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We show that detector switching profiles consisting of trains of delta couplings are a useful
computational tool to efficiently approximate results involving continuous switching functions, both
in setups involving a single detector and multiple ones. The rapid convergence to the continuous results at
all orders in perturbation theory for sufficiently regular switchings means that this tool can be used to
obtain nonperturbative results for general particle detector phenomena with continuous switching

functions.
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I. INTRODUCTION

Performing local operations on quantum fields is a
challenging endeavor, both from the technical and the
foundational point of view [I-8]. Among the several
approaches used to implement operations and local mea-
surements of a quantum field, particle detectors—
nonrelativistic quantum systems locally coupled to quan-
tum fields—have succeeded as models of local probes in
quantum field theory (QFT), and more specifically in
relativistic quantum information (RQI). Particle detector
models have allowed us to make physical sense and
build intuition for phenomena ranging from the concept
of particle [9-14] to the entanglement structure of
QFTs [15-39]. They also have provided a basis for
modeling quantum information protocols in relativistic
setups (e.g., [40-55]), as well as for the formulation of a
measurement theory consistent with relativity [56-58].

Typically, particle detectors are coupled to a quantum
field with some strength (determined by a parameter 1), and
for a specific period of time (determined by some switching
function y). Depending on the specific configuration,
particle detectors can be used either as emitters and
receptors of information, or as measurement devices, i.e.,
local probes that gather information about the field through
their interaction. In both cases, in order to make predictions
we need to be able to compute the final state of the detectors
after their interaction with the field. However, the full theory
including the interaction between the detector and the field
cannot be exactly solved in general, as is the case for most
interacting field theories.
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A frequent avenue to circumvent the complications
mentioned above is the use of perturbation theory. In this
approach, the final state of the detectors is expanded in a
series of terms proportional to increasingly higher powers of
the coupling parameter A. Under the assumption that the
detectors are weakly coupled to the field, the higher order
contributions can be neglected, leaving a truncated series as
the final result. Despite its popularity, the perturbative
approach has its limitations. To start with, a proof that
the perturbative series is convergent in all regimes is still
missing for particle detector models. Even when we are in a
regime of coupling strengths for which the perturbative
series converges, the truncated result is an approximation
whose error is not known a priori, and can only be trusted
to be accurate for “small enough” coupling parameters.
Furthermore, there are many physical situations where one
needs to go beyond leading order in perturbation theory,
which can be technically challenging. Finally, nonpertur-
bative effects in the model cannot in general be understood
using perturbative methods.

These limitations call for the use of nonperturbative
techniques. One way to proceed is to work in specific
scenarios where the evolution of the detectors and the field
can be calculated exactly. One of those scenarios is found in
the context of continuous-variable quantum mechanics (see,
e.g., [59,60] for reviews). Specifically, when the quantum
field has both infrared and ultraviolet cutoffs, it can be
reduced to (or approximated by) a lattice, so that if the
detectors and the field are initially in a so-called Gaussian
state (i.e., the Wigner function describing their joint state is
Gaussian), and if their coupling is linear, then the evolution
can be solved exactly using Gaussian methods [61,62].
Another scenario where calculations can be carried out
nonperturbatively is when the coupling between the
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detectors and the field consists of sudden interactions, i.e.,
one or several delta couplings [43,46,47,63—66]. In this
case, as we will review in Secs. I A and III A, the evolution
can always be written as a sequence of known unitaries, and,
moreover, these unitaries can often be exactly evaluated
(see, e.g., [52,67-69]).

In this paper we devise an efficient nonperturbative
method that applies to particle detectors that couple to the
quantum field continuously in time. Given the physical
relevance of these scenarios, and the fact that so far they
have been mostly analyzed perturbatively, these techniques
may allow us to explore possible new nonperturbative
phenomena in the study of the dynamics induced by time-
extended couplings, such as, e.g., in the Unruh effect or
entanglement harvesting, among many others.

The paper is organized as follows: in Secs. II and III we
develop, respectively, the nonperturbative method for setups
involving a single and multiple particle detectors. For each
case, we first review the formalism of delta coupling
interactions, we then proceed to show how they can be
used to approximate the dynamics of continuous couplings,
and conclude stating the approximation result that guaran-
tees the efficiency of the method, whose proof can be found
in Appendices A and B. In Sec. IV, we demonstrate the
method by applying it to specific scenarios involving one
and two detectors. Finally, our conclusions are presented
in Sec. V.

II. SINGLE DETECTOR CASE

In this section we describe the setup of a single particle
detector interacting with a quantum field through a sequence
of delta couplings, and we explain how it can be used to
approximate the phenomenology of setups involving con-
tinuous detector-field couplings.

A. Setup

We consider a localized nonrelativistic quantum
system (i.e., a particle detector [9,10,70,71]), moving in
a general (1 4+ d)-dimensional globally hyperbolic space-
time (M, g), whose center of mass follows a trajectory
X(7) parametrized by its proper time 7. The detector is
modeled as a quantum system with free Hamiltonian H .
We also consider that we are within the regime in which the
detector can be assumed to be Fermi-Walker rigid to a
good degree of approximation [72], and that, therefore, in
the reference frame defined by a set of Fermi normal
coordinates for the detector’s center of mass z = (z,z), its
shape is kept constant. This assumption is commonly made
in particle detector models [71,73-76], and it is regarded as
a physically realistic approximation in many experimental
setups [77,78].

The detector is weakly coupled to a quantum field ¢, and
its coupling can be described in the interaction picture by

the Hamiltonian weight1 [76]
hin(7.2) = (D) [F(@)fid(1) 0%(z,2) + Hel. (1)

Here, 1 is the coupling strength of the interaction, and y
and F are the switching and smearing functions that
modulate the coupling in time and space, where in
particular F depends on the shape of the detector (and,
in general, can be complex [21,71,79-81]). 4% and O% are
arbitrary tensor operators of the detector and the field,
respectively, and a is a general multi-index (for example
made of several spacetime indices). This is the most
general interaction Hamiltonian weight that we can write
for a Fermi-Walker rigid particle detector coupled to a
field. In particular, for a monopolar coupling with a real
scalar field one recovers the Unruh-DeWitt model, but this
interaction also covers multipolar couplings with real/
complex, scalar/vector/tensor, bosonic/fermionic fields.

In the case of multiple sudden interactions, the detector
couples to the field via a train of delta couplings at a
sequence of times {z;,j=1,....N}, N>1, and the
switching function is thus given by

2(0) =) nd(x 1)), (2)
=1

where 7; is the strength with which the detector couples to
the field at time z;. With the interaction Hamiltonian weight
given by Eq. (1), the evolution operator in the interaction
picture is given by

U=1T exp <—i/dz/§im(z)>

—T,exp{—iﬂZN]:’?j [ﬁ;j/dz\/_—%F(z)(by(zHH.c} }

_ T’]ﬂlexl) {—Mﬂj [ﬁl,j / dz,/=g;F ) (z) —l—H.c} }
(3)

where g; = detg,,(7;.z) is the determinant of the space-
time metric at (z;,z), and similarly i j= /jl(rj), and
Of(z) = O%(zj,z). T,exp and T, respectively denote
the time-ordered exponential and the time ordering oper-
ation with respect to the detector’s proper time z, which is

an acceptable choice of time-ordering parameter as long as
we are in the regime of validity of the detector

"Notice that the Hamiltonian weight is a scalar, which
upon multiplication by the geometric factor /—¢g(z) yields

the Hamiltonian density, where g(z) is the determinant of the
metric at z.
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approximation, where the detector model is effectively
covariant [82]. In particular, writing

U= exp{—unj [ﬁ;j / dz\/——ng(z)@;?’(z)+H.c.] } (4)

we can write

Notice that the U ; operators do not commute with each
other, but the action of the time ordering operation in
Eq. (3) yields Eq. (5). After the interaction, the joint state
of the detector and the field is

A

ﬁ = pAOUTv (6)

where py is the initial detector-field state. In particular, the
final state of the detector after the interaction results from
tracing over the field degrees of freedom, i.e.,

P :Tr¢(UﬁOUT) :qub(ﬁlv "UlpAoUI"'Uva)- (7)

B. Approximation results

Let us consider a single detector that couples to the field
through a switching function &(z) that is bounded, and
continuous except for maybe a finite number of points (in
the following, we call this switching function regular). For
this regular scenario, the joint evolution of the field and the
detector is given by the unitary

U:=T,exp <—i / dzht (z ))
=7, exp{—u / de&(z)

x [,zg(f) / dz\/=gF (z) 0% (1,7) +H.c.”, (8)

where g = det g, (7, z) is the determinant of the metric. The
final state of the detector is thus

/5 = Tr,(U:poU}). 9)

It turns out that this scenario can be efficiently approxi-
mated using a train of delta interactions. Specifically, let
[0, 7] be the interval where &(7) has its support, where in
particular we have £(0) = &(T) =0. The idea is to
approximate the phenomenology of the regular switching
function with that of a sequence of uniformly spaced Dirac
delta pulses. Thus, we can define a train of N sudden

interactions associated with £ and a uniform partition
P={t;j=Tj/N,j=0,...,N} of the interval [0, T] as

2e(t:N) = Zg( 1/2 ) (T—]_Tl/ZT>. (10)

Recalling Eq. (2), this amounts to setting

j—1/2
i N

T, (11)

and

Zf(fj)Z

n = &) RN €6

—tj_1)

The strength of each sudden interaction is thus determined
by both the value of the switching & at = 7; and the
duration T/N of the interval it is effectively substituting.
Let us denote with p,(N) the final state of the detector
according to Eq. (7) after the train of N sudden interactions
xe(7:N) in Eq. (10).

Now, let us assume that the detector and the field
are initially uncorrelated, so that the initial joint state is
of the form

Po = Ppo ® Py- (13)
We can use perturbation theory to write
Po(N) = oo + kfjlﬁé")(fv (14)
for the train of deltas, and
P = Poo + Y " (15)

k=1

for the regular scenario, where po (N) and Y% are
proportional to A*. Then it can be shown that, for each
k€ Z*, under the assumption that the switching function &,
the smearing function F and the initial state of the field p
are sufficiently regular

lim o (V) = pi~, (16)

To expand on what is meant by sufficiently regular, please see
Appendix A. In short, for most choices of switching and smearing
functions, and for the initial states of the field usually employed
in the literature (e.g., Hadamard states, both in flat and curved
spacetimes), we expect the regularity condition to be satisfied.
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in the weak operator topology. In fact, the convergence
is at least as fast as 1/N. Specifically, for any linear
functional G,

Glpy*] = Gl (V)] + O(1/N). (17)
Now, when ¢, F, and p, are such that the conditions for
Eq. (17) are fulfilled for all k € Z™, then the train of deltas
approximates the regular scenario at all orders in pertur-
bation theory, since

GIps] = Glpo(N)] + O(1/N) (18)

for any linear functional G, as long as A is within the radius
of convergence of the Dyson series in Egs. (14) and (15). In
particular,

Jim py(N) = 5 (19)

in the weak operator topology. Notice that since it is
possible to perform nonperturbative calculations with delta
couplings (see, e.g., [67-09]), Eq. (18) allows to efficiently
approximate nonperturbative results, as opposed to the
usual perturbative approximations based on truncating the
Dyson expansion. While this is still an approximation (that
can be made arbitrarily precise by increasing the density of
delta couplings), it approximates the full sum of the
perturbative expansion, and not only up to a given order.
This is why we refer to this technique as a nonperturbative
approximation.

III. MULTIPLE DETECTORS CASE

In this section we will generalize the framework and
results of Sec. II to setups involving multiple particle
detectors coupling to a quantum field.

A. Setup

We consider D particle detectors in the general globally
hyperbolic spacetime (M, g), whose centers of mass
follow trajectories X,(z,) parametrized by their proper
times 7,, within the regime in which each one of them
can be fairly assumed to be Fermi-Walker rigid.

Each detector is weakly coupled to a quantum field qAB In
order to jointly describe the interaction of all the detectors,
we will assume that there exists a set of coordinates (7, z) of
M such that, for each detector, there is a neighborhood
of its trajectory X, (7, ) where the coordinates (7, z) are a set
of Fermi normal coordinates of the detector’s center of
mass. In particular, if these neighborhoods include the
supports of each detector’s smearing function, then we can
write the interaction Hamiltonian weight as

2)iha(1)O%z.2)+Hel. (20)

1nt Tz

Z/M{n

In complete analogy with Eq. (1), here 4,, y,,, and F, are
the coupling strength, the switching, and the smearing
functions of the nth detector, while /4 is an arbitrary tensor
operator of the nth detector, and @Z is the generic tensor
field operator it couples to.

In the case of multiple delta couplings, the switching
functions can be written as

Z]/[ﬂj z'n] (21)

where N, is the number of times that the nth detector
couples to the field, and 7, ; is the strength of the coupling
at time 7,, ;. With the interaction Hamiltonian weight given
by Eq. (20), the evolution operator in the interaction picture
is given by

0 =T.exp(=i [ (2|
D N,
=7, exp{—iZln Zn”»/
=1 j=1
i [ ey @080 + e |,
=T HCXP{—I/IMM |:/’£n]a / dz\/ —Gn ]F ) ( )

n,j

- H.c} } (22)

where in the last equality, » is running from 1 to D,
and j runs from 1 to N,, for each n. Here, in ana-
logy with the notation used for one detector in Sec. II A,
Gnj =detg,,(7,;,z) is the determinant of the met-
ric at (z,;,z), and similarly ﬁjl_j_a Eﬂl,a(Tn_j), and
0% (z) = O%(1,,z). Notice that Eq. (22) implies that
we can write U as a product of unitaries in analogy with
Eq. (5), where each unitary of the sequence is of the form

Un,j = eXP{—Mn’?n,j [ﬁl,j,a/dz\/ _gn,jF(Z)@Z,j(Z)
+ H.c} } (23)

for some n, j. Notice that this amounts to ordering all the
7, j and applying the U, j following the same order. If two
;j and 7,y » coincide, for some n # n', then, since
we can assume that both detectors do not overlap, the

times 7,
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corresponding unitaries U,,. j and U ».j commute, and
therefore it does not matter how we decide to order them.
This is because if the supports of detectors n and n’ at
7,j = 7,y j do not overlap, then the field operators in U
and U ;7 have support in spacelike separated regions, and
thus commute. Since the detector operators also commute
for being associated with different detectors (and then
defined over different Hilbert spaces), the exponents of the
exponentials that define U,,’ ; and 0,,5 j commute, and
hence so do U,,,j and Un/.j/ themselves.

Finally, after the interaction, the joint state of the D
detectors and the field is

A

/j = pAO 0T ’ (24)

where p, is the initial state of the whole system. In
particular, the final joint state of the D detectors after
the interaction is obtained by tracing over the field degrees
of freedom,

po = Try(UpoU")

= Try(Oy - 0ipo0} - U}).  (25)

B. Approximation results

Let us consider D particle detectors under the same
conditions as in the previous subsection, except for their
coupling to the field, which now happens through switch-
ing functions &, (7) that are bounded, and continuous except
for maybe a finite number of points (regular, as we called
this kind of switching in Sec. IIB). For this regular
scenario, the joint evolution of all the particle detectors
and the field is given by the unitary

0:.=7, exp(—l / dzhs (z )
=T, exp{—lz/i /d‘tijn(r
[ /dz\/_F 2)0 (Tz)+HcH, (26)

where as before g = det g, (z,z) is the determinant of the
metric. The final joint state of the D detectors is

P = Try(UgpoUY). (27)

As in the single detector case, it turns out that
this scenario can be efficiently approximated using a
train of delta interactions. Specifically, let us denote
with [T,,T,+ AT,| the interval where &,(r) has its
support, and in particular &,(7,) = &,(T, + AT,) =0.
We can then define the train of N sudden inter-
actions associated with &, and a uniform partition

P, = {tn’j =T,+JAT,/N,j=1,...,
T, T,+ AT,] as

N} of the interval

”Zgn(T + /ZAT>

x5<T—Tn—]_Nl/2AnT). (28)

Zén ‘L'N

From Eq. (21), this means having N, = N for all n, setting

j=1/2

TtLj = Tn + ATVH (29)

and

AT,

’/Inj = én(ﬂl,j)(tn,j nj 1) én( Th, )T (30)

This is in complete analogy with the single detector case
presented in Sec. II B, i.e., the strength of each sudden
interaction is determined by both the value of the switching
£, at the corresponding time, and the duration of the interval
it stands for.

Now, let us assume that, initially, the detectors and the
field are mutually uncorrelated, so that the initial joint state
is of the form

Po = Poo ® Py (31)

where fy,  is the initial joint state of the D detectors (which
in particular can be correlated). Then, we can use pertur-
bation theory to write

Ao(N) = D" A (N) (32)

leNy
Z* u {0}), and

A Al
= 0" (33)

D
leN;

for the train of deltas (where Ny =

for the regular scenario, where /51()1) (N) and ﬁf)’)f are
proportional to

D
JJE (34)
n=1

for each I € NP2, and the first term for both series is just the
initial state, i.e.,

~(0 A0 N
PV (N) = pYV* = pio- (35)
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It can be shown that, for each I € N2, under the assumption
that the switching functions &,,, the smearing functions F,,
and the initial state of the field p, are sufficiently regular,3

lim 5 (N) = py* (36)

in the weak operator topology, and the convergence is at
least as fast as 1/N, i.e., for any linear functional G,

Glpy"] = Glpy' (N)] + O(1/N). (37)
In particular, when &,, F,, and p, are such that the
conditions for Eq. (37) are fulfilled for all 1€ NP, then

G[p5] = Glpo(N)] + O(1/N) (38)

for any linear functional G, as long as A is within the radius
of convergence of the Dyson series in Egs. (32) and (33). In
particular, the dynamics induced by the train of deltas
approximates those of the regular scenario at all orders in
perturbation theory, i.e.,

lim f,(N) = 55 (39)

in the weak operator topology. This means that the same
conclusions that we obtained for the single detector
scenario—and in particular the possibility of efficiently
approximating nonperturbative results—can be extended to
setups involving multiple detectors as well. Notice that the
density matrix that we get to approximate describes the
joint state of all the detectors, and not just one of them. This
means that we can use this technique to extract conclusions
regarding not only the state of each individual detector, but
also the correlations between them.

IV. EXAMPLES

After introducing the approximation method in Secs. II
and III, here we will use it in two specific scenarios,
involving, respectively, one and two detectors. For each
case, we will also analyze the rate of convergence of the
approximate density matrices toward the exact ones,
showing explicitly that the approximations are at least as
efficient as guaranteed by the results stated in Secs. II B
and III B (and proved in Appendix A).

A. Single detector example

In this example, we consider a two-level Unruh-DeWitt
particle detector [9,70] at rest in a (1 + 3)-dimensional

JAs in Sec. 11 B, see Appendix A for details on what is meant
by sufficiently regular.

Minkowski spacetime, with ground and excited states |g)
and |e), separated by an energy gap 2, and a Gaussian
shape,

1

The detector is coupled to a massless scalar quantum field
via an interaction Hamiltonian

F(x) = e, (40)

Fli (1) = 280 / dxF(x (a1)

where 1 is the coupling strength as in Eq. (1), and £ is the
monopole moment of the detector in the interaction picture,

() = |g)(ele™ + |e) (gle™™. (42)

The field operator (ﬁ can be expanded in plane-wave
modes as

N dk o
¢(t,x)—/m(a e

Finally, £ is a switching function supported in [0, 7| that is
bounded and continuous except for maybe a finite number
of points, as in Sec. II B.

We take the detector and the field to be initially
uncorrelated and in their respective ground states,

i(kle—kx) 1 H.c.).  (43)

Po = Pno & [0)(0 Poo = |9){gl. (44)

Using perturbation theory, we can write the state of the
detector at the end of the interaction process as

Po = Poo + A5 + O, (45)

where the terms of odd order in the perturbative expansion
are zero because the vacuum |0) is a zero-mean Gaussian
state, and therefore its odd-point functions are zero. Thus,
the final state of the detector is diagonal in the {|g), |e)}
basis, and can be completely characterized by the excitation
probability,

P, = (elpple) = (e|pS]e) + O(4).  (46)

For a massless scalar quantum field, up to second order in A
(see, e.g., [83]),

dk ~ -
Po= i [ S Bk + QPG @)
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FIG. 1.

(b)

Log. Rel. Err.

0 10 20 30 40 50
N

(a) Excitation probability of a two-level UDW detector coupled to a quantum scalar field through a train of delta couplings

approximating a Heaviside switching, as a function of the number of couplings N. Here we set the relevant parameters y and s to 1. The
constant red dashed line marks the value of the excitation probability for the exact Heaviside switching. (d) Logarithmic relative error of
the excitation probability for the Heaviside switching approximated by delta couplings, as a function of the number of couplings N. The
function represented by the solid cyan line is proportional to 1/N?, marking the rate of convergence of the approximation.

where & and F are the Fourier transforms” of & and F,
respectively. For the Gaussian shape specified before,
which has spherical symmetry, we get

/12 ©o 2 2h, %
P.— / dk|lkle P2 E(K + QP (49)

4> Jo
As a particular application of the result stated in
Sec. II B, Eq. (49) can be approximated by the transition

probability for a scenario where the detector couples to the
field through the train of N sudden interactions given by

(t;N) ;i( 12 >6<t— T). (50)

In this case, the excitation probability is given (up to second
order in 1) by

2T ZN:‘5< i=1/2. >§<j’—]\:/2T>

JJ'=1

Jj=1/2

elQT( —J )/N

T / ™ dlk| k|- kPe* 26 ITG-1N_ (1)
471’2 0

In the following we will see, for specific switching
functions &, how Eq. (51) approximates Eq. (49) increas-
ingly well as N increases, and does so with the predicted
efficiency.

*The convention we followed here for the definition of the
Fourier transform is that

G(v) ::/duG(u)e‘i"'v. (48)

1. Heaviside switching

The first example that we showcase is a switching
function that is constant in its support,

&(1) =Ton)(1), (52)

where Lo ) is the indicator function that equals 1 in the
interval (0,7), and zero everywhere else. In this case,

5 ze—ikT/2 kT
E(k) = z s1n( > )

(53)

From Eq. (49), we have

12 [ \k|e=WI*o*/2  T(|k| + Q)T
Po=" [ dk 2 54
= e { 2 ] (54)

T

2 0 —K2s2 2
:/1—2/ i ! sin2<K+y),
7 Jo (k+7)? 2
where the second line explicitly shows that the result only
depends on the dimensionless parameters y = Q7, and
s =0/T, and we also denoted x = |k|T. Similarly, from
Eq. (51) we get the excitation probability associated with

the train of sudden interactions y that approximates the
Heaviside switching,

(55)

22 N irli=I/N

N2” —~ 472

Pe(N)= (56)

/m dK.Ke—Kzsz/ZeiK(j—j’)/N
0

In Fig. la we see how P.(N) as given in Eq. (56)
converges to the exact value P, given in Eq. (55), for the
case y = s = 1. Moreover, Fig. 1(b) shows that the rate of
convergence of the approximation is as fast as 1/N?, which
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FIG. 2.

(b) o1

Log. Rel. Err.

0 10 20 30 40 50
N

(a) Excitation probability of a two-level UDW detector coupled to a quantum scalar field through a train of delta couplings

approximating a Gaussian switching truncated at ¢ = 1 variances, as a function of the number of couplings N. Here we set the relevant
parameters y and s to 1. The constant red dashed line marks the value of the excitation probability for the exact truncated Gaussian
switching. (b) Logarithmic relative error of the excitation probability for the Gaussian switching approximated by delta couplings, as a
function of the number of couplings N. The function represented by the solid cyan line is proportional to 1/N?, marking the rate of

convergence of the approximation.

is better than the minimum rate guaranteed by the approxi-
mation result of Sec. II B.

2. Truncated Gaussian switching

The second example that we consider is a Gaussian
switching where the Gaussian tails are cut beyond ¢ times
its variance:

0 =ew|~( -5 ) Jlan. 67

Notice that the Gaussian reaches its maximum at t = 7/2,
i.e., the center of the switching’s compact support. Its
Fourier transform reads

~ . 2 290 1 k T
E(k) = /rqTe K120 a T 4R [erf <2—+%>} . (58)
q

From Eq. (49), we have

B 2gPT?
 Ag

y Re{erf % N w} } (59)

Pe /oo d|k||k|e= ke /2 o= (kI +@¢*T/2
0

12q2 0
" 4n o

X Re{erf [i + @} }2, (60)

dK' Ke_K252/26_<K+7)2q2/2

where, as before, we have shown the explicit dependence
on the dimensionless parameters y = QT, and s = ¢/T,
and the integration is performed with respect to the
dimensionless variable k = |[k|T. Again, from Eq. (51)
we get the excitation probability associated with the
train of delta couplings y: that yields a transition prob-
ability that approximates that of the truncated Gaussian
switching,

2 N
P.(N) = ’1_2 Z o~ (2J=N=1*/AG’N* ,—(2]' =N~1)? /4¢’N*
N j57=
ir(j=i')/N
X &/w di ke 5* /2 ik (i=1)/N (61)
471'2 0

In Fig. 2(a) we see how P.(N)—as given in Eq. (61)—
converges to the value of P, given in Eq. (60), for the case
y = s = q = 1. Moreover, Fig. 2(b) shows that the rate of
convergence of the approximation is once more as fast as
1/N?, which is again better than the minimum rate
guaranteed by the approximation result of Sec. II B.

3. Smooth bump switching

As a third example, let us consider the switching to be
the C* bump function given by

2

exp[—ﬁ} if0<t<T,

£(r) = (62)

0 otherwise,

which is compactly supported in [0, 7], infinitely differ-
entiable on R, and reaches its maximum at t = T/2.
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(a) Excitation probability of a two-level UDW detector coupled to a quantum scalar field through a train of delta couplings

approximating a bump switching, as a function of the number of couplings N. Here we set the relevant parameters y and s to 1. The
constant red dashed line marks the value of the excitation probability for the exact bump switching. (b) Logarithmic relative error of the
excitation probability for the bump switching approximated by delta couplings, as a function of the number of couplings N. The function
represented by the solid cyan line is proportional to 1/N>, upper bounding the rate of convergence of the approximation.

Its Fourier transform does not admit a closed form.
However, let us define

exp[—ﬁ} if0<r<1,

0 otherwise,

pl1) = (63)

which does not depend on 7. This function is related to & by
E(r) = B(t/T). Thus, their Fourier transforms satisfy

E(k) = TH(KT), (64)
and hence, from Eq. (49), we can write
12 © —2 2/2 o 2
Po=— deke™ 5 2B(k+ 7)), (65)
A 0

which shows once again the complete dependence of P, on
the dimensionless parameters y and s. Meanwhile, from
Eq. (51) we get the excitation probability associated with
the train of delta couplings y: used to approximate that of
the bump switching,

N

P.(N _x i
e( )_W leXp|:_4(j—1/2)(N—j+1/2)]

jJ'=

N2
X ex —
p{ 4(j’—1/2)(N—j’+1/2)]
erG=i)/N

X —2/00 di ke™°5* 12 gik(=1)/N (66)
4 0

In Fig. 3(a) we see how, for the case y = s =1, the
approximated values P.(N) [as given in Eq. (66)] converge
to the exact value of P, [given in Eq. (65)]. Moreover,
Fig. 3(b) shows that the error incurred by the approximation

is upper bounded by a function that decays faster than
1/N?, much faster than the minimum rate guaranteed by the
result of Sec. IIB. In fact, the increase of the rate of
convergence of the approximation in this example with
respect to the two previous ones is not surprising, since the
approximation results in [84] suggest that switching func-
tions of higher differentiability class should admit tighter
convergence bounds.

B. Two detectors example

The setup considered for this example consists of two
identical two-level Unruh-DeWitt detectors, A and B, both
at rest at positions x, and x; in a (1 4 3)-dimensional
Minkowski spacetime. We consider the ground and excited
states of both detectors to be separated by the same energy
gap Q, and their shapes to be (normalized) hard spheres of
radius R,

3
 4zR3

Fi(x)

9<R - \x —X;

). i=AB. (67)

As in the single detector example, here we consider a linear
coupling between the detectors and a massless scalar
quantum field, given in the interaction picture by the
interaction Hamiltonian

Alt) = 22(1) [m) [ ar @it
i) [ dxFB<x>43<z,x>] (68)

where 4 is the coupling strength as in Eq. (1), fi; is the
monopole moment of detector i, which can be written in the
interaction picture as
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(1) = |g;) (el e + |e;) (gile*™, (69)

the field operator ¢ can be expanded in plane-wave modes
as in Eq. (43), and finally £ is again a switching function
supported in [0, 7] that is bounded and continuous except
for maybe a finite number of points, as in Sec. III B. Notice
that, for simplicity, in this example we have chosen the
coupling strengths and the switching functions to be the
same for both detectors, although this is of course not
necessary in the most general case.

Initially, we consider the detectors and the field to be
uncorrelated and in their ground states,

Po = 19 {94l @ |gs)(gs] & [0)(0]. (70)

Perturbation theory allows us to write the joint state of the
two detectors after the interaction as

ﬁAB = ﬁAB.O +pA1(33) + 0(14)’ (71)

where pup o = [9a)(9a] ® |gs)(gs| and, as in the single
detector case, the terms of odd order are zero because the
odd-point functions of the vacuum state of the field are
zero. In the ordered basis {|g,gs), |9a€s)s |€aTs)s |€n€s)}
the second order contribution can be written in matrix form
as (see, e.g., [19,85])

—Lia—Lg O 0o M

0 Ly Loy O

e = e . (72)
0 Ly Lan O
M 0 0 0

Now, let us restrict ourselves to the case in which the
interaction of the two detectors happens in regions of
spacetime that are spacelike separated, i.e., when

T <D -2R, (73)
where D = |x, — x;;| denotes the spatial distance between

the two detectors. Then, we get the following expressions
for the terms in Eq. (72):

2 [ ~ -

L= L= 1 [ T RIKIEK +QPIFGRDP. (74
2 ® : % 217 2
o=y [ dklsin( kD) E(KI + Q)PIF(RDP.  (75)

7-D 0
22 & . -
M= 5 [ sin(D)E(kl - 2)

x E(Jke] + Q)" |F(|kl)

?, (76)

where & and F are the Fourier transforms of the switching
function & and

3

Fx) = 4 s OR = ). (77)

respectively. Notice that to arrive at Eqgs. (74)—(76) we
used that

F(x) = Fy(x +x,) = Fp(x +xp), (78)
as well as the spherical symmetry of F, which implies

Flk) = %= F, (k) = e Fy (k) = F(lk

). (79)

where

F(k|) = ﬁ sin((k[R) — [k|R cos(K[R)]. (80)

Finally, we choose the switching function for this example
to be of the Heaviside type,

£(t) = o) (0), (81)

with Fourier transform

5 2e—ikT/2 ) kT
E(k) = L sin <7> (82)

Equations (74)—(76) can then be written in terms of
dimensionless parameters as

Lon = Lop :ﬁ/deM|F(K)
0

. L)

Lo = ;Tzd A * desin(id) M FEP  (84)
M = —;j;l; A d Sin(Kd),(;O_Syy; €S0 F )P, (85)
where y = QT, d = D/T, k = |k|T, and
F(k) = ) [sin(kr) — krcos(kr)], (86)
(k)
with r = R/T.

As a particular application of the approximation result of
Sec. I B, we know that Eqs. (83)—(85) can be approxi-
mated by their counterparts in the scenario where the
detectors couple to the field through the train of sudden
interactions given by
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(@) Ln = Ly = L;; term for a pair of identical two-level UDW detectors coupled to a quantum scalar field in spacelike

separated regions through a train of delta couplings approximating a Heaviside switching, as a function of the number of couplings N.
Here we set the relevant parameters to y = 1, d = 1.2, and r = 0.1. The constant red dashed line marks the value of the £;; term for the
exact Heaviside switching. (b) Logarithmic relative error of the £;; term for the Heaviside switching approximated by delta couplings, as
a function of the number of couplings N. The function represented by the solid cyan line is proportional to 1/N*#, upper bounding the

rate of convergence of the approximation.

2e(EN) :§Z5(f—j_Nl/2T)- (87)

The terms that approximate Eqs. (83)—(85) can then be
written as

2L [ 5
L) = Law(N) =35 D" 5 /0 die | F ()
J7=1

X COS {(K + Vi\sj - j/)] ; (88)
2 N © i
Lo(N) = % ‘Zl%lzd A dx sin(xd)|F(x)|?
(k+7)—J)
X COS [T] , (89)
2 N GHNIT foo N
M(N) = —% | .,_IWA dx sin(cd)|F ()2
X COS {W} . (90)

In Figs. 4-6, we see how, for thecasey = 1,d = 1.2, and
r = 0.1, the approximated values given in Egs. (88)-(90)
converge to the exact values given in Eqgs. (83)—(85). In
particular, Figs. 4(b), 5(b), and 6(d) show that the errors
committed by the approximations are upper bounded by
functions decaying at least as fast as 1/N, in agreement with
the approximation result of Sec. III B.

V. CONCLUSION

We have shown how to efficiently approximate non-
perturbatively the time evolution of particle detectors
interacting with a quantum field for very general com-
pactly supported switching functions and arbitrary smear-
ing functions.

Specifically, we have described how to approximate the
detectors’ dynamics when they couple through compactly
supported bounded switching functions, continuous except
for maybe a finite number of points, with that of a detector
coupled through a sequence of delta couplings, which can
be evaluated nonperturbatively. The approximation con-
verges at least as fast as 1/N (where N is the number of
delta pulses), and often much faster than this for regular
enough switchings.

The fast convergence of the approximation is guaranteed
at all orders in perturbation theory as long as the detectors’
switching and smearing functions and the field’s state are
“regular enough.” This, in particular, includes the cases in
which the state of the field is Hadamard, and the switching
and smearing functions are smooth except for maybe a
finite number of points, which covers most of the relevant
scenarios in both flat and curved spacetimes.

Since this approximation scheme can be easily (and
efficiently) evaluated in current computers, we expect the
method presented here to pave the way for a number of
nonperturbative analyses of phenomena involving particle
detectors and measurements in quantum field theory.
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FIG. 5. (a) L, term for a pair of identical two-level UDW detectors coupled to a quantum scalar field in spacelike separated regions
through a train of delta couplings approximating a Heaviside switching, as a function of the number of couplings N. Here we set the
relevant parameters to y = 1, d = 1.2, and r = 0.1. The constant red dashed line marks the value of the £, term for the exact Heaviside
switching. (b) Logarithmic relative error of the £,; term for the Heaviside switching approximated by delta couplings, as a function of
the number of couplings N. The function represented by the solid cyan line is proportional to 1/N?, marking the rate of convergence of
the approximation.
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FIG. 6. (a), (b), and (c) Respectively, real part, imaginary part, and absolute value of the M term for a pair of identical two-level UDW
detectors coupled to a quantum scalar field in spacelike separated regions through a train of delta couplings approximating a Heaviside
switching, as a function of the number of couplings N. Here we set the relevant parameters toy = 1, d = 1.2, and r = 0.1. The constant
red dashed lines mark the values of the real part, imaginary part, and absolute value of the M term for the exact Heaviside switching.
(d) Logarithmic relative error of the M term for the Heaviside switching approximated by delta couplings, as a function of the number of
couplings N. The function represented by the solid cyan line is proportional to 1/N, marking the rate of convergence of the
approximation.
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where the switching function y can be either the regular
switching, &, or its approximation with N sudden inter-
actions, )(é(N ), given in Eq. (10). For the regular scenario,
the joint evolution of the field and the detector is given by

the unitary
@)

05 = ’Z',exp(—i/
=7, exp{—iﬂ / dz&(7)

dzhs (z

nt

and by the Province of Ontario through the Ministry of R
Colleges and Universities. X [ﬂ;(f) / dz\/=gF (z)O%(7.z) + H-C-] } (A2)
APPENDIX A: PROOF OF THE with the final state of the detector being
APPROXIMATION RESULT
In th.is Appendix, we prove the. approximation resul.ts /5% — Tr¢(U§ﬁ00§). (A3)
stated in Eqgs. (16)—(19) for a single detector, and in
Egs. (37)—(39) for multiple detectors. The claim establishes B dine i . £
that each term of the Dyson series of the time-evolved Xpanding in series of 4, we get
density matrix resulting from couplings with trains of
sudden interactions converges (as we increase the number = ~ (k) A = A(k)E
of sudden interactions) to the contribution of the same order + ; u and - b = poo + ;p b (A4)
for the density matrix resulting from couplings with
(sufficiently regular) switching functions that the delta ~ (K) (e ] .
interactions aim to approximate, both for setups involving ~ Where U;" and py ™ are proportional to 4%, and
one or more particle detectors.
Let us first consider a one detector scenario with the Alk)E () oy ()t
= Try (U U A5
interaction Hamiltonian weight given by Eq. (1), i.e., o r;k a ¢ Pote ) (A35)
hin(7.2) = (D) [F(@)Aa(r)O(r.2) + Hel, (A1) Now,
|
~ s—1
Tr, (095, 00") = (—i)’mk/df1 . -de,dr, - - -d7, Ha 2y = 7,) [[0 01 = 7))
g=1
x [T &) T EEmIWE oo tr, e YA (5,) - A, (100t (7)) - - i (7))
=1 m=1
+WE (T T A (3,) - A0 (01) ool (77) - Al (70)
+ Wow (T ottt )% (z,) - 4% (71) Py “/1(1’1)---/2“2(12)
+ W (T T Tl (7)) ﬂm( Doofiy (1) - Aty (7)), (A6)
where we denoted
W (L, o ity e 1,5 F) = Tr¢[ﬁ¢(§;,](t/1,F) c O (6, F)O (1, F) -+ - O™ (1, F)), (A7)
WE(Hh oot th, oo 1,3 F) 5= Try[pg O (6, F) -+ O% (2, F)OL, (1,. F) -+~ O}, (1), F)], (A8)
W (1, ol by oo 1,5 F) 2= Tr(/,[ﬁ(/,@l,](t’l, F)--- O (6, F)OL, (1, F) - - OF (1, F)], (A9)
W (1, o bty o 13 F) = Tryg[pyO% (14, F) - O% (2, F)O™ (1, F) - - O™ (1), F)), (A10)
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and
O%(t,F) = / dz\/=gF () O%(t,z). (A11)
We can rewrite Eq. (A6) as
Tr¢(0g)ﬁ00§)+) = (—i)’i%k/A N dzd'E(zr;7)d(t;, 7 F). (A12)
Here,
A ={t=(r1,...,7,):1, €[0,T],7;€[0,7,_,], Vi=2,....r}, (A13)
A=At = (7],....,7,):7,€[0.T],7;€[0,7,4], Vi=2,....5}, (Al14)

are triangular domains; the function E is an abbreviation,

r N

(e 7) = [[ &) [ e, (Al3)

and @ is the operator corresponding to the expression in square brackets of Eq. (A6).
On the other hand, if we consider the evolution produced by the coupling through the train of sudden interactions
described by y:(N), from Eqs. (3) and (10) we have that the joint field-detector time-evolution is given by

U(N) = Texp{—u Zg( mT)[ﬁl( 1/2 >/dz\/_F 0“(’_1/2 >+H.c}}, (A16)

with the final state of the detector thus being

po(N) = Try(U(N)poU(N)T). (A17)
Under the same conditions as before, we write
+3 0WN) and  fy(N) = poo+ DA (), (AI18)
k=1 —

where again U (N) and Y (N) are proportional to A*, and

= Y Try (U (N)p U (N)Y). (A19)
r+s=k

In this case, for » + s = k, we have

kk s
Tr, (00 (N)po U (N)T) = (i) p AT DY Hf(h 1/2 >H§<Jm 1/2 >

JGJJej’ =
% {Wﬁ(ll_l/zT, Js—l/zT,Jl—l/zT’ jr—1/2T;F>

N Y, Y Y,

1/2 (=12, N\ (i —1/2 o (Js—1/2
Xy(, <T )"'ﬂl,(l N T>,0D,0ﬂ1<1 N T)-- g% TT

(i =1/2 " —1/2  ji—1/2 i —1/2
L we <J1 N/ L N/ ol N/ T N/ T;F>
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(e —-1)2 =12\ . (] =1)2 (=12
X'ua,-(%]")...ﬂal(%]" pD,Oﬂ.L’I lN/ T ...ij; %T

i—1/2

T,...,

12 i —1/2 i —1/2
Js /T_Jl /T Jr /T;F>

+Wa,a’( N > N yeees N

i, —1/2 i1 —1/2 A —=1/2 ji=1/2
Xﬂa,<]rN/ T)...ﬁa1<]l N/ T)ﬁn,oﬁa‘<]1N/ T>~--/2“A‘<]ST/T

L, S 7 o
—i—W"»“’(%T,...,]S NI/ZT;]I Nl/zT,...,J’ NI/ZT;F>

s V2N (A= V2N (A=12N (A1)
X:“"r( N T) Hey N r stOH{J/l N T ’u(li. N

where we have used the same notation as in Eq. (A6), and

jr = {]: (jl,...,jr):jlE{l,...,N},jiE{l,...,ji_l}, \4 i:2,...,r},

Tyim 4 = (oo ) € (L NLJF € {1 ey} ¥ i =2, s

Using the notation employed in Eq. (A12), we can rewrite Eq. (A20) as

)
)

7).

(A20)

(A21)

(A22)

R o o ARTE - .
Try (O (N)p U (N)) = () Y E(z1))d(z: 1) F),

where
i—1/2 i—1/2
7j = uT’m,uT
N N
it —1/2 i —1/2
and o= (D120 BZUZEN o
J N N

To prove the approximation result presented in Sec. II,
we follow a generalization of the strategy used by C. K.
Chui in [84,86]. First, let us define H flrl;s) :R"xR* = Cas

HY (2:7) = () VB @ )0 (1,7 F) s o, (A25)

where the dependence on r and s for E and @ manifests
itself in the vectors = and 7’ having r and s components,
respectively. Here, ,, is the (a, b)th matrix component of
@ in some basis of the detector Hilbert space H,,, and I is
the indicator function for the set X, i.e., a function that
equals 1 when the argument belongs to X, and 0 otherwise.
With this definition, from Eq. (A12) we have that

dzH', (2),

T ()~ y(s)i k
Ty U P U ab = A
[ 4( g POYe )] b 0.1

(A26)

(A23)

where the subindices ab again denote the (a, b)th matrix
element of the trace in the chosen basis of H,. It is worth
remarking that the presence of the indicator function in the
definition of H,, allowed us to have here the hypercube
[0, T]* as integration domain, instead of the product of
triangular domains of Eq. (Al12). Meanwhile, from
Eq. (A23) we also have that

[Te, (00 (N)po U (N)T)],p = #RW[HS]. (A27)

where R%{) is the Riemann sum associated with the uniform

partition of [0, 7]* into N* identical cubes with tags placed
in their centers, i.e., for an arbitrary 4: R¥ - C,

k Ji—1/2 =12\ T*
Rﬁ,)[h]:Zh( e e
J

(A28)

with each component of j running over {1, ..., N}. Let us
now define v\ : R¥ - C as

k k
k Ve
”Sv)(z) = E Tt | | Lz <T) - N* | | i, (A29)
U i=1
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where again each component of j runs over {I,...,N}.
With this definition, we can write

(re) oy _ L (k) 7(r.s)
oy dzH (z) = NF /[O,T]" duvy'H,p7,

(A30)

where the right-hand side should be understood as a

k-dimensional Riemann-Stieltjes integral of Hirb'”

[0, T]¥ with respect to UE\];), as defined in Appendix B. Now,

over

HElrb’s) is a product of functions including Z [defined in
Eq. (A15)], which is zero whenever one of its arguments is
0 or 7. In particular, HE;;‘Y) is zero along the boundary of

[0, T]¥, so by Lemma 1 in Appendix B,

k r,s r,s (_1)k r,s k
R;V)[Ht(zb )] - dth(zb >(Z> = NE /[or]k dH(ab )”S\/)-

[o.7)*
(A31)
Since 1)[(5) is bounded in [0, 7]*, with bound
kT
[ (A32)

assuming ngb’s) is of bounded variation, we can use

Lemma 2 in Appendix B to conclude that

>(r,s) (r.s)
(k) py(r.s) (rs) kCop ™ i _ Cap
RWIH" — dzH < Tk = ,
N[ ab ] o0 ab (2)| < N N
(A33)

where C\*) is the variation of H'") in [0, T]%. 1f H") is of

bounded variation for all pairs (7, s) such that r + s = &,
from Egs. (A5) and (A19) we get that
(r.s) (k)
A(k) (k)& k Cah k Cab
N)| ., — <A —ab_ — pk4b - (A34
Wl = 5Tl <2 30 S =S (a3

for some ij;), which proves Eq. (17). This also implies

. Ak A~k
im [ (V)] = 05

N-oo

(A35)

which proves Eq. (16). In particular, if Eq. (A33) holds at
all orders, Eqs. (18) and (19) are also satisfied for all values
of the coupling strength for which the Dyson series
converges.

In order to arrive at the bound given in Eq. (A33), we
needed to assume that Hflrb’s) is of bounded variation as a
function of its (time) arguments. Since at the end of the day
we want to use this nonperturbative tool for physical

scenarios, it is worth discussing how exotic this condition
is.

Notice first that H((lrb’s) depends on Z, which is a product
of the values of the switching functions at different times,
and the matrix elements w,,, which involve a linear
combination of smeared k-point correlation functions of
the field operator O” and the corresponding matrix element
of an operator that consists of products of j with gy, . If the
dependence of ji on time in the interaction picture only
comes from the free evolution of the detector, as it is often
the case, then we can assume that it is a smooth function of
time. That way, whether H(arb's) is sufficiently regular for
Eq. (A33) to hold or not ends up depending on the
switching function (through E) and the state of the field
(through the smeared k-point correlation functions for the
operator O). By Lemma 3 in Appendix B, one sufficient

(but not necessary) condition for ngb's) to be of bounded

variation is that it is of class C* in [0, T]*. In particular, this
can be straightforwardly extended to the case in which

H flr,f) is bounded, and C* except for maybe a finite number
of points in [0, T]¥.

Now, the (continuous) switching functions typically
employed in particle detector setups (e.g., Heaviside,
Gaussian, and Lorentzian couplings) are smooth except
for maybe a finite number of points. Therefore, when & is
one of these common switching functions, it would suffice
that the field’s k-point correlation functions be of class C¥ in

[0, T} for H;*") to be bounded and of class C* except for
maybe a finite number of points, for all (r,s) such
that r + s = k.

Let us consider, for instance, the vacuum of a real scalar
field in (1 + 3)-dimensional Minkowski spacetime. For this
case, the odd correlation functions vanish, while the even
correlation functions can all be expressed as sums of
products of the two-point function

dk :
wala.3) = [ S ek

If we have a linear coupling with the field amplitude, as in
the Unruh-DeWitt model [9,70], 0= (f), and the relevant
k-point functions can be given in terms of the smeared
two-point function

(A36)

W(t; 15 F) :/dxdx’F(x)F(x’)wz(Xl,Xz)

dk - A
= | G PR

for a given smearing function F. One very popular choice

of smearing function in the literature is the Gaussian of

variance o2,

(A37)
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1
o3

—x2/62

G(x) = (A38)

With a Gaussian smearing, a straightforward calculation
using spherical coordinates yields

1 s 2 H /
W(7;G) = — / d[k]| |k|e~ ke /2ilkl(=r)
4 0

L= /alr = )e R+ erfi( )]
2 ’

(A39)

which is a smooth function of ¢ and #. Another common
choice is the hard sphere of radius R > 0,

S(x) = 0(R — |x|). (A40)
Notice that its Fourier transform
~ dr .
S(k) = 5l [sin(kR) — kR cos(kR)] (A41)

converges to a constant when k — 0, and behaves like 1/ K2
as k — oo, so that

S 1 _ 2
R A

0 [ef?
(A42)

is convergent. It can be shown, moreover, that it is of
bounded variation, even though in this case

2

otot’

_4/°°d|k| [sin(|k|R) — :z:fCOS(klRﬂze-iko_m
; \

W(t;7;S)

(A43)

fails to converge and therefore we cannot use Lemma 3 to
reach that conclusion. Thus, we see that for two of the most
common smearing functions,5 the vacuum of a real scalar
field in (1 4 3)-dimensional Minkowski satisfies the con-
dition for Eq. (A35) to hold, at all orders in perturbation
theory. Since, for two or more spatial dimensions,6 the
possible nonsmoothness of the field correlation functions
can only arise from the ultraviolet behavior of the field state,
we can argue that any Hadamard state, both in flat and
curved spacetime (barring pathological geometries), will
essentially have the same ultraviolet behavior as the

>For a more detailed discussion of when and how the smearing
function regularizes the two-point distribution, see [74].

Also for one spatial dimension, assuming that the infrared
divergences are properly regularized.

Minkowski vacuum, and therefore should in principle
satisfy the assumptions of the approximation result as well.

Finally, we can turn to the multiple detector scenario.
The proof proceeds in just the same way as for the single
detector case. For the sake of brevity and simplicity we will
not give its details here, but we argue that the procedure is
completely analogous. Specifically, the similar structure of
Egs. (4) and (23) is revealing of how close both scenarios
are from the technical point of view. The case of multiple
detectors will in general involve products of different
switching functions and different detector operators, as
well as field correlation functions associated to potentially
different field operators, smeared over different spatial
profiles. However, one can give homologous definitions
of 2 [cf. Eq. (A15)] and @ [cf. Eq. (A6)] that lead to the
multiple detectors version of Eq. (A12). The steps that
follow are exactly those followed above for the one detector
scenario, adapted to the new integration regions, which for
the case of multiple detectors are general rectangles, instead
of the hypercubes we dealt with in the case of a single
detector.

APPENDIX B: THE n-DIMENSIONAL
RIEMANN-STIELTJES INTEGRAL

Even though the Riemann-Stieltjes integral is a basic tool
in real analysis, its generalization to the n-dimensional case
is not as popular in classical texts. Because of that, in
this appendix we present a very brief introduction to the
n-dimensional Riemann-Stieltjes integral—or rather, its
generalization to functions of complex argument—and we
prove the three Lemmas we referred to in Appendix A.

Let f,g:R"—>C, and let R = [x;,y;] X -+ X [x,,y,] CR"
be a closed rectangle in R”. Following [87], we define

Ay g = (1)), (B1)

z
where the sum runs over all z = (zy, ..., z,) € R” such that
zi =x; ory;, foreach i = 1,...,n, and #x(z) is the number

of components of z that are equal to x; and not y;. This
definition is motivated by the fact that for the function
p(z) = [, zi» we have

AR p =[] (i = x) = Vol(R). (B2)
i=1
Now, for each i=1,...,n, consider a partition of the
interval [x;, y;],
Pi = {t(()l> = Xjy eees tj(é)i = yi}’ (B3)
with a set of tags
T — D ey s M. B4
i {I/tl,...,MM[. uj e[tj—l’tj ]a J IREES] t} ( )
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All these partitions together induce an n-dimensional
rectangular partition P = P; X --- x P, of the rectangle
R, formed by subrectangles

A cR

Ry =[] s [

J Ji=1 % (BS)
that can only overlap on their edges. Each subrectangle also
has an associated tag u; = (”jw ujn), and we can define
the norm of P as the maximum among the norms of each
P;, ie.,

A

Pl = max ||P;]| = max{ls}” - £,:

i=1,...,

j=1..M;i=1,..,n} (B6)
We define the Riemann-Stieltjes sum associated with
f, g, and the n-dimensional tagged partition P of the
rectangle R as

Se(f.g:P) = Y f(w)AL)g. (B7)

Hence, we say that f is Riemann-Stieltjes integrable with
respect to g in R when there exists / € C such that, for every
¢ > 0, there is some 6 > 0 for which

ISg(f.g:P) = 1| <€ (B8)

holds whenever ||P|| <. In that case, we call I the
Riemann-Stieltjes integral of f with respect to g over R,

1= [ ar.

Lemma 1. Let f,g:R" — C,and let R = [x|,y;| X -+ X
[x,., v, be arectangle in R”, such that f is integrable over R
with respect to g, and either f =0 or ¢g=0 on the
boundary dR. Then, g is also integrable over R with respect

to f, and
[ara=1r [ aor.

Proof. Given € > 0, since f is integrable over R with
respect to g, there exists 6 > O such thatif P = P; x -+ X
P, is an n-dimensional tagged partition of R with
[IP]| < &, then

(B9)

(B10)

<e. (B11)

Skr(f.g:P) —Adgf

Consider now a rectangular partition of R, P=P; x---x P,
such that ||P|| < §/2. For each one-dimensional partition

P, = {t(()i> =X, ..., 1(‘2 =y} of the interval [x;,y;], with
tags {uy, ..., uy, }, consider another partition
Pi = {tf)l) =x,-,u1,...,uMi,tMi :yi}’ (B12)
with set of tags T; = P;, i.e.,
Ti = {’Ul, "‘7UM,-9UM,-+1: v = ty, v; = tj—lv \4 ] > 1}
(B13)

Notice in particular that the set of tags of P; includes
the limits of the interval, x; and y,. We can then define
a new partition P = P, x---x P,, with set of tags
T=T,x---xT, which by construction satisfies
|IP|| < 8. Moreover, a simple calculation shows that
S(f,g;P) = (=1)"S(g, f; P) + Boundary terms,  (B14)
where the boundary terms only include sums of products of
f and g at points of the boundary dR. Since either f = 0 or
g =0 on the boundary, the associated terms cancel out.
Equations (B11) and (B14) thus allow us to conclude that

Crsasin)- [ar<e ®19

and therefore that g is integrable over R with respect to f,

with
AdeZ(—l)”Adgf,

Lemma 2. Let f,g:R" — C,and let R = [x|,y;] X -+ X
[X,, y,] be arectangle in R™. If f is bounded in R and g is of
bounded variation in R, then we have that

(B16)

[aor| <itvanto. @)
where
11l = suplf] (B18)
is the optimal bound for f in R, and
(B19)

Varg(g) := sup > 1aglgl
J

is the variation of g in R, with the supremum taken over all
rectangular partitions P of the rectangle R, and the notation
used as in Eq. (B7).

Proof. Since f is integrable over R with respect to g, for
every € > 0 there exists 6 > 0 such that
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Se(f.9;P) —Adgf‘ <e (B20)

whenever ||P|| < 6. Now,
|S&(f, ;P Zf Zlf )[ag gl

< ||f||ooZ|AR,. 9| < IfllwVarr(g),  (B21)

J

and
sulr.iP) = [ aas| 2| [aor|-Isatr Pl 2)
so we conclude from Eq. (B20) that

[aor| <ilvarto) v @)

Since Eq. (B23) holds for all ¢ > 0, this proves the
claim. u

Lemma 3. Let g: R" — C, and let R = [x|,y;] X -+ X
[x,., v,] be a rectangle in R". If g is of class C"(R), then g is
of bounded variation in R, and

d"g

e B24
021 s 01,, ( )

Varg(g) :Adz

Proof. Consider a rectangle K=[v|,w|x---x[v,,w,]CR.
Singling out the first coordinate, we can write

A (g) = S (=)@ g(w.2) — g(v1.2)]
Z( 1#1)

<z)g(wla Ulv )1

(B25)

where z = (25, ...,z,) €ER"!, and z; = v; or w; for each
i=2,...,n, with #v(z) being as before the number of
components z; of z that are equal to v;. If we define

gi(w) = _(=1)*@g(w,z), (B26)

Z

then g, is continuously differentiable, and by the mean value
theorem there exists ¢; € (v, w;) such that

A%)(g) = g)(c1)(wy —v1)

= (r = o) S (-1 2 (e, 2),

B27
: g (B27)

Otherwise, we can
and realize from

If n=1, we stop here.
define K := [y, wy] X -+ X [v,,, W,],
Eq. (B27) that

AV (g) = (wy (B28)

Since g is of class C"(R), the partial derivative is of class
C"~'(R), and in particular so is its restriction to K. We can
then repeat the previous argument with the partial derivative
instead of g, concluding after this second step that there
exists ¢, € (v,, w,) such that

g
0Z1 aZz

AR (g) = (wy = v1) (ws = 02) Y (=1)6)

Z

(Cl ) CZ’Z)’

(B29)

where now z € R"~2 runs only over the last n — 2 compo-
nents (if any). In general, after n iterations we find that there
exists ¢ in the interior of K such that

A7) = |TJon =00 5220

().

— Vol(K) 29—
()Z] ce 0zn

(B30)

Now, the variation of ¢ in R is given by

Varg(g) = sup > 1Ay gl. (B31)
J

where the supremum is taken over all possible rectangular
partitions of R. By Eq. (B30), given an arbitrary partition
P of R,

VOl(R).  (B32)

>laglgl =
J

d"g
07y --- 0z, (Cj)

where each ¢; belongs to the interior of R;. This corresponds
to the Riemann sum of 9"¢/0z, - - - dz, associated with the
partition P with tags ¢;. Since 0"g/0z; - - - 0z, is continuous,
in particular it is Riemann integrable, and therefore given any
€ > 0, there exists 6 > 0 such that if ||P|| < &, then
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‘Adz&f¥%a&)—%:Ef¥%;@)WM&)<a
(B33)
In particular,
AdzafE%gk)—e<23552%5@»vmm»
< Varg(g) (B34)
This is true for all ¢ > 0, and thus
/ dz| — 29 ()] < Varg(g). (B35)
® |0z, -0z,

Conversely, for any partition P,

(n) | ang
Dl =3 [ er
sJZAjdz

:Adz

The supremum taken over all possible partitions still verifies
the inequality, i.e,

g
P V4
aZl ~~()Z,,( )

d"g
07y - -- 0z,

(2)|. (B36)

ang

(z)]. (B37)

Varg(g) < A &

Combining Egs. (B35) and (B37) gives us the desired
result. u
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