10.1088/0264-9381/26/2/025002
https://doi.org/10.1088/1751-8121/ab3593
https://doi.org/10.1088/1751-8121/ab3593
https://doi.org/10.1016/0375-9601(91)90952-5
https://doi.org/10.1023/A:1022875910744
https://doi.org/10.1023/A:1022875910744
https://doi.org/10.1103/PhysRevA.71.042104
https://doi.org/10.1103/PhysRevA.71.042104
https://doi.org/10.1103/PhysRevA.75.052307
https://doi.org/10.1103/PhysRevD.92.064042
https://doi.org/10.1103/PhysRevD.92.064042
https://doi.org/10.1088/1367-2630/17/3/035001
https://doi.org/10.1088/1367-2630/17/3/035001
https://doi.org/10.1103/PhysRevD.94.064074
https://doi.org/10.1007/JHEP05(2019)178
https://doi.org/10.1103/PhysRevD.102.125026
https://doi.org/10.1103/PhysRevD.104.125005
https://doi.org/10.1103/PhysRevD.104.125005
https://doi.org/10.1103/PhysRevD.104.025001


[26] N. Stritzelberger, L. J. Henderson, V. Baccetti, N. C.
Menicucci, and A. Kempf, Entanglement harvesting with
coherently delocalized matter, Phys. Rev. D 103, 016007
(2021).

[27] M. P. G. Robbins, L. J. Henderson, and R. B. Mann, En-
tanglement amplification from rotating black holes,
Classical Quantum Gravity 39, 02LT01 (2021).

[28] J. Foo, R. B. Mann, and M. Zych, Entanglement amplifi-
cation between superposed detectors in flat and curved
spacetimes, Phys. Rev. D 103, 065013 (2021).

[29] D. Mendez-Avalos, L. J. Henderson, K. Gallock-Yoshimura,
and R. B. Mann, Entanglement harvesting of three Unruh-
DeWitt detectors, Gen. Relativ. Gravit. 54, 87 (2022).

[30] L. J. Henderson, S. Y. Ding, and R. B. Mann, Entanglement
harvesting with a twist, AVS Quantum Sci. 4, 014402
(2022).

[31] K. Bueley, L. Huang, K. Gallock-Yoshimura, and R. B.
Mann, Harvesting mutual information from BTZ black hole
spacetime, Phys. Rev. D 106, 025010 (2022).

[32] B. Peropadre, P. Forn-Díaz, E. Solano, and J. J. García-
Ripoll, Switchable ultrastrong coupling in circuit QED,
Phys. Rev. Lett. 105, 023601 (2010).

[33] N. Janzen, X. Dai, S. Ren, J. Shi, and A. Lupascu, Tunable
coupler for mediating interactions between a two-level
system and a waveguide from a decoupled state to the
ultrastrong coupling regime, Phys. Rev. Res. 5, 033155
(2023).

[34] C. Gooding, A. Sachs, R. B. Mann, and S. Weinfurtner,
Vacuum entanglement probes for ultra-cold atom systems,
arXiv:2308.07892.

[35] M. Hotta, R. Schützhold, and W. G. Unruh, Partner particles
for moving mirror radiation and black hole evaporation,
Phys. Rev. D 91, 124060 (2015).

[36] J. Trevison, K. Yamaguchi, and M. Hotta, Pure state
entanglement harvesting in quantum field theory, Prog.
Theor. Exp. Phys. 2018, 103A03 (2018).

[37] J. Trevison, K. Yamaguchi, and M. Hotta, Spatially over-
lapped partners in quantum field theory, J. Phys. A Math.
Theor. 52, 125402 (2019).

[38] B. de S. L. Torres, K. Wurtz, J. Polo-Gómez, and E. Martín-
Martínez, Entanglement structure of quantum fields through
local probes, J. High Energy Phys. 05 (2023) 058.

[39] T. R. Perche, J. Polo-Gómez, B. de S. L. Torres, and E.
Martín-Martínez, Fully relativistic entanglement harvesting,
arXiv:2310.18432.

[40] M. Cliche and A. Kempf, Relativistic quantum channel of
communication through field quanta, Phys. Rev. A 81,
012330 (2010).

[41] A. G. S. Landulfo, Nonperturbative approach to relativistic
quantum communication channels, Phys. Rev. D 93,
104019 (2016).

[42] R. H. Jonsson, Quantum signaling in relativistic motion and
across acceleration horizons, J. Phys. A Math. Theor. 50,
355401 (2017).

[43] R. H. Jonsson, K. Ried, E. Martín-Martínez, and A. Kempf,
Transmitting qubits through relativistic fields, J. Phys. A
Math. Theor. 51, 485301 (2018).

[44] P. Simidzija, A. Ahmadzadegan, A. Kempf, and E. Martín-
Martínez, Transmission of quantum information through
quantum fields, Phys. Rev. D 101, 036014 (2020).

[45] I. B. Barcellos and A. G. S. Landulfo, Relativistic quantum
communication: Energy cost and channel capacities, Phys.
Rev. D 104, 105018 (2021).

[46] E. Tjoa and K. Gallock-Yoshimura, Channel capacity of
relativistic quantum communication with rapid interaction,
Phys. Rev. D 105, 085011 (2022).

[47] E. Tjoa, Quantum teleportation with relativistic communi-
cation from first principles, Phys. Rev. A 106, 032432
(2022).

[48] K. Yamaguchi and A. Kempf, Entanglement is better
teleported than transmitted, Phys. Rev. D 108, 025004
(2023).

[49] R. H. Jonsson, E. Martín-Martínez, and A. Kempf, Infor-
mation transmission without energy exchange, Phys. Rev.
Lett. 114, 110505 (2015).

[50] A. Blasco, L. J. Garay, M. Martín-Benito, and E. Martín-
Martínez, Timelike information broadcasting in cosmology,
Phys. Rev. D 93, 024055 (2016).

[51] A. Blasco, L. J. Garay, M. Martín-Benito, and E. Martín-
Martínez, Violation of the strong Huygen’s principle and
timelike signals from the early universe, Phys. Rev. Lett.
114, 141103 (2015).

[52] M. Hotta, Quantum measurement information as a key to
energy extraction from local vacuums, Phys. Rev. D 78,
045006 (2008).

[53] M. Hotta, Quantum energy teleportation: An introductory
review, arXiv:1101.3954.

[54] M. Hotta, J. Matsumoto, and G. Yusa, Quantum energy
teleportation without a limit of distance, Phys. Rev. A 89,
012311 (2014).

[55] N. Funai and E. Martín-Martínez, Engineering negative
stress-energy densities with quantum energy teleportation,
Phys. Rev. D 96, 025014 (2017).

[56] J. Polo-Gómez, L. J. Garay, and E. Martín-Martínez, A
detector-based measurement theory for quantum field
theory, Phys. Rev. D 105, 065003 (2022).

[57] H. Maeso-García, J. Polo-Gómez, and E. Martín-Martínez,
How measuring a quantum field affects entanglement
harvesting, Phys. Rev. D 107, 045011 (2023).

[58] D. Grimmer, I. Melgarejo-Lermas, J. Polo-Gómez, and
E. Martín-Martínez, Decoding quantum field theory with
machine learning, J. High Energy Phys. 08 (2023) 031.

[59] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf,
T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum
information, Rev. Mod. Phys. 84, 621 (2012).

[60] A. Serafini, Quantum Continuous Variables (CRC Press,
Boca Raton, 2017).

[61] E. G. Brown, E. Martín-Martínez, N. C. Menicucci, and
R. B. Mann, Detectors for probing relativistic quantum
physics beyond perturbation theory, Phys. Rev. D 87,
084062 (2013).

[62] D. E. Bruschi, A. R. Lee, and I. Fuentes, Time evolution
techniques for detectors in relativistic quantum information,
J. Phys. A Math. Theor. 46, 165303 (2013).

[63] A. Pozas-Kerstjens, J. Louko, and E. Martín-Martínez,
Degenerate detectors are unable to harvest spacelike en-
tanglement, Phys. Rev. D 95, 105009 (2017).

[64] T. R. Perche and A. Shalabi, Spacetime curvature from
ultrarapid measurements of quantum fields, Phys. Rev. D
105, 125011 (2022).

NONPERTURBATIVE METHOD FOR PARTICLE DETECTORS … PHYS. REV. D 109, 045014 (2024)

045014-21

https://doi.org/10.1103/PhysRevD.103.016007
https://doi.org/10.1103/PhysRevD.103.016007
https://doi.org/10.1088/1361-6382/ac08a8
https://doi.org/10.1103/PhysRevD.103.065013
https://doi.org/10.1007/s10714-022-02956-x
https://doi.org/10.1116/5.0078314
https://doi.org/10.1116/5.0078314
https://doi.org/10.1103/PhysRevD.106.025010
https://doi.org/10.1103/PhysRevLett.105.023601
https://doi.org/10.1103/PhysRevResearch.5.033155
https://doi.org/10.1103/PhysRevResearch.5.033155
https://arXiv.org/abs/2308.07892
https://doi.org/10.1103/PhysRevD.91.124060
https://doi.org/10.1093/ptep/pty109
https://doi.org/10.1093/ptep/pty109
https://doi.org/10.1088/1751-8121/ab065b
https://doi.org/10.1088/1751-8121/ab065b
https://doi.org/10.1007/JHEP05(2023)058
https://arXiv.org/abs/2310.18432
https://doi.org/10.1103/PhysRevA.81.012330
https://doi.org/10.1103/PhysRevA.81.012330
https://doi.org/10.1103/PhysRevD.93.104019
https://doi.org/10.1103/PhysRevD.93.104019
https://doi.org/10.1088/1751-8121/aa7d3c
https://doi.org/10.1088/1751-8121/aa7d3c
https://doi.org/10.1088/1751-8121/aae78a
https://doi.org/10.1088/1751-8121/aae78a
https://doi.org/10.1103/PhysRevD.101.036014
https://doi.org/10.1103/PhysRevD.104.105018
https://doi.org/10.1103/PhysRevD.104.105018
https://doi.org/10.1103/PhysRevD.105.085011
https://doi.org/10.1103/PhysRevA.106.032432
https://doi.org/10.1103/PhysRevA.106.032432
https://doi.org/10.1103/PhysRevD.108.025004
https://doi.org/10.1103/PhysRevD.108.025004
https://doi.org/10.1103/PhysRevLett.114.110505
https://doi.org/10.1103/PhysRevLett.114.110505
https://doi.org/10.1103/PhysRevD.93.024055
https://doi.org/10.1103/PhysRevLett.114.141103
https://doi.org/10.1103/PhysRevLett.114.141103
https://doi.org/10.1103/PhysRevD.78.045006
https://doi.org/10.1103/PhysRevD.78.045006
https://arXiv.org/abs/1101.3954
https://doi.org/10.1103/PhysRevA.89.012311
https://doi.org/10.1103/PhysRevA.89.012311
https://doi.org/10.1103/PhysRevD.96.025014
https://doi.org/10.1103/PhysRevD.105.065003
https://doi.org/10.1103/PhysRevD.107.045011
https://doi.org/10.1007/JHEP08(2023)031
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1103/PhysRevD.87.084062
https://doi.org/10.1103/PhysRevD.87.084062
https://doi.org/10.1088/1751-8113/46/16/165303
https://doi.org/10.1103/PhysRevD.95.105009
https://doi.org/10.1103/PhysRevD.105.125011
https://doi.org/10.1103/PhysRevD.105.125011


[65] E. Tjoa, Fermi two-atom problem: Nonperturbative ap-
proach via relativistic quantum information and algebraic
quantum field theory, Phys. Rev. D 106, 045012 (2022).

[66] N. K. Kollas, D. Moustos, and M. R. Muñoz, Cohering and
decohering power of massive scalar fields under instanta-
neous interactions, Phys. Rev. A 107, 022420 (2023).

[67] P. Simidzija and E. Martín-Martínez, Nonperturbative
analysis of entanglement harvesting from coherent field
states, Phys. Rev. D 96, 065008 (2017).

[68] A. Sahu, I. Melgarejo-Lermas, and E. Martín-Martínez,
Sabotaging the harvesting of correlations from quantum
fields, Phys. Rev. D 105, 065011 (2022).

[69] E. Tjoa, Nonperturbative simple-generated interactions with
a quantum field for arbitrary Gaussian states, Phys. Rev. D
108, 045003 (2023).

[70] B. DeWitt, in General Relativity: An Einstein Centenary
Survey, edited by S. Hawking and W. Israel (Cambridge
University Press, Cambridge, England, 1979).

[71] T. R. Perche, Localized nonrelativistic quantum systems in
curved spacetimes: A general characterization of particle
detector models, Phys. Rev. D 106, 025018 (2022).

[72] E. Poisson, The motion of point particles in curved
spacetime, Living Rev. Relativity 7, 6 (2004).

[73] S. Schlicht, Considerations on the Unruh effect: Causality
and regularization, Classical Quantum Gravity 21, 4647
(2004).

[74] J. Louko and A. Satz, How often does the Unruh-DeWitt
detector click? Regularization by a spatial profile, Classical
Quantum Gravity 23, 6321 (2006).

[75] P. Langlois, Causal particle detectors and topology, Ann.
Phys. (N.Y.) 321, 2027 (2006).

[76] E. Martín-Martínez, T. R. Perche, and B. de S. L. Torres,
General relativistic quantum optics: Finite-size particle

detector models in curved spacetimes, Phys. Rev. D 101,
045017 (2020).

[77] A. P. Kazantsev, The acceleration of atoms by light, Zh.
Eksp. Teor. Fiz. 66, 1599 (1974).

[78] E. Martín-Martínez and P. Rodriguez-Lopez, Relativistic
quantum optics: The relativistic invariance of the light-
matter interaction models, Phys. Rev. D 97, 105026 (2018).

[79] M. Scully and M. Zubairy, Quantum Optics (Cambridge
University Press, Cambridge, England, 1997).

[80] E. Martín-Martínez, M. Montero, and M. del Rey, Wave-
packet detection with the Unruh-DeWitt model, Phys. Rev.
D 87, 064038 (2013).

[81] R. Lopp and E. Martín-Martínez, Quantum delocalization,
gauge, and quantum optics: Light-matter interaction in
relativistic quantum information, Phys. Rev. A 103,
013703 (2021).

[82] E. Martín-Martínez, T. R. Perche, and B. de S. L.
Torres, Broken covariance of particle detector models in
relativistic quantum information, Phys. Rev. D 103, 025007
(2021).

[83] E. Tjoa, I. López-Gutiérrez, A. Sachs, and E. Martín-
Martínez, What makes a particle detector click, Phys.
Rev. D 103, 125021 (2021).

[84] C. K. Chui, Concerning rates of convergence of Riemann
sums, J. Approx. Theory 4, 279 (1971).

[85] H. Maeso-García, J. Polo-Gómez, and E. Martín-Martínez,
Entanglement harvesting: State dependence and covariance,
Phys. Rev. D 106, 105001 (2022).

[86] C. K. Chui, A convergence theorem for certain Riemann
sums, Can. Math. Bull. 12, 523 (1969).

[87] T. H. Hildebrandt, Integrals of Riemann type of functions of
intervals in two or higher dimension, in Introduction to the
Theory of Integration (Academic Press, New York, 1963).
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