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Analytic continuations of integer-valued parameters can lead to profound insights, such as angular
momentum inRegge theory, the number of replicas in spin glasses, the number of internal degrees of freedom,
the spacetime dimension in dimensional regularization, andWilson’s renormalization group. In this work, we
consider a new kind of analytic continuation of correlation functions, inspired by two recent approaches
to underdetermined Dyson-Schwinger equations in D-dimensional spacetime. If the Green’s functions
Gn ¼ hϕni admit analytic continuation to complex values of n, the two different approaches are unified by a
novel principle for self-consistent problems: Singularities in the complex plane should be minimal. This
principlemanifests as themergingof different branches ofGreen’s functions in the quartic theories. ForD ¼ 0,
we obtain the closed-form solutions of the general gϕm theories, including the cases with complex coupling
constant g or noninteger powerm. ForD ¼ 1, we derive rapidly convergent results for the Hermitian quartic
and non-Hermitian cubic theories by minimizing the complexity of the singularity at n ¼ ∞.
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I. INTRODUCTION

Analytic continuations of real-valued parameters are
fascinating. Two early examples are the imaginary magnetic
field in theYang-Lee theory of phase transitions [1,2] and the
time coordinate in Wick rotation that connects quantum
mechanics to statistical mechanics [3]. The complexification
of discrete parameters is even more intriguing, such as
complex angular momentum in Regge theory of scattering
[4] andBrout’s replica trick for spin glasses [5]. Furthermore,
a noninteger number of degrees of freedom can unify
different physical systems. For instance, de Gennes’s map-
ping relates the n → 0 limit of the n-vector model to self-
avoiding polymers [6], while Fortuin-Kasteleyn’s random
cluster model connects the q → 1 limit of the q-state Potts
model with the percolation problem [7]. The spacetime
dimension can also be continued, leading to the method of
dimensional regularization [8,9] and Wilson-Fisher fixed
points of the renormalization group flow [10].
In this work, we consider a new kind of analytic continu-

ation associated with Green’s functionsGn. In quantum field
theory,Green’s functions describe the correlation of quantum
fields and encode information about the particle spectrum
and vacuum structure. As quantum equations of motion, the
Dyson-Schwinger (DS) equations [11–13] imply that the

Green’s functions are related to each other, providing a self-
consistent way to determine them nonperturbatively.
However, the nonperturbative DS equations usually form
an underdetermined system [14]. Additional assumptions or
constraints are needed to close the system. A simple scheme
is to set the higher connected Green’s functions to zero. Even
though onemay find convergent results, their limiting values
deviate from the exact values, as emphasized recently in
[15,16]. To resolve this issue, Bender et al. replaced the naive
vanishing constraints with more sophisticated approxima-
tions from the large n asymptotics [15,16]. Alternatively, one
can resolve the indeterminacy unbiasedly using the null state
condition [17]. For unitary solutions, one can also use
positivity to constrain the solution space [18–21].1
The use of large n asymptotic behaviors in [15,16] was

based on an implicit assumption. To study different Green’s
functions at the same time, the full set of Gn ¼ hϕni should
exhibit good analytic behavior in n, but n is usually thought
of as an integer parameter. This is reminiscent of the
angular momentum quantum number, which is usually
known as a quantized parameter that takes discrete values.
In 1959, Regge analytically continued the angular momen-
tum to complex values, leading to deep insights into the
asymptotic behavior of scattering amplitudes [4]. This
original idea had significantly influenced the developments
of the bootstrap program [23,24]. As the DS equations
furnish a self-consistent method for determining Green’s
functions, the analytic continuation in n should also
provide useful insights.
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of conformal field theory in [22].
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There is another motivation for complexifying n.
Inspired by the properties of Yang-Lee edge singularities
[1,2,25–27], Bessis and Zinn-Justin studied the quantum
mechanical version of the iϕ3 theory and noticed the reality
of the energy spectrum despite non-Hermiticity. Later,
Bender and Boettcher proposed a novel family of non-
Hermitian PT -invariant theories with real and bounded
spectra [28], in which the power of the interaction term can
take noninteger values. To bootstrap the cases with non-
integer power, it is inevitable to take into account hϕni with
noninteger n [29].
Along these lines, we revisit the indeterminacy issue of

the self-consistent equations from the complexified-n
perspective. It turns out that there exists a novel principle
that can resolve the problem: Singularities in the complex
plane should be minimal.2 The null state approach [17]
mentioned above can be viewed as an unbiased way to
minimize the complexity of singularities.
Below, we will use this novel principle to determine the

Green’s functions Gn, including the real and complex
solutions, such as the non-Hermitian cases with PT
symmetry [15,16,28,30–33]. In quartic theories, the prin-
ciple of minimal singularity manifests as the merging of
different branches of Green’s functions.

II. ZERO-DIMENSIONAL THEORIES

Let us consider the D ¼ 0 theory with a monomial
potential. The Lagrangian is

L½ϕ� ¼ gϕm; ð1Þ

which is the D ¼ 0 version of multi-critical models. We
will present the closed-form solutions for generic m and g.
Here the power m is not necessarily a positive integer and
the coupling constant g can be a complex number.

A. Dyson-Schwinger equations

Wewant to determine the Green’s functions using the DS
equations. The Green’s functions can be obtained from the
generating function Z½J�:

Gn ¼ hϕniJ¼0 ¼
1

Z½0�
δnZ½J�
δJn

����
J→0

; ð2Þ

where Z½J� ¼ R
dϕe−L½ϕ�þJϕ is an ordinary integral and the

path of integration depends on the choices of Stokes
sectors. An infinitesimal change of the integration variable
ϕ leads to the quantum equation of motion

hdL=dϕiJ ¼ gmhϕm−1iJ ¼ hJiJ: ð3Þ

The J → 0 limit gives Gm−1 ¼ 0. If we take some J
derivatives before setting J ¼ 0, we obtain the DS
equations:

Gnþm ¼ g−1
�
nþ 1

m

�
Gn: ð4Þ

The normalization convention implies G0 ¼ 1. The general
solutions for the Green’s functions are given by

Gn0þpm ¼ g−p
�
n0 þ 1

m

�
p
Gn0 ; ð5Þ

where 0 ≤ n0 < m, and ðaÞb ¼ Γðaþ bÞ=ΓðaÞ is the
Pochhammer symbol. Usually, n0 and p are integers. For
the moment, we assume that m is an integer and m ≥ 3, so
the system is underdetermined. In terms of exponential
functions, we find a general-n expression:

Gn ¼
�Xm−1

k¼0

cke2πi
kn
m

�
g−

n
m

�
1

m

�
n=m

; ð6Þ

which solves the DS equations (4) at both integer and
noninteger n. The coefficients ck are linear in the free
parameters ðG1;…; Gm−2Þ. In general, the essential singu-
larity at n ¼ ∞ is a superposition of m types of singular
behaviors.

B. Principle of minimal singularity

According to some explicit examples at integer m, we
notice that the exact solutions take the specific form

Gn ¼
1 − αnþ1

1 − α
βng−

n
m

�
1

m

�
n=m

; ð7Þ

where α and β satisfy the periodicity conditions

αm ¼ 1; βm ¼ 1; ð8Þ

and the nondegeneracy condition

α ≠ 1: ð9Þ

The α part is related to Gm−1 ¼ 0 and encodes the relative
singular behavior. The β part is a D ¼ 0 analog of the
Symanzik/Sibuya rotation [34].
The exact solutions are labelled by two integers. Since α

is associated with the relative singular behavior, we can
select the independent solutions by ImðαÞ ≥ 0. The number
of possible types of singular behaviors increases withm. To
show that (7)–(9) indeed encode the exact solutions, let us
examine the explicit examples of m ¼ 3, 4.

2More precisely, the one-point compactification of the set of
complex numbers with the point at infinity is called the extended
complex plane.
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For the cubic theory withm ¼ 3, the two choices of α are
not independent and we choose α ¼ e2πi

1
3, so we have

Gðm¼3Þ
1 ¼ −e2πik−13 g−1

3
Γð2=3Þ
Γð1=3Þ ; ð10Þ

where k ¼ 0, 1, 2. We obtain the three exact solutions

Gðm¼3Þ
n ¼ 1 − e2πi

nþ1
3

1 − e2πi
1
3

e2πi
kn
3

gn=3

�
1

3

�
n=3

: ð11Þ

For g ¼ i=3, the PT -symmetric case corresponds to k ¼ 2.
In the quartic case with m ¼ 4, the independent

choices are

αðm¼4Þ ¼ e2πi
1
4; e2πi

2
4: ð12Þ

They give all the exact solutions:
(i) In the first case α ¼ i, there are four solutions:

Gðm¼4Þ
n ¼ 1 − inþ1

1 − i
e2πi

kn
4

gn=4

�
1

4

�
n=4

; ð13Þ

where k ¼ 0, 1, 2, 3. For g ¼ − 1
4
, the PT -symmetric

solution is associated with k ¼ 3.
(ii) In the second case α ¼ −1, all the parity-odd

Green’s functions vanish. We have two solutions:

Gðm¼4Þ
n ¼ 1þ ð−1Þn

2

ð�1Þn=2
gn=4

�
1

4

�
n=4

: ð14Þ

For g > 0, the standard Hermitian solution corre-
sponds to the positive case with (þ1).

We verify that the exact solutions at other concrete m are
also given by (7)–(9). For instance, the non-Hermitian
quintic case with m ¼ 5 and g ¼ −i=5 has two PT
symmetric solutions at G1 ≈ −1.08i; 0.41i. They corre-
spond to ðα; βÞ ¼ ðe2πi15; e2πi35Þ; ðe2πi25; 1Þ.
What distinguish the exact results (7)–(9) from other

self-consistent solutions in (6)? We notice that the exact
solutions have only two types of singular behaviors at
n ¼ ∞, rather than all the m types in (6). Since we need at
least two terms to be compactible with Gm−1 ¼ 0, the exact
solutions are minimally singular. Therefore, we are led to
introduce the principle of minimal singularity.
Let us use the principle of minimal singularity to derive

(7)–(9). According to this novel principle, we should
minimize the complexity of the singularity structure. The
results are the solutions with two types of singular
behaviors at n ¼ ∞, i.e., only two coefficients in (6) are
nonzero. Suppose that they are labelled by k1 and k2. Then
the constraint Gm−1 ¼ 0 fixes their relative coefficient.

The k summation becomes ck2ð1 − e2πi
k1−k2

m ðnþ1ÞÞe2πik2nm .

The remaining coefficient ck2 is determined by G0 ¼ 1.
In this way, we obtain the closed-form results (7)–(9).3
In analogy to the multi-cut solutions in matrix models

(see [19,20] for summaries and references therein), one can
study more complicated solutions by keeping more ck in
(6). For example, a next-to-minimal solution can have three
independent exponential terms

Gn ¼
� X

j¼1;2;3

ckje
2πi

kjn

m

�
g−

n
m

�
1

m

�
n=m

; ð15Þ

then there remains one free parameter because Gm−1 ¼ 0
and G0 ¼ 1 do not fix all the coefficients ckj . The simpler
solutions are interpolated by the more complicated ones.
The minimally singular solutions are the starting point
for a more thorough classification based on reducibility of
singularities.4

C. Large n expansion

We can also derive the exact solutions using the large-n
expansion. Let us consider the cubic example for simplic-
ity. As the α part is responsible for the vanishing Green’s
functions at n ¼ 3pþ 2, we will focus on the remaining
part of (11). For m ¼ 3, the DS equations (4) give a
recursion relation between Gn and Gnþ3. We have

m ¼ 3∶ Gnþ3 ¼ g−1
�
nþ 1

3

�
Gn: ð16Þ

We assume the existence of a stronger relation

Gnþ1 ¼ FnGn; ð17Þ

where Fn should be minimally singular in n. We have

FnFnþ1Fnþ2 ¼ g−1
nþ 1

3
; ð18Þ

which can be systematically solved at large n. The leading
terms in 1=n are

Fn ¼
e2πi

k
3

g1=3
n1=3

31=3

�
1þ 1

9n2
−

13

81n4
þ…

�
; ð19Þ

where k ¼ 0, 1, 2. In general, the resummation of the 1=n
series is not unique. To minimize the complexity of
singularities, we use the gamma function to construct the
“cube root” of the DS equations (16) and (18):

3We focus on the principal values of k, which satisfy
0 ≤ k < m. Other choices can lead to different results at non-
integer n, but they are redundant at integer n due to e2πi

m
mn ¼ 1.

4In the sense of theory space, the fixed points of renormaliza-
tion group flow and the corresponding conformal field theories
can be viewed as minimally singular quantum field theories.
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Fn ¼
e2πi

k
3

g1=3

�
nþ 1

3

�
1=3

; ð20Þ

then we obtain the exact solutions in (11). The large-n
expansion is useful if the general solutions are not
expressed as known functions. The effectiveness of the
leading asymptotic behavior had been shown in [15,16] for
the connected Green’s functions.

D. Noninteger power m

Let us discuss the more subtle situation of noninteger
power m. We consider a family of non-Hermitian models
with the Lagrangian L ¼ −ðim=mÞϕm, which is a D ¼ 0
version of the PT -invariant theories proposed in [28]. In
Fig. 1, we present the purely imaginary solutions for G1

from (7)–(9). The black dots indicate the integer-m cases,
where the periodicity conditions (8) are clearly defined.
We can also consider a rational power m ¼ ð1=m1Þm2,

where ðm1, m2) are positive and mutually prime integers.
If we impose that the DS equations (4) are satisfied at
generic n, then the principle of minimal singularity again
leads to (7), but the periodicity conditions (8) become
ðα1=m1Þm2 ¼ ðβ1=m1Þm2 ¼ 1. For odd m1, the imaginary G1

solutions lie exactly on the interpolating curves for the
integer-m solutions. In Fig. 1, the interpolating curves are
labeled by k with α ¼ e2πi

k
m. Their general-m analytic

expression is

ImðG1Þ ¼ �j1þ e2πi
k
mjm1=m

�
1

m

�
1=m

; ð21Þ

where the signs of the even-k cases depend on m. At large
m, they asymptote to ImðG1Þ → �1. For clarity, we do not
plot the interpolating curves at m < k, as they oscillate
more and more rapidly. In addition, many curves would
intersect at the black dots due to αk ¼ αkþm.

III. ONE-DIMENSIONAL THEORIES

Are the D > 0 exact solutions minimally singular? To
address this question at D ¼ 1, we use the Hamiltonian
formulation to reduce the number of free parameters. For an
eigenstate with energy E, the expectation values satisfy
some self-consistent equations

hOHi ¼ EhOi ¼ hHOi; ð22Þ

where the inner product is assumed to be compatible with
the symmetry of the Hamiltonian. These self-consistency
relations are the counterpart of the DS equations in the
Lagrangian formulation. We will consider the basic exam-
ples of the Hermitian quartic and non-Hermitian cubic
theories.5

A. Quartic theory

We consider the massive quartic theory [36]

H ¼ p2 þ λx2 þ gx4; ð23Þ

which is related to the Ising universality class at higher D.
We will show that the principle of minimal singularity
manifests as the merging of different branches of Gn. The
position operator x and the momentum operator p satisfy
the canonical commutation relation ½x; p� ¼ iℏ. Using the
standard Hermitian inner product, one can formulate a self-
consistent system in terms of the expectation values (22)
and derive a recursion relation [37]:

ℏ2ðnþ 1Þ3Gn þ 4Eðnþ 3ÞGnþ2 − 4λðnþ 4ÞGnþ4

¼ 4gðnþ 5ÞGnþ6; ð24Þ

where Gn ¼ Gnðt1; t2;…; tnÞjti→t1 ¼ hxni is the equal-time
limit of the n-point Green’s function.6 The normalization is
set by G0 ¼ 1. Assuming that the solutions are parity
invariant, we can focus on the even-n Green’s functions, as
the odd-n cases vanish. Instead of imposing positivity
constraints [37], we will study (24) by analytic continuation
in n [29].
For positive integer n, we can express Gn in terms of E

and G2 using (24). In Fig. 2, we consider some cases of
ðE;G2Þ around the exact values, whereGn has been divided
by the leading asymptotic behavior 3n=3n1=6½Γðn

6
Þ�2. At

large n, the solutions for Gn exhibit three oscillatory
branches, corresponding to G6n0þ2k with k ¼ 0, 1, 2.

FIG. 1. The purely imaginary solutions for G1 in the D ¼ 0
non-Hermitian theories L ¼ −ðim=mÞϕm from the general for-
mulas (7)–(9). Many of them are PT symmetric. The exact
solutions at integer m are denoted by black dots. The colored
curves from (21) interpolate the integer-m solutions with the
same k, according to α ¼ e2πi

k
m.

5As in the D ¼ 0 case, we can also consider higher integer
powers, as well as noninteger powers [35].

6In higher spacetime dimensions, then analytic continuation can
be performed in the coincidence limit or the equal-space-time limit
of the Green’s functions, where all the points have the same space-
time coordinates. In other words, the 1-point functions of the
composite operators ϕn are viewed as an analytic function in n.
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As ðE;G2Þ approach the exact values, the three branches of
Gn merge into one smooth curve in a considerable range.
In fact, we have seen the merging phenomenon atD ¼ 0.

In (14), the prefactors of G4p and G4pþ2 coincide for the
(þ1) solution, so the two branches of solutions merge into
one. For the quartic one-matrix model, the Green’s func-
tions also merge into one smooth curve at the one-cut
solutions [38], which is discussed in more detail in the
Appendix.
To show the existence of three branches of Green’s

functions, let us carry out the large-n asymptotic analysis. If
the Green’s functions grow faster than n, the leading
behavior is determined by

ℏ2ðnþ 1Þ3Gn ∼ 4gðnþ 5ÞGnþ6 ðn → ∞Þ; ð25Þ

where the second and third terms in (24) have been omitted.
This is a third-order difference equation for the even-n
Green’s functions. At large n, the leading behavior of the
even-n Green’s functions reads

Gn∼
�
9ℏ2

g

�n
6

n1=6
�
Γ
�
n
6

��
2X2
k¼0

cke2πi
kn
3 ðn→∞Þ: ð26Þ

If (25) is solved exactly, we obtain the leading terms of the
strong-coupling expansion in 1=g. Below we set λ ¼ g ¼ 1.
The presence of the c1, c2 terms leads to three branches of
Gn at even n. In the merging limit, we have c1, c2 → 0 and

two types of singular behaviors are removed, so the exact
solutions are minimally singular. Then the third term in (24)
implies a subleading factor exp½−ðn=2Þ1=3�, which is
consistent with the decay behavior in Fig. 2. Using (22),
we can also deduce

hxn1pn2i ∼ in2gn2=6
�
n1
2

�2n2
3

Gn1 ðn1 → ∞Þ: ð27Þ

The merging phenomenon in Fig. 2 indicates that the
properties of the low-lying states are strongly constrained
by the principle of minimal singularity. This is also
consistent with the E dependence in (24), which implies
that the large-n expansion is more accurate at smaller E. Let
us introduce Fn ¼ Gnþ2=Gn. According to our new prin-
ciple, Fn should be minimally singular in n. If Fn grows
with n, then the leading behavior of Fn is encoded in

FnFnþ2Fnþ4 ∼ g−1
ℏ2n2

4
ðn → ∞Þ; ð28Þ

which is similar to the D ¼ 0 cubic case (18). Note that the
large n expansion is different from the small ℏ expansion
in the semiclassical WKB method. Below we further set
ℏ ¼ 1. The “cube root” of (28) gives three minimal
solutions and two of them are complex. Only the real
solution is consistent with the Hermitian inner product,
which corresponds to (26) with c1 ¼ c2 ¼ 0. Then the
systematic large-n expansion gives

(a) (b) (c)

(d) (e) (f)

FIG. 2. The solutions of Gn for the D ¼ 1 quartic theory (23) from (24) with ℏ ¼ λ ¼ g ¼ 1. The subfigures are labelled by the input
ðE;G2Þ. Around the exact values, the three branches of solutions merge into one decay curve at relatively small n. At the same precision,
the merging of the excited-state results (orange) extends to larger n than the ground-state case (blue). (a) (1.4, 0.3); (b) (1.392, 0.306);
(c) (1.39235, 0.30581); (d) (4.6, 0.8); (e) (4.649, 0.801); and (f) (4.64881, 0.80125).
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Fn ¼ y2 −
1

3
−

1

2y1
þ 1þ 3E

9y2
þ 7

18y3
þ…

����
y¼ðn=2Þ1=3

: ð29Þ

It is not clear to us how to express (29) in terms of known
functions. Nevertheless, as the counterpart of the (þ1)
solution in (14), we expect that the main implications of
minimal singularity have been captured. Although non-
perturbative corrections are not considered, a high-order
truncation of the 1=n series (29) can provide an accurate
approximation for Fn at sufficiently large n.
To determine E and G2, we will impose some matching

conditions onGn at relatively large n. Above, the n−1 series
(29) encodes the constraints from the principle of minimal
singularity. To connect with the observables in the non-
perturbative regime with small n, we solve the recursion
relation (24) exactly to relatively large n. The analytic
solutions for Gn are given by high-degree polynomials in E
and G2. Then we impose two matching conditions:

GMþ2 ¼ FðNÞ
M GM; GMþ4 ¼ FðNÞ

Mþ2GMþ2; ð30Þ

where M denotes the matching order and N indicates the
truncation order of the 1=n series. The real roots of the two
polynomial equations provide accurate approximations for
the low-lying observables. Figure 3 shows that the esti-
mates of the ground-state energy E0 improve rapidly with
the matching order M and the truncation order N.
Since the results for the higher states merge into one curve

more easily, the principle of minimal singularity leads
tomore accurate results for the low-lying states. For example,
the energy spectrum from the matching conditions (30)
with ðM;NÞ ¼ ð100; 10Þ is (1.39235164153029206,
4.6488127042152,8.6550499661, 13.15680465, 18.05715,
22.76, 28.69, 39.2, …), where the last two digits of the
approximate energies deviate from the exact values. The
results for G2 exhibit similar features.

B. Cubic theory

Let us also revisit the iϕ3 theory at D ¼ 1. In this case,
the principle of minimal singularity is less explicit due to
the absence of the merging phenomenon. The exact PT
symmetric solutions exhibit five branches of Gn as in a
generic self-consistent solution. However, we notice that
they have only two types of singular behaviors at infinity,
instead of all the five types. Therefore, the PT symmetric
solutions can be extracted from the principle of minimal
singularity as well.
The Hamiltonian of the D ¼ 1 non-Hermitian

PT -invariant cubic theory is [28]

H ¼ p2 þ ix3: ð31Þ

We assume that thePT symmetry is unbroken and consider
the PT inner product

hψ1jψ2iPT ¼ C
Z

dx½ψ1ð−xÞ��ψ2ðxÞ; ð32Þ

where C is a normalization constant. We again have the
self-consistency equations (22) [29], which give rise to a
recursion relation for Gn ¼ hxni:

ðnþ 1Þ3Gn þ 4Eðnþ 3ÞGnþ2 ¼ 2ið2nþ 9ÞGnþ5: ð33Þ

At large n, the leading behavior is determined by

ðnþ 1Þ3Gn ∼ 2ið2nþ 9ÞGnþ5 ðn → ∞Þ: ð34Þ

As a quintic-order difference equation, the leading asymp-
totic behavior of the general solution reads

Gn ∼ ð−iÞn
�
5

2

�2n
5

�
Γ
�
n
5

��
2
�
c1 þ c2 cos

2nπ
5

þ c3 sin
2nπ
5

þ c4 cos
4nπ
5

þ c5 sin
4nπ
5

�
ðn → ∞Þ; ð35Þ

which has five types of singular behaviors at n ¼ ∞.7

For PT symmetric solutions, ðc1; c2;…; c5Þ should be
real numbers. There are several minimally singular ansatz
with at most two types of singular behaviors. It turns out
that the solutions with real energies and a bounded-from-
below spectrum are associated with c0 ¼ c4 ¼ c5 ¼ 0. The
corresponding large n expansion of Gn isFIG. 3. The absolute error in the ground-state energy E0 of the

D ¼ 1 quartic theory (23) from the matching conditions (30),
where λ ¼ g ¼ 1. Note that M is the matching order. The 1=n
series of n−2=3Fn is truncated to order n−N. The estimates
converge rapidly to the exact value as M, N increase.

7Here we express the leading terms in terms of the trigono-
metric functions for notational simplicity. There are also five
types of singular behaviors if we use the exponential functions.
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Gn ¼ ð−iÞnn3=10
�
5

2

�2n
5

�
Γ
�
n
5

��
2
�
ðc2þ ic3Þ

e−2πi
n
5

2

×
�
1−2E

�
−2
n

�1
5 þ2E2

�
−2
n

�2
5 þ…

�
þ c:c:

�
; ð36Þ

where c.c. stands for complex conjugate and we have added
a subleading factor n3=10. To determine the free parameters
ðE;G1; c2; c3Þ, we impose four matching conditions

Gðn:p:Þ
n ¼ Gðp:Þ

n ; ð37Þ

where n ¼ M;M þ 1;M þ 2;M þ 3. The nonperturbative

expressions of Gðn:p:Þ
n are derived from the exact recursion

relation (33) at n ¼ −3;−2;…;M − 2. They are high-
degree polynomials in E, but at most linear in G1. The

perturbative expressions of Gðp:Þ
n are obtained from the

truncation of the large n series to order n−N. The first three
leading terms are written explicitly in (36).
As in the quartic case, the results converge rapidly to

the exact values with the matching order M and the
truncation order N. For ðM;NÞ ¼ ð100; 10Þ, the real-
energy solutions correspond to the PT -symmetric ground
state and first-excited state. The explicit results for ðE;G1Þ
are ð1.1562670719881112;−0.59007253309070011iÞ and
ð4.10942;−0.982086iÞ, where the last two digits deviate
from the exact values. In comparison to the quartic case, we
obtain less energy levels because some solutions in the non-
Hermitian cubic case are spurious and unstable.
Although there are only two types of singular behaviors

at n ¼ ∞, the Green’s functions still exhibit five branches
of solutions. In fact, if we take into account the odd n
Green’s functions in the Hermitian quartic case, the exact
solutions also have two types of singular behaviors at
infinity, as here in the cubic case.
In the end, it seems that ðc2; c3Þ are not independent

because c3 ¼ c2 tanð−3π=10Þ is satisfied to high precision
near the exact solutions.

IV. DISCUSSION

In this work, we considered the analytic continuations of
the Green’s functions Gn to complex n and discovered the
principle of minimal singularity. Besides good analytic
properties, the minimality of a self-consistent solution is
closely related to the simplicity of an asymptotic behavior
at large n [15,16] and the irreducibility of an operator-
algebra representation [29].
We explained how to resolve the indeterminacy of self-

consistency equations using this novel principle. AtD ¼ 0,
we obtained the closed-form solutions of the general gϕm

theory in (7)–(9). The minimal-singularity approach
extends to D ¼ 1, where rapidly convergent results were
obtained. At higherD, it would be interesting to explore the
analytic continuations in both the number of fundamental

fields and the number of derivatives.8 It is also important to
go beyond the coincidence limit. For instance, we can study
the n analytic continuation of hTfϕnðy1Þϕnðy2Þgi or
hTfϕðy1Þϕðy2Þϕnðy3Þgi. See the recent work [39] for
some perturbative examples in the context of conformal
field theory. In analogy with the connection between the
singularity structure in angular momentum and the asymp-
totic behavior of scattering amplitudes, it would be inter-
esting to examine the connection between the singularity
structure in n and the analytic properties of Green’s
functions in coordinate or in momentum space.9

In the recursion relation for consecutive Green’s func-
tions, the exact solutions are related to minimally singular
coefficient functions Fn. The null state approach [17,29]
can be viewed as a rational approximation for the exact
recursion relation. Without a priori knowledge of Fn, a
truncated null state condition leads to an approximate
recursion relation for multiple Green’s functions, where
the coefficients are constant and determined unbiasedly by
the self-consistent equations. Using the null state condition,
one can also reconstruct the unequal-time Green’s functions
from the equal-time limit [17,42].
If we consider the DS equations at D > 0, there will be

infinitely many free parameters. For the emergence of a
proper inner product, they need to exhibit better analytic
behavior than an arbitrary set of numbers. The null state
approach is a particularly useful way to derive the mini-
mally singular solutions. To further extract physically more
meaningful solutions, we can impose additional con-
straints, such as positive semidefiniteness from unitarity
[18–21] or spectral boundedness from stability [17].10

In gauge theories, it may also be crucial to study the
Green’s functions without relying on positivity constraints.
In quantum chromodynamics, the color singlet Green’s
functions are expected to be positive semidefinite, but the
noncolor-singlet Green’s functions can violate positivity
constraints. This is closely related to the perspective on
the confinementmechanism in terms of the absence of amass
pole on the real, positivep2-axis for noncolor-singletGreen’s
functions.11 (See, e.g., [43–45] and references therein.) For
fermionic degrees of freedom, we may consider the analytic

8In this work, we avoid the explicit time derivatives in the
D ¼ 1 cases by considering the Hamiltonian formulation.

9The principle of minimal singularity may also apply to other
parameters, such as coordinate space and momentum space. For
example, the operator decoupling phenomena in the Ising
conformal field theory [40,41] can be interpreted as a minimi-
zation of the complexity of the light cone singularity structure in
coordinate space.

10It would be interesting to develop an approach that is directly
based on the spectral boundedness. Although a stronger
assumption will rule out other potentially useful solutions, the
corresponding method can be more efficient if the size of the
solution space is significantly reduced.

11It could be subtle to extract gauge-invariant information from
a gauge-dependent Green’s function.
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continuation in the power of the bilinear operators, such as
the simplest case ðψ̄ψÞn. For n ¼ 1, the chiral condensate
hψ̄ψi plays a special role in the spontaneous breaking of the
chiral symmetry. As suggested in [46,47], it would also be
interesting to bootstrap the Shifman-Vainshtein-Zakharov
sum rules [48,49]. It is certainly also important to go beyond
the vacuum condensates. For example, we can consider
hTf½ψ̄ðψ̄ψÞn�ðy1Þ½ψðψ̄ψÞn�ðy2Þgi, which is the n generali-
zation of the 2-point quark-antiquark Green’s function.
We believe that the principle of minimal singularity has

broad applicability to self-consistent problems. The fact
that the low-lying properties are severely constrained by
this principle resonates with the remarkable progress in the
conformal bootstrap program [50].12 Our novel principle
also sheds light on the nonpositive bootstrap studies of
strongly coupled systems. Their developments are much
slower as the powerful positivity constraints are not
applicable. The principle of minimal singularity should
be one of the missing pieces.
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APPENDIX: MERGING PHENOMENON
IN THE QUARTIC MATRIX MODEL

In this appendix, we present the details of the merging
phenomenon in the quartic matrix model. Here the exact
one-cut solutions are precisely the minimally singular
solutions. We consider the Hermitian one-matrix model
with the potential

VðxÞ ¼ 1

2
x2 þ g

4
x4: ðA1Þ

In the large N limit, the main Green’s functions are the
single-trace moments

Gn ¼ hTrMni ¼ 1

N

R
dMtrMne−NtrVðMÞR
dMe−NtrVðMÞ ; ðA2Þ

where M is an N × N Hermitian matrix. We have used the
normalized trace so thatG0 ¼ TrI ¼ 1. In the large N limit,
the Dyson-Schwinger equations are

Gnþ1 þ gGnþ3 ¼
Xn−1
p¼0

GpGn−p−1; ðA3Þ

which are also known as the loop equations in the
context of matrix models. The right-hand side involves
the products of two Green’s functions due to the large N
factorization. Following the standard procedure, we intro-
duce the resolvent

RðzÞ ¼
	
Tr

1

z −M



¼

X∞
n¼0

Gnz−n−1: ðA4Þ

The DS equations (A3) imply a quadratic equation for the
resolvent. The solution reads

RðzÞ¼V 0ðzÞ
2

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 0ðzÞ2

4
− ðgz2þgG1zþgG2þ1Þ

r
; ðA5Þ

where the relevant solution is selected by the condition
limz→∞½zRðzÞ� ¼ 1. If we assume that the solutions are
parity symmetric, then G1 ¼ 0. The only free parameter
is G2.
The eigenvalue distribution is related to the singularity

structure of RðzÞ, which has branch point singularities.
They are associated with the roots of the polynomial in the
square root in (A5). In general, a degree-six polynomial has
six different roots and thus there should be three branch
cuts. However, the number of branch cuts can be reduced if
some roots are at the same point. In Brezin-Itzykson-Parisi-
Zuber’s classical work [38], the one-cut solutions of the
quartic one-matrix model were constructed. Here we
consider a slightly more general form

Rðone−cutÞðzÞ ¼ V 0ðzÞ
2

− a0ðz2 þ a1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ a2

q
; ðA6Þ

where a0 > 0, and ða0; a1; a2Þ are functions of g. The one-
cut solutions for G2 are given by

Gðone-cut;�Þ
2 ¼ ð�1Þð12gþ 1Þ3=2 − 18g − 1

54g2
: ðA7Þ

They are precisely the minimally singular solutions. We
will show that the Green’s functions exhibit the merging
phenomenon as the free parameter G2 approaches the one-
cut solutions. The (þ) one-cut solution of G2 is positive for
g ≥ − 1

12
. The two one-cut solutions meet at the critical

point g ¼ − 1
12

and become a complex conjugate pair for
g < − 1

12
.

For g > 0, the (þ) solution corresponds to the more
standard case with a2 < 0, where the branch cut is on the
real axis and the eigenvalues have finite support at real
values. In Fig. 4, we consider the concrete case of g ¼ 1.

12In light of the results in this work, we revisit the conformal
bootstrap approach to the 3D Ising model in [51].
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One can see that the two branches of Green’s functions
merge into one smooth curve as the input parameter G2

approaches the one-cut value Gðone-cut;þÞ
2 from above or

below. When G2 is greater than Gðone-cut;þÞ
2 , the two

branches of Green’s functions exhibit oscillatory behaviors.
We also examine the behaviors of Green’s functions

around the other one-cut solution, i.e., Gðone-cut;−Þ
2 , which is

negative at g ¼ 1. Since a2 > 0, the eigenvalues in this case
have finite support on the imaginary axis. Nevertheless, we
find that G4p and −G4pþ2 merge into one curve in the one-
cut limit, which is similar to the D ¼ 0 scalar theory
solution in (14). We could also consider the one-cut
solutions with G1 ≠ 0. As in the case of the PT -invariant

scalar theories, there exist purely imaginary solutions for
G1 when g < − 1

12
.

In the null state approach [17], we can also derive the one-
cut and two-cut solutions of the one-matrix models, includ-
ing the complex cases where the branch cuts are not on the
real axis. The requirement is that the vanishing behaviors on
the branch cuts with eigenvalue-distribution support admit
polynomial approximations.13 In this way, the null state
condition approach can be viewed as a rational-approxima-
tion realization of the minimal singularity principle.

[1] C. N. Yang and T. D. Lee, Statistical theory of equations of
state and phase transitions. 1. Theory of condensation, Phys.
Rev. 87, 404 (1952).

[2] T. D. Lee and C. N. Yang, Statistical theory of equations of
state and phase transitions. 2. Lattice gas and Ising model,
Phys. Rev. 87, 410 (1952).

[3] G. C. Wick, Properties of Bethe-Salpeter wave functions,
Phys. Rev. 96, 1124 (1954).

[4] T. Regge, Introduction to complex orbital momenta, Nuovo
Cimento 14, 951 (1959).

[5] R. Brout, Statistical mechanical theory of a random ferro-
magnetic system, Phys. Rev. 115, 824 (1959).

(a) (b) (c)

(d) (e) (f)

FIG. 4. The even-n Green’s functions for the g ¼ 1 quartic matrix model with different G2. As the input G2 approaches the one-cut

value Gðone-cut;þÞ
2 ¼ 0.51615… from above or below, the two branches of Green’s functions merge into one smooth curve. We have

divided Gn by 2n=2. HereG4p and G4pþ2 with p ¼ 0; 1; 2;… are denoted by the blue and orange dots. ForG2 ¼ 1, the dots are joined so

that the oscillatory behaviors are more clear. (a) G2 ¼ 1 > Gðone-cut;þÞ
2 ; (b) G2 ¼ 0.6 > Gðone-cut;þÞ

2 ; (c) G2 ¼ 0.517 > Gðone-cut;þÞ
2 ;

(d) G2 ¼ 0.48 < Gðone-cut;þÞ
2 ; (e) G2 ¼ 0.5 < Gðone-cut;þÞ

2 ; and (f) G2 ¼ 0.516 < Gðone-cut;þÞ
2 .

13The vanishing behavior for the case with positive weight on
the real axis was discussed previously in [19].

PRINCIPLE OF MINIMAL SINGULARITY FOR GREEN’S … PHYS. REV. D 109, 045012 (2024)

045012-9

https://doi.org/10.1103/PhysRev.87.404
https://doi.org/10.1103/PhysRev.87.404
https://doi.org/10.1103/PhysRev.87.410
https://doi.org/10.1103/PhysRev.96.1124
https://doi.org/10.1007/BF02728177
https://doi.org/10.1007/BF02728177
https://doi.org/10.1103/PhysRev.115.824


[6] P. G. de Gennes, Exponents for the excluded volume
problem as derived by the Wilson method, Phys. Lett.
38A, 339 (1972).

[7] C. M. Fortuin and P.W. Kasteleyn, On the random cluster
model. 1. Introduction and relation to other models, Physica
(Amsterdam) 57, 536 (1972).

[8] C. G. Bollini and J. J. Giambiagi, Lowest order divergent
graphs in nu-dimensional space, Phys. Lett. 40B, 566
(1972).

[9] G. ’t Hooft and M. J. G. Veltman, Regularization and
renormalization of gauge fields, Nucl. Phys. B44, 189
(1972).

[10] K. G. Wilson and M. E. Fisher, Critical exponents in 3.99
dimensions, Phys. Rev. Lett. 28, 240 (1972).

[11] F. J. Dyson, The S matrix in quantum electrodynamics,
Phys. Rev. 75, 1736 (1949).

[12] J. S. Schwinger, On the Green’s functions of quantized
fields. 1, Proc. Natl. Acad. Sci. U.S.A. 37, 452 (1951).

[13] J. S. Schwinger, On the Green’s functions of quantized
fields. 2, Proc. Natl. Acad. Sci. U.S.A. 37, 455 (1951).

[14] C. M. Bender, F. Cooper, and L. M. Simmons, Nonunique
solution to the Schwinger-Dyson equations, Phys. Rev. D
39, 2343 (1989).

[15] C. M. Bender, C. Karapoulitidis, and S. P. Klevansky,
Underdetermined Dyson-Schwinger equations, Phys. Rev.
Lett. 130, 101602 (2023).

[16] C. M. Bender, C. Karapoulitidis, and S. P. Klevansky,
Dyson-Schwinger equations in zero dimensions and poly-
nomial approximations, Phys. Rev. D 108, 056002 (2023).

[17] W. Li, Taming Dyson-Schwinger equations with null states,
Phys. Rev. Lett. 131, 031603 (2023).

[18] P. D. Anderson and M. Kruczenski, Loop equations and
bootstrap methods in the lattice, Nucl. Phys. B921, 702
(2017).

[19] H.W. Lin, Bootstraps to strings: Solving random matrix
models with positivity, J. High Energy Phys. 06 (2020) 090.

[20] V. Kazakov and Z. Zheng, Analytic and numerical bootstrap
for one-matrix model and “unsolvable” two-matrix model,
J. High Energy Phys. 06 (2022) 030.

[21] V. Kazakov and Z. Zheng, Bootstrap for lattice Yang-Mills
theory, Phys. Rev. D 107, L051501 (2023).

[22] R. Rattazzi, V. S. Rychkov, E. Tonni, and A. Vichi,
Bounding scalar operator dimensions in 4D CFT, J. High
Energy Phys. 12 (2008) 031.

[23] G. F. Chew, The S-Matrix Theory of Strong Interactions
(W. A. Benjamin, Inc., New York, 1961).

[24] G. F. Chew and S. C. Frautschi, Principle of equivalence for
all strongly interacting particles within the S matrix frame-
work, Phys. Rev. Lett. 7, 394 (1961).

[25] P. J. Kortman and R. B. Griffiths, Density of zeros on the
Lee-Yang circle for two Ising ferromagnets, Phys. Rev. Lett.
27, 1439 (1971).

[26] M. E. Fisher, Yang-Lee Edge singularity and ϕ3 field theory,
Phys. Rev. Lett. 40, 1610 (1978).

[27] J. L. Cardy, Conformal invariance and the Yang-lee edge
singularity in two-dimensions, Phys. Rev. Lett. 54, 1354
(1985).

[28] C. M. Bender and S. Boettcher, Real spectra in non-
Hermitian Hamiltonians having PT symmetry, Phys. Rev.
Lett. 80, 5243 (1998).

[29] W. Li, Null bootstrap for non-Hermitian Hamiltonians,
Phys. Rev. D 106, 125021 (2022).

[30] C. M. Bender, K. A. Milton, and V. Savage, Solution of
Schwinger-Dyson equations for PT symmetric quantum
field theory, Phys. Rev. D 62, 085001 (2000).

[31] C. M. Bender, Making sense of non-Hermitian Hamilto-
nians, Rep. Prog. Phys. 70, 947 (2007).

[32] C. M. Bender and S. P. Klevansky, Families of particles with
different masses in PT-symmetric quantum field theory,
Phys. Rev. Lett. 105, 031601 (2010).

[33] C. M. Bender et al., PT Symmetry: In Quantum and
Classical Physics (World Scientific, Singapore, 2019).

[34] Y. Sibuya, Global Theory of a Second-Order Linear
Ordinary Differential Equation with Polynomial Coefficient
(North-Holland, Amsterdam, 1975).

[35] W. Li, The ϕn trajectory bootstrap, arXiv:2402.05778.
[36] C. M. Bender and T. T. Wu, Anharmonic oscillator, Phys.

Rev. 184, 1231 (1969).
[37] X. Han, S. A. Hartnoll, and J. Kruthoff, Bootstrapping

matrix quantum mechanics, Phys. Rev. Lett. 125, 041601
(2020).

[38] E. Brezin, C. Itzykson, G. Parisi, and J. B. Zuber, Planar
diagrams, Commun. Math. Phys. 59, 35 (1978).

[39] Y. Guo and W. Li, Anomalous dimensions of partially-
conserved higher-spin currents from conformal field theory:
Bosonic ϕ2n theories, Phys. Rev. D 109, 025015 (2024).

[40] S. El-Showk, M. F. Paulos, D. Poland, S. Rychkov, D.
Simmons-Duffin, and A. Vichi, Solving the 3D Ising model
with the conformal bootstrap, Phys. Rev. D 86, 025022
(2012).

[41] S. El-Showk, M. F. Paulos, D. Poland, S. Rychkov, D.
Simmons-Duffin, and A. Vichi, Solving the 3d Ising model
with the conformal bootstrap II. C-Minimization and precise
critical exponents, J. Stat. Phys. 157, 869 (2014).

[42] Y. Guo and W. Li, Solving anharmonic oscillator with null
states: Hamiltonian bootstrap and Dyson-Schwinger equa-
tions, Phys. Rev. D 108, 125002 (2023).

[43] J. M. Cornwall, Confinement and chiral symmetry break-
down: Estimates of fðπÞ and of effective quark masses,
Phys. Rev. D 22, 1452 (1980).

[44] H. J. Munczek and A. M. Nemirovsky, The ground state qq̄
mass spectrum in QCD, Phys. Rev. D 28, 181 (1983).

[45] G. Krein, C. D. Roberts, and A. G. Williams, On the
implications of confinement, Int. J. Mod. Phys. A 07,
5607 (1992).

[46] W. Li, Inverse bootstrapping conformal field theories,
J. High Energy Phys. 01 (2018) 077.

[47] W. Li, New method for the conformal bootstrap with OPE
truncations, arXiv:1711.09075.

[48] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, QCD
and resonance physics. Theoretical foundations, Nucl. Phys.
B147, 385 (1979).

[49] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, QCD
and resonance physics: Applications, Nucl. Phys. B147, 448
(1979).

[50] D. Poland, S. Rychkov, and A. Vichi, The conformal
bootstrap: Theory, numerical techniques, and applications,
Rev. Mod. Phys. 91, 015002 (2019).

[51] W. Li, Easy bootstrap for the 3D Ising model, arXiv:
2312.07866.

WENLIANG LI PHYS. REV. D 109, 045012 (2024)

045012-10

https://doi.org/10.1016/0375-9601(72)90149-1
https://doi.org/10.1016/0375-9601(72)90149-1
https://doi.org/10.1016/0031-8914(72)90045-6
https://doi.org/10.1016/0031-8914(72)90045-6
https://doi.org/10.1016/0370-2693(72)90483-2
https://doi.org/10.1016/0370-2693(72)90483-2
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1103/PhysRevLett.28.240
https://doi.org/10.1103/PhysRev.75.1736
https://doi.org/10.1073/pnas.37.7.452
https://doi.org/10.1073/pnas.37.7.455
https://doi.org/10.1103/PhysRevD.39.2343
https://doi.org/10.1103/PhysRevD.39.2343
https://doi.org/10.1103/PhysRevLett.130.101602
https://doi.org/10.1103/PhysRevLett.130.101602
https://doi.org/10.1103/PhysRevD.108.056002
https://doi.org/10.1103/PhysRevLett.131.031603
https://doi.org/10.1016/j.nuclphysb.2017.06.009
https://doi.org/10.1016/j.nuclphysb.2017.06.009
https://doi.org/10.1007/JHEP06(2020)090
https://doi.org/10.1007/JHEP06(2022)030
https://doi.org/10.1103/PhysRevD.107.L051501
https://doi.org/10.1088/1126-6708/2008/12/031
https://doi.org/10.1088/1126-6708/2008/12/031
https://doi.org/10.1103/PhysRevLett.7.394
https://doi.org/10.1103/PhysRevLett.27.1439
https://doi.org/10.1103/PhysRevLett.27.1439
https://doi.org/10.1103/PhysRevLett.40.1610
https://doi.org/10.1103/PhysRevLett.54.1354
https://doi.org/10.1103/PhysRevLett.54.1354
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevD.106.125021
https://doi.org/10.1103/PhysRevD.62.085001
https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1103/PhysRevLett.105.031601
https://arXiv.org/abs/2402.05778
https://doi.org/10.1103/PhysRev.184.1231
https://doi.org/10.1103/PhysRev.184.1231
https://doi.org/10.1103/PhysRevLett.125.041601
https://doi.org/10.1103/PhysRevLett.125.041601
https://doi.org/10.1007/BF01614153
https://doi.org/10.1103/PhysRevD.109.025015
https://doi.org/10.1103/PhysRevD.86.025022
https://doi.org/10.1103/PhysRevD.86.025022
https://doi.org/10.1007/s10955-014-1042-7
https://doi.org/10.1103/PhysRevD.108.125002
https://doi.org/10.1103/PhysRevD.22.1452
https://doi.org/10.1103/PhysRevD.28.181
https://doi.org/10.1142/S0217751X92002544
https://doi.org/10.1142/S0217751X92002544
https://doi.org/10.1007/JHEP01(2018)077
https://arXiv.org/abs/1711.09075
https://doi.org/10.1016/0550-3213(79)90022-1
https://doi.org/10.1016/0550-3213(79)90022-1
https://doi.org/10.1016/0550-3213(79)90023-3
https://doi.org/10.1016/0550-3213(79)90023-3
https://doi.org/10.1103/RevModPhys.91.015002
https://arXiv.org/abs/2312.07866
https://arXiv.org/abs/2312.07866

