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We present a fully relativistic model for localized probes in quantum field theory. Furthermore, we show
that it is possible to obtain particle detector models from localized quantum field theories that interact with
a free quantum field. In particular, a particle detector model is obtained when one traces out over
inaccessible degrees of freedom of the localized field. This gives rise to a particle detector model, that is, a
quantum degree of freedom that couples to a free field theory in an extended region of spacetime.
Moreover, we show that the predictions of traditional particle detector models and fully relativistic
localized fields completely coincide to leading order in perturbation theory.
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I. INTRODUCTION

Quantum field theory (QFT) is one of the most success-
ful frameworks of theoretical physics. Its predictions
are among the most accurate experimental results of
physics [1,2], and have led to insights about the funda-
mental building blocks of the Universe. Moreover, quan-
tum field theory can be made compatible with general
relativity in numerous regimes, allowing us to study
extreme systems, such as black holes, and the physics of
the early universe [3–9].
Although the applications of QFT are vast, there are still

many cases of interest where we do not know yet how to
successfully apply this framework to address fundamental
questions. For instance, as of today there is no description
for a hydrogen atom entirely within QFT. This is because
handling bound states in quantum field theory requires
nonperturbative techniques, which are limited. Moreover,
in the context of relativistic quantum information, it is
necessary to describe operations that are localized in space
and time. This has sparked significant interest in how to
model localized operations—and more specifically, mea-
surements which extract local information from a quantum
field—in a way that is consistent with other foundational
principles of relativistic QFTs such as causality and
covariance [10–15].
One way of implementing physically motivated local

operations within the framework of QFT is to consider that

the field is measured by probes described by localized
quantum systems which are not internally relativistic. The
fact that these localized probes are nonrelativistic allows for
a simple description of localized measurements on the field.
It also provides a framework to model the flow of classical
and quantum information from field degrees of freedom to
experimentally observable probe systems. These nonrela-
tivistic probes are usually described by so-called particle
detector models (see, e.g., [16,17]). Particle detectors have
found many applications in studies of quantum field theory
in both flat and curved spacetimes. For instance, they have
been used to study the Unruh effect [18–21] and Hawking
radiation [16,22–24], as well as directly measuring the
field’s correlation functions [25,26] and providing a physi-
cally motivated measurement scheme in quantum field
theories [27,28]. Particle detectors have also been used to
implement numerous quantum information protocols,
such as quantum collect calling [29–31], quantum energy
teleportation [32–35], entanglement harvesting [36–51],
and noise-assisted information transmission [52,53], and
they have been widely successful in reproducing setups of
experimental significance, e.g., in quantum optics [54–56]
and superconducting circuits [57–59].
Although particle detectors have been proven to be

useful tools to study fundamental properties in quantum
field theories, they also have their drawbacks. Specifically,
the nonrelativistic nature of the detectors can make them
either nonlocal or singular in many scenarios. After all,
particle detectors are effective models, and the effects of the
nonlocalities they display impose clear regimes of validity
to their application. Even though the limits of these regimes
of validity are well understood [60–63], it has been argued
that nonrelativistic particle detectors may not provide an
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entirely satisfactory effective model for a more fundamental
fully relativistic quantum field theoretical description of
realistic localized measurements [15,64–70].
An alternative to the nonlocal models of particle detec-

tors is to use quantum field theory itself to describe the
probes that measure the target quantum field. The meas-
urement theory resulting from this approach, including a
covariant update rule for the target field’s state, was fully
developed using an algebraic formalism by Fewster and
Verch [64], and was further studied in [65,67,70]. Being
formulated completely within QFT, this framework is fully
local and safe from any causality issues, and has been used,
e.g., to provide a fundamental solution to Sorkin’s impos-
sible measurements problem [13,14,66]. However, it has
been argued that the algebraic approach has two main
pending issues [71,72]: first, in this formalism the problem
of measuring a quantum field is addressed with a probe that
is also described as a quantum field, without specifying
how the measurement of the probe field should be modeled.
Second, since realistic probes cannot be modeled using free
field theories [73], connecting the algebraic approach with
actual experiments requires in principle a treatment of
localized bound states that is currently unavailable in
quantum field theory. This is because, as we mentioned
before, bound states in interacting field theories only arise
nonperturbatively, and thus their fundamental description
is likely to require sophisticated techniques that we are
still missing.
Here, we work with a simpler (yet still fully relativistic)

description for localized quantum fields that uses an external
potential to localize the degrees of freedom of the quantum
field. Physically, this external potential may correspond to
an external agentwhich localizes a system, in the sameway a
Coulomb field sourced by a proton would localize the
electron field around it. This technique will allow us to
consider a fully local quantum field theory which is also
localized in space. The localized field can then be made to
interact with a free field theory, thus acting as a fully
relativistic localized probe. Notice that, of course, this
construction can be subject to the same criticism as the
algebraic approach since, after all, both target and probe are
described as quantum fields. Indeed, the main objective of
this paper is to take a further step toward the resolution of this
kind of criticism of the formalism developed by Fewster and
Verch [64] by relating the algebraic approach to particle
detector models in a detailed and explicit manner.
Using quantum fields localized by external potentials as

fully relativistic particle detectors is the main goal of this
manuscript. In exploring this idea, we will show that each
mode of the localized field theory has exactly the same
behavior of a particle detector model to leading order in the
coupling strength, hence allowing us to derive particle
detector models from a more fundamental theory. The use
of modes of localized quantum fields as particle detectors
dates back to [16], and the idea of singling out individual

modes of quantum fields to model detectors using
the algebraic formalism of [64] was explored in [74] for
the case of a free field. Although the relation between the
algebraic formalism and the detector-based approach has
been mentioned in [64], and the formalism of [64,65,67,70]
naturally allows for the introduction of an external poten-
tial, a clear connection between the two approaches to
model local operations in QFT has not yet been explicitly
explored in a concrete scenario. In this work, we provide a
setup that explicitly allows us to connect both frameworks,
thus bridging the rigor of the algebraic formulation of local
operations in QFT with the success of the particle detector
approach at modeling the physics relevant to experiments
in a laboratory setting. Moreover, having a derivation of
particle detector models from a first-principles relativistic
QFT framework may help these models be studied within
the algebraic perspective of quantum field theory in the
future. This may provide new insights into the quantum
information protocols in QFT which so far have been
studied using only detector-based approaches.
This manuscript is organized as follows. In Sec. II, we

review particle detector models and discuss the friction
between relativistic considerations and nonrelativistic par-
ticle detectors. In Sec. III we discuss the fundamental
properties of localized quantum field theories. In Sec. IV
we show that when a localized quantum field interacts with
a free theory, each of its localized modes behaves as a
particle detector to leading order in perturbation theory. The
conclusions of our work can be found in Sec. V.

II. PARTICLE DETECTOR MODELS

The goal of this section is to review particle detector
models, as well as some of their applications and limitations.
We introduce particle detectors and their applications in
Sec. II A, and we discuss the known interplay between the
model and causality and covariance in Sec. II B.

A. The UDW model and its generalizations

A particle detector is a nonrelativistic quantum system
which locally couples to a quantum field. These models are
inspired by an idea first considered by Unruh in [16]
and later used by Witt in [17]. The model and its
generalizations have become known as Unruh-DeWitt
(UDW) detectors. These models are extremely versatile
and useful for studying properties of quantum fields in flat
and curved spacetimes, as well as for studying aspects of
quantum information in QFT. Examples of applications of
UDW detectors are measuring the temperature of a quan-
tum field [16,18–22,75–96]), measuring the correlations in
a quantum field [25,26], implementing measurements and
state preparation in QFT [27,28], quantifying the entangle-
ment in quantum field theory [46,97,98], and implementing
quantum information protocols in QFT [29–32,53,99,100].
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In order to make the construction of particle detector
models concrete, let us consider a (3þ 1)-dimensional1

spacetime M with a real scalar quantum field ϕ̂ðxÞ. The
detector is modeled as a system with an internal quantum
degree of freedom and undergoes a trajectory zðτÞ para-
metrized by its proper time. Its internal dynamics is
described by a τ-independent self-adjoint Hamiltonian ĤD
with a discrete spectrum.
Consider an observable μ̂ in the detector’s Hilbert space

that does not commute with its free Hamiltonian ĤD. The
detector interacts linearly with the field via the operator μ̂,
which, in the interaction picture, is written as μ̂ðτÞ. The
interaction is assumed to be localized around the detector’s
trajectory zðτÞ in a region defined by the support of a
spacetime smearing function ΛðxÞ. We prescribe the
interaction in terms of a scalar interaction Hamiltonian
density (also called Hamiltonian weight), which can be
written as [101]

ĥIðxÞ ¼ λΛðxÞμ̂ðτðxÞÞϕ̂ðxÞ; ð1Þ

where τðxÞ denotes the Fermi normal time coordinate [102]
associated with the trajectory zðτÞ and λ is the coupling
strength.
It is also common to assume that the detector satisfies the

Fermi rigidity condition [60,62,101,103,104], so that the
spacetime smearing function is assumed to be localized
within the region where Fermi normal coordinates ðτ; xÞ
associated with the trajectory zðτÞ are defined [60,62,101],
and factors as ΛðxÞ ¼ χðτÞfðxÞ. The functions χðτÞ and
fðxÞ then define the switching on and off of the interaction
and the spatial shape of the detector, respectively. Under the
assumption that the operator μ̂ðτÞ is dimensionless, the
switching function is usually also assumed to be dimen-
sionless [so that the constant switching χðτÞ ¼ 1 would
correspond to a detector switched on for an infinitely long
time], and the smearing function fðxÞ has the units of a
spatial density, ½fðxÞ� ¼ E3, for a given energy scale E. In
3þ 1 spacetime dimensions, this implies that the coupling
strength is dimensionless.
From this simple model, it is possible to compute the

detector’s state after the interaction with the field by
applying time dependent perturbation theory to the detector
field system. The time evolution operator in the interaction
picture can be written as

ÛI ¼ T τ exp

�
−i

Z
dVĥIðxÞ

�
; ð2Þ

where dV is the spacetime invariant volume element and T τ

exp denotes the time ordered exponential with respect to

the Fermi normal time coordinate τ [60]. Notice that when
one considers microcausal2 interactions, it is not necessary
to prescribe the time parameter used in the time ordering.
However, as we will discuss in Sec. II B, the Hamiltonian
density of Eq. (1) does require such a specification in
general, since for spatially smeared detectors the model
violates the microcausality condition, albeit in a way that is
controlled by the detector’s smearing [63].
Expanding the time evolution operator using a Dyson

series we can write

ÛI ¼ 1þ Ûð1Þ
I þ Ûð2Þ

I þOðλ3Þ; ð3Þ

where

Ûð1Þ
I ¼ −i

Z
dVĥIðxÞ;

Ûð2Þ
I ¼ −

Z
dVdV 0ĥIðxÞĥIðx0Þθ

�
τðxÞ − τðx0Þ�; ð4Þ

and θðuÞ denotes the Heaviside theta function, which is
used to implement the time ordering operation. We then
assume that the detector and the field are initially uncorre-
lated, so that the full state of the detector field system is of
the form ρ̂0 ¼ ρ̂D;0 ⊗ ρ̂ϕ, where ρ̂D;0 is the detector’s initial
state and ρ̂ϕ denotes the initial state of the field. We further
assume that the field state is a zero-mean Gaussian state
(also called quasifree), so that (1) all the even correlation
functions of the field can be written in terms of the
Wightman functionWðx;x0Þ ¼ trðϕ̂ðxÞϕ̂ðx0Þρ̂ϕÞ, and (2) the
odd point functions all vanish.
One can then explicitly write the final state of the

detector ρ̂D to leading order in perturbation theory by
tracing over the field’s degrees of freedom. This final state
is entirely given in terms of integrals of the correlation
functions Wðx; x0Þ and the smeared monopole operators
M̂ðxÞ ¼ ΛðxÞμ̂ðτðxÞÞ. Explicitly, the final state of the
detector is given by

ρ̂D ¼ ρ̂D;0 þ λ2
Z

dVdV 0 Wðx; x0Þ�M̂ðx0Þρ̂D;0M̂ðxÞ

− M̂ðxÞM̂ðx0Þρ̂D;0θðτ − τ0Þ
− ρ̂D;0M̂ðxÞM̂ðx0Þθðτ0 − τÞ�þOðλ4Þ: ð5Þ

As it can be seen from above, the detector’s final state now
contains information about the correlation function of the
field, Wðx; x0Þ, and, as mentioned before, this dependence
can be used to infer properties of the field.
One particular generalization of the model which will be

especially relevant here is when the detector’s internal

1Although our results can easily be generalized to spacetimes
of different dimensions, for simplicity we focus on the concrete
example of 3þ 1 in this manuscript.

2A theory is said to be microcausal if observables defined in
spacelike separated regions commute. This condition ensures that
there are no violations of causality in the theory [105].
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degree of freedom is a harmonic oscillator of frequency
Ω and the smeared monopole operator is given by3

M̂ðxÞ ¼ ΛðxÞâðτÞ þ Λ�ðxÞâ†ðτÞ. In this case the scalar
interaction Hamiltonian density can be written as

ĥIðxÞ ¼ λðΛðxÞe−iΩτâþ Λ�ðxÞeiΩτâ†Þϕ̂ðxÞ; ð6Þ

where â and â† are the ladder operators for the harmonic
oscillator. Importantly, if the detector is initially in the
ground state, the model can be consistently reduced to a
finite dimensional system, and for many applications, even
a two-level system (see, e.g., [106]).
Even though particle detector models have a diverse

range of applications and have been shown to be a good
approximate description for localized quantum systems in
interaction with quantum fields [54–56], these models are
intrinsically an effective description. This is mainly due to
the fact that, when spatially smeared, the detector’s internal
dynamics is still described by nonrelativistic quantum
mechanics and not QFT. Due to this nonrelativistic
description, the model may be in conflict with general
relativity in many different situations, which we will
discuss in detail in Sec. II B. A way to bypass these issues
would be to derive the detector model from a fully
relativistic quantum field theory (as has been pointed out
in, e.g., [64,73,74]), instead of assuming a nonrelativistic
description for the internal detector dynamics. Although
attempts have been made in this direction [64,74,107],
these attempts have not yet been connected to the UDW
family of models when these models work as good effective
approximations. This is particularly relevant since particle
detector models have proven to faithfully reproduce the
physics of many experimental setups [54–59,108,109].
In order to better understand why the UDW models work
in some regimes and what their true limits are, it would
be very useful to derive the effective UDW model from a
fully relativistic QFT. Our primary goal in this manuscript
is to introduce localized detectors which are described
by fully relativistic quantum fields, and discuss under
which conditions we can understand the UDW family of
particle detector models as (experimentally accessible)
subsystems—in the standard quantum mechanical sense
of the word—of fully relativistic systems.

B. Covariance and causality

As mentioned earlier, the effective nonrelativistic char-
acter of the spatially smeared particle detector model can
lead to inconsistencies with general relativity. However, the
scales at which these inconsistencies appear are controlled
by the scale of the spatial smearing of the detector and
how it compares with other scales in the problem

(e.g., interaction duration or proper acceleration). These
scales in turn set the limits of validity of particle detector
models—thus delimiting the range of physical scenarios for
which the models produce faithful predictions. Indeed, the
limits of applicability of detector models have been
extensively studied [27,54–56,60–63]. The goal of this
subsection is precisely to summarize the aspects of particle
detector models that may lead them to be incompatible with
relativity, as well as the regimes in which these incom-
patibilities become irrelevant, thus stipulating the regimes
of validity of the models.
All inconsistencies with relativity that may arise in the

employment of particle detector models can be traced back
to the fact that in smeared UDW-like models the detector
couples to multiple spacelike separated points. Specifically,
the detector is described using a single quantum degree of
freedom defined along the trajectory zðτÞ. The interaction
Hamiltonian of Eq. (1) then couples the monopole operator
μ̂ðτÞ to the quantum field ϕ̂ðxÞ at multiple spacelike
separated points for each value of the Fermi time coordinate
τ. This is also true for the generalizations of the model with
complex smearing functions [e.g., Eq. (6)]. That is, the
detector’s only degree of freedom couples simultaneously
to the field at all the events in a surface of constant τ which
are within the support of the spatial smearing fðxÞ, and thus
evolves influenced by all of them at the same time.
Mathematically, this translates into the fact that the scalar
interaction Hamiltonian density of the detector, ĥIðxÞ,
violates the microcausality condition; i.e., it does not
commute with itself when evaluated at spacelike separated
events that lie within the support of the detector’s spatial
smearing.
One way in which the violation of the microcausality

condition leads to inconsistencies with relativity is through
violations of covariance. Specifically, the prescription of the
time evolution operator [see Eq. (2)] uses a time ordered
exponential that privileges a particular time parameter (for
example, the Fermi coordinate τ). If the microcausality
condition were fulfilled by ĥIðxÞ, all possible time para-
meterswould yield the same time evolution operator, and the
predictions of the model would be unambiguous. However,
for spatially smeared detectors the result does depend on the
time parameter chosen to perform the time ordering. The
scalar interaction Hamiltonian density in Eq. (1), though
covariant itself, might not yield a covariant time evolution
operator [60]. Themagnitude of the discrepancy between the
evolution operators associated with different choices of the
time parameter is nevertheless controlled by the character-
istic scales of the detector and goes to zero as the extension of
the spatial smearing goes to zero. This means that particle
detectors give effectively covariant predictions provided that
their proper sizes are sufficiently small.
Another way in which the violation of the microcausality

condition puts detector models in conflict with relativity is
through potential violations of causality. The simultaneous

3This kind of generalizations with a complex smearing
function is used to model physical systems such as atomic
systems coupled to the electromagnetic field [39,56].
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backreaction of the detector on the field at spacelike
separated events can lead the model to predict faster-
than-light propagation of information. This issue is inti-
mately related to the measurement problem in QFT, which
was first identified by Sorkin in the context of nonselective
finite-rank projective measurements [13], and has been
further extended to local infinite-rank ones [14] and more
general operations [15]. In all these setups, there is an
instantaneous operation applied simultaneously to space-
like separated points of spacetime, and (under specific
circumstances [14,15]) this leads to one region of spacetime
signaling to another one that is spacelike separated from it.
The difference between the setups involving particle
detectors and those involving raw QFT operations is that,
with detectors, we can precisely quantify the magnitude of
the causality issues. In fact, once again, the violations are
controlled by the characteristic scales of the problem (e.g.,
the detector size or its coupling strength) [61,63], therefore
allowing us to identify the regimes where the issues are
negligible, and the models are thus employable.
Finally, we comment on the results of [62], which

present an effective description for localized nonrelativistic
quantum systems in curved spacetimes, and apply such a
description to particle detector models. The formalism
naturally imposes a restriction on the size of the systems
which can be described around a given trajectory in a
background spacetime. In essence, the size of the non-
relativistic system must be smaller than a combination of
the inverse proper acceleration of the trajectory and the
curvature radius of the rest surfaces associated with the
trajectory.
Overall, the main idea of this subsection is that, for

nonpointlike detectors, detector models can be employed in
those regimes where the inconsistencies with relativity are
negligible. All this considered, one may wonder why we do
not limit ourselves to pointlike particle detectors, for which
the Hamiltonian density satisfies the microcausality con-
dition. After all, all the conflicts with relativity come from
considering nonpointlike models. The reason to consider
smeared detectors is double: (1) while pointlike detector
models can be used to obtain predictions in certain scenarios,
they can also lead to UV divergences [104,110]; and (2) the
physical systems that we try to model with particle detectors
(e.g., atoms [56] and superconducting qubits [57]) are
certainly not pointlike objects.

III. LOCALIZED QUANTUM FIELDS

In order for a state in a quantum field theory to be
spatially localized at all times, one requires a strong
interaction that produces an effective confining potential,
giving rise to bound states which are localized in a given
region of space. Fundamentally, the strong interactions
required to produce localized states should also be
described by quantum field theory. For example, the
hydrogen atom is a bound state that should be a

consequence of the interactions of the standard model.
However, in our current state of knowledge we are rarely
able to describe bound systems completely within QFT.
The reason for this difficulty is that bound states are usually
outside of the regime of perturbation theory, where quan-
tum field theory is mostly understood, and therefore their
description is still an open problem [111].
Although we still do not know how to describe most

bound states entirely within QFT, there are effective
descriptions which still allow one to treat the system of
interest as a quantum field. For instance, we can achieve
this by describing the strong interaction which localizes its
states as an external potential. For example, it is possible to
employ this treatment for the hydrogen atom by consid-
ering the electron to be a fermionic field under the influence
of a Coulomb potential sourced by a pointlike proton [112].
The predictions of this class of models of confined quantum
field theories have no covariance or causality issues since,
by construction, the effective QFTs are microcausal.

A. Scalar field with a confining potential

In order to describe localized quantum systems as
quantum fields under the influence of an external confining
potential4 VðxÞ, we consider for simplicity the example of a
real scalar quantum field in Minkowski spacetime. The
details of the more general case of curved backgrounds are
given in Appendix A.
To prescribe the potential let us assume that there is a

foliation of spacetime associated with a specific set of
inertial coordinates ðt; xÞ so that the potential can be written
as VðxÞ, i.e., the potential is static in that frame. Physically,
we can think of these coordinates as the ones associated
with a proper reference frame of the source of the potential.
We consider a classical Klein-Gordon field that is described
by the Lagrangian

L ¼ −
1

2
∂μϕ∂

μϕ −
m2

2
ϕ2 − VðxÞϕ2; ð7Þ

where m is the field’s mass and we use the ð−;þ;þ;þÞ
metric signature convention. Extremization of the associ-
ated action yields the equation of motion for the field ϕðxÞ
under the influence of the potential VðxÞ:

ð∂μ∂μ −m2 − 2VðxÞÞϕðxÞ ¼ 0: ð8Þ

4Notice that adding a (nonhomogeneous) potential makes the
equation of motion not Poincaré invariant. Of course, this is just
an artifact of treating the physical system that confines the field as
nondynamical. Poincaré invariance can be automatically restored
once the physical entity that sources the potential is also endowed
with degrees of freedom that transform nontrivially under the
Poincaré group. In the approximation that the effect of the source
is modeled in terms of an external potential, this just corresponds
to also applying the group transformations to the potential itself.
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This equation is separable in the coordinates ðt; xÞ:
−∂2tϕðxÞ þ ð∇2 −m2 − 2VðxÞÞϕðxÞ ¼ 0: ð9Þ

Under the assumption that VðxÞ is a continuous positive
confining potential [that is, VðxÞ → ∞ as jxj → ∞],5 the
operator E2ðxÞ ¼ −∇2 þm2 þ 2VðxÞ will admit a positive
compact inverse defined in L2ðR3Þ (see Theorem XIII.16
in [113]). Let n be a multi-index, so that ΦnðxÞ denotes the
eigenfunctions and ω2

n denotes the eigenfrequencies of
E2ðxÞ:

E2ðxÞΦnðxÞ ¼ ω2
nΦnðxÞ: ð10Þ

Under the assumption that ϕðt; xÞ are square-integrable
functions in space for each constant value of t, we can write

ϕðt; xÞ ¼
X
n

vnðtÞΦnðxÞ þ H:c: ð11Þ

Plugging the expression above into Eq. (9) and using
Eq. (10), we obtain a differential equation for vnðtÞ:

v̈nðtÞ ¼ −ω2
nvnðtÞ: ð12Þ

We can then expand the real classical solution for the field as

ϕðt; xÞ ¼
X
n

�
αne−iωntΦnðxÞ þ α�neiωntΦ�

nðxÞ
�
; ð13Þ

where the complex numbers αn are defined by initial
conditions.
In order to match the usual conventions adopted in

quantum field theory, we pick the functionsΦnðxÞ such that
the mode functions unðxÞ ¼ e−iωntΦnðxÞ are normalized
with respect to the Klein-Gordon inner product:

ðϕ1;ϕ2ÞKG ¼ i
Z
Σ
dΣμðϕ�

1∂μϕ2 − ∂μϕ
�
1ϕ2Þ; ð14Þ

where Σ is any Cauchy surface, dΣμ ¼ nμdΣ, with nμ being
the future directed unit normal to Σ and dΣ is the induced
volume element in Σ. That is, we normalize the functions
ΦnðxÞ so that

ðun; un0 ÞKG ¼ δn;n0 ; ðu�n; u�n0 ÞKG ¼ −δn;n0 : ð15Þ
Picking the surfaces of constant t, we find that this amounts
to the following normalization of ΦnðxÞ in L2ðR3Þ:Z

d3xjΦnðxÞj2 ¼
1

2ωn
: ð16Þ

The fact that the potential VðxÞ is confining implies that
each of the eigenfunctions ΦnðxÞ is mostly localized
around the minima of VðxÞ and decays to zero as VðxÞ
increases. This means that the solutions to the equation of
motion, Eq. (9), are mostly localized in a world tube that
contains the minima of the potential.
The quantization of this field can then be done by

promoting the coefficients αn and α�n to creation and
annihilation operators ân and â†n, which act on a Hilbert
space containing a vacuum state j0i such that ânj0i ¼ 0 for
all n. The creation and annihilation operators satisfy the
commutation relations ½ân; â†n0 � ¼ δn;n0 . The quantum field
ϕ̂ðxÞ can then be represented as

ϕ̂ðxÞ ¼
X
n

�
âne−iωntΦnðxÞ þ â†neiωntΦ�

nðxÞ
�
: ð17Þ

There are key properties to be noted about the quantum
field in Eq. (17). Notice that the field excitations are indexed
by a countable index n. This implies that the mode
excitations of the form â†nj0i are normalized states in the
quantum field theory. That is, unlike in the case of non-
localized quantum fields, the single mode excitations are
physical states with well-defined values of relevant observ-
ables such as energy and momentum [114]. Moreover, each
mode n is localized around the same region as the functions
ΦnðxÞ. These are both consequences of the fact that the
potential VðxÞ is confining.
The confining nature of VðxÞ also implies that the Hilbert

space representation associated with the vacuum state j0i
decomposes as a countable tensor product of the Hilbert
space associatedwith eachmode.This allows one to perform
operations such as partial tracing over modes and independ-
ently describe the dynamics of each single mode, while still
obtaining a physical state for the localized field.
For a detailed computation involving one of the most

common textbook examples of confining potentials—the
quadratic potential—see Appendix B.

B. Compactly supported fields

In order to consider fields localized in a finite region of
space one has to make some extra assumptions about the
confining potential. Notice that if the potential VðxÞ is a
smooth function, the field modes will not be compactly
supported. To restrict the field to a compact region, we
consider 3þ 1 Minkowski spacetime and use a potential
which is only finite in a compact convex connected set
U ⊂ R3 of diameter d, and VðxÞ is infinite6 outside ofU. In
this case, the effect of the infinite potential is to set the value
of the functions to zero outside of the region U, effectively

5Notice that many physical potentials are not confining in this
strict sense, but for low enough energies they are effectively
confining and admit a discrete spectrum in the relevant range of
energies, so the formalism here also applies to them in these
regimes (see Theorem XIII.1 in [113]).

6One could formally consider a one-parameter family of
confining potentials VϵðxÞ such that VϵðxÞ → ∞ as ϵ → 0þ for
x ∉ U and VϵðxÞ → VðxÞ as ϵ → 0þ for x∈U. For ϵ > 0 this fits
the class of models of Sec. III A.
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enforcing Dirichlet boundary conditions on the field. Then
the operator E2ðxÞ ¼ −∇2 þm2 þ VðxÞ is defined in a
dense domain of L2ðUÞ. The operator E2ðxÞ is positive and
has a discrete spectrum [113,115], which gives it a discrete
set of eigenfunctions ΦnðxÞ associated with eigenvalues ω2

n
such that

E2ðxÞΦnðxÞ ¼ ω2
nΦnðxÞ: ð18Þ

This leads us to the same solutions found in Eq. (17) for the
classical equations of motion, with the additional property
that ΦnðxÞ are compactly supported in U. This way, the
solutions to Eq. (8) have support in the world tube R × U.
The quantization procedure can be carried out as in the
noncompactly supported case described in Sec. III A,
yielding a quantum field of the same form as in
Eq. (17). In this case, however, every mode excitation
â†nj0i is compactly supported by construction.
As a particular example of compactly supported field

theory that is relevant in quantum optics, we briefly study a
field in a perfectly reflective cavity, which can be treated
using the formalism presented in this subsection.
Specifically, we consider a cubic cavity Ud ¼ ½0; d�3 where
the potential vanishes in the region Ud and is infinite
everywhere else, i.e.,

VðxÞ ¼
�
0; x∈Ud;

∞; x ∉ Ud:
ð19Þ

The spatial solutions in this case are the eigenfunctions
ΦnðxÞ of the operator −∇2 þm2 in L2ðUdÞ, with the
boundary condition ΦnðxÞ ¼ 0 at the boundary of Ud. The
solutions are

ΦnðxÞ ¼
1ffiffiffiffiffiffiffiffi
2ωn

p fnxðxÞfnyðyÞfnzðzÞ; ð20Þ

where

fnðuÞ ¼
ffiffiffi
2

d

r
sin

�
πnx
d

�
; ð21Þ

the energy eigenvalues are given by

ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ π2

d2
ðn2x þ n2y þ n2zÞ

s
; ð22Þ

and the field takes the shape of Eq. (17).

IV. LOCALIZED QUANTUM FIELDS
AS PARTICLE DETECTOR MODELS

In this section we will consider a detector modeled
by a localized relativistic quantum field ϕ̂DðxÞ which will

act as the probe for a free Klein-Gordon field ϕ̂ðxÞ,
following the spirit of the Fewster-Verch measurement
scheme [64,65,70].
Consider a field ϕ̂DðxÞ in a (3þ 1)-dimensional globally

hyperbolic spacetime under the influence of an external
confining potential VðxÞ (see Appendix A). In this case,
there exists a discrete set of modes unðxÞ such that the field
ϕ̂DðxÞ can be written as

ϕ̂DðxÞ ¼
X
n

�
ânunðxÞ þ â†nu�nðxÞ

�
: ð23Þ

We will assume that this field couples linearly to a free
Klein-Gordon field ϕ̂ðxÞ. The system of the two interacting
fields can be described by the Lagrangian

L ¼ −
1

2
∂μϕD∂

μϕD −
m2

D

2
ϕ2
D − VðxÞϕ2

D

−
1

2
∂μϕ∂

μϕ −
m2

2
ϕ2 − λζðxÞϕDϕ; ð24Þ

where λ is a coupling strength and ζðxÞ is a localized
function that controls the spacetime region where the
interaction between ϕ̂DðxÞ and ϕ̂ðxÞ happens. For conven-
ience we assume that ζðxÞ is dimensionless, which implies
that the coupling strength has dimensions of energy
squared.
It is clear that the Lagrangian of Eq. (24) defines two

noninteracting quantum field theories at λ ¼ 0, with a
localized field ϕ̂DðxÞ and a free Klein-Gordon field ϕ̂ðxÞ.
For small values of λ one can use perturbation theory with
the scalar interaction Hamiltonian density

ĥintðxÞ ¼ λζðxÞϕ̂DðxÞϕ̂ðxÞ: ð25Þ

Assuming the support of ζðxÞ to be localized in time, one
can compute the time evolution operator associated with
the interaction,

Û ¼ T exp

�
−i

Z
dVĥintðxÞ

�
; ð26Þ

where dV ¼ ffiffiffiffiffiffi−gp
d4x is the spacetime invariant volume

element and T exp denotes the time ordering exponential
with respect to any time parameter. Unlike the interaction
of smeared particle detector models with a free field, we
now have a fully relativistic QFT of two interacting fields
which, in particular, respects microcausality.
For simplicity we will look at the case where the field ϕ̂

starts in a zero-mean Gaussian state ρ̂ϕ and the field ϕ̂D

starts in its vacuum state j0Di, so that the initial state of the
two-field system is ρ̂0 ¼ j0Dih0Dj ⊗ ρ̂ϕ. Importantly, due
to the discrete energy levels of the localized quantum field
ϕ̂D, its Fock space FD factors as
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FD ¼ ⨂
n
Hn; ð27Þ

whereHn is the Hilbert space associated with each mode. A
consequence of this decomposition is that the vacuum state
of the localized quantum field can be written as

j0Di ¼ ⨂
n
j0ni; ð28Þ

where j0ni denotes the state of zero occupation number for
the mode n. We can then write

Hn ¼ spanðfðâ†nÞmj0ni∶ m ¼ 0; 1;…gÞ: ð29Þ

We will also assume that we only have access to one
mode of the localized field ϕ̂DðxÞ described in the subspace
HN for a given N, which labels an eigenfrequency ωN and
its corresponding eigenmode uNðxÞ. Denote by Hc

N the
complement of this Hilbert space in the decomposition of
Eq. (27), so that the detector field’s Fock space factors as
FD ¼ HN ⊗ Hc

N. The final state that we have access to
will then be given by

ρ̂N ¼ trϕ;Hc
N

�
Ûρ̂0Û

†
	
: ð30Þ

Physically, the restriction of the field to the space HN can
be realized experimentally if one only has access to
excitations of the localized field with energy ωN. For
instance, consider an electromagnetic cavity which con-
tains photodetectors that can only measure “photons” that
have energy ωN. Effectively, an experimentalist would only
have access to the spaceHN, and the partial trace operation
that we have performed is physically meaningful.
Under the assumption that the coupling strength λ is

sufficiently small, we can compute the final state ρ̂N as a
power expansion in λ by using the Dyson expansion for Û,

Û ¼ 1þ Ûð1Þ þ Ûð2Þ þOðλ3Þ; ð31Þ

where

Ûð1Þ ¼ −i
Z

dVĥintðxÞ; ð32Þ

Ûð2Þ ¼ −
Z

dVdV 0ĥintðxÞĥintðx0Þθðt − t0Þ; ð33Þ

and θðtÞ denotes the Heaviside theta function, with t being
any time coordinate. The final state of the two fields is
given by

ρ̂f ¼ ρ̂0 þ ρ̂ð1Þ þ ρ̂ð2Þ þOðλ3Þ; ð34Þ

with

ρ̂ð1Þ ¼ Ûð1Þρ̂0 þ ρ̂0Û
ð1Þ†; ð35Þ

ρ̂ð2Þ ¼ Ûð2Þρ̂0 þ Ûð1Þρ̂0Ûð1Þ† þ ρ̂0Û
ð2Þ†: ð36Þ

Notice that because the interaction Hamiltonian is linear on
ϕ̂ðxÞ and the field starts in a zero-mean Gaussian state, we
have trðϕ̂ðxÞρ̂ϕÞ ¼ hϕ̂ðxÞiρϕ ¼ 0, so that the term ρ̂ð1Þ does
not contribute after the partial trace over the degrees of
freedom of ϕ̂ðxÞ. Defining

Q̂ðxÞ ¼ ζðxÞϕ̂DðxÞ; ð37Þ

the term ρ̂ð2Þ can be written as

ρ̂ð2Þ ¼ λ2
Z

dVdV 0�Q̂ðxÞϕ̂ðxÞρ̂0Q̂ðx0Þϕ̂ðx0Þ

− Q̂ðxÞQ̂ðx0Þϕ̂ðxÞϕ̂ðx0Þρ̂0θðt − t0Þ
− ρ̂0Q̂ðxÞQ̂ðx0Þϕ̂ðxÞϕ̂ðx0Þθðt0 − tÞ�: ð38Þ

Partial tracing over the free field ϕ̂ðxÞ, and using
ρ̂0 ¼ j0Dih0Dj ⊗ ρ̂ϕ, we then obtain

trϕðρ̂ð2ÞÞ ¼ λ2
Z

dVdV 0Wðx; x0Þ�Q̂ðx0Þj0Dih0DjQ̂ðxÞ

− Q̂ðxÞQ̂ðx0Þj0Dih0Djθðt − t0Þ
− j0Dih0DjQ̂ðxÞQ̂ðx0Þθðt0 − tÞ�; ð39Þ

where Wðx; x0Þ ¼ hϕ̂ðxÞϕ̂ðx0Þiρϕ is the Wightman function

of the field ϕ̂ðxÞ in the state ρ̂ϕ.
The next step is to trace the result of Eq. (39) over the

spaceHc
N, which we assumed to be inaccessible. In order to

perform this computation, we define

Q̂nðxÞ ¼ ζðxÞðânunðxÞ þ â†nu�nðxÞÞ; ð40Þ
so that

Q̂ðxÞ ¼
X
n

Q̂nðxÞ: ð41Þ

Now we have

trHc
N
ðQ̂ðxÞQ̂ðx0ÞÞ ¼

X
nm

trHc
N
ðQ̂nðxÞQ̂mðx0ÞÞ: ð42Þ

From Eq. (28), the vacuum j0Di can be decomposed in
terms of the ground state of each mode:

j0Dih0Dj ¼ ⨂
nm

j0Dn ih0Dmj ¼ ρ̂N;0 ⨂
ðn;mÞ≠ðN;NÞ

j0Dn ih0Dmj; ð43Þ

where ρ̂N;0 ¼ j0Nih0Nj. Noticing that each Q̂nðxÞ term only
contains one creation and one annihilation operator, we
then find that for ðn;mÞ ≠ ðN;NÞ,
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trHc
N
ðQ̂nðxÞQ̂mðx0Þj0Dih0DjÞ
¼ δnmζðxÞunðxÞζðx0Þu�mðx0Þρ̂N;0; ð44Þ

which is simply a multiple of the initial state of the modeN.
For n ¼ m ¼ N, the trace over Hc

N simply gets rid of the
components of the state in Hc

N, without affecting the
components in HN.
Using these results it is possible to trace Eq. (39) over the

space Hc
N, which yields

ρ̂N ¼ ρ̂N;0 þ λ2
Z

dVdV 0Wðx; x0Þ�Q̂Nðx0Þρ̂N;0Q̂NðxÞ

− Q̂NðxÞQ̂Nðx0Þρ̂N;0θðt − t0Þ
− ρ̂N;0Q̂NðxÞQ̂Nðx0Þθðt0 − tÞ�
þ λ2ρ̂N;0

X
n≠N

Z
dVdV 0Wðx; x0ÞζðxÞunðxÞζðx0Þu�nðx0Þ

×
�
1 − θðt − t0Þ − θðt0 − tÞ�þOðλ4Þ: ð45Þ

Notice that the last term cancels, given that θðt − t0Þ þ
θðt0 − tÞ ¼ 1. Also notice the similarity with the leading
order result for particle detectors in Eq. (5).
At this stage it is possible to reinterpret the final result by

considering the following effective scalar Hamiltonian
density

ĥeffðxÞ ¼ λQ̂NðxÞϕ̂ðxÞ ¼ λðΛ−ðxÞâN þΛþðxÞâ†NÞϕ̂ðxÞ;
ð46Þ

where we defined the (time evolved) spacetime smearing
functions Λ−ðxÞ and ΛþðxÞ as

Λ−ðxÞ ¼ ζðxÞuNðxÞ and ΛþðxÞ ¼ ðΛ−ðxÞÞ�: ð47Þ

The operator ĥeffðxÞ acts on the Hilbert space of the field
ϕ̂ðxÞ and on the Hilbert space HN, which is effectively a
harmonic oscillator. Defining

Ûeff ¼ T exp

�
−i

Z
dVĥeffðxÞ

�
; ð48Þ

it is possible to show that the result for ρ̂N in Eq. (45) can be
rewritten as

ρ̂N ¼ trϕðÛeffðρ̂N;0 ⊗ ρ̂ϕÞÛ†
effÞ þOðλ4Þ: ð49Þ

That is, to second order in the coupling strength, it is
possible to reproduce the final state of ϕ̂DðxÞ in the
subspace HN by considering an interaction of a harmonic
oscillator with the quantum field ϕ̂ðxÞ.
If the spacetime is static, and the external potential is

invariant under the flow of the timelike Killing vector field
∂t, then it is possible to establish an even more direct

comparison with particle detector models. In this case, the
metric can be decomposed as in Eq. (A4) and, using that
VðxÞ is invariant under the flow of the Killing vector field,
the solutions unðxÞ decompose as unðxÞ ¼ e−iωntΦnðxÞ. We
can then write the time-evolved spacetime smearing func-
tion Λ−ðxÞ as

Λ−ðxÞ ¼ ζðxÞe−iωNtΦNðxÞ ¼ e−iωNtΛðxÞ; ð50Þ

where we have defined the regular spacetime smearing
function as

ΛðxÞ ≔ ζðxÞΦNðxÞ: ð51Þ

The effective interaction Hamiltonian then reads

ĥeffðxÞ ¼ λðΛðxÞe−iωNtâN þ Λ�ðxÞeiωNtâ†NÞϕ̂ðxÞ: ð52Þ

In order to fully recover the expression for a particle
detector undergoing a given trajectory in this spacetime, let
x0 be the spatial coordinates of the center

7 of the function
ΦNðxÞ. Consider the trajectory zðτÞ ¼ ðγτ; x0Þ, where τ is
its proper time, and γ is the redshift factor relative to t. We
can now define the proper energy gap as

Ω ¼ γωN; ð53Þ

so that the effective interaction Hamiltonian can be
written as

ĥeffðxÞ ¼ λðΛðxÞe−iΩτâN þ Λ�ðxÞeiΩτâ†NÞϕ̂ðxÞ; ð54Þ

which is exactly the interaction Hamiltonian of a harmonic
oscillator particle detector with energy gap Ω interacting
with a scalar field ϕ̂ðxÞ [see Eq. (6)]. Note that the units of
the switching function and coupling strength could be
matched with the harmonic oscillator UDW model by
rebalancing8 the units of the function ζðxÞ. Moreover, if one
is only interested in “one-particle” excitations in the mode
N, this allows us to consistently restrict the system and
Hamiltonian density of Eq. (54) into a two-level system
spanned by fj0Ni; j1Nig. This reduces to the leading order
interaction of a two-level UDW detector with a scalar
quantum field, which is the most widely used particle
detector model in the literature.
It is worth remarking that this “derivation” of particle

detectors is fundamentally different from the one presented

7This center can always be assigned. If VðxÞ has a single global
minimum, the center would be at the coordinates of the mini-
mum. Otherwise, this center can be chosen to be the “center of
mass” of the mode [116–118].

8Here we have ½λ� ¼ E2 and ½ΛðxÞ� ¼ E, where E is an energy
scale. This is unlike the UDWmodel, where the coupling strength
is dimensionless and the spacetime smearing function has units of
a spatial density.
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in [18]. There, particle detector models were recovered
from nonrelativistic quantum systems, while here we
recovered them from fully relativistic QFTs. It is also
important to notice that the analogy between a localized
QFT detector and the particle detector models that we find
here is specific to leading order perturbation theory. Indeed,
there will be discrepancies between the model with ĥeffðxÞ
and the model with the interaction Hamiltonian density of
the full quantum field theory interaction ĥintðxÞ to fourth or
higher order in the coupling strength.
We have seen how one can derive a particle detector

model from a fully relativistic quantum field theory.
Although a previous attempt of considering “second
quantized” UDW detectors exists [107], the particle detec-
tors in that case are obtained from localized states of a free
massive scalar field with a very high mass. However, no
state of a free massive scalar field can be truly localized, as
the free propagation will cause the quantum state to spread
regardless of the value of the field’s mass. Here we consider
energy eigenstates of the detector field’s free Hamiltonian
which are localized in space and can also be static. This
means that, in this approach, the detector remains localized
for arbitrarily long times. The small price that we have to
pay in order to obtain this localized theory is the addition of
an external potential VðxÞ, which is nondynamical and
prescribed by the physical entity responsible for the
localization of the field ϕ̂DðxÞ.
This derivation of particle detector models as a specific

mode of a localized quantum field also allows us to see
where the nonlocalities of the usual particle detector
models come from. Although we started with two micro-
causal theories for the fields ϕ̂DðxÞ and ϕ̂ðxÞ, we ended up
with a particle detector model, which does not respect
microcausality, as discussed in Sec. II. The reason for this is
that the state of the field restricted to mode N represents a
degree of freedom which is extended in space. Moreover,
this degree of freedom is restricted to a region correspond-
ing to the support of the mode. That is, any quantum
operation performed only on this mode will affect all events
within the localization of the function ΦNðxÞ. This is the
origin of the effective nonlocalities and apparent causality
violations discussed in Sec. II B. Physically, any faster-
than-light predictions would be a consequence of the fact
that “measuring the energy9 of the field in the mode N” is a
nonlocal operation. While this operation cannot truly be
implemented in a way that respects causality, it can be a
very approximate description of a physical process when
one has a field in a cavity, or a field in a localized region of
space. The idea of tracing over infinitely many modes of the
field allows for an interpretation of the causality issues of
particle detectors, which is in analogy with the effective

causality violations that arise when one traces over UV
modes of a quantum field theory. It is well-known that
restricting a quantum field theory to modes of energies
below a certain cutoff introduces causality violations of the
order of the inverse of the cutoff [119,120]. That is,
effective causality violations arise when tracing over modes
of quantum field theories, and this is also the origin of the
causality issues that arise in particle detector models. In
fact, this connection can be made even more concrete if we
formulate the reduction of the probe field to a finite number
of modes in terms of path integrals, as shown, for instance,
in [121].
On the other hand, if we consider the whole localized

quantum field theory as a probe, and restrict ourselves to
causal operations, no causality violations would arise.
Moreover, we have chosen to trace over all modes except
for one, but we could also have considered tracing over all
modes except for a finite number of them, reducing the
impact of the effective causality violations at higher orders.
Furthermore, if we want to remain at leading order in
perturbation theory, we note that each of the detector field
modes effectively behaves as a harmonic oscillator particle
detector, as these evolve independently to leading order
in λ.

V. CONCLUSIONS

We have presented a fully relativistic model of particle
detectors using localized quantum field theories. Using this
model, we have shown how nonrelativistic particle detec-
tors can be understood as effective descriptions arising
from fully relativistic localized quantum field theories.
Specifically, we have shown that each mode of the localized
field theory behaves exactly as a particle detector to leading
order in the coupling strength. The fact that the analogy
between particle detectors and localized QFTs holds to
leading order in perturbation theory implies that any
leading order statement about particle detectors can be
made into a statement about localized modes of quantum
fields (as in [122]).
Since our derivation of effective models of nonrelativ-

istic particle detectors comes from fully relativistic theories,
it allowed us to physically motivate the nonlocalities of the
model. Specifically, we discussed that nonlocalities in
detector models arise from measurements of extended field
observables localized within the support of the field modes
that give rise to the effective detector model. This is
analogous to what happens when one traces over high
energy modes of a quantum field theory, which is well-
known to introduce a certain degree of nonlocality.
This work aims to set the basis to connect relativistic

quantum information protocols with other fruitful research
avenues to study local operations in quantum field theory.
In particular, we believe it may provide a way for an9Or any other extended observable of ϕ̂D.
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algebraic quantum field theory perspective to quantum
information protocols in QFT, where the fundamental
condition of microcausality is satisfied, and the protocols
can be looked at from a fully relativistic perspective. This
work also paves the way for an explicit connection between
the detector-based measurement schemes in QFT [27] and
the algebraic approaches [64,65,70], which are stated fully
covariantly in terms of the algebraic formulation of
quantum field theory.

ACKNOWLEDGMENTS

The authors thank Christopher J. Fewster for valuable
discussions. T. R. P. acknowledges support from the
Natural Sciences and Engineering Research Council of
Canada (NSERC) via the Vanier Canada Graduate
Scholarship. J. P. G. acknowledges the support of a fellow-
ship from “La Caixa” Foundation (ID 100010434, with
fellowship code LCF/BQ/AA20/11820043). J. P. G. and
B. S. L. T. acknowledge support from the Mike and
Ophelia Lazaridis Fellowship. E. M.M. acknowledges
support through the Discovery Grant Program of the
Natural Sciences and Engineering Research Council of
Canada (NSERC). E. M.M. also acknowledges support of
his Ontario Early Researcher award. Research at Perimeter
Institute is supported in part by the Government of Canada
through the Department of Innovation, Science and
Industry Canada and by the Province of Ontario through
the Ministry of Colleges and Universities.

APPENDIX A: LOCALIZED SCALAR FIELD
IN A CURVED SPACETIME

In this appendix, we generalize to curved backgrounds
the treatment for localized quantum fields presented in
Sec. III. Consider the case where the field is defined in a
general globally hyperbolic spacetime M of dimension
Dþ 1. In this case, we do not assume that there is a foliation
where the potential looks static. The Lagrangian for the field
under the influence of this potential is still going to be given
by Eq. (7), now with a spacetime dependent potential. The
field equation can then be written as

ð∇μ∇μ −m2 − 2VðxÞÞϕðxÞ ¼ 0; ðA1Þ

where ∇μ denotes the (torsion-free) metric-compatible
covariant derivative. A relevant consequence of considering
this more general case is that the equation of motion for the
field will not necessarily admit a separation of variables in
terms of space and time. Nevertheless, assuming that VðxÞ
is confining,10 it is still possible to obtain a discrete basis for

the space of solutions funðxÞ; u�nðxÞg such that any classical
solution can be written as

ϕðxÞ ¼
X
n

ðαnunðxÞ þ α�nu�nðxÞÞ: ðA2Þ

The assumption that VðxÞ is confining also implies that the
functions unðxÞ are strongly localized when restricted to
any Cauchy surface. The quantization of this theory is
analogous to the case ofMinkowski spacetime and gives the
quantum field

ϕ̂ðxÞ ¼
X
n

ðânunðxÞ þ â†nu�nðxÞÞ: ðA3Þ

In the case of a static globally hyperbolic spacetime,
where there exists a Killing vector field ξ and a foliation by
Cauchy surfaces which is orthogonal to ξ, it is possible to
separate the Klein-Gordon equation with an external
potential in a similar fashion to what we did in
Minkowski spacetime. Let t be the coordinate of the flow
of ξ, and then the line element can be written as

ds2 ¼ −βðxÞ2dt2 þ hijðxÞdxidxj; ðA4Þ

where fxig are coordinates in the Cauchy surfaces orthogo-
nal to ξ and x ¼ ðx1;…; xDÞ. Then, it can be shown that
under the assumption that the potential VðxÞ is independent
of t, the basis of solutions unðxÞ can be decomposed as

unðxÞ ¼ e−iωntΦnðxÞ; ðA5Þ

where ΦnðxÞ are solutions to

βffiffiffi
h

p ∂i

�
β

ffiffiffi
h

p
hij∂jΦn

	
−
�
ω2
n þ β2ðm2 þ VðxÞÞ�Φn ¼ 0;

ðA6Þ

and h ¼ detðhijÞ. Notice that the equation above is indeed
independent of t, so that the separation of variables can be
performed.

APPENDIX B: A FIELD LOCALIZED
BY A QUADRATIC POTENTIAL

In this appendix we consider an explicit example of the
formalism of Sec. III, where VðxÞ is a quadratic potential.
Specifically, we consider inertial coordinates ðt; xÞ in
Minkowski spacetime and a real scalar field ϕðxÞ under
the influence of the potential

VðxÞ ¼ jxj2
2l4

: ðB1Þ

10VðxÞ being confining means that there exists a timelike curve
zðτÞ such that VðxÞ → ∞when σðzðτÞ; xÞ → ∞ for each τ, where
σðx; x0Þ denotes Synge’s world function [102] (the spacetime
separation between x and x0).
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The parameter l has dimensions of length and controls
the strength of the potential, with smaller values of l
corresponding to stronger potentials. The equations of
motion for the field then become

�
∂μ∂

μ −m2 −
jxj2
l4

�
ϕðxÞ ¼ 0: ðB2Þ

It is possible to find a basis of solutions to the equations
above. In fact, in Cartesian coordinates, we can solve the
equation by separation of variables. If we write
ϕðxÞ ¼ e−iEtΦðxÞ, we obtain

�
E2 þ∇2 −m2 −

jxj2
l4

�
ΦðxÞ ¼ 0: ðB3Þ

The solutions for the equation above are well-known
from the quantum harmonic oscillator. That is, imposing
the solution to be zero at infinity, we find that E2 −m2

has to be of the form 2ðnx þ ny þ nz þ 3
2
Þ=l2 for

nx; ny; nz ∈ f0; 1;…g. We write n ¼ ðnx; ny; nzÞ, so that
a basis of solutions can be written as

ΦnðxÞ ¼
1ffiffiffiffiffiffiffiffi
2ωn

p fnxðxÞfnyðyÞfnzðzÞ; ðB4Þ

where

fnðuÞ ¼
1ffiffiffiffiffiffiffiffiffi
2nn!

p e−
u2

2l2

π
1
4

ffiffiffi
l

p Hnðu=lÞ ðB5Þ

and HnðuÞ denote the Hermite polynomials. The eigen-
frequencies ωn are characterized by the positive values of E
in Eq. (B3) and are given by

ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2

l2

�
nx þ ny þ nz þ

3

2

�s
: ðB6Þ

The quantization of the field using the basis of solutions
ΦnðxÞ yields a field operator of the form (17), where the
index n is given by n ¼ ðnx; ny; nzÞ.
At this stage it is possible to analyze the spatial

localization of the modes of the quantum field. We see
that all modes are exponentially decaying as e−jxj2=2l2 .
That is, the parameter l which is inversely related to the
strength of the potential VðxÞ is also related to the spatial
localization of the field. However, highly energetic modes
will be less localized, as is well-known that the region
where the Hermite polynomials are non-negligible grows
as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
. When we say that the field is localized for the

harmonic potential, we mean that each of the relevant
modes for a given physical scenario is indeed exponen-
tially localized.
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