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A previous paper [Z. Bern et al., Binary dynamics through the fifth power of spin at OðG2Þ, Phys. Rev.
Lett. 130, 201402 (2023)] identified a puzzle stemming from the amplitudes-based approach to spinning
bodies in general relativity: additional Wilson coefficients appear compared to current worldline
approaches to conservative dynamics of generic astrophysical objects, including neutron stars. In this
paper we clarify the nature of analogous Wilson coefficients in the simpler theory of electrodynamics. We
analyze the original field-theory construction, identifying definite-spin states some of which have negative
norms, and relating the additional Wilson coefficients in the classical theory to transitions between different
quantum spin states. We produce a new version of the theory which also has additional Wilson coefficients,
but no negative-norm states. We match, through Oðα2Þ and OðS2Þ, the Compton amplitudes of these field
theories with those of a modified worldline theory with extra degrees of freedom introduced by releasing
the spin supplementary condition. We build an effective two-body Hamiltonian that matches the impulse
and spin kick of the modified field theory and of the worldline theory, displaying additional Wilson
coefficients compared to standard worldline approaches. The results are then compactly expressed in terms
of an eikonal formula. Our key conclusion is that, contrary to standard approaches, while the magnitude of
the spin tensor is still conserved, the magnitude of the spin vector can change under conserved Hamiltonian
dynamics and this change is governed by the additional Wilson coefficients. For specific values of Wilson
coefficients the results are equivalent to those from a definite spin obeying the spin supplementary
condition, but for generic values they are physically inequivalent. These results warrant detailed studies of
the corresponding issues in general relativity.
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I. INTRODUCTION

A. General overview

The landmark detection of gravitational waves by the
LIGO/Virgo collaborations [1,2] opened a new era in
astronomy, cosmology and perhaps even particle physics.
As gravitational-wave detectors become more sensitive
[3–5], the spin of objects such as black holes and neutron
stars will play an increasingly important role in identifying
and interpreting signals. Spin also leads to much richer
three-dimensional dynamics because of the exchange of

angular momentum between bodies and their orbital
motion. Its precise definition leads to interesting and subtle
theoretical questions, some of which we address here.
The study of the dynamics of spinning objects in general

relativity [6–9] has a long history, in both the post-
Newtonian (PN) framework [10–63], where observables
are simultaneously expanded in Newton’s constant G
and in the velocity v, and the post-Minkowskian (PM)
framework [64–102], where observables are expanded
only in Newton’s constant with exact velocity dependence.
In both approaches the interaction of spinning objects with
the gravitational field is described in terms of a set of
higher-dimension operators whose Wilson coefficients
encode the detailed properties of the objects. For the
interesting case of black holes, the values of these coef-
ficients at OðGÞ are known [74], with proposals for the
additional coefficients at OðG2Þ recently given based on a
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shift symmetry [64,91,97,98] already present at OðGÞ.1
The electromagnetic case is similar in structure [105–111]
(see also Refs. [112,113] for non-Abelian generalizations),
with the post-Coulombian (PC) and post-Lorentzian (PL)
expansions being the respective analogs of the gravitational
PN and PM expansions.
A primary purpose of this paper is to explore puzzles

identified in Ref. [64] regarding the description of spin-
ning bodies in general relativity. In that paper, results
for the conservative two-body scattering angle were
obtained through fifth power in the spin using a scatter-
ing-amplitudes-based method. A rather striking out-
come, which follows from the fact that the field-theory
Lagrangian is not directly expressed in terms of particles’
spin tensor, is that the field-theory approach of Ref. [78]
has a larger number of independent Wilson coefficients for
a given power of spin than standard (worldline) methods.
While at 1PM (tree) level the number of independent
Wilson coefficients is identical in the two approaches,
matching of physical observables starting at 2PM (one
loop) and third power of the spin can only be attained by
setting some of the field-theory Wilson coefficients to
definite numerical values, so that they are no longer
independent. This implies that the field theory contains a
larger number of physically relevant independent Wilson
coefficients. For the special case of Kerr black holes it
appears that the additional Wilson coefficients present in
the field theory are not needed [64,74,84,85,91]. In
electrodynamics we find a similar situation for the root-
Kerr solution [114], related to the Kerr solution via the
double copy [115–120].
The connection between scattering amplitudes and

effective two-body interactions has been known for some
time [121–131]. Recent years have seen the construction
of new systematic methods for extracting potentials and
physical observables at high orders from scattering ampli-
tudes [108,132–137], which leverage modern methods for
calculating scattering amplitudes, including generalized
unitarity [138–143], the double copy [115–117,120] and
advanced integration techniques [144–149]. The extraction
of classical physics from quantum scattering is greatly
simplified by concepts from effective field theories
(EFTs), systematized for the gravitational-wave problem
in Ref. [150] and applied to the PM framework in Ref. [132].
By manifestly maintaining Lorentz invariance, the ampli-
tudes approach fits naturally in the PM or PL frameworks,
and produced the first conservative spinless two-body
Hamiltonian at OðG3Þ and OðG4Þ [133,134,151,152]

(see also Refs. [99,153–159]). Such methods also led to
new perspectives on the gravitational interactions of spin-
ning particles [64,68,71–73,75–78,84,160] and on tidal
effects [161–168].
Here we use both the amplitudes-based method and the

more standard worldline approach [40,45,150,169–171] to
study the interactions of spinning particles. Since they
describe the same physics, one may expect that there is
a (usually nontrivial) correspondence between the opera-
tors (as well as between their Wilson coefficients) describ-
ing these interactions in the two approaches. Each type
of object, whether a Kerr black hole or neutron star, is
described by particular values for the Wilson coefficients,
which are determined by an appropriate matching calcu-
lation. In the worldline approach one imposes a spin
supplementary condition (SSC) [172] that identifies the
three physical spin degrees of freedom. This condition has
been interpreted in terms of a spin-gauge symmetry which
formalizes the freedom to shift the worldline in the ambient
space [45,173,174] without changing the physics. An
important aspect of an SSC is that it reduces the number
of possible independent operators—and consequently the
number of Wilson coefficients—by equating operators
whose difference is proportional to the SSC. Here we
use the dynamical mass function formalism of Ref. [170] to
explore the consequences of relaxing the SSC and to help
interpret the additional degrees of freedom.
An interesting subtlety in the amplitudes approach is

whether the complete description of a spinning compact
body is provided by a single quantum spin s ≫ 1 or by a
suitable combination of multiple quantum spins, with
possible transitions between them. For the sake of sim-
plicity, the field theory of Ref. [78]—meant to be valid only
in the classical limit—is based on the matter states forming
an irreducible representation of the Lorentz group but a
reducible representation of the rotation group; some of its
components have negative norm. One might worry these
negative-norm states might lead to some difficulties in the
classical limit [175]. In addition, projecting onto the phy-
sical states of a quantum spin s [97,175] appears to effec-
tively remove the additional Wilson coefficients, leaving
only those included in the worldline framework, which we
affirm here. Field-theory approaches [84,85,91,98] based
on the massive-spinor-helicity amplitudes [114] are a
convenient means for restricting the propagation to a single
irreducible quantum spin. Here we use physical state
projectors [176,177] for the same purpose.
The results of Ref. [64] raises several questions:
(1) What is a complete description of a spinning body in

general relativity?
(2) Can one construct a worldline theory that matches

field-theory descriptions containing extra indepen-
dent Wilson coefficients? If so, what extra degrees of
freedom are needed?

(3) The field-theory construction of Ref. [64] uses
propagating reducible representations of the rotation

1Through OðS4Þ Refs. [103,104] find that the Compton
amplitude derived by solving the Teukolsky equation agrees
with these previous results. However, the predictions based
on shift symmetry at OðS5Þ are in tension with results from
the Teukolsky equation, though the latter involve a subtle analytic
continuation between the black-hole and naked-singularity
regimes.
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group (spin representations), some with negative
norm. In the context of this construction, what
happens if only a single quantum spin propagates?

(4) Can one build a field theory based on positive-norm
irreducible representations of the rotation group that
also contain extra independent Wilson coefficients?

(5) Should a classical spin be modeled as a definite-
spin field or as a superposition of fields with
different spins? A related question on the latter case
is whether transitions between different spins are
allowed that change the magnitude of the spin vector
even in the conservative sector.2

(6) Can one build an effective two-body Hamiltonian
with extra degrees of freedom whose physical
observables match field-theory results containing
extra Wilson coefficients?

(7) What is the physical interpretation of the operators
associated with additional Wilson coefficients?

To address these questions we turn to electrodynamics,
which has been useful as a toy model for gravity [105–111].
While electrodynamics cannot answer all questions about
gravity, the overlap is more than sufficient to make this a
useful test case. In addition to the absence of photon self-
interactions, electrodynamics is particularly helpful for our
questions because the additional independent operators and
their Wilson coefficients affect observables already at the
first order spin, rather than at third order as for gravity,
greatly simplifying the analysis.
We use various field theories, worldline theories and

effective two-body Hamiltonians, comparing and contrast-
ing the results from each. In particular, to help identify the
origin of the extra Wilson coefficients we evaluate
Compton amplitudes and scattering angles for three related
but distinct field theories of electrodynamics coupled with
higher-spin fields:
FT1: The setup from Refs. [64,78], except for electro-

dynamics instead of general relativity. The matter
states of this theory form an irreducible representa-
tion of the Lorentz group and a reducible repre-
sentation of the rotation group, thereby as a
quantum theory it carries more degrees of freedom
than those of a fixed-spin particle, including neg-
ative-norm states. In this theory we consider FT1s
with classical asymptotic states having spin tensors
obeying the covariant spin supplementary condi-
tion, Sμνpν ¼ 0, and FT1g with classical asymptotic
states having unconstrained spin tensors. This is
equivalent to relaxing the covariant SSC, so that the
resulting amplitudes explicitly contain factors of
Sμνpν. When we do not need to distinguish between
FT1s and FT1g, we collectively refer to them as

FT1. The results of FT1s are obtained from those of
FT1g simply by imposing the covariant SSC on the
initial and final spin tensors.

FT2: The higher-spin field is constrained to contain a
single irreducible spin-s representation of the rota-
tion group [176]. The external massive states are
traceless and transverse due to the equation of
motion. In contrast to FT1s and FT1g, only pos-
itive-norm states propagate, and as we shall see, the
covariant SSC is automatically imposed on the spin
tensors.

FT3: The same construction as for FT2 except that two
positive-norm irreducible representations of the
rotation group, one with spin-s and the other with
spin-(s − 1), are considered. While this field content
allows us to reliably capture effects linear in spin, it
is sufficient to demonstrate that such field theories
support more Wilson coefficients than FT2. We
include suitable couplings between matter fields of
different spin. Similarly to FT1, we consider FT3s
with asymptotic states having spin tensors obeying
the covariant SSC and FT3g with asymptotic states
being a particular combination of the asymptotic
states of the two fields. When we do not need to
distinguish between FT3s and FT3g, we collec-
tively refer to them as FT3.

The above field-theory constructions do not exhaust the
ways to adjust the spectrum of propagating states. For
example, one can use the chiral construction of Ref. [181],
based on the representation ð2s; 0Þ of the Lorentz group
leading to the same number (2sþ 1) of propagating
degrees as a quantum spin-s particle. We note that FT1
are not fully consistent as quantum theories because of the
appearance of propagating negative-norm states. Because
of this we use them only in the classical limit, as envisioned
in Ref. [78]. We moreover see that there is a close relation
between them and FT3, which is constructed using only
positive-norm states.
To address the question of what kind of worldline theory

has the same observables as field theories with extra Wilson
coefficients we consider two worldline theories:
WL1: The standard worldline construction with the

covariant SSC imposed. We use the formalism of
Ref. [170].

WL2: A modified worldline construction with no SSC
imposed and consequently with extra degrees of
freedom. In the absence of an SSC we can include
additional operators and Wilson coefficients equiv-
alent to the additional ones that can be included in
FT1g through the constructed orders.

Finally, we construct two two-body effective field-theory
Hamiltonians by matching the amplitudes of field theories
with different number of internal and asymptotic degrees of
freedom. This allows us to directly construct observables
for these field theories and compare them with worldline
theories:

2With dissipation and absorption included the spin magnitude
is, of course, not preserved (see e.g. Refs. [178–180] for recent
discussions).
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EFT1: The two-body Hamiltonian of the type in Ref. [78]
containing only the spin vector S for each body.
The parameters of this Hamiltonian can be adjusted
to match either FT2 or WL1. We may also match
this Hamiltonian to FT1, FT3, and WL2 when the
additional Wilson coefficients are set to specific
values.

EFT2: A two-body Hamiltonian containing both a spin
vector S and a Lorentz boost vector K, interpreted
as a mass dipole and inducing an electric dipole.
With suitable parameters this Hamiltonian matches
FT1g, FT3g and WL2.

B. Summary of results

We compute and compare electrodynamics Compton
amplitudes, impulses, spin kicks and scattering angles in
the theories outlined above. With α denoting the fine
structure constant, the results of these computations through
Oðα2SÞ for two-body observables and through OðαS2Þ for
Compton amplitudes yield the following findings:
(1) In electrodynamics with the massive propagating

degrees of freedom of a single spin-s particle
realized as a symmetric traceless transverse s-index
tensor, as in FT2 and following Ref. [176], the
number of Wilson coefficients agrees with the
standard worldline construction [45], in accord with
Refs. [97,175].

(2) By including additional degrees of freedom either by
relaxing the transversality constraint of fields or/and
by replacing the s-index symmetric tensor by a more
general ðl; rÞ representation of the Lorentz group, as
in FT1, additional Wilson coefficients can appear in
the classical limit. Thus, the additional Wilson
coefficients reflect the additional degrees of freedom
present in nontransverse fields.

(3) We demonstrate that additional propagating posi-
tive-norm degrees of freedom in the form of sym-
metric traceless transverse lower-rank tensor, as in
FT3, also lead to additional Wilson coefficients in
the classical limit. Thus, the additional Wilson
coefficients are not tied specifically to nontransverse
fields, but are a manifestation of additional propa-
gating degrees of freedom.

(4) By relaxing the SSC constraint on the worldline, the
Compton amplitudes as well as two-body physical
observables such as the impulse and spin kick,
match the corresponding results of field theories
FT1 and FT3.

(5) To match the worldline and field-theory amplitudes
with additional asymptotic degrees of freedom and
Wilson coefficients, a two-body EFT Hamiltonian
with both spin and boost degrees of freedom is
required.

(6) In the systems with additional degrees of freedom
and additional Wilson coefficients, the magnitudes

of spin vectors are not preserved3 in the scattering
process while the magnitudes of spin tensors are
preserved.

(7) For specific choices of Wilson coefficients, such as
the root-Kerr solution [114], the extra degrees of
freedom decouple and the system can be described
by removing the boost degrees of freedom.

These results are rather striking. Dropping the SSC
would seem to contradict the standard interpretation of
the worldline spin gauge symmetry, where local shifts in
the worldline are interpreted as a symmetry [45,173,174].
Here we are reinterpreting this in terms of certain degrees
of freedom of extended nonrigid objects, in much the
same way as the spin is interpreted as an internal degree
of freedom. As we discuss in Sec. IV, in the electro-
magnetic case there is a natural explanation in terms of
an induced electric dipole moment correlated to the mass
dipole.
This paper is organized as follows: In Sec. II we

present the field-theory constructions FT1. FT2 and FT3
for electrodynamics, giving a nonminimal Lagrangian
that contains additional Wilson coefficients compared to
the standard worldline approaches. We also describe the
classical asymptotic states in terms of coherent states and
discuss the effect of using different Lorentz representa-
tions. The purpose of the various field theories is to
identify the source of the extra Wilson coefficients.
Section III then gives the field-theory amplitudes asso-
ciated with these theories, including the Compton tree
amplitudes needed to build the one-loop two-body
amplitudes, which are also presented. To interpret these
results in the context of the more standard worldline
framework, in Sec. IV we construct the two worldline
theories WL1 and WL2 and compare their Compton
amplitudes with the field-theory ones. In Sec. V we
construct two-body EFT Hamiltonians so that the scatter-
ing amplitudes of the corresponding EFTs match those of
the various field theories. One Hamiltonian contains only
the usual spin operator and the other also contains a
boost operator. The impulse and spin kick derived from
the latter are the same as those following from the SSC-
less worldline theory. A remarkably compact form of
physical observables is given in terms of an eikonal
formula. Section VI describes the link between extra
Wilson coefficients and the degrees of freedom that
propagate in the field theory. In Sec. VII we summarize
our conclusions. Finally, an ancillary file is included
containing Mathematica-readable expressions for
Hamiltonian coefficients and observables [185].

3We note that the nonconservation of the magnitude of the
intrinsic angular momentum of subsystems of gravitationally
interacting conservative many-body systems has been known for
some time, see e.g. [182–184].
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II. FIELD THEORY

In this section we construct the field theories FT1, FT2
and FT3 listed in Sec. I that we use to track the source of
additional degrees of freedom and Wilson coefficients.
We begin by discussing the covariantization of the free
matter Lagrangians, which we refer to as the “minimal”
Lagrangians, first in the framework of Refs. [64,78]
where the propagating states form a reducible represen-
tation of the rotation group, and then in the framework of
Ref. [176], in which the only propagating states are
only the 2sþ 1 physical states of a spin-s field. After
summarizing the coherent-state description of the
classical asymptotic states and the propagators, we then
discuss nonminimal interactions which are linear in the
photon field strength and the corresponding three-point
amplitudes. The scaling of massive momenta p, massless
transferred momentum q, impact parameter b and spins S
for obtaining the classical limit are [78]

p → p; q → λq; b → λ−1b; S → λ−1S; ð2:1Þ

and the classical part of the L-loop two-body amplitude
scales as λ−2þL while Compton amplitudes scale as λ0.4

The connection of field theories FT1, FT2 and FT3 to
worldline theories will be discussed in Sec. IV.

A. Minimal Lagrangian in electrodynamics

The extension of the construction of Ref. [78] to QED
and thus the definition of the covariantization of the
free Lagrangians for FT1 is straightforward, with the main
difference from the gravitational case being that the fields

must be complex. The minimal coupling involves only the
standard two-derivative kinetic term5

LEM ¼ −
1

4
FμνFμν; Lmin ¼ −ð−1ÞsϕsðD2 þm2Þϕ̄s;

ð2:2Þ
where Fμν ¼ ∂μAν − ∂νAμ, and the covariant derivative is
defined as

Dμϕs ¼ ∂μϕs − iQAμϕs; Dμϕ̄s ¼ ∂μϕ̄s þ iQAμϕ̄s:

ð2:3Þ
Without the loss of generality, we take all the massive
bodies as carrying the same charge Q, and define the
effective “fine structure constant”6 as α ¼ Q2=ð4πÞ. The
PL framework expands observables in powers of α keeping
the exact velocity dependence. In Lmin, the fields ϕs and ϕ̄s
can be in generic representations of the Lorentz group as
long as their product is a Lorentz-singlet. The most general
choice is that both fields are in the ðl; rÞ representation, i.e.
they are represented as

ϕs ¼ ϕβ̇1β̇2…β̇r
α1α2…αl ; ϕ̄s ¼ ϕ̄α1α2…αl

β̇1β̇2…β̇r
; ð2:4Þ

where lþ r ¼ 2s and ϕs and ϕ̄s are symmetric in the αi and
β̇i indices, which transform in the two-dimensional repre-
sentation of SUð2ÞL and SUð2ÞR, respectively. The cova-
riantized free Lagrangian Lmin in Eq. (2.2) treats uniformly
all the representations of the rotation group that are part of
ϕs. Thus, the propagator derived from Lmin is proportional
to the identity operator 1ðl;rÞ in the ðl; rÞ representation. For
ϕs in the ðs; sÞ representation, it is

ð2:5Þ

Consequently, there is no explicit dependence on the value
of s in the amplitudes that follow from Lmin, making the
large-spin limit appropriate for classical physics convenient
in this construction.
When evaluated on an ðs; sÞ representation, the

Lagrangian (2.2) contains propagating degrees of freedom
beyond the 2sþ 1 associated with a single massive spin-s
particle and some of them have negative norm in
Minkowskian signature. While such a theory is not con-
sistent as a quantum theory because of difficulties with
unitarity, we use this Langangian and its nonminimal
extension described below to find only classical observ-
ables, so that the issue is not directly relevant. One may

nevertheless worry that the negative-norm states might
cause some inconsistency even in the classical limit, and
very likely they are the origin of the additional Wilson
coefficients [175]. As we will see in Sec. VI, the key to the
additional Wilson coefficients is the presence of propagat-
ing degrees of freedom beyond those of a single quantum
spin-s particle. This is independent of the sign of the norm
of the extra states. Moreover, there is a direct simple map

4This scaling enforces the correspondence principle and the
scaling parameter λ can be related to ℏ, see e.g. Ref. [186].

5We are using the mostly minus signature. The ð−1Þs factor
makes the spin-s component physical.

6Note that this differs from the standard definition of the fine
structure constant in terms of the electron charge. To simplify
subsequent formulas, we absorb in α the charge of macroscopic
bodies.
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which connects amplitudes in this theory with amplitudes
in a theory in which all states have positive norm.
FT2 is designed to probe the relation between the extra

Wilson coefficients and the presence of states beyond those
of a spin-s representation of the rotation group. To define it
and to compare straightforwardly with the Singh-Hagen
Lagrangian [176] for a single spin-s particle it is convenient
to choose ϕs in the ðs; sÞ representation, which is realized
as a symmetric traceless rank-s tensor,7

ϕs ≡ ϕβ̇1β̇2…β̇s
α1α2…αs ∝ ϕðμ1μ2…μsÞðσμ1Þðα1 ðβ̇1…ðσμsÞαsÞβ̇sÞ; ð2:6Þ

where as usual the parentheses on the indices signify that
they are symmetrized. We primarily focus on this repre-
sentation in subsequent sections, especially when carrying
out calculations at fixed values of the spin.
We ensure that only the 2sþ 1 states of a spin-s field are

propagating by imposing the requisite constraints with
auxiliary fields, following the strategy of Ref. [176]. The
net effect of imposing transversality is that the minimal
Lagrangian Lmin in Eq. (2.2) is modified to

Ls
min ¼ −ð−1Þs½ϕsðD2 þm2Þϕ̄s þ sðDϕsÞðDϕ̄sÞ þ � � ��;

ð2:7Þ

where ðDϕsÞ≡Dμϕ
μμ2…μs and the ellipsis stand for terms

that remove unwanted states, as explained below.
The coupling sðDϕsÞðDϕ̄sÞ originates from integrating

out an auxiliary ϕs−1 field that imposes transversality via
the equation of motion. To see this, we add to the free part
of Lmin the term aϕs−1∂ϕs as well as a standard quadratic
term for ϕs−1, where a is a normalization. The equations of
motion are

ð∂2 þm2Þϕμ1μ2…μs
s ¼ a∂ðμ1ϕμ2…μsÞ

s−1 ;

ðb∂2 þ cm2Þϕs−1 ¼ ð∂ϕsÞ; ð2:8Þ

where we introduced two additional normalization con-
stants b and c. A solution to the equation of motion is
ϕs−1 ¼ ∂ϕs ¼ 0. Requiring that this is the only solution
gives b ¼ 0 and a ¼ scm2 such that

ð∂2 þm2Þϕμ1μ2…μs
s ¼ s∂ðμ1ð∂ϕsÞμ2…μsÞ: ð2:9Þ

Covariantization with respect to the photon gauge sym-
metry follows as usual, by replacing the partial derivatives
with the appropriate covariant derivatives, leading to the
sðDϕsÞðDϕ̄sÞ term in Eq. (2.7).
The process continues, as transversality of ϕs implies

∂∂ϕs ¼ 0, which must also be imposed through an equation

of motion. More auxiliary fields are therefore needed, and
this process can be carried out recursively [176]. The
resulting couplings involving traces, multiple-divergences
likeDμDνϕ

μνμ3…μs , and auxiliary fields with lower spins are
collected in the ellipsis in Eq. (2.7). Up to s ¼ 3, the
Lagrangians generated by this procedure are

Ls¼1 ¼ ϕμ1ðD2 þm2Þϕ̄μ1 þ ðDμϕ
μÞðDνϕ̄νÞ; ð2:10aÞ

Ls¼2 ¼ −ϕμ1μ2ðD2 þm2Þϕ̄μ1μ2 − 2ðDμϕ
μμ2ÞðDνϕ̄νμ2Þ

þϕμ
μðD2 þm2Þϕ̄ν

ν −ϕμ
μDρDλϕ̄ρλ − ϕ̄μ

μDρDλϕ
ρλ;

ð2:10bÞ

Ls¼3 ¼ ϕμ1μ2μ3ðD2 þm2Þϕ̄μ1μ2μ3 þ 3ðDμϕ
μμ2μ3ÞðDνϕ̄νμ2μ3Þ

− 3ϕμ
μμ3ðD2 þm2Þϕ̄ν

νμ3 þ 3ϕμ
μμ3DρDλϕ̄ρλμ3

þ 3ϕ̄μ
μμ3DρDλϕ

ρλμ3 þ 3

2
ðDμϕ

μρ
ρÞðDνϕ̄

νλ
λÞ

þ 2φðD2 þ 4m2Þφ̄þmðφDμϕ̄
μλ

λ þ φ̄Dμϕ
μλ

λÞ;
ð2:10cÞ

where φ and φ̄ in Ls¼3 are ghostlike scalar auxiliary fields.
The Ls¼1 and Ls¼2 here are the Proca [187] and Fierz-Pauli
Lagrangian [188], respectively, and Ls¼3 was first obtained
by Chang [189]. We note that the construction in Ref. [176]
uses only symmetric and traceless fields, and we have
absorbed certain auxiliary fields into the trace of ϕs. We use
Eq. (2.7)—which is the arbitrary-spin generalization of
Eq. (2.10)—as the covariantization of the free Lagrangian
of FT2.
FT3 is constructed to probe whether the extra Wilson

coefficients in FT1 are due to the unphysical nature of the
extra states of this theory. Thus, we define the covarian-
tization of the free part of FT3 as being given, up to
nonminimal terms, by the sum of Lagrangians for physical
transverse fields with spins s; s − 1;…; 0. For simplicity,
here we consider a Lagrangian that involves only spin s and
s − 1,

Ls;s−1
min ¼ Ls

min þ Ls−1
min ¼ −ð−1Þs½ϕsðD2 þm2Þϕ̄s

þ sðDϕsÞðDϕ̄sÞ þ � � �� − ð−1Þs−1½ϕs−1ðD2

þm2Þϕ̄s−1 þ ðs − 1ÞðDϕs−1ÞðDϕ̄s−1Þ þ � � ��:
ð2:11Þ

We show below that this Lagrangian is sufficient to
describe classical physics at OðS1Þ up to the one-loop
order. We assume that ϕs and ϕs−1 have the same minimal
coupling to the photon. Somewhat loosely, one may
interpret this Lagrangian as being obtained from Eq. (2.2)
upon separating ϕs into fields obeying transversality
constraints and dropping the derivative factors that are

7Throughout the paper, the symmetrization is defined as
fðμ1μ2…μsÞ ≡ 1

s! ðfμ1μ2…μs þ permutationsÞ.
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responsible for the negative norms of the s − ð2kþ 1Þ
components.
The minimal Lagrangians of FT2 and FT3 make explicit

reference to the value of s, as can be seen in the explicit

expressions in Eq. (2.10), and consequently the propagators
(and vertices) have the same property. The propagators for
massive s ¼ 1 and s ¼ 2 fields can be easily derived from
the quadratic part of Ls¼1 and Ls¼2. They are

ð2:12Þ

ð2:13Þ

whereΘμν ¼ ημν −
pμpν

m2 . The numerators are instances of the spin-s state projectorP; its general closed-form expression [176],

PνðsÞ
μðsÞ ¼

Xbs=2c
j¼0

ð−1Þjs!ð2s − 2j − 1Þ!!
2jj!ðs − 2jÞ!ð2s − 1Þ!!Θðμ1μ2Θ

ðν1ν2…Θμ2j−1μ2jΘ
ν2j−1ν2jΘν2jþ1

μ2jþ1
…ΘνsÞ

μsÞ; ð2:14Þ

is manifestly symmetric, transverse and traceless on-shell.
Beyond s ¼ 2 the off-diagonal nature of the quadratic

terms in Ls
min makes the construction of propagators more

involved. For example, the Ls¼3
min Lagrangian contains

quadratic mixing between ϕμ1μ2μ3 and the auxiliary scalar

φ; thus to derive the propagators it is necessary to
diagonalize the quadratic terms, effectively summing
over all possible insertions of such two-point vertices.
We represent the resummed propagators by a cross in the
middle,

ð2:15aÞ

ð2:15bÞ

ð2:15cÞ

Apart from the nonlocal term encoding the energy-momentum relation, the propagator for the physical s ¼ 3 particle also
has an additional local contribution, with tensor structure

Qν1ν2ν3
μ1μ2μ3 ¼ ηðμ1μ2pμ3Þη

ðν1ν2pν3Þðp2 − 7m2Þ − 4pμ1pμ2pμ3η
ðν1ν2pν3Þ − 4ηðμ1μ2pμ3Þp

ν1pν2pν3 : ð2:16Þ

Meanwhile, the contribution from the auxiliary field is
completely local, indicating that they carry no physical
(asymptotic) degrees of freedom, as expected.

B. Classical asymptotic states and coherent states

The standard description of the asymptotic states of
(massive) spinning fields is in terms of Lorentz tensors
labeled by the (massive) little group. Extending Ref. [78],

we first consider the asymptotic state E and its conjugate Ē
for general ðl; rÞ representations of the Lorentz group with
lþ r ¼ 2s. Subsequently, we specialize to integer s and
consider the ðs; sÞ representation, in which we identify
general consequences of transversality. In the classical
limit, these states are chosen to minimize the dispersion
of the Lorentz generators, E ·Mμν · Ē, where Mμν satisfies
the Lorentz algebra
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½Mμν;Mρλ� ¼ −iðημρMλν þ ηνρMμλ − ημλMρν − ηνλMμρÞ:
ð2:17Þ

In the rest frame, the state E generalizes the spin coherent
states of SUð2Þ implicit in the construction of Ref. [78] to
those of SUð2ÞL × SUð2ÞR. We start by representing the
states in terms of spinors such that8

EðpÞαðlÞβ̇ðrÞ ¼ ξðpÞα1…ξðpÞαlχðpÞβ̇1…χðpÞβ̇r ;
ĒðpÞαðlÞβ̇ðrÞ ¼ ξ̃ðpÞα1…ξ̃ðpÞαl χ̃ðpÞβ̇1…χ̃ðpÞβ̇r : ð2:18Þ

Here, we choose E to be null for convenience. We note that
the final result does not rely on E being null. As with the
spin coherent states, the spinors ξðpÞ, χðpÞ, ξ̃ðpÞ and χ̃ðpÞ

are constructed by boosting their rest frame counterparts

ξ0, χ0, ξ̃0 and χ̃0,

ξðpÞα ¼ expðiηp̂kK̂k
LÞαβξ0β; ξ̃ðpÞα ¼ expðiηp̂kK̂k

LÞαβξ̃0β;
χðpÞα̇ ¼ expðiηp̂kK̂k

RÞα̇β̇χβ̇0; χ̃ðpÞα̇ ¼ expðiηp̂kK̂k
RÞα̇β̇χ̃β̇0;
ð2:19Þ

where ðK̂k
LÞαβ ¼ ði=2ÞðσkÞαβ and ðK̂k

RÞα̇β̇ ¼ ð−i=2ÞðσkÞα̇β̇
are the left/right-handed boost operators, η is the rapidity

and p̂k are the components of the unit vector along the

spatial part of the momentum.
The rest frame coherent-state spinors are [190]

ξ0α ¼ expðzLN̂Lþ − z�LN̂
L
−Þαβξþ0β; ξ̃0α ¼ expðzLN̂Lþ − z�LN̂

L
−Þαβξ−0β;

χα̇0 ¼ expðzRN̂Rþ − z�RN̂
R
−Þα̇β̇χþ;β̇

0 ; χ̃α̇0 ¼ expðzRN̂Rþ − z�RN̂
R
−Þα̇β̇χ−;β̇0 ; ð2:20Þ

where ðN̂L
�Þαβ ¼ ð1=2Þðσ1 � iσ2Þαβ and ðN̂R

�Þα̇β̇ ¼ ð1=2Þðσ1 � iσ2Þα̇β̇ are the generators of SUð2ÞL and SUð2ÞR, ξ�0 and χ�0
are the eigenvectors of σ3 with eigenvalues �1, and

zL;R ≡ −ðθL;R=2Þe−iϕL;R ð2:21Þ
are coherent-state parameters. The rest frame spinors are normalized as ξα0 ξ̃0α ¼ χα̇χ̃

α̇ ¼ −1, such that EðpÞ · ĒðpÞ ¼ ð−1Þr.
They are related to unit vectors via

niL ¼ ξα0ðσiÞαβξ̃0β ≡ ξ0σ
iξ̃0; nL ¼ ðsin θL cosϕL; sin θL sinϕL; cos θLÞ;

niR ¼ χ0α̇ðσiÞα̇β̇χ̃β̇0 ≡ χ0σ
iχ̃0; nR ¼ ðsin θR cosϕR; sin θR sinϕR; cos θRÞ: ð2:22Þ

The rotation and boost generators in the ðl; rÞ representation are given by

Ŝ ¼ ŜL þ ŜR; K̂ ¼ K̂L þ K̂R;

ŜkL ¼ 1

2

Xl

m¼1

1 ⊗ …1|fflfflfflffl{zfflfflfflffl}
m−1

⊗ σk ⊗ 1… ⊗ 1; ŜkR ¼ 1

2

Xr

m¼1

1 ⊗ …1|fflfflfflffl{zfflfflfflffl}
m−1

⊗ σk ⊗ 1… ⊗ 1;

K̂k
L ¼ i

2

Xl

m¼1

1 ⊗ …1|fflfflfflffl{zfflfflfflffl}
m−1

⊗ σk ⊗ 1… ⊗ 1; K̂k
R ¼ −

i
2

Xr
m¼1

1 ⊗ …1|fflfflfflffl{zfflfflfflffl}
m−1

⊗ σk ⊗ 1… ⊗ 1; ð2:23Þ

where the summation is over the position of σk. With these definitions, the expectation values of the rotation and boost
generator under the rest frame spin coherent states are

E0 · Ŝ · Ē0 ¼
1

2
ðlnL þ rnRÞ≡ S; E0 · K̂ · Ē0 ¼

i
2
ðlnL − rnRÞ≡ iK: ð2:24Þ

We identify the former with the classical rest-frame spin vector Sμ0 ¼ ð0; SÞ and the latter with the boost vector Kμ
0 ¼ ð0;KÞ.

If E is not null, we view Eq. (2.24) as the definition for the classical spin and boost vector. The classical rest-frame spin
tensor given by

8We note that the SUð2Þ indices are raised and lowered by

ϵαβ ¼ ϵα̇ β̇ ¼
�
0 −1
1 0

�
; ϵαβ ¼ ϵα̇ β̇ ¼

�
0 1

−1 0

�
:
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Sμν
0 ¼ E0 ·Mμν · Ē0 ¼ Sμν0 þ iKμν

0 ð2:25Þ

does not obey the SSC, where

Sμν0 ¼ 1

m
εμνρλp0ρSλ; Kμν

0 ¼ 1

m
ðpμ

0K
ν
0 − pν

0K
μ
0Þ: ð2:26Þ

It contains9 an SSC-obeying component Sμν0 and an SSC-
violating one Kμν

0 , where pμ
0 ¼ ðm; 0Þ is the rest-frame

momentum. An important feature for generic ðl; rÞ repre-
sentations is that K no longer vanishes identically, so that
Sμν
0 no longer satisfies the convariant SSC condition. By

suitably choosing l and r, the norm jKj can be subleading in
the classical limit or commensurate with that of the spin
vector. In this way, the appearance of K in the classical limit
appears natural, simply by adjusting the Lorentz represen-
tation in the underlying quantum system. For generic
values, the classical limit is independent of the details of
the representation. However, for the special case of the
irreducible transverse ðs; sÞ representation then K vanishes,
as noted in Appendix C of Ref. [77].
The next step is to restore the momentum dependence of

various quantities by boosting the particle out of the rest
frame. It is somewhat tedious but straightforward to use
Eq. (2.19) and the properties of the Pauli matrices to boost
products of polarization tensors and Lorentz generators for
any ðl; rÞ representation, as well as Eq. (2.25) and its two
components to arbitrary frames. To leading order in the
classical limit, we find

E1 · fMμ1ν1 ;…;Mμnνng · Ē2

¼ Sðp1Þμ1ν1…SðpnÞμnνnE1 · Ē2 þOðq1−nÞ; ð2:27Þ
where Ei ≡ EðpiÞ, q ¼ p2 − p1 is the momentum transfer
and SðpiÞμν is the boost of Eq. (2.25) to the frame moving
with momentum pi. The spin tensor scales as S ∼ q−1, and
we neglect all the subleading Oðq1−nÞ terms. The sym-
metric product of Lorentz generators fMμ1ν1 ;…;Mμnνng is
defined as

fMμ1ν1 ;Mμ2ν2g ¼ 1

2
ðMμ1ν1Mμ2ν2 þMμ2ν2Mμ1ν1Þ;

fMμ1ν1 ;Mμ2ν2 ;…;Mμnνng ¼ 1

n!
ðMμ1ν1Mμ2ν2…Mμnνn

þ permutationsÞ: ð2:28Þ

They form a basis for arbitrary product of Lorentz gen-
erators under the Lorentz algebra. The factorization (2.27)
of the expectation value of the product of Lorentz gen-
erators into the product of individual expectation values is a
reflection of the classical nature of the asymptotic states E
and Ē. In Eq. (2.27), the product of polarization tensors is
given by

ð−1ÞrE1 · Ē2 ¼ exp

�
−
1

m
q · K

�
exp

�
−i

ϵrijkui1q
jSk

mð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u21

p
Þ

þOðq2Þ
�
þOðqÞ; ð2:29Þ

where uki ¼ pk
i =m, generalizing the corresponding expres-

sion in Ref. [78] to general K. Equation (2.29) captures the
leading terms in the classical limit and, apart from the sign
on the left-hand side, it is agnostic to the ðl; rÞ representa-
tion chosen for the fields.

C. The transverse ðs; sÞ representation
We now consider the special case of the ðs; sÞ repre-

sentation, which corresponds to symmetric-traceless
fields. The coherent-state polarization tensors have an
equal number of dotted and undotted indices; in the rest
frame, they can be written as

ðEðsÞ
0 ÞαðsÞβ̇ðsÞ ¼ ðEðsÞ

0 Þμ1μ2…μsðσμ1Þα1β̇1…ðσμsÞαsβ̇s
¼ ξ0α1…ξ0αsχ0β̇1…χ0β̇s : ð2:30Þ

With this definition, we can explore the additional restric-
tions on the coherent states required by the transversality

of EðsÞ
0 . It suffices to analyze it in the rest frame, where it

reads10

p0μE
μμ2…μs
0 ¼ 0 ⟺ ðp0μσ

μÞαβ̇ðE0Þβ̇β̇2…β̇s
αα2…αs ¼ 0: ð2:31Þ

Using the explicit form of the rest-frame momentum,
p0 ¼ ðm; 0; 0; 0Þ, and that ðσ0Þαβ̇ is numerically equal to
the 2 × 2 Levi-Civita, it follows that

0 ¼ ðp0μσ
μÞαβ̇ðE0Þβ̇β̇2…β̇s

αα2…αs ∝ ξ0αϵ
α
α̇χ

α̇
0: ð2:32Þ

The solution, accounting for normalization, is

ξ0α ¼ χα̇0 as column vectors; ð2:33Þ

which in turn implies zL ¼ zR and hence the equality of
the left-handed and right-handed unit vectors nL and nR in
Eq. (2.22). Together with Eq. (2.24) this implies that

K ¼ 0 ⟺ Sμν
0 ¼ Sμν0 ð2:34Þ

for the transverse ðs; sÞ representation, and therefore,

cf. Eq. (2.25), EðsÞ
0 ·Mμν · ĒðsÞ

0 becomes an SSC-satisfying
spin tensor. On the other hand, if we do not impose

9Our convention for the Levi-Civita tensor is ϵ0123 ¼ þ1.

10In this form transversality can be imposed on the polarization
tensor of a general ðl ≠ 0; r ≠ 0Þ state.
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transversality, then the discussion for a generic ðl; rÞ
representation also applies to ðs; sÞ, such that K does not
vanish and hence that covariant SSC is not obeyed. We thus
see that the ðs; sÞ transverse asymptotic states chosen in
Ref. [78] can be replaced with more general nontransverse
ones. The polarization tensor for the transverse ðs; sÞ
representation can be written as a direct product of trans-
verse s ¼ 1 coherent state vectors

EðsÞðpÞμ1μ2…μs ¼ εðpÞμ1εðpÞμ2…εðpÞμs ;
εðpÞμðσμÞαβ̇ ¼ ξαðpÞχβ̇ðpÞ; ð2:35Þ

where the spinors are boosted from the rest frame ones that
satisfy the condition (2.33), and we normalize the polari-
zation vectors as ε · ε̄ ¼ −1. For such external states, the
expectation value of Eq. (2.27) becomes

KμνðpÞ ¼ 0 ⟺ SμνðpÞ ¼ SμνðpÞ; ð2:36Þ

which is simply the counterpart of the rest frame relation
(2.34). The product (2.29) simplifies to

ð−1ÞsEðsÞ
1 · ĒðsÞ

2 ¼ ð−ε1 · ε̄2Þs

¼ exp
�
−i

ϵrskur1q
sSk

mð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u21

p
Þ þOðq2Þ

�

þOðqÞ: ð2:37Þ

The transverse ðs; sÞ representation is used in FT2 and
FT3. Because the Lagrangian depends explicitly on s, we
need to use the explicit form of the Lorentz generators,

ðMμνÞαðsÞβðsÞ ¼ −2iδ½μðα1η
ν�ðβ1δβ2α2…δβsÞαsÞ: ð2:38Þ

Consequently, the results are given in terms of various
symmetric and antisymmetric combinations of the polari-
zation vector ε and momenta. To convert them into spin
tensors, we need to compute the left-hand side of
Eq. (2.27) and identify the resulting structures with spin
tensors.
We first consider the transverse EðsÞ. Starting withOðS1Þ,

we have

EðsÞ
1 ·Mμν · ĒðsÞ

2 ¼ −2isðε1 · ε̄2Þs−1ε½μ1 ε̄ν�2 : ð2:39Þ

According to Eq. (2.27), this combination should be
identified with Sðp1Þμν, such that

ðε1 · ε̄2Þs−1ε½μ1 ε̄ν�2 ¼ iSðp1Þμν
2s

ðε1 · ε̄2Þs þOðq0Þ: ð2:40Þ

In amplitudes, we can use this relation to turn antisym-
metric combination of polarization vectors into spin tensors.

The classical amplitude is obtained by further taking
the s → ∞ limit. Similarly, at OðS2Þ, we can use the
following identity:

EðsÞ
1 · fMμν;Mρλg · ĒðsÞ

4 ¼ −4sðs − 1Þðε1 · ε̄4Þs−2ε½μ1 ε̄ν�4 ε½ρ1 ε̄λ�4
− sðε1 · ε̄4Þs−1ðημλεðν1 ε̄ρÞ4
þ ηνρεðμ1 ε̄

λÞ
4 − ημρεðν1 ε̄

λÞ
4

− ηνλεðμ1 ε̄
ρÞ
4 Þ: ð2:41Þ

In the large s limit, the second term is subleading, such that
we have

ðε1 · ε̄2Þs−2ε½μ1 ε̄ν�2 ε½ρ1 ε̄λ�2 ⟶
large s

−
ðε1 · ε̄2Þs

4s2
Sðp1ÞμνSðp1Þρλ

þOðq−1Þ; ð2:42Þ

which is equivalent to applying Eq. (2.40) twice. Contracting
the Lorentz indices on the spin tensors once leads to

ðε1 · ε̄2Þs−1εðμ1 ε̄νÞ2 ⟶
larges

−
ðε1 · ε̄2Þs
2s2

Sðp1ÞμρSðp1ÞρνþOðq−1Þ:
ð2:43Þ

Similar identities have been previously used in e.g.
Refs. [36,191]. They are sufficient for amplitudes up
to OðS2Þ.

D. The nontransverse ðs; sÞ representation
For a nontransverse field in the ðs; sÞ representation

we can use the general results obtained for an ðl; rÞ
representation. In particular, it has K ≠ 0. It is instructive
to identify the origin of K, and thus the structures
governing its covariant version Kμν, in terms of the
lower-spin (longitudinal) components of Eμ1…μs . This will
be important when discussing FT3 which has physical
lower-spin fields.
The coherent state in FT1 can be decomposed as

Eμ1…μs ¼ EðsÞ
μ1…μs þ ðuEðs−1ÞÞμ1…μs

þ ðu2Eðs−2ÞÞμ1…μs
þ…;

ð2:44Þ

where the spin-(s − k) component is represented by

ðukEðs−kÞÞμ1…μs
¼

�
s

k

�
1=2

uðμ1…uμkεμkþ1
…εμsÞ: ð2:45Þ

The states with even k have positive norm and those with
odd k have negative norm. We may now compute products
involving these polarization tensors. We have
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EðsÞ
1 · ðu2Ēðs−1Þ

2 Þ ¼ −
ffiffiffi
s

p ðε1 · ε̄2Þs−1ε1 · q
m

þOðq2Þ: ð2:46Þ

At OðS1Þ, we plug Eq. (2.44) into Eq. (2.27) and find that

EðsÞ
1 ·Mμν · ðu2Ēðs−1Þ

2 Þ ¼ i
ffiffiffi
s

p ðε1 · ε̄2Þs−1ðuμ2εν1 − uν2ε
μ
1Þ

þOðqÞ;
ðu1Eðs−1Þ

1 Þ ·Mμν · ĒðsÞ
2 ¼ −i

ffiffiffi
s

p ðε1 · ε̄2Þs−1ðuμ1ε̄ν2 − uν1ε̄
μ
2Þ

þOðqÞ; ð2:47Þ

while all the other EðsÞ
1 ·Mμν · ðuk2Ēðs−kÞ

2 Þ vanish at the

classical order. We note that contractions like ðuk1Eðs−kÞ
1 Þ ·

Mμν · ðuk2Ēðs−kÞ
2 Þ and ðuk1Eðs−kÞ

1 Þ ·Mμν · ðuk2Ēðs−k−1Þ
2 Þ give

identical result as Eqs. (2.39) and (2.47) in the limit
s ≥ k. They contribute an overall factor that can be
absorbed in the normalization of the states. In this sense,
we can identify the above combination with Kμν or Kμ.
More precisely, we have

− ðε1 · ε̄2Þs−1½uμ1ðεν1 þ ε̄ν2Þ − uν1ðεμ1 þ ε̄μ2Þ�

⟶
large s E1 · Ē2ffiffiffi

s
p Kðp1Þμν;

− ðε1 · ε̄2Þs−1ðεμ1 þ ε̄μ2Þ ⟶
large s E1 · Ē2ffiffiffi

s
p Kðp1Þμ; ð2:48Þ

Using these two relations in the product E1 · Ē2, we
find that

E1 · Ē2 ¼ ðε1 · ε̄2Þs þ
ffiffiffi
s

p ðε1 · u2 þ ε̄2 · u1Þðε1 · ε̄2Þs−1 þ…

¼ ðε1 · ε̄2Þs þ
q · K
m

E1 · Ē2 þ…; ð2:49Þ

where the first term comes from EðsÞ
1 · ðu2Ēðs−1Þ

2 Þ þ
ðu1Eðs−1Þ

1 Þ · Ē2 and the … contains the contraction between
EðsÞ and the states with spin less than s − 1. Again, similar
contractions between lower-spin states contribute an overall
factor that can be normalized away. We thus get the relation

between the transverse EðsÞ
1 · ĒðsÞ

2 ¼ ðε1 · ε̄2Þs and the full
result E1 · Ē2 up to the first order in q and K,

ðε1 · ε2Þs ¼
�
1 −

q · K
m

�
ðE1 · Ē2Þ þOðq2; K2Þ; ð2:50Þ

which is of course consistent with Eqs. (2.29) and (2.37).
The relations (2.48) and (2.50) are used to extract the
OðK1Þ terms in FT3. More generally, the contractions

EðsÞ
1 · ðuk2Ēðs−kÞ

2 Þ ¼
�
s

k

�
1=2

ðε1 · ε̄2Þs−k
�
−
q · ε1
m

�
k
; ð2:51Þ

EðsÞ
1 · fMμ1ν1 ;…;Mμkνkg · ðuk2Ēðs−kÞ

2 Þ

¼
�
s

k

�
1=2

ðk!Þðε1 · ε̄2Þs−k
Yk
j¼1

ð2iu½μi2 ενi�1 Þ

→ sk=2ðε1 · ε̄2Þs−k
Yk
j¼1

ð2iu½μi2 ενi�1 Þ ð2:52Þ

can be used to show that for the s to s − k amplitudes,

ðq · KÞk → sk=2ðε1 · ε̄2Þs−k
�
q · ε1
m

�
k
; ð2:53Þ

EðsÞ
1 · fM;…M|fflfflfflffl{zfflfflfflffl}

m

g · ðuk2Ēðs−kÞ
2 Þ ∼ KkSm−k; ð2:54Þ

which are necessary to identify the structures related to

KkSm−k in the amplitudes. Recall that the notation uk2Ē
ðs−kÞ
2

includes a factor sk=2, cf. Eq. (2.45). We leave for future
work the detailed study of structures of higher orders
in spin.
Apart from states created by the operators11 EðsÞ · a†ðsÞ

and Eðs−1Þ · a†ðs−1Þ of the fields with definite spin, in FT3

we may also choose asymptotic states with indefinite
spin, which are normalized linear combinations of these
definite-spin states (and, in general, also of lower-spin
fields). In a quantum theory such a choice is disfavored as it
breaks the little-group symmetry. In the classical theory,
effectively with a single asymptotic state, this is not an
issue. We therefore also evaluate amplitudes in FT3 with
asymptotic states

jgi ¼ 1ffiffiffi
2

p ðEðsÞ · a†ðsÞ þ Eðs−1Þ · a†ðs−1ÞÞj0i: ð2:55Þ

Similar states have also been considered in Refs. [81,180].
We will refer to these amplitudes as AFT3g; in terms of
definite-spin states they are

AFT3g ¼ 1

2
ðAFT3s

s→s þAFT3s
s−1→s−1 þAFT3s

s−1→s þAFT3s
s→s−1Þ:

ð2:56Þ
There is no simple polarization tensor that can be assigned
to the state jgi; the closest analog of the sandwich of
Lorentz generators and polarization tensors is the expect-
ation value of the (field) generator of Lorentz trans-
formations in the state jgi. While it does not have a
simple interpretation in terms of the S and K vectors,
the interaction (2.61) will supply the requisite factors of

11We denote by a†ðsÞ the creation operators of the field ϕðsÞ
corresponding to the state labeled by the rest-frame polarization
tensors in Eqs. (2.18) and (2.19).
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momenta for such an interpretation to be possible,
cf. Eq. (2.48).

E. Nonminimal Lagrangian

We are primarily interested in amplitudes in the classical
limit, where the spin s is taken to be large. We expect that
the relevant interaction terms do not depend on a particular
representation of the spin, and thus are Lorentz singlets
constructed from covariant derivatives, photon field
strengths, ϕs and Lorentz generators (2.17) in the same
representation as ϕs. Moreover, we consider for the time
being only those interactions that survive in the classical
limit. The close relation in Eq. (2.27) between Lorentz
generators and the spin tensor and the scaling of momenta
in the classical limit imply that the number of derivatives on
the photons must be equal to the number of Lorentz
generators. Under these guidelines, we can write down
the following nonminimal linear-in-Fμν interactions up to
two powers of spins:

ð−1ÞsLnon-min ¼ QC1FμνϕsMμνϕ̄s

þQD1

m2
FμνðDρϕsMρμDνϕ̄s þ c:c.Þ

−
iQC2

2m2
∂ðμFνÞρðDρϕsSμSνϕ̄s − c:c.Þ

−
iQD2

2m2
∂μFνρðDαϕsMαμMνρϕ̄s − c:c.Þ;

ð2:57Þ
where for later convenience we choose12 to scale theWilson
coefficients by Q so that at each order amplitudes display
overall powers of α, and the Pauli-Lubanski spin operator
Sμ is defined as

Sμ ≡ −i
2m

εμνρσMρσDν: ð2:58Þ

We note that the Ci operators are the electrodynamics
analogs of operators [40,41,45] of general relativity, and the
Di’s are the electrodynamics analogs of the typical exam-
ples of “extra Wilson coefficients” of Ref. [64]. From the
effective-field-theory point of view, we can write down
another operator that contributes classically at the second
order in spin,

LD2b
¼ iQD2b

2m4
∂ðμFνÞρðDλϕsMλμMν

σDðσDρÞϕ̄s − c:c:Þ:
ð2:59Þ

While C2 and D2 give independent contribution to three-
point amplitudes at OðS2Þ and OðS1K1Þ, see Sec. III A,

the above D2b operator gives independent contribution at
OðK2Þ. Since the purpose of our current work is to
understand the existence of extra Wilson coefficients, for
simplicity we will not consider this operator further.
Table I collects the Lagrangians of the four effective

field theories that are our focus noting also the notation
we use for their corresponding amplitudes. FT1 are des-
cribed by the same Lagrangian, LEMþLminþLnon-min. To
compute amplitudes in these two theories, we do not need
to specify a particular value for s. As discussed in Sec. II C,
the representations of the rotation group with spin s − 2k
that are part of the field ϕs have positive norm and are
therefore physical, while those with spin s − ð2kþ 1Þ have
negative norm. In contrast, FT2 is described by the
Lagrangian LEM þ Ls

min þ Lnon-min, and contains only the
physical spin-s degrees of freedom. When computing
the amplitude AFT1s, we restrict the external states to be
the physical spin-s states, which are transverse such that the
resultant spin tensors satisfy the covariant SSC according to
Sec. II C. Meanwhile, we keep the external states generic in
AFT1g. As a result, the amplitude AFT1g contains explicit
SSC-violating terms compared to AFT1s.
We show in Sec. III that despite having the same physical

spin-s external states,AFT1s andAFT2 are different for four-
point Compton scattering in the classical limit. In particu-
lar, the Compton amplitudes from FT2 depend only on C1

and C2 while AFT1s also depend on D1 and D2, similar to
the appearance of additional nontrivial Wilson coefficients
in general relativity [78]. The differences between these
amplitudes vanish for

C1 ¼ C2 ¼ 1; D1 ¼ D2 ¼ 0; ð2:60Þ

and reproduce the root-Kerr amplitudes of Ref. [114], so
that the additional Di operators do not contribute, in much
the same way that additional operators do not contribute to
the Kerr black hole. The similarity of the root-Kerr solution
in electromagnetism and the Kerr solution in general
relativity follows from the double copy.
These results indicate that additional lower-spin degrees

of freedom are the origin of the extra Wilson coefficients.
We consider an interpolation between FT1 and FT2 in

TABLE I. Field-theory amplitudes, corresponding Lagrangians
and external states. The Lagrangians are given in Eqs. (2.2), (2.7),
(2.11), (2.57), and (2.61).

Field theory Lagrangian Amplitude External state

FT1 LEM þ Lmin þ Lnon-min AFT1s Spin-s
AFT1g Generic

FT2 LEM þ Ls
min þ Lnon-min AFT2 Spin-s

FT3 LEM þ Ls;s−1
min þ Ls;s−1

non-min AFT3s Spin-s
AFT3g Indefinite spin

12Neutral particles can also have nonminimal couplings
analogous to those in Eq. (2.57). The corresponding Lagrangian
is obtained by the double-scaling limit Q → 0, Ci;Di → ∞ with
fixed products QCi and QDi.
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Sec. VI to understand the effect of the state projector.
In FT1 these degrees of freedom have negative norm; a
natural question is whether lower-spin states with positive
norm have similar consequences. FT3 explores this
question. With some foresight which is justified in
Sec. VI, we choose the nonminimal interactions of ϕs
and ϕs−1 in Eq. (2.11), valid through the quadratic order
in spin, to be

Ls;s−1
non-min ¼ QC1FμνϕsMμνϕ̄s

−
2iQC̃1

ffiffiffi
s

p
m

Fμν½ðϕsÞμα2…αs
Dνϕ̄α2…αs

s−1 − c:c.�

−
iQC2

2m2
∂ðμFνÞρðDρϕsSμSνϕ̄s − c:c.Þ

−
2iQC̃2

ffiffiffi
s

p
m

Fμν½ðϕsÞμα2…αs
Dα2 ϕ̄να3…αs

s−1 − c:c.�;
ð2:61Þ

and the Lagrangian of FT3 is given by the third line of
Table I. We shall see in Sec. III that the Wilson
coefficients C̃1 and C̃2 appear at OðK1Þ and OðS1K1Þ
order of the Compton amplitudes respectively, and that
there exists an effective map between the Di and C̃i
coefficients. As discussed in Sec. II C, we need to include
couplings between ϕs and ϕs−2 to access the OðK2Þ
interactions, which we omit for simplicity.
Similar to gravity, operators describing tidal deforma-

tions under the influence of external fields are necessary
to describe the electromagnetic interactions of generic
spinning bodies. Simple counting of classical scaling

indicates that in QED they first appear OðS2Þ. At this
order in spin three independent operators are

ð−1ÞsLF2 ¼ Q2E1

m2
FμνFρσϕsMμνMρσϕ̄s

þQ2E2

m2
FμνFρ

μϕsMνλMλ
ρϕ̄s

þQ2E3

m4
FμνFρσDμϕsMνλMλ

ρDσϕ̄s þOðM3Þ:
ð2:62Þ

Including them we find that all Ei Wilson coefficients
vanish for the root-Kerr states in much the same way as
the Di coefficients vanish for these states in FT1.

III. SCATTERING AMPLITUDES

In this section we first compute the 1PL (tree) Compton
amplitudes of the higher-spin effective Lagrangians intro-
duced in the previous section and summarized in Table I.
We then use them as the basic building blocks of theOðα2Þ
two-body amplitudes through generalized unitarity.13 In
addition, classical Compton amplitudes are also observ-
ables that can be directly compared with worldline com-
putations along the lines of Ref. [192]. The comparison will
be given in Sec. IV.

A. Three-point amplitudes

We start with computing and comparing the three-point
Compton amplitudes from the theories in Table I.
Assuming that all the momenta are outgoing, the
Feynman rules for FT1 are given by

ð3:1Þ

The symmetric product between Lorentz generators is defined in Eq. (2.28).
In the classical limit, the massive spinning particles are described by the spin coherent states (2.30). We first consider

FT1g with generic coherent states that do not satisfy the transversality. The expectation values of Lorentz generators are
given by Eq. (2.27), which lead to the classical spin tensor Sμν that do not satisfy the covariant SSC. The three-point
amplitude is

13For simplicity, we suppress a factor of Q in the three-point Compton amplitudes, and a factor of Q2 in the four-point Compton
amplitudes, where Q is the electric charge of the massive body.

QUANTUM FIELD THEORY, WORLDLINE THEORY, AND SPIN … PHYS. REV. D 109, 045011 (2024)

045011-13



AFT1g
3 ¼ ð−1ÞsE1 · Ē2

�
2ϵ3 · p1 − 2iC1Sμνq

μ
3ϵ

ν
3 þ

C2

m2
ϵ3 · p1Sμνqν3S

μ
λqλ3

− Sμνp
μ
1q

ν
3

�
2iD1

m2
ϵ3 · p1 þ

C2

m4
ϵ3 · p1Sλσpλ

1q
σ
3 −

2D2

m2
Sλσqλ3ϵ

σ
3

��

¼ 2ð−1ÞsE1 · Ē2

�
ϵ3 · p1 − iC1Sμνq

μ
3ϵ

ν
3 − ðC1 −D1Þϵ3 · p1

q · K
m

þ C2

2m2
ϵ3 · p1Sμνqν3S

μ
λqλ3 þ iD2Sμνq

μ
3ϵ

ν
3

q · K
m

þD2ϵ3 · p1

�
q · K
m

�
2
�
; ð3:2Þ

where in the second equal sign we have used Eq. (2.25) to
expose the SSC preserving S-part and the SSC violating
K-part in Sμν. As expected, the extra Wilson coefficientsDi
appear with the SSC-violating terms. If we further restrict
the external states to be transverse, the K-part becomes
subleading in the classical limit and thus drops out. This
leads to the three-point amplitudes AFT1s

3 and AFT2
3

AFT1s
3 ¼ AFT2

3 ¼ 2ð−ε1 · ε̄2Þs
�
ϵ3 · p1 − iC1Sμνq

μ
3ϵ

ν
3

þ C2

2m2
ϵ3 · p1Sμνqν3S

μ
λqλ3

�
: ð3:3Þ

This amplitude only depends on the Ci Wilson coefficients.
The fact that AFT1s

3 does not contain any additional Wilson
coefficients is analogous to the three-point gravity ampli-
tude of Ref. [78], which did not contain any additional
Wilson coefficients either, connected to restricting the
external states to traceless and transverse spin-s ones.
For FT3, we can similarly restrict the external states

to be spin-s. The resulting amplitude AFT3s
3 is the same as

Eq. (3.3), i.e.

AFT1s
3 ¼ AFT2

3 ¼ AFT3s
3 : ð3:4Þ

We may also choose the indefinite-spin states (2.55); the
corresponding amplitudeAFT3g

3 receives contributions from
both the spin-s and spin-(s − 1) external states,

AFT3g
3 ¼ AFT3s

3 þ 2i
ffiffiffi
s

p
m

ð−ε1 · ε̄2Þs−1ðε1 · q3 þ ε̄2 · q3Þ
× ½C̃1ðϵ3 · p1Þ þ C̃2ðE1 · f3 · Ē4Þ�

¼ 2ð−1ÞsE1 · Ē2

�
ϵ3 · p1 − iC1Sμνq

μ
3ϵ

ν
3

þ C2

2m2
ϵ3 · p1Sμνqν3S

μ
λqλ3 þ ðiC̃1 − 1Þϵ3 · p1

q · K
m

þ ðiC1 − C̃2ÞSμνqμ3ϵν3
q · K
m

�
; ð3:5Þ

where we have used Eqs. (2.48) and (2.50) to obtain the
final expression in terms of the boost vector K. The
appearance of the Wilson coefficients C̃1 and C̃2 associated
with SSC violation. We find that, up to OðK2Þ terms,
the additional Wilson coefficients in FT1g and FT3g are
related as

AFT3g
3 ¼ AFT1g

3 for iC̃1 ¼ 1 − C1 þD1 and

iC̃2 ¼ D2 − C1: ð3:6Þ

The extra factor of i in this map reflects the unphysical
nature of the spin-(s − 1) states in FT1 vs their physical
nature in FT3. While this map is not an equivalence of
Lagrangians, it provides a simple relation between the
amplitudes of FT1 and FT3. A similar map also exists at
OðK2Þ if we include such interactions in both FT1
and FT3.

B. Four-point Compton amplitudes

At four points, the Compton amplitudes are given by the
three Feynman diagrams in Fig. 1, with the relevant
propagators and three- and four-point vertices derived from
our field theories. While the Lagrangian of FT1 is inde-
pendent of s and therefore general properties of Lorentz
generators and coherent states are sufficient for amplitude
calculations, the explicit dependence on s of FT2 and FT3
Lagrangians requires that for them we choose a particular
representation. As noted in Sec. II C, we choose the ðs; sÞ
representation, for which the coherent states are given by
Eq. (2.35) and the Lorentz generators are listed in
Eq. (2.38). Specifically for four-point Compton amplitudes,
the Feynman rules for FT2 and FT3 simplify considerably
because every vertex has at least one on-shell massive
particle represented by the symmetric, traceless and
transverse polarization tensor. Thus, when deriving the
three- and four-point vertex rules we can ignore all the

FIG. 1. The three Feynman diagrams describing lowest-order Compton scattering.
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interactions covered by the ellipsis in Eq. (2.7) because
they only include traces or/and longitudinal modes of the
external on-shell particle. For the same reason, we can also
ignore all the (resummed) propagators that involve lower-
spin auxiliary fields.
The spin-independent part of the Compton amplitude is

common to FT1 though FT3,

AFT1;2;3
4;cl jS0 ¼ ð−1ÞsE1 · Ē4

2ðp1 · f2 · f3 · p1Þ
ðp1 · q2Þ2

; ð3:7Þ

where fμνi ≡ εμi q
ν
i − ενi q

μ
i . For the ðs; sÞ representation, we

do not need to distinguish E1 · Ē4 and ðε1 · ε̄4Þs as their
difference is higher order in S and K. Up to the overall

factor E1 · Ē4, Eq. (3.7) reproduces the classical limit of
the scalar QED Compton amplitude given in, for example,
Eq. (2.8) of Ref. [110].14

1. The linear-in-spin Compton amplitudes

Consider now spin-dependent parts of amplitudes of
the four field theories. For FT1, here and after we choose
ϕs to be in the ðs; sÞ representation to streamline the
comparison with FT2 and FT3. We first consider AFT1s in
which the external states are transverse. Evaluating the
linear-in-spin part of the three Feynman diagrams in
Fig. 1 with the propagators and vertices following from
the Lagrangian of FT1 leads to

AFT1s
4;cl jS1 ¼ ð−ε1 · ε̄4ÞsSðp1Þμν

�
iC1

ðp1 · q2Þ2
ðfμν2 q2ρf

ρλ
3 þ fμν3 q3ρf

ρλ
2 Þp1λ þ

2iC2
1

p1 · q2
fνρ2 f3ρμ

þ 2iD1ð2C1 −D1 − 2Þ
ðp1 · q2Þm2

p1ρf
ρμ
2 fνλ3 p1λ

�
: ð3:8Þ

The amplitudeAFT1
4;cl jS1 depends on both theC1 andD1 Wilson coefficients.15 We note thatD1 appears only together with the

combination p1ρf
ρμ
2 fνλ3 p1λ. Repeating the calculation while relaxing the transversality on external states leads to the

Compton amplitude,

AFT1g
4;cl jS1 ¼ ð−1ÞsE1 · Ē4

�
Sðp1Þμν

�
iC1

ðp1 · q2Þ2
ðfμν2 q2ρf

ρλ
3 þ fμν3 q3ρf

ρλ
2 Þp1λ þ

2iC2
1

p1 · q2
fνρ2 f3ρμ

þ 2iD1ð2C1 −D1 − 2Þ
ðp1 · q2Þm2

p1ρf
ρμ
2 fνλ3 p1λ

�
þ Sðp1Þμνpν

1

�
2iD1ðC1 þ 1Þ
ðp1 · q2Þm2

p1ρðfρλ3 f2λμ − fρλ2 f3λμÞ

þ 2iD1

ðp1 · q2Þ2m2
p1ρp1λðfρμ3 q3σfσλ2 þ fρμ2 q2σfσλ3 Þ

�	
: ð3:9Þ

We note that the first term is formally identical to
Eq. (3.8) for FT1 except for the replacement S → S,
while the second term is proportional to the SSC con-
dition Sμνpν

1.
Proceeding to FT2 of a single transverse spin-s field,

we extract the classical OðS1Þ Compton amplitude from
explicit calculations for s ¼ 1, 2, 3 using the Lagrangian
given in the third row of Table I. Unlike FT1, the
amplitudes are now given in terms of explicit polarization
vectors instead of spin tensors such that we need to convert
the former into the latter. Since the classical amplitudes in
terms of spin tensors scale as Oðq0Þ and the spin tensors
scale as Oðq−1Þ, in a fixed-spin calculation, the classical
part of theOðS1Þ amplitude is among theOðqÞ terms of the
full quantum amplitude [78]. At this order, the massive

polarization vectors appear in two structures, ðε1 · ε̄4Þs and
ðε1 · ε̄4Þs−1ε½μ1 ε̄ν�4 . The terms proportional to ðε1 · ε̄4Þs
belong to the quantum spinless amplitude, which can be
ignored here. We then use the relation (2.40) to convert the
second structure to spin tensors. The final classical ampli-
tude is obtained by extrapolating the finite-spin results
to generic s and taking the s → ∞ of that expression. At
OðS1Þ, the amplitude after the replacement (2.40) is in fact
independent of s, as we have explicitly checked for s ≤ 3.
After identifying the classical part, the final answer for the
classical Compton amplitude is

AFT2
4;cl jS1 ¼ ð−ε1 · ε̄4ÞsSðp1Þμν

×

�
iC1

ðp1 · q2Þ2
ðfμν2 q2ρf

ρλ
3 þ fμν3 q3ρf

ρλ
2 Þp1λ

þ 2iC2
1

p1 · q2
fνρ2 f3ρμ þ

2iðC1 − 1Þ2
ðp1 · q2Þm2

p1ρf
ρμ
2 fνλ3 p1λ

�
:

ð3:10Þ

14In Ref. [110] higher order in qi terms are also included since
they are needed when feeding the Compton amplitudes into
unitarity cuts for building higher PL two-body amplitudes.

15The gravitational analog of this amplitude is of OðS2Þ.
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Notably, this amplitude is independent of D1, and it can be obtained from Eq. (3.8) by setting D1 to a special value,

AFT1s
4;cl jS1 ¼ AFT2

4;cl jS1 for D1 ¼ C1 − 1: ð3:11Þ

In other words, for this special value ofD1, item FT1 effectively propagates only the spin-s states. Moreover, the special value
C1 ¼ 1 andD1 ¼ 0 reproduces the root-Kerr Compton amplitudes [114]. The appearance of additionalWilson coefficients in
AFT1s compared with AFT2 can be attributed to the additional propagating degrees of freedom.16

Finally, FT3 amplitudes also receive contributions from lower-spin states. We first restrict the lower spins to only appear
in the intermediate states. Repeating the same steps as for FT2 we find that spin-(s − 1) intermediate states contribute as

AFT3s
4;cl jS1 ¼ AFT3

4;cl jS1 þ ð−ε1 · ε̄4ÞsSðp1Þμν
�

2iC̃2
1

ðp1 · q2Þm2
p1ρf

ρμ
2 fνλ3 p1λ

�
: ð3:12Þ

We note that the OðS1Þ amplitude does not change if we include intermediate states with spin less than s − 1. Comparing
with Eq. (3.8), we find that the two amplitudes are formally related by the same map as Eq. (3.6),

AFT3s
4;cl jS1 ¼ AFT1s

4;cl jS1 for iC̃1 ¼ 1 − C1 þD1: ð3:13Þ
Furthermore, this map persists even for amplitudes with external lower-spin states. To see this, we first rewrite Eq. (3.9)
using Eq. (2.25),

AFT1g
4;cl jS1 ¼ ð−1ÞsE1 · Ē4

�
Sðp1Þμν

�
iC1

ðp1 · q2Þ2
ðfμν2 q2ρf

ρλ
3 þ fμν3 q3ρf

ρλ
2 Þp1λ þ

2iC2
1

p1 · q2
fνρ2 f3ρμ

þ 2iD1ð2C1 −D1 − 2Þ
ðp1 · q2Þm2

p1ρf
ρμ
2 fνλ3 p1λ

�
þ 2Kðp1Þμp1ν

m

�
D1 − C1

ðp1 · q2Þ2
ðqμ2 þ qμ3Þfνρ2 f3ρλpλ

1

−
C1ð1 − C1 þD1Þ

p1 · q2
ðfνρ2 f3ρμ − fνρ3 f2ρμÞ

�	
: ð3:14Þ

We then find AFT3g
4 , with external states in Eq. (2.55), from the Lagrangian of FT3. The momentum dependence of

vertices is essential to express the contributions with spin-(s − 1) external states in terms ofKμ, using Eqs. (2.48) and (2.50).
The result is

AFT3g
4 jS1 ¼ ð−1ÞsE1 · Ē4

��
Sðp1Þμν

iC1

ðp1 · q2Þ2
ðfμν2 q2ρf

ρλ
3 þ fμν3 q3ρf

ρλ
2 Þp1λ þ

2iC2
1

p1 · q2
fνρ2 f3ρμ

þ 2i½ðC1 − 1Þ2 þ C̃2
1�

ðp1 · q2Þm2
p1ρf

ρμ
2 fνλ3 p1λ

�
þ 2Kðp1Þμp1ν

m

�
iC̃1 − 1

ðp1 · q2Þ2
ðqμ2 þ qμ3Þfνρ2 f3ρλpλ

1

−
iC1C̃1

p1 · q2
ðfνρ2 f3ρμ − fνρ3 f2ρμÞ

�	
: ð3:15Þ

Now comparing Eqs. (3.14) and (3.15), we find that

AFT3g
4;cl jS1 ¼ AFT1g

4;cl jS1 for iC̃1 ¼ 1 − C1 þD1: ð3:16Þ
The robustness of this map demonstrates that the terms tagged by the extra Wilson coefficients present in the amplitudes
(and observables) of FT1 and FT3 carry new physical information compared to FT2.

2. The quadratic-in-spin Compton amplitudes

Feynman-diagram calculations using the propagators and vertices of FT1 as well as properties of transverse coherent
states show that, at OðS2Þ the Compton amplitude depends on two distinct contractions of spin tensors:

AFT1s
4;cl jS2 ¼ ð−ε1 · ε̄4ÞsðSðp1ÞμνSðp1ÞλσXμνλσ þ Sðp1ÞμλSðp1ÞλνXμνÞ: ð3:17Þ

16In Ref. [175], a similar computation was carried out for s ¼ 1 and observed a similar effect. Their amplitudes are equivalent to our
D1 ¼ 0 case.
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Their kinematic coefficients are given by

Xμνλσ ¼ C2
1ðq2 · q3Þ

2ðp1 · q2Þ2
fμν2 fλσ3 þ C1D1 þD2ðC1 −D1 − 1Þ

ðp1 · q2Þm2
p1ρðfρμ3 qν2f

λσ
2 − fρμ2 qν3f

λσ
3 Þ; ð3:18Þ

Xμν ¼ C2

m2

�
p1ρp1αðfρμ2 qν2f

αβ
3 q2β þ fρμ3 qν3f

αβ
2 q3βÞ

ðp1 · q2Þ2
þ p1ρðfρσ2 f3σμqν3 − fρσ3 f2σμqν2Þ

ðp1 · q2Þ

þ 2C1p1ρðfρμ3 fνσ2 q3σ − fρμ2 fνσ3 q2σÞ
ðp1 · q2Þ

þ 2ðC1 − 1Þp1ρf
ρμ
2 fνσ3 p1σ

m2
þ 2C1f2ρμf

νρ
3

�
: ð3:19Þ

The dependence on Wilson coefficients indicates that both terms originate from both Lmin and Lnon-min, and the Lorentz
algebra was used to reduce a product of three Lorentz generators to a sum of irreducible (symmetric) products. We also note
that the D1 and D2 dependence only appear in Xμνλσ.
Choosing general asymptotic states instead of transverse ones leads to the amplitude AFT1g. Apart from the replacement

S → S in AFT1s
4;cl jS2 , the amplitude contains terms proportional to the covariant SSC conditions:

AFT1g
4;cl jS2 ¼ ð−1ÞsE1 · Ē4½Sðp1ÞμνSðp1ÞλσXμνλσ þ Sðp1ÞμλSðp1ÞλνXμν þ Sðp1Þμνpν

1Sðp1ÞλσYμλσ

þ Sðp1Þμνpν
1Sðp1Þλσpσ

1Y
μλ þ Sðp1ÞμλSðp1Þλνpν

1Y
μ�; ð3:20Þ

where the additional kinematic coefficients are given by

Yμλσ ¼ C1ðD1 −D2Þ
ðp1 · q2Þm2

ðq2ρfρμ3 fλσ2 − q3ρf
ρμ
2 fλσ3 Þ þ C1D1ðq2 · q3Þ

ðp1 · q2Þ2m2
p1ρðfρμ3 fλσ2 − fρμ2 fλσ3 Þ

þ 2C1D2

ðp1 · q2Þm2
ðq2 þ q3Þμfσα2 f3αλ þ

2D2
1

ðp1 · q2Þm4
p1ρp1αðfρμ2 fαλ3 qσ2 − fρμ3 fαλ2 qσ3Þ

þ 2D2

ðp1 · q2Þ2m2
p1αðqλ2fσμ2 fαβ3 q2β þ qλ3f

σμ
3 fαβ2 q3βÞ

þ 2ðC2ðC1 −D1 − 1Þ −D1D2Þ
ðp1 · q2Þm4

ðq2 þ q3Þμp1ρf
ρλ
3 f

σα
2 p1α

þ C2ðC1 −D1 − 1Þ
m4

ðfμλ2 fσρ3 þ fμλ3 fσρ2 Þp1ρ þ
D1D2

m4
p1ρðfρμ3 fλσ2 þ fρμ2 fλσ3 Þ; ð3:21Þ

Yμλ ¼ 2D2
1

ðp1 · q2Þm4
p1ρðfρμ2 q2αfαλ3 − fρμ3 q3αfαλ2 Þ þ 2D2

1ðq2 · q3Þ
ðp1 · q2Þ2m4

p1ρf
ρμ
2 p1αfαλ3

þ C2

ðp1 · q2Þ2m4
p1ρðqμ2fρλ2 p1αf

αβ
3 q2β þ qμ3f

ρλ
3 p1αf

αβ
2 q3βÞ

þ C2 − 2D1D2

ðp1 · q2Þm4
p1αðqμ3fαβ2 f3βλ − qμ2f

αβ
3 f2βλÞ þ

2C1C2

ðp1 · q2Þm4
p1αðqμ2fαβ2 f3βλ − qμ3f

αβ
3 f2βλÞ

−
2C1C2

m4
fμα2 f3αλ −

2C2D1

m6
p1ρp1αðfρμ2 fαλ3 þ ημλfρβ2 f3βαÞ; ð3:22Þ

Yμ ¼ 2C2D1

ðp1 · q2Þm4
p1ρp1αðfρμ2 fαβ3 q2β − fρμ3 fαβ2 q3βÞ

−
C2ðC1 þD1 − 1Þ

m4
p1ρðfρα3 f2αμ þ fρα2 f3αμÞ: ð3:23Þ

We proceed next to the OðS2Þ tree-level Compton
amplitude of FT2. Repeating at this order the classical
scaling argument we described at OðS1Þ shows that, in a
fixed-spin calculation, the classical tree-level Compton

amplitude is contained in the Oðq2Þ terms of the quantum
tree-level Compton amplitude. Thus, we extract these
terms from explicit s ¼ 1, 2, 3 calculations, extrapolate
them to large spin and keep only the leading term.
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The massive polarization vectors now appear in four
structures,

ðε1 · ε̄4Þs; ðε1 · ε̄4Þs−1ε½μ1 ε̄ν�4 ;
ðε1 · ε̄4Þs−1εðμ1 ε̄νÞ4 ; ðε1 · ε̄4Þs−2ε½μ1 ε̄ν�4 ε½ρ1 ε̄λ�4 ; ð3:24Þ

where the first two correspond to the quantum spinless and
OðS1Þ amplitudes that can be ignored here. We use the
replacement (2.42) and (2.43) for the last two structures. It
turns out that the dependence on s is simple so that we can
extrapolate it to obtain the general s dependence and take
s → ∞ limit. The kinematic coefficient of SμρSρν can be
accessed by any s ≥ 1; in the large s limit, it exactly
reproduces the Xμν shown in Eq. (3.18). The structure
SμνSρλ appears for s ≥ 2. A careful analysis with s ¼ 2
and 3 gives identical results, so that we postulate that the
coefficient of SμνSρλ is independent of s. Thus we find that
the tree-level Compton amplitude of FT2 is

AFT2
4;cl jS2 ¼ ð−ε1 · ε̄4ÞsðSμνSλσX̃μνλσ þ SμλSλνXμνÞ;

X̃μνλσ ¼ C2
1ðq2 · q3Þ

2ðp1 · q2Þ2
fμν2 fλσ3 þ C1ðC1 − 1Þ

ðp1 · q2Þm2

× p1ρðfρμ3 qν2f
λσ
2 − fρμ2 qν3f

λσ
3 Þ; ð3:25Þ

where Xμν is defined in Eq. (3.19). These coefficients
depend only on C1 and C2 and are independent of D1

and D2. We again observe the same pattern as in the linear-
in-spin case,

AFT1s
4;cl jS2 ¼ AFT2

4;cl jS2 for D1 ¼ C1 − 1: ð3:26Þ

We note that the special value of D1 also removes the
dependence on D2.
Similar toOðS1Þ, theOðS2Þ Compton amplitudes of FT3

receive contributions from lower-spin intermediate states.
Keeping the external states transverse, we get

AFT3s
4;cl jS2 ¼ AFT2

4;cl jS2 þ ð−ε1 · ε̄4ÞsSðp1ÞμνSðp1Þλσ

×

�
C̃1C̃2

ðp1 · q2Þm2
p1ρðfρμ3 qν2f

λσ
2 − fρμ2 qν3f

λσ
3 Þ

�
:

ð3:27Þ

Just like the previous cases, the same formal relations
hold between the additional Wilson coefficients in FT1
and FT3. Indeed, comparing Eqs. (3.27) and (3.17), it is
easy to see that

AFT1s
4;cl jS2 ¼ AFT3s

4;cl jS2 for iC̃1 ¼ 1 − C1 þD1 and

iC̃2 ¼ D2 − C1; ð3:28Þ

which is identical to Eq. (3.6). This demonstrates that the
relation between extra Wilson coefficients and extra

propagating degrees of freedom holds also at OðS2Þ. A
comparison between AFT1g

4;cl and AFT3g
4;cl at OðS1K1Þ and

OðK2Þ requires that we include in the Lagrangian of FT3 a
spin-(s − 2) field ϕs−2, and additional operators that con-
tribute independently at OðK2Þ, for example Eq. (2.59) for
FT1. This is because the effect ofOðK2Þ operators show up
at OðS1K1Þ in the four-point Compton amplitudes due to
the commutator ½K2; K� ∼ SK. Finally, we note that the
spin-transition Compton amplitude As→s−1

4 under a fixed-
spin calculation may superficially contain a super-classical
contribution that does not cancel between the two matter
channels. Consistency of the theory requires however that
in the large-spin limit this term is subleading. We will
assume that this cancellation holds as s → ∞. It is non-
trivial to carry out explicit calculations to demonstrate this,
but would be worth investigating.

C. Two-body amplitudes

In previous subsections, we have explored and under-
stood the effect of various types of interactions between
higher-spin fields and photons on Compton amplitudes,
and the number of Wilson coefficients necessary to
describe such interactions. We found that, under suitable
conditions like allowing spin magnitude change, this
number is indeed larger than that required to describe
the interactions of SSC preserving spins. The rationale of
this exercise is to eventually understand their effects on
two-body observables, such as the momentum impulse and
the spin kick. It was originally suggested in the context
of gravity that a larger number of Wilson coefficients may
be required to describe more general interactions [64].
We therefore proceed to expose the photon-mediated
two-body amplitudes and, in later sections, the observables
that follow from them as well as their comparison with a
wordline perspective. We use the generalized unitarity
method [138,139,141] to construct the relevant integrands,
while taking advantage of the simplifications introduced in
Ref. [193]. To reduce the encountered loop integrals to
known ones we make use of integration by parts [144,148]
as implemented in FIRE [194,195].
We use the momentum and mass variables

m̄1 ¼m2
1−q2=4; m̄2

2¼m2
2−q2=4; y¼ p̄1 · p̄2

m̄1m̄2

;

p̄1 ¼p1þq=2¼−p4−q=2; p̄2¼p2−q=2¼−p3þq=2;

ð3:29Þ

which are originally used for the expansion in the soft
region of gravitational amplitudes in [149]. We primarily
focus on FT1 because this is what we compare with a
worldline theory. Unitarity guarantees that the two-body
amplitudes of FT2 can be obtained from those of FT1 by
setting D1 ¼ C1 − 1 and imposing the covariant SSC,
while the two-body amplitudes of FT3 can be obtained
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using the map between the extra Wilson coefficients
proposed in the previous subsection.

1. Tree level

The structure of the two-body amplitude at tree level and
in the classical limit is

iMtree
4;cl ¼ ð4παÞðE1 · Ē4ÞðE2 · Ē3Þ

�
d⌶
q2

�
; ð3:30Þ

where q is the photon momentum, and the numerator d⌶ is
a function of momenta and spin tensors which scales as
d⌶ ∼ q0 in the classical limit. Our results for FT1g through
the quadratic order in spin are as follows:

d⌶jspinless ¼ 4iym̄1m̄2;

d⌶jFT1gS1
1
S0
2

¼ −4m̄2S1μνðC1ð1Þū
μ
2q

ν −D1ð1Þyū
μ
1q

νÞ;
d⌶jFT1gS1

1
S1
2

¼ 4iC1ð1ÞC1ð2ÞS
μν
1 qνS2μρqρ

− 4iSμν
1 qνS

ρλ
2 qλðC1ð1ÞD1ð2Þū2μū2ρ

þ C1ð2ÞD1ð1Þū1μū1ρ −D1ð1ÞD1ð2Þyū1μū2ρÞ;

d⌶jFT1gS2
1
S0
2

¼ 2im̄2

m̄1

½yC2ð1ÞS
μν
1 qνS1μρqρ − yC2ð1ÞðSμν

1 ū1μqνÞ2

− 2D2ð1ÞS
μν
1 ū1μqνS

ρλ
1 ū2ρqλ�; ð3:31Þ

where the spinless case agrees with Refs. [108,110,191].
The notation CiðjÞ and DiðjÞ refers to the Ci and Di

coefficients associated with body j. If the external states
are transverse, ðE1 · Ē4ÞðE2 · Ē3Þ ¼ ðε1 · ε̄4Þsðε2 · ε̄3Þs, then
the spin tensor obeys the covariant SSC, such that,

d⌶jFT1sS1
1
S0
2

¼ d⌶jFT2S1
1
S0
2

¼ d⌶jFT3sS1
1
S0
2

¼ −4C1ð1Þm̄2S
μν
1 ū2μqν;

d⌶jFT1sS1
1
S1
2

¼ d⌶jFT2S1
1
S1
2

¼ d⌶jFT3sS1
1
S1
2

¼ 4iC1ð1ÞC1ð2ÞS
μν
1 qνS2μρqρ;

d⌶jFT1sS2
1
S0
2

¼ d⌶jFT2S2
1
S0
2

¼ d⌶jFT3sS2
1
S0
2

¼ 2iC2ð1Þym̄2

m̄1

Sμν1 qνS1μρqρ:

ð3:32Þ

The small velocity expansion of the first two expressions
agrees with the results of Ref. [191]. They are related
to Eq. (3.31) through the replacement Si → Si and
Siμνūνi ¼ 0, which holds to all orders in spin at tree level.
We note that, to first order on Ki, the amplitudes of FT3g
can also be obtained from Eq. (3.31) through the Wilson
coefficient map Eq. (3.6).
In Sec. V we compare observables from the amplitudes

AFT1g of FT1 and those from worldline calculations in
the absence of an SSC. We find a perfect match both at
OðαÞ, which follow from the amplitudes above, and at
Oðα2Þ which follow from the one-loop amplitudes we now
summarize.

2. One loop

While four-point Compton amplitudes are not relevant
for the tree-level two-body scattering, they are an integral
part of two-body scattering at one loop. The generalized
unitarity method [138,139,141] provides a means to con-
struct the classically relevant parts of the latter in terms of
the former. We should therefore expect that the precise
intermediate states contributing to Compton amplitudes
have observable consequences for the scattering of two
matter particles. In particular, we note that intermediate
states of spin different from the external spin can be
projected out either by using only transverse spin-s fields
or by choosing particular values for the extra Wilson
coefficients, see Eq. (3.11). Since before loop integration,
the part of the one-loop two-body amplitude that is relevant
in the classical limit is literally the product of two Compton
amplitudes summed over states, the latter observation must
have hold at one loop as well. Thus, we may follow this
strategy to compute the one-loop two-body amplitude
of FT1g.
The complete one-loop amplitude exhibits classically

singular, classical and quantum terms. The former two are

iMð1Þ
4;cl ¼ ð4παÞ2½CboxðI□ þ I⧖Þ þ iM▵þ▿ �; ð3:33Þ

where the first one, given by the box and crossed-boxed
integrals

I□ ¼
Z

ddl
ð2πÞd

1

l2ðl − qÞ2ð2p̄1 · lþ i0Þð−2p̄2 · lþ i0Þ ;

I⧖ ¼
Z

ddl
ð2πÞd

1

l2ðl − qÞ2ð2p̄1 · lþ i0Þð2p̄2 · lþ i0Þ ;

ð3:34Þ

is the classically singular part, while the second term,
containing the triangle integral

I△ ¼
Z

ddl
ð2πÞd

1

l2ðl − qÞ2ð2p̄1 · lþ i0Þ ; ð3:35Þ

is the classical part [131,132].
The spin-independent part of the amplitude is

Cboxjspinless ¼ −ðE1 · Ē4ÞðE2 · Ē3Þðd⌶jspinlessÞ2;

iM▵þ▿jspinless ¼ ðE1 · Ē4ÞðE2 · Ē3Þ
iðm̄1 þ m̄2Þ
4

ffiffiffiffiffiffiffiffi
−q2

p : ð3:36Þ

As its tree-level counterpart, it agrees with Refs. [110,196]
and it is the same in all three field theories.
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The linear-in-spin part of the classically singular term is

Cbox




FT1g
S1
1
S0
2

¼ −ðE1 · Ē4ÞðE2 · Ē3Þ
�
d⌶





spinless

× d⌶



FT1g
S1
1
S0
2

�
:

ð3:37Þ
As the spin-independent part (3.36), it is given by the
product of tree-level amplitudes, in agreement with
the expected exponential structure of the amplitude in
the classical limit [132,133,151]. The corresponding
expression at higher powers of the spins should be given
by the integration by parts (IBP) reduction of such products
of trees summed over all the possible ways of distributing
the spins in the two factors.
The classical part of the one-loop two-body amp-

litude can be organized in terms of the various possible

contractions of spin tensors. As at tree level, we write
explicitly the amplitude AFT1g for FT1 and obtain the
amplitudes in other theories via S → S and other limits on
Wilson coefficients. The structure of iM▵þ▿ jSn1

1
S
n2
2
is

iM▵þ▿ jSn1
1
S
n2
2
¼ ðε1 · ε̄4Þsðε2 · ε̄3Þs

4
ffiffiffiffiffiffiffiffi
−q2

p X
i

αðn1;n2;iÞOðn1;n2;iÞ;

ð3:38Þ

through second order in spin, the spin-tensor contractions
of Oðn1;n2;iÞ are the following:

(i) Linear in spin:

Oð1;0;1Þ ¼ Sμν
1 ū2μqν; Oð1;0;2Þ ¼ Sμν

1 ū1μqν: ð3:39Þ

(ii) Bilinear in spin:

Oð1;1;1Þ ¼ Sμν
1 qνS2μρqρ; Oð1;1;2Þ ¼ Sμν

1 ū2νS2μρū
ρ
1; Oð1;1;3Þ ¼ Sμν

1 ū2μqνSλσ
2 ū1λqσ;

Oð1;1;4Þ ¼ Sμν
1 S2μν; Oð1;1;5Þ ¼ Sμν

1 ū1νS2μρū
ρ
1; Oð1;1;6Þ ¼ Sμν

1 ū1νS2μρū
ρ
2;

Oð1;1;7Þ ¼ Sμν
1 ū2νS2μρū

ρ
2; Oð1;1;8Þ ¼ Sμν

1 ū1μqνSλσ
2 ū1λqσ; Oð1;1;9Þ ¼ Sμν

1 ū1μqνSλσ
2 ū2λqσ;

Oð1;1;10Þ ¼ Sμν
1 ū2μqνSλσ

2 ū2λqσ; Oð1;1;11Þ ¼ Sμν
1 ū1μū2νSλσ

2 ū1λū2σ: ð3:40Þ

(iii) Quadratic in spin:

Oð2;0;1Þ ¼ Sμν
1 qνS1μρqρ; Oð2;0;2Þ ¼ ðSμν

1 ū2μqνÞ2; Oð2;0;3Þ ¼ Sμν
1 S1μν;

Oð2;0;4Þ ¼ Sμν
1 ū1νS1μρū

ρ
1; Oð2;0;5Þ ¼ Sμν

1 ū1νS1μρū
ρ
2; Oð2;0;6Þ ¼ Sμν

1 ū2νS1μρū
ρ
2;

Oð2;0;7Þ ¼ ðSμν
1 ū1μqνÞ2; Oð2;0;8Þ ¼ Sμν

1 ū1μqνSλσ
1 ū2λqσ; Oð2;0;9Þ ¼ ðSμν

1 ū1μū2νÞ2: ð3:41Þ

All contractions that contain the covariant SSC constraints, Sμν
i ūiμ, vanish for AFT1s, AFT2 and AFT3s. The coefficients of

Oðn1;n2;iÞ at linear order in spin are

αð1;0;1Þ ¼ −
y

ðy2 − 1Þm̄1

½2C1ð1Þm̄1 þ ðC2
1ð1Þ − 2C1ð1ÞD1ð1Þ þD2

1ð1Þ þ 2D1ð1ÞÞm̄2�;

αð1;0;2Þ ¼ 1

ðy2 − 1Þm̄1

f½ðy2 þ 1ÞC1ð1Þ þ ðy2 − 1ÞD1ð1Þ�m̄1

þ ½C2
1ð1Þ − ðy2 þ 1ÞC1ð1ÞD1ð1Þ þ y2D2

1ð1Þ þ ð3y2 − 1ÞD1ð1Þ�m̄2g; ð3:42Þ

and we collect the coefficients up to quadratic order in
spin in an ancillary file. As we reduce AFT1g to AFT1s, the
coefficients of the surviving spin structures under the
covariant SSC are unchanged. To obtain the amplitude
for FT2 we further imposeD1 ¼ C1 − 1, which also makes
the D2 dependence vanish up to the quadratic order in spin
as in the Compton amplitudes. Similarly, to obtain the
amplitudes AFT3s we use the relations (3.6) to replace
the coefficientsD1 andD2 by C̃1 and C̃2 after imposing the
covariant SSC. Last but not least, we can also obtain AFT3g

up to linear order in K from AFT1g by simply using the
relations (3.6).

IV. WORLDLINE THEORIES

What worldline theory can reproduce the field-theory
results of the previous sections? In the field theories where
multiple spin states propagate, the spin vectors magnitude is
no longer conserved so to match this one needs to introduce
additional degrees of freedom on the worldline. Because
these additional degrees of freedom are constrained by the
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Lorentz generator algebra, the natural choice is to find these
degrees of freedom in the spin tensor itself. In Sec. V, we
construct a two-body Hamiltonian that explicitly exhibits
these additional dynamical variables. In this section our task
is to find a modified worldline that produces the same results
as the field theory.
We start from a standard worldline construction [170]

with the SSC corresponding to WL1, listed in Sec. I. We
see that the results we obtain for this theory then match
the field theory containing only a single massive quantum
spin state [97,175], which is related to the fact that both
necessarily preserve the spin vector magnitude. To match
field-theory results when multiple quantum spin states are
present, we introduce additional degrees of freedom on
the worldline by releasing the SSC, corresponding to
WL2. As in general relativity this has no physical effect
at first order in the coupling [64], but starting at second
order in the coupling, physical differences can appear; in
general relativity physical effects start at cubic order in
the spin tensor, but in electrodynamics this occurs at
linear order.
Specifically, we compute the tree-level Compton

amplitude to quadratic order in spin and probe-limit
Oðα2Þ two-body impulse and spin kicks to linear order
in spin with a scalar source. We do so initially using
WL1 with the covariant SSC imposed via a Lagrange
multiplier. Then, we switch to WL2 by removing the
Lagrange multiplier terms enforcing the SSC constraint.
This Compton amplitude of the modified worldline
formalism has the same spin tensor dependence as found
in the classical limit of the amplitude AFT1g of field
theory FT1 without a physical state projector limiting it
to the states of a single quantum spin. We find that not
only do the equations of motion consistently evolve all
the degrees of freedom, but that it is possible to match
the observables of the modified worldline with the field
theory, with a direct correspondence between the Wilson
coefficients of the two formalisms. The key consequence
is that both have a larger number of independent Wilson
coefficients than the conventional worldline approach in
which the SSC is imposed. We emphasize that the match
is rather nontrivial.

A. Worldline action with dynamical mass function

We begin with a brief review of the worldline
formalism, following Ref. [170]. The worldline formalism
seeks to describe the evolution of a body of matter in
terms of its spacetime location and internal degrees of
freedom. We refer to the spacetime location of the body
“center” in coordinates as zμðλÞ where λ is a real
parameter which parametrizes the worldline, called the
worldline time. For now we denote the internal degrees
of freedom of the body as ϕaðλÞ where a is an index
running over all of those internal degrees of freedom.
Below we take these degrees of freedom to track the

orientation of the body but for now the particular
structure of these degrees of freedom is not important.
The body’s evolution is described by an action which is
reparametrization invariant under monotonic redefinitions
of the worldline time λ0 ¼ λ0ðλÞ. The reparametrization
invariance can be imposed directly through the introduc-
tion of an einbein field eðλÞ. The einbein is defined to
transform under reparametrizations as

e0ðλ0Þ ¼ dλ
dλ0

eðλÞ: ð4:1Þ

A generic reparametrization invariant action is then of
the form:

S½e; z;ϕ� ¼
Z

∞

−∞
L
�
z;
ż
e
;ϕ;

ϕ̇

e

�
e dλ; ð4:2Þ

where dots indicate differentiation with respect to λ.
Defining the conjugate momenta as usual,

pμ ¼ −
∂ðLeÞ
∂żμ

; πa ¼ −
∂ðLeÞ
∂ϕ̇a ; ð4:3Þ

the Hamiltonian form of the action can be written as

S½e; z; p;ϕ; π� ¼
Z

∞

−∞
ð−πaϕ̇a − pμżμ − eHðz; p;ϕ; πÞÞdλ;

ð4:4Þ

and p, π and H are reparametrization invariant. It is
useful to introduce the notation

jpj ¼ ffiffiffiffiffiffiffiffiffiffi
pμpμ

p
; p̂μ ¼ pμ

jpj : ð4:5Þ

For a free particle, the Hamiltonian H ¼ −jpj þm
produces the geodesic equation of motion. In general,
H ¼ −jpj þmþ δHðz; p;ϕ; πÞ for some function δH
containing all additional couplings. The on-shell con-
straint imposed by the einbein’s equation of motion is
always H ¼ 0, which then determines jpj ¼ mþ δH. So,
it is useful to introduce the dynamical mass function
Mðz; p̂;ϕ; πÞ as the solution for jpj imposed by the
einbein equation of motion: jpj ¼ Mðz; p̂;ϕ; πÞ. Then,
we can take the Hamiltonian:

Hðz; p;ϕ; πÞ ¼ −jpj þMðz; p̂;ϕ; πÞ: ð4:6Þ

Note that this is equivalent to taking H ¼ p2 −M2 as in
[170], up to a redefinition of the Lagrange multiplier e.
In the context of electrodynamics it is possible to add

the minimal coupling through the dynamical mass func-
tion but then the conjugate momentum of the body is not
gauge invariant. Instead, by taking pμ to be the kinetic
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momentum (the conjugate momentum plus QAμ), we can
have pμ and consequently M be gauge invariant at the
cost of shifting pμżμ to ðpμ −QAμÞżμ. Thus, to couple
the worldline particle to electromagnetism it is simplest
to use the action:

S½e; z;p;ϕ;π� ¼
Z

∞

−∞

�
−pμżμ þQAμżμ − πaϕ̇

a

þeð ffiffiffiffiffiffiffiffiffiffi
pμpμ

p
−Mðz; p̂;ϕ;πÞÞ

�
dλ; ð4:7Þ

with a gauge and reparametrization invariant Lorentz-
scalar dynamical mass M.

B. Worldline theory with SSC

1. Worldline spin degrees of freedom

The standard worldline formulation incorporates spin
in a way reminiscent of rigid bodies in classical mechan-
ics. For a moving body, there is some point defined as
the center of that body, tracked by the worldline, which
moves in spacetime and we assume that other points of
the body move along with that center in “quasirigid”
motion, as defined in Ref. [197], requiring that the
internal structure is essentially unchanged.17 The orienta-
tion of the body is tracked by a tetrad eμAðλÞ that
represents the change of internal body displacements
undergone during the motion with respect to some
arbitrary default frame. Capital Latin indices are used
for the body’s internal Lorentz indices while lowercase
Greek indices are used as spacetime indices. As usual,
the tetrad satisfies

eμAeνBηAB ¼ gμν; gμνeμAeνB ¼ ηAB: ð4:8Þ

Internal body displacements are defined in the body’s
center-of-momentum frame, so that p̂μ is instantane-
ously taken as the time direction. Thus by definition
we take

eμ0 ¼ p̂μ: ð4:9Þ

Beyond this condition eμA may be any tetrad satisfying
Eq. (4.8). Any such tetrad can be decomposed into (1) a
tetrad which is parallel transported along the worldine,
then boosted by a standard boost so that its timelike
element is boosted to p̂μ, and (2) an arbitrary little-group
element of p̂μ. The three little-group parameters of p̂μ

can then be taken to be the ϕa coordinates. The spin
angular momentum of the body is the generator of

Lorentz transformations of the body orientation about
the body center, and so is given by

Sμν ¼ −πa
dϕa

dθμν






θ¼0

; ð4:10Þ

with Lorentz transformation parameters θμν. A short
computation with the above definitions reveals that they
enforce the covariant SSC:

Sμνpν ¼ 0: ð4:11Þ

In addition,

−
1

2
SμνΩμν ¼ πaϕ̇

a; ð4:12Þ

where the angular velocity tensor Ωμν is defined by

Ωμν ¼ ηABeμA
DeνB
Dλ

: ð4:13Þ

Using the spin tensor and the arbitrariness of the default
frame of the body, the action for a spinning body takes the
form

S½e; ξ; χ; z; p; e;S� ¼
Z

∞

−∞

�
−ðpμ −QAμÞżμ þ

1

2
SμνΩμν

þ eðjpj −Mðz; p̂;SÞÞ

þ ξμSμνpν þ χμðeμ0 − p̂μÞ
�
dλ:

ð4:14Þ

Lagrange multipliers ξμ and χμ enforce Sμνp̂ν ¼ 0 and
eμ0 ¼ p̂μ. This formulation of the action imposes the
covariant SSCSμνpν ¼ 0, corresponding to theWL1 theory.
One can shift the definition of the worldline zμ and in

doing so one finds that the definition of the spin changes as
does the constraint satisfied by the spin. Thus, one can
change to a new SSC through a shift of the worldline. In
this formalism, the ability to locally shift the definition of
the worldline in this way may be thought of as a gauge
transformation [45,173,174] and the Lagrange multipliers
supplied to enforce the covariant SSC and eμ0 ¼ p̂μ

correspond to a gauge fixing. Because the SSC removes
the S0a components of the spin tensor in the body’s center-
of-momentum frame, these timelike components are not
physical degrees of freedom. (Even when an SSC other
than the covariant SSC is considered, these timelike
components are determined by the other degrees of free-
dom using the appropriate SSC.)

2. Equations of motion with SSC

The variation of Eq. (4.14) in Minkowski space gives an
electromagnetic version of the Mathisson-Papapetrou-
Dixon (MPD) [6,7,198] equations:

17More precisely, quasirigidity is the requirement that the
multipole moments of the body’s current density and stress tensor
evolve only by translating along the worldline and Lorentz
transforming according to the orientation tracking tetrad.
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żμ ¼ p̂μ −
1

M
∂M
∂p̂μ

þ p̂σ

M
∂M
∂p̂σ

p̂μ þ Sμν

∂M
∂zν − 2 ∂M

∂Sνρ pρ −QFνρ

�
p̂ρ − 1

M
∂M
∂p̂ρ

þ p̂σ
M

∂M
∂p̂σ

p̂ρ
�

M2 − Q
2
SαβFαβ

;

ṗμ ¼ −QFμνżν þ
∂M
∂zμ

;

Ṡμν ¼ pμżν − pνżμ − 2Sμ
ρ ∂M
∂Sρν þ 2Sν

ρ ∂M
∂Sρμ −

∂M
∂p̂μ p̂ν þ

∂M
∂p̂ν p̂μ: ð4:15Þ

In varying to find these equations of motion we find that
the equations of motion are consistent with simply taking
χμ ¼ 0 and so if p̂μ ¼ eμ0 is imposed as an initial condition
then never adding the χμ term to the action still preserves
this condition for later times.
At linear order in spin the generic symmetry consistent

dynamical mass function is

M ¼ m −
QC1

2m
SμνFμν; ð4:16Þ

for constant free mass m and Wilson coefficient C1. With
this form of the dynamical mass function, the equations of
motion to linear-in-spin order are

żμ ¼
�
1þQC1

2m2
SαβFαβ

�
pμ

m
þQðC1 − 1Þ

m3
SμνFνρpρ

þOðS2Þ;

ṗμ ¼ −QFμνżν −
QC1

2m
Sρσ

∂μFρσ þOðS2Þ;

Ṡμν ¼ pμżν − pνżμ þ
QC1

m
ðSμρFρ

ν − SνρFρ
μÞ þOðS2Þ:

ð4:17Þ
These linear-in-spin equations of motion depend only on a
single Wilson coefficient following from the fact that with
the SSC imposed, the only independent linear in spin
operator is the one in Eq. (4.16). This is similar to the
situation in general relativity where the SSC allows only a
single independent Wilson coefficient at the linear in spin
level [45]. The appearance of twoWilson coefficients in the
field theory [cf. Eqs. (2.57), (3.8), and (3.9)] and one
coefficient in the worldline with the SSC imposed is the
analog of the similar appearance of a different number
of Wilson coefficients in general relativity between the
field-theory and worldline descriptions starting at the spin-
squared level in the action [64].

C. Worldline theory with no SSC

In Sec. IV B 1 we reviewed that an SSC (and particularly
the covariant SSC) is natural for the worldline formalism
for quasirigid bodies. Here we consider a modified version
of the worldline formalism in which we “remove” the SSC.
This corresponds to our worldline theory WL2. It explicitly
introduces additional physical degrees of freedom into the

theory. Remarkably we find that this modified worldline
theory cleanly matches the field-theory results of FT1g at
2PL OðS1Þ, including its extra independent Wilson coef-
ficients. This then allows us to interpret the appearance of
extra Wilson coefficients purely on the worldline, tying
them to additional dynamical degrees of freedom. A similar
construction was described in Ref. [175]. We find that these
extra degrees of freedom allow for the magnitude of the
spin vector to change.

1. Removing the SSC

Consider the worldline action,

S½e; ξ; χ; z; p; e;S� ¼
Z

∞

−∞

�
−ðpμ −QAμÞżμ þ

1

2
SμνΩμν

þ eðjpj −Mðz; p̂;SÞÞ
�
dλ; ð4:18Þ

which is identical to Eq. (4.14), except that the Lagrange
multiplier terms that enforce the SSC are dropped. By not
including these, the interdependence between the definition
of the body center degrees of freedom ðz; pÞ and the body
orientation degrees of freedom ðe;SÞ is removed. As
already noted, in Eq. (4.14) the SSC implies that the
S0a components of the spin tensor are not independent
physical degrees of freedom. In contrast, in Eq. (4.18) with
no SSC imposed we are explicitly promoting these timelike
components to be treated as physical. As we shall see, this
does not lead to inconsistencies in the equations of motion,
but instead adds dynamical degrees of freedom.
The variation of Eq. (4.18) with no SSC imposed results

in equations of motion,

żμ ¼ p̂μ −
1

M
∂M
∂p̂μ

þ p̂σ

M
∂M
∂p̂σ

p̂μ;

ṗμ ¼ −qFμνżν þ
∂M
∂zμ

;

Ṡμν ¼ pμżν − pνżμ − 2Sμ
ρ ∂M
∂Sρν

þ 2Sν
ρ ∂M
∂Sρμ −

∂M
∂p̂μ p̂ν þ

∂M
∂p̂ν p̂μ: ð4:19Þ

Comparing to Eq. (4.15) we see that only the equation of
motion for the worldline trajectory zμ differs from the case
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with the SSC imposed. Moreover, the absence of the SSC
Lagrangemultiplier term results in this equationbeing simpler.
At linear order in spin the generic symmetry consistent

dynamical mass function is

M ¼ m −
QC1

2m
SμνFμν −

QD1

m
p̂μSμνFνρp̂ρ; ð4:20Þ

for constants m, C1, D1. In this case, instead of the
single Wilson coefficient C1 we have the additional
coefficient D1 analogous to the appearance of a second
coefficient in the field theory FT2. To give a physical
meaning to D1 it is useful to define the spin vector Sμ and
mass moment vector Kμ:

Sμ ¼ 1

2
ϵμνρσp̂νSρσ; Kμ ¼ −Sμνp̂ν; ð4:21Þ

where ϵ0123 ¼ þ1. The boost vector Kμ is precisely what is
eliminated when the covariant SSC is imposed, or equiv-
alently what is algebraically constrained when a different
SSC is used. The complete information in the spin tensor is
recovered from these two vectors by

Sμν ¼ p̂μKν − Kμp̂ν þ ϵμνρσp̂ρSσ: ð4:22Þ
Directly, Kμ is the generator of “intrinsic” Lorentz boosts
(where by “intrinsic” we mean acting only on the internal
degrees of freedom). As well, − Kμ

jpj can be interpreted as the
displacement between the actual worldline zμðλÞ being used
and the worldline zμCOMðλÞ that would trace out the center of
mass of the body. To see this, look at the total angular
momentum Jμν:

Jμν ¼ zμpν −pμzν þSμν ¼
�
zμ −

Kμ

jpj
�
pν −pμ

�
zν −

Kν

jpj
�

þ ϵμνρσp̂ρSσ: ð4:23Þ
We can see that if the definition of the worldline is shifted
by − Kμ

jpj to a new worldline z0μ ¼ zμ − Kμ

jpj then the resulting

new spin tensor S0μν would satisfy the covariant SSC. In the
conventional worldline formalism this is considered as an
allowed redefinition which should lead to a physically
equivalent theory (in that whether the spin and coupling
expansions are performed about one or the other should not
affect observables). Here we do not require it to be so.
In the previous discussion, the bodies were treated as

pointlike. It is useful to remind ourselves of the meaningK
in the context of classical extended bodies. A familiar
analysis of the spin vector can allow further insight into the
meaning of Kμ. Let J be the generator of rotations about the
origin (not body centered) acting on a matter distribution
with energy density EðxÞ and linear momentum density
℘ðxÞ in a region V of space,

J ¼
Z
V
x ×℘ðxÞd3x: ð4:24Þ

When the center of the body is identified with the point z,
the orbital generator of Lorentz boosts is of course,

L ¼ z × p: ð4:25Þ
Thus, the “intrinsic” generator of rotations (the spin) of the
body is given by a familiar formula,

S ¼ J −L ¼
Z
V
ðx − zÞ ×℘ðxÞd3x: ð4:26Þ

Now performing the same analysis for the generator of
Lorentz boosts, letKtotal be the generator of Lorentz boosts
about the origin acting on the matter distribution,

Ktotal ¼
Z
V
ðt℘ðxÞ − xEðxÞÞd3x: ð4:27Þ

The “orbital” generator of Lorentz boosts is then

Korbital ¼ pt − Ez; ð4:28Þ
where E and p are the total energy and momentum of the
body. Thus, the “intrinsic” generator of Lorentz boosts of
the body is

K ¼ Ktotal −Korbital ¼ Ez −
Z
V
xEðxÞd3x: ð4:29Þ

Let zCOM be the center-of-momentum position of the body
in the center-of-momentum frame (E ¼ jpj). Then, auto-
matically,

zCOM ¼ 1

E

Z
V
xEðxÞd3x ⇒ zCOM ¼ z −

K
jpj : ð4:30Þ

This precisely establishes the interpretation of − Kμ

jpj as a

displacement between the worldline around which the spin
and coupling expansions are performed and the worldline
which tracks the center of mass of the body.
Note that we use a different convention in this section

compared to Sec. II. In particular, the worldline K and the
field-theory K are related by an analytic continuation,
iK ↦ K with both K and K being real, while the rest-
frame spin vectors are simply equal, S ↔ S. We comment
further in Sec. V H on the rationale behind this analytic
continuation.
Writing Kμ as a spatial integral moment of the energy-

momentum tensor as above identifies it as a mass dipole
moment of the body about the worldine position zμ.
This identification can be made directly from Dixon’s
formalism [198]. For a body with a charge density propor-
tional to its mass density then − Q

jpjK
μ would be the electric

dipole moment of the body. However, for a generic object
it is not necessarily the case that these densities are
proportional and so we need not assume that the electric
dipole moment is − Q

jpjK
μ. In particular, in the body’s

center-of-momentum frame its energy is simply its

ZVI BERN et al. PHYS. REV. D 109, 045011 (2024)

045011-24



dynamical mass function minus QA0 and in that frame
(4.20) becomes

M ¼ mþQðC1 −D1Þ
m

E ·K −
QC1

m
B · SþOðF2Þ:

ð4:31Þ
Thus the induced electric dipole moment d and magnetic

dipole moment μ relative to the worldline center z:

d ¼ −
QðC1 −D1Þ

m
K; μ ¼ QC1

m
S: ð4:32Þ

Immediately, 2C1 is the gyromagnetic ratio of the body
(which should take the value 1 for a classical distribution of
mass and charge which are proportional). For a distribution
in which mass and charge are proportional, C1 −D1 ¼ 1.
Here we consider the possibility that it takes a generic value
different from 1. The value of C1 −D1 ¼ 1 is explicitly
required by a worldline formalism which is assumed to
have worldline shift symmetry [45,173,174] because the
definition of the electric dipole moment immediately
implies a shift of the dipole moment by − Q

jpjK
μ whenever

the worldline is shifted by − Kμ

jpj. Thus, C1 −D1 ≠ 1 breaks

the worldline shift symmetry.
Of course, to have a proper description of extended

bodies that fits into the WL2 framework one should
understand the constraints on the energy and momentum
distributions arising from the Lorentz algebra. It would also
be very interesting to directly connect extended objects
with appropriate distributions of energy and momentum to
the extra Wilson coefficient of WL2.

2. Equations of motion with no SSC

With the dynamical mass function (4.20) we find
equations of motion in WL2 to linear order in spin:

żμ ¼ pμ

m

�
1þQC1

2m2
SρσFρσ −

QD1

m4
pνSνρFρσpσ

�

þQD1

m3
pρSρσFσμ þQD1

m3
SμνFνρpρ þOðS2Þ;

ṗμ ¼ −QFμνżν −
QC1

2m
Sρσ

∂μFρσ −
QD1

m3
pρSρσ

∂μFσαpα

þOðS2Þ

Ṡμν ¼ −
QC1

m
ðFμ

ρSρν − Fν
ρSρμÞ

−
QD1

m3
ðFμρpρSνσpσ − FνρpρSμσpσÞ

þQD1

m3
ðpμSνρFρσpσ − pνSμρFρσpσÞ þOðS2Þ:

ð4:33Þ
If one begins the time evolution with initial condi-

tions satisfying the covariant SSC and C1 −D1 ¼ 1, the

covariant SSC is preserved dynamically. C1 −D1 ≠ 1
produces violations of the covariant SSC. In light of this,
notice that if C1 −D1 is set to 1 in (4.33) and covariant SSC
satisfying initial conditions are chosen, then the equations
of motion (4.33) reduce to the equations of motion (4.17).
Consequently, this modified worldline formalism is strictly
more general than the conventional WL1 as it contains the
WL1 as a special case when appropriate initial conditions
and Wilson coefficient values are selected. In order to “turn
on” the SSC and reduce to the conventional worldline
formalism we can set D1 to the special value D1 ¼ C1 − 1
at any stage of calculation and use initial conditions
satisfying the covariant SSC.

3. Worldline Compton amplitude

Using the WL2 equations of motion we compute the
classical Compton amplitude to order OðαS2Þ for general
values of C1, D1 The classical Compton is obtained by
computing the coefficient of the outgoing spherical electro-
magnetic wave produced by the response of the spinning
body to in an incoming electromagnetic plane wave as in
Appendix D of [108] or as is done for gravity in [192]. In
particular, we consider an incoming plane wave vector
potential in Lorenz gauge,

Ain
μ ðXÞ ¼ eik·xξμ ð4:34Þ

and the response of a spinning particle to this potential
using the equations of motion of WL2. The OðαÞ pertur-
bative solutions can be returned to the current,

JμðXÞ ¼ δS
δAμ

¼
Z

∞

−∞

�
QżμδðX − ZÞ þ eQ

m
ðC1Sμν þD1ðp̂μSμρp̂ρ

− Sμρp̂ρp̂νÞÞ∂νδðX − ZÞ
�
dλ: ð4:35Þ

Then, treating that current as a source we compute the
perturbation of the vector potential. The large distance
behavior of the perturbed vector potential allows one to
read off the Compton amplitude Aμν by

AμðXÞ ¼ eik·xξμ þ eikr−iωt

4πr
Aνμξν þO

�
1

r2

�
: ð4:36Þ

The Compton amplitude can then be extracted directly from
the current by using the Lorenz gauge solution to the wave
equation at large distances. Doing so one finds

J̃μ ¼ 2πAνμξν; ð4:37Þ
where J̃μ is the Fourier transform of the current evaluated at
the outgoing photon momentum.
Using the current computed from the worldline equa-

tions of motion, the resulting classical Compton amplitude
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is found to fully agree with the AFT1g Compton amplitude
in (3.7), (3.9), and (3.20) (with the S2 terms matching up to
contact terms, which we did not explicitly include either on
the field theory or in the worldline theory).

4. Worldline impulses

For computing observables with these equations of
motion we consider the probe limit of a spinning particle
of mass m scattering off of a stationary scalar source. For
simplicity, we consider only the probe limit; even so, the
result is sufficiently complex to demonstrate a rather
nontrivial comparison with the field-theory calculations.
The source—a point charge moving with four-velocity
u2—has vector potential,

AμðxÞ ¼
Qu2μ

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx · u2Þ2 − x · x

p : ð4:38Þ

The solutions to the equations of motion of the probe in
powers of α ¼ Q2=ð4πÞ are of the form

zμðλÞ¼bμþuμ1λþαδzμð1ÞðλÞþα2δzμð2ÞðλÞþOðα3Þ; ð4:39Þ

pμðλÞ ¼ muμ1 þ αδpμ
ð1ÞðλÞ þ α2δpμ

ð2ÞðλÞ þOðα3Þ; ð4:40Þ

SμνðλÞ ¼ Sμν
1 þ αδSμν

ð1ÞðλÞ þ α2δSμν
ð2Þ þOðα3Þ: ð4:41Þ

The impact parameter bμ is defined to be transverse on the
initial momentum, b · p1 ¼ 0. The initial momentum muμ1
defines the initial four-velocity uμ1. All perturbations of p

μ

and Sμν asymptotically vanish for λ → �∞ while the
trajectory perturbations are logarithmically divergent with
the worldline time due to the long range nature of the
Coulomb potential. Due to this logarithmic divergence, in
order to treat the Oðα2Þ and higher solutions correctly, all
the perturbations may be set to 0 at an initial cutoff time
λ ¼ −T. Impulse observables are then computed by taking
the difference in observables at time T and −T and at the
end taking the limit T → ∞. Equivalently, the perturbations
may be given representations in terms of standard Feynman
integrals and computed using dimensional regularization,
such as in Ref. [162].

Computing the momentum impulse and spin kick to
Oðα2Þ and OðS1Þ in this way gives a perfect match to the
corresponding observables obtained from AFT1g when the
worldline Wilson coefficients C1 andD1 are identified with
their field-theory counterparts, as detailed in Sec. VG
below. The results of WL1 can be recovered from the
more general results of WL2 by setting the special value
D1 ¼ C1 − 1. To express the impulses, it is useful to define:

γ ¼ u1 · u2; v ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
γ

; ð4:42Þ

ǔμ1 ¼ uμ1 − γuμ2; ǔμ2 ¼ uμ2 − γuμ1; ð4:43Þ

and to decompose the impulses according to

Δpμ
1 ¼ αΔpμ

1ðα1Þ þ α2Δpμ
1ðα2Þ þOðS2

1Þ þOðα3Þ;
ΔSμν

1 ¼ αΔSμν
1ðα1Þ þ α2ΔSμν

1ðα2Þ þOðS2
1Þ þOðα3Þ: ð4:44Þ

Then at order OðαÞ and with the notation jbj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
−bμbμ

p
,

we find the impulse

Δpμ
1ðα1Þ ¼

2bμ

vjbj2 þ
2

m1γvjbj2

×

�
2
bμbν

jbj2 S1νρ þ S1
μ
ρ

�
ðD1γu

ρ
1 − C1u

ρ
2Þ

−
2S1νρuν1u

ρ
2

m1γ
3v3jbj2 ½ðC1 −D1γ

2Þuμ1 þ ðD1 − C1Þγuμ2�

ð4:45Þ

and the spin kick

ΔSμν
1ðα1Þ ¼

4

m1γvjbj2
ðS1

½μ
σδ

ν�
ρbσ − S1

½μ
ρbν�Þ

× ðD1γu
ρ
1 − C1u

ρ
2Þ: ð4:46Þ

At order Oðα2Þ, we find the impulse,

Δpμ
1ðα2Þ ¼ −

πbμ

2m1γvjbj3
−

2ǔμ1
m1γ

2v4jbj2 þ π
3bμbνS1νρ þ jbj2S1

μ
ρ

2m2
1γ

3v3jbj5 ½ðC2
1 − C1D1 −D1Þǔρ1 þD1ðC1 −D1 − 3Þγǔρ2�

þ 2
C2
1 −D1ð2C1 −D1 − 2Þγ2

m2
1γ

2v2jbj4 bνS1νρ

�
ηρμ þ ǔρ1u

μ
1 þ ǔρ2u

μ
2

γ2v2

�

− 4
bνS1νρ

m2
1γ

6v6jbj4 ½ðD1 − C1Þγ2ǔρ2ǔμ1 þ ðD1γ
2 − C1Þǔρ1ǔμ2� þ π

S1νρǔν1ǔ
ρ
2

2m2
1γ

7v7jbj3 f½ðC1 −D1Þ2 þ 2D1�γǔμ1
þ ½C2

1 − C1D1 −D1 −D1ðC1 −D1 − 3Þγ�ǔμ2g ð4:47Þ

and the spin kick,
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ΔSμν
1ðα2Þ ¼

π

m2
1γ

3v3jbj3 ½ðC
2
1 − C1D1 −D1Þðb½μS1ρ

ν�ǔρ1 − ǔ½μ1 S1ρ
ν�bρÞ þD1ðC1 −D1 − 3Þγðb½μS1ρ

ν�ǔρ2 − ǔ½μ2 S1ρ
ν�bρÞ�

þ 4

m2
1γ

2v2jbj4 f2ðC1b½μu
ν�
2 −D1γb½μu

ν�
1 ÞbρS1ρσðC1uσ2 −D1γuσ1Þ − ½C2

1 −D1ð2C1 −D1Þγ2�b½μS1ρ
ν�bρg

þ 4

m2
1γ

6v6jbj2 fðC1 −D1Þ2γ2ǔ½μ1 S1ρ
ν�ǔρ1 þ ðC1 −D1γ

2Þ2ǔ½μ2 S1ρ
ν�ǔρ2

þ ðC1 −D1γ
2Þγ½ðC1 −D1 − 1Þǔ½μ2 S1ρ

ν�ǔρ1 þ ðC1 −D1 þ 1Þǔ½μ1 S1ρ
ν�ǔρ2�g: ð4:48Þ

The nontrivial nature of the above results give us
confidence that we have indeed identified a worldline
model whose results match those of the field theory. It
would of course be useful to carry out further comparisons
to field theory, not only beyond the probe limit but also
more importantly to higher orders in the spin, especially for
the case of general relativity. Given the rather different
setups, a direct proof that the field-theory and worldline
descriptions will always yield equivalent results appears
nontrivial.

V. EFFECTIVE HAMILTONIAN INCLUDING
LOWER-SPIN STATES

References [64,78,79,168] extend the spinless
Hamiltonian of Ref. [132] to the case of spinning bodies.
This corresponds to the two-body effective description
EFT1, which is composed of the collection of all
independent operators containing up to a given power
of spin, each with arbitrary coefficients determined by
matching to either field-theory or worldline results. Here
we explicitly consider operators up to linear in spin.
We also construct a second EFT Hamiltonian, referred to
as EFT2, extending the degrees of freedom of Sμν to
include the intrinsic boost, Kμ. Interpreting the
Hamiltonians as quantum operators allows us to obtain
scattering amplitudes, which we then match to the
quantum-field-theory amplitudes found in Sec. III C.
This determines the coefficients in the Hamiltonians. A
suitable expectation value of the Hamiltonian operators
are then reinterpreted as classical Hamiltonians. The
corresponding equations of motion can be solved to give
the impulse, spin and boost kick along a scattering
trajectory, which we then compare to the corresponding
observables obtained from the worldlines WL1 and WL2,
described in Sec. IV. We find that the extra Wilson
coefficients that appear in WL2, FT1g and FT3g are
naturally accounted for in EFT2. Finally, we find a
compact eikonal formula [199–202], extending the spin
results of Ref. [78] to account for the appearance of the
intrinsic boost operator, that matches the results obtained
from the equations of motion and worldline. Eikonal
representations are automatically compact because they
encode the physical information in a single scalar
function.

A. Hamiltonian 1: Solely spinning degrees of freedom

We consider an effective description of the binary
containing only spin degrees of freedom, which leads to
equations of motion that preserve the magnitude of the spin
vector. We refer to this effective description as EFT1. This
is the same treatment as the one of Refs. [64,78,79] except
that here we consider electrodynamics instead of general
relativity. We briefly describe this Hamiltonian and then
proceed with a more extensive description of a modified
Hamiltonian which contains a boost operator and allows for
spin-magnitude change.
EFT1 contains the usual spin vector degrees of freedom,

along with the usual commutation or Poisson-bracket rela-
tions for spin. In terms of the quantum-mechanical states that
describe the bodies, this construction implies that we may
take them to belong to a single irreducible representation of
the rotation group. In particular, we choose the asymptotic
scattering states to be spin coherent states [190], which
are labeled by an integer s and a direction given by a unit
vector n̂ [78], as in the field-theory discussion in Sec. II. To
build themost generic Hamiltonian that accommodates these
spin degrees of freedom, we need only consider the spin
operator Ŝ. This is in accordance with the classical descrip-
tion of these particles, where one describes such a spinning
object in terms of the spin three-vector S.18

For simplicity, here we limit the discussion to a
Hamiltonian for one scalar and one spinning particle
valid to linear order in spin. This center-of-mass (CoM)
Hamiltonian is given by (see Ref. [78] for the correspond-
ing one in general relativity),

H1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

2

q
þ Vð0Þðr2; p2Þ

þ Vð1Þðr2; p2ÞL · Ŝ1

r2
; ð5:1Þ

where the potentials are

VðaÞðr2; p2Þ ¼ α

jrj c
ðaÞ
1 ðp2Þ þ

�
α

jrj
�

2

cðaÞ2 ðp2Þ þOðα3Þ;

ð5:2Þ

18For compactness, for r and p we do not distinguish a
quantum operator from the corresponding classical value by
using a different symbol, as in Refs. [78,79].
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and we have taken the particle 1 to carry spin S1, with the
binary system carrying angular momentum L ¼ r × p. For
these operators we have the commutation relations,

½Ŝ1;i; Ŝ1;j� ¼ iϵijkŜ1;k; ½ri; Ŝ1;j� ¼ ½pi; Ŝ1;j� ¼ 0;

½ri; pj� ¼ iδij: ð5:3Þ
For any operator that is a function solely of r, p, Ŝ1 the spin
magnitude is preserved, since all such operators commute
with the spin Casimir, i.e.,

½Ŝ2
1;O� ¼ 0; O ¼ fr; p; Ŝ1g: ð5:4Þ

Similarly, at the level of the classical equations of motion
the above implies that the spin magnitude is a conserved
quantity. Further details may be found in Ref. [78].

B. Hamiltonian 2: Inclusion of boost operator

In this subsection we expand the degrees of freedom so
that we are able to properly describe the field theories and
worldline theories that also contain additional degrees of
freedom, allowing the spin magnitudes to vary by their
interaction with the electromagnetic field. To this end,
inspired by theworldline construction in Sec. IV C, we extend
the above Hamiltonian to include the generator of intrinsic
boosts K̂. We start by motivating this choice. We proceed to
describe how does one build the most general two-body
Hamiltonian out of the available operators for the problem at
hand. Finally, as an explicit illustration, we build the
Hamiltonian linear in the spin and boost of one of the particles.
In order to have a Hamiltonian whose amplitudes match

those of FT1g and FT3 we are prompted to consider
additional operators. The natural choice is operators built
out of the vectorK1, already encountered in Eq. (4.23). The
operator K̂1 should act on the intrinsic degrees of freedom
of the body, hence it commutes with both r and p.
Accordingly, the commutation relations are

½Ŝ1;i; K̂1;j� ¼ iϵijkK̂1;k; ½ri; K̂1;j� ¼ ½pi; K̂1;j� ¼ 0; ð5:5Þ

where the first relation simply implies that K̂1 is a vector
operator. To fully characterize the operator K̂1 we need to
specify the commutation relations with itself. Motivated by
the connection to the worldline we take

½K̂1;i; K̂1;j� ¼ −iϵijkŜ1;k; ð5:6Þ

which identifies K̂1 with the generator of intrinsic boosts.
The operator algebra is completed by the commutators
familiar from the case without the K̂1 operator given
in Eq. (5.3).
Alternatively, the introduction of K̂1 may be motivated

by the requirement that the spin magnitude should
change under time evolution via the constructed
Hamiltonian. In the quantum-mechanical language, this
requires an operator that does not commute with Ŝ2

1. It
follows that it must also not commute with Ŝ1, i.e. it
must have tensor structure under intrinsic rotations. The
simplest object that satisfies this criterion is a vector
under intrinsic rotations that commutes with both r and p.
This reasoning leads to the introduction of an operator
obeying the commutation relations (5.5), while (5.6) still
needs to be motivated by the interpretation of K̂1 as the
boost generator. We indeed find that inclusion of K̂1

leads to scattering amplitudes between states of different
spin magnitude, similar to our field-theory constructions
above. Furthermore, while in these scattering amplitudes
the change in spin is minute, s → s − 1, the effect is
resummed to a finite change via Hamilton’s equations, as
we see in Sec. V E.
We proceed to construct the effective Hamiltonian.

The first question is to find the complete set of terms
that can appear. We constrain these based on symmetry
considerations: the Hamiltonian is invariant under parity
and time reversal (see, however, the discussion in Sec. V H).
To take advantage of these constraints we list how our
operators transform under the action of these symmetries:

Parity∶ P†rP ¼ −r; P†pP ¼ −p; P†Ŝ1P ¼ Ŝ1; P†K̂1P ¼ −K̂1;

Time reversal∶ T†rT ¼ r; T†pT ¼ −p; T†Ŝ1T ¼ −Ŝ1; T†K̂1T ¼ K̂1; ð5:7Þ

see e.g. Sec. 2.6 of Ref. [203]. Furthermore, we construct
terms that have classical scaling. The scaling of our
operators in the classical limit is

r ∼
1

λ
r; p ∼ λ0p; Ŝ1 ∼

1

λ
Ŝ1; K̂1 ∼

1

λ
K̂1; ð5:8Þ

where λ is a small parameter that characterizes the classical
limit (usually associated with ℏ).

Two additional properties that reduce the number of
operators are on-shell conditions and Schouten identities.
The former capture the freedom of field redefinitions in the
quantum-mechanical context or the freedom of canonical
transformations in the classical context. The latter stem
from the fact that we work with more than three three-
dimensional vectors, hence there must be linear relations
among them. While these considerations are not important
for the purposes of this paper, they can significantly reduce
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the number of terms one needs to consider when looking at
higher orders in spin and boost (see e.g. Ref. [64]).
Using the above one may systematically construct

independent terms in the Hamiltonian. At linear order in
spin and boost we have

O1 ¼
L · Ŝ1

r2
; O2 ¼

r · K̂1

r2
: ð5:9Þ

The Hamiltonian valid to linear order in spin and boost is
then

H2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

2

q
þ Vð0Þðr2; p2Þ

þ Vð1Þðr2; p2ÞL · Ŝ1

r2
þ Vð2Þðr2; p2Þ r · K̂1

r2
; ð5:10Þ

where we used the operators in Eq. (5.9) and the potential
coefficients given in Eq. (5.2). The Hamiltonian has an
additional operator containing K̂1 compared to the one
in Eq. (5.1).

C. Amplitudes from the effective Hamiltonian

Having identified the general form of the Hamiltonian
that can capture the classical physics of our field theories
with additional degrees of freedom, Eq. (5.10), we proceed
to determine its coefficient functions VðiÞ. We follow
closely Refs. [64,78,79] where analogous calculations were
carried out for Hamiltonians depending only on the spin
operator. As in that case, we consider scattering of spin-
coherent states [190]. These states may be superpositions of
fixed-spin-magnitude states or more general superpositions
that involve states of different spin magnitude, similar to
the field-theory construction in Eq. (2.44). For our purposes
it is sufficient to consider incoming and outgoing states
whose spin parts are identical. However, we note that it is
possible to also consider different incoming and outgoing
states. Since the incoming and outgoing states are taken to
be the same, the amplitudes are expressed in terms of dia-
gonal matrix elements of Ŝ and K̂. A coherent state jsi≡
js; n̂i with fixed spin magnitude s and direction n̂ is the
state of highest weight along the direction n̂. Similarly
with the field-theory discussion in Sec. II B, for such a state
we have

hsjŜjsi ¼ S ¼ sn̂; and hsjK̂jsi ¼ 0: ð5:11Þ

We build a generalized coherent state jΨi by superimposing
states jsi with different values of s, such that

hΨjŜjΨi ¼ S and hΨjK̂jΨi ¼ K; ð5:12Þ

where on the right-hand side of the above equation we
have the classical values of Ŝ and K̂. These classical
values depend on the details of the construction of jΨi, but

the exact dependence is not important for our purposes.
Finally, these states are built such that they obey the
property

hΨjfŜi1…ŜingjΨi ¼ Si1…Sin and

hΨjfK̂i1…K̂ingjΨi ¼ Ki1…Kin; ð5:13Þ

up to terms that do not contribute in the classical
limit, where the fg brackets signify symmetrization and
division by the number of terms (see also the discussion
in Sec. II B).
We may now proceed to compute the EFT amplitudes.

For the details of such a computation we refer the reader to
Refs. [78,79], where corresponding computations are
carried out for the purely spin case. We give here the
result for the amplitude obtained fromH2. The correspond-
ing amplitude fromH1 follows by setting the coefficients of
any operators containing K̂ to zero. The EFT amplitude
may be organized as

M ¼ M1PL þM2PL þ…; ð5:14Þ

where we have explicitly written the first and second
PL contributions and the ellipsis denotes higher PL orders.
We have

M1PL ¼ 4πα

q2
½að0Þ1 þ að1Þ1 Lq · S1 þ að2Þ1 iq ·K1�; ð5:15Þ

and

M2PL ¼ M2PL
△

þ ð4παÞ2aiter
×
Z

dD−1l
ð2πÞD−1

2ξE
l2ðlþ qÞ2ðl2 þ 2p · lÞ ;

M2PL
△

¼ 2π2α2

jqj ½að0Þ2 þ að1Þ2 Lq · S1 þ að2Þ2 iq ·K1�; ð5:16Þ

where the triangle subscript in M2PL
△

indicates that the
origin of the contribution is a one-loop triangle integral.
Here p and p − q are the incoming and outgoing spatial
momenta of particle 1 in the CoM frame respectively and
Lq ¼ ip × q. We also use

E ¼ E1 þ E2 and ξ ¼ E1E2

E2
; ð5:17Þ

where E1;2 are the energies of particles 1 and 2, which are
conserved in the CoM frame [see also Eq. (5.21)]. The
vectors S1 and K1 that appear in the above two equations
are the classical values of the corresponding quantum
operators. They depend on whether one chooses to scatter
the jsi or jΨi state as shown in Eqs. (5.11) and (5.12). The
1PL amplitude coefficients take the form
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að0Þ1 ¼ −cð0Þ1 ; að1Þ1 ¼ cð1Þ1 ; að2Þ1 ¼ −cð2Þ1 ; ð5:18Þ

while for the 2PL amplitude we have

að0Þ2 ¼ −cð0Þ2 þ 2Eξcð0Þ1 Dcð0Þ1 þ ð1 − 3ξÞðcð0Þ1 Þ2
2Eξ

;

að1Þ2 ¼ cð1Þ2

2
− Eξcð1Þ1 Dcð0Þ1 − Eξcð0Þ1 Dcð1Þ1 þ ð3ξ − 1Þcð0Þ1 cð1Þ1

2Eξ

þ Eξððcð2Þ1 Þ2 − 2cð0Þ1 cð1Þ1 Þ
2p2

;

að2Þ2 ¼ −
cð2Þ2

2
−
1

2
Eξcð2Þ1 ðcð1Þ1 − 2Dcð0Þ1 Þ þ Eξcð0Þ1 Dcð2Þ1

þ ð1 − 3ξÞcð0Þ1 cð2Þ1

2Eξ
; ð5:19Þ

and

aiter ¼ ðcð0Þ1 Þ2 − cð0Þ1 cð1Þ1 Lq · S1 þ cð0Þ1 cð2Þ1 iq ·K1: ð5:20Þ

In the above we have used shorthand notation cðaÞn ≡
cðaÞn ðp2Þ and D≡ d

dp2.

D. Hamiltonian coefficients from matching
to field theory

We are now in position to determine the Hamiltonian
coefficients that capture the same classical physics as the
field theories discussed in Sec. II; we do so by matching the
corresponding scattering amplitudes including their full
mass dependence. We start by specializing the field-theory
amplitudes to the CoM frame. We then match each field-
theory construction to an appropriate Hamiltonian and we
discuss our findings.
The CoM frame is defined by the kinematics

p1 ¼ −ðE1; pÞ; p2 ¼ −ðE2;−pÞ;
q ¼ ð0; qÞ; p · q ¼ q2=2; ð5:21Þ

together with q ¼ p2 þ p3 and p1 þ p2 þ p3 þ p4 ¼ 0.
To align with the field-theory construction, we express the
barred variables defined in Eq. (3.29) in this frame,

p̄1 ¼ −ðE1; p̄Þ; p̄2 ¼ −ðE2;−p̄Þ;
p̄ ¼ p − q=2; p̄ · q ¼ 0: ð5:22Þ

For the asymptotic spin variables we have

Sμν
1 ¼ 1

m1

ðϵμνρλp̄1ρS1λ þ p̄μ
1K

ν
1 − p̄ν

1K
μ
1Þ; ð5:23Þ

with

Sμ1 ¼
�
p̄ · S1

m1

; S1 þ
p̄ · S1

m1ðE1 þm1Þ
p̄

�
;

Kμ
1 ¼

�
p̄ ·K1

m1

; K1 þ
p̄ ·K1

m1ðE1 þm1Þ
p̄
�
; ð5:24Þ

where S1 andK1 correspond to the values in the rest frame
of particle 1. Finally, we may use Eq. (2.29) to express the
wave-function products E1 · Ē4 and E2 · Ē3 as

E1 · Ē4 ¼ exp

�
−

Lq · S1

m1ðE1 þm1Þ
�
exp

�
iq ·K1

m1

�
and

E2 · Ē3 ¼ 1; ð5:25Þ
up to terms that do not contribute to the classical limit.
The second product in the above equation follows from the
fact that we take the corresponding particle to be a scalar.
Note that the K1 used here agrees with that from the
worldline (4.21).
Using the above relations we express the field-theory

amplitudes in terms of the same variables as the EFT ones.
Then, we may match them and extract the Hamiltonian
coefficients. In particular, we have

M1PL ¼ Mtree
4;cl

4E1E2

and M2PL ¼ Mð1Þ
4;cl

4E1E2

: ð5:26Þ

We use the above equations to match to the field theories
as follows:

EFT1 ↔ FT2 and EFT2 ↔ FT1g: ð5:27Þ
Our first EFT Hamiltonian EFT1 contains only operators
that preserve the spin magnitude. Hence, it can describe the
field theory that contains a single particle of spin s (FT2).
Our second Hamiltonian allows for transitions between
particles of different spin magnitude, and hence can
describe a field theory that contains particles of different
spin magnitude (FT1g). Regarding FT3, the amplitudes we
have computed may be mapped to those of FT1g via
appropriate relabeling. We expect this to be true for all
amplitudes that may be computed in the two theories, in
which case the same should be true for the Hamiltonian
coefficients. Finally, FT1s may be thought of as a restric-
tion of FT1g where we only allow for spin-s external states.
We discuss the possible matching of FT1s to our two
Hamiltonians separately.
For the 1PL matching of EFT2 to FT1g we find

cð0Þ1 ¼ m1m2γ

4E1E2

; cð1Þ1 ¼ m1m2γ − EC1ðm1 þ E1Þ
4E1E2m1ðm1 þ E1Þ

;

cð2Þ1 ¼ m2γð−C1 þD1 þ 1Þ
4E1E2

; ð5:28Þ

where γ is defined in Eq. (4.42). We give the 2PL
coefficients in the Supplemental Material [185]. Impor-

tantly, we find cð2Þ1 ¼ cð2Þ2 ¼ 0 if D1 ¼ C1 − 1, such that
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all K1 dependence in the Hamiltonian vanishes for this
choice. For this reason, both the 1PL and 2PL coefficients
related to the matching of EFT1 and FT2 follows from the
above by settingD1 ¼ C1 − 1, hence we do not report them
separately.
We conclude this subsection by commenting on FT1s.

Given that FT1s is defined as a collection of amplitudes that
are a subset of the ones of FT1g, the most appropriate
matching procedure is to extend to FT1g and follow the
analysis given above to match to EFT2. Alternatively, one
can also match EFT1 to FT1s as was carried out in Ref. [64]
following similar steps. In this case, the effects of the lower-
spin states propagating in the field-theory amplitude are
captured by the vertices of the Hamiltonian. By examining
the resulting Hamiltonian, we find that some of the
coefficients [in particular cð1Þ2 ðp2Þ] admit only a Laurent
series around p2 ¼ 0. This is a familiar phenomenon in
QFTwhere one integrates out a state that may go on-shell in
the processes of interest, and, borrowing the terminology of
that context, we refer to it as a nonlocality.19 A nonlocal
quantum description may be consistent as long as one
always considers amplitudes with appropriate external
states. However, we find that the observables computed
from this Hamiltonian match the corresponding ones from
WL1 or those from WL2 only for the choice D1 ¼ C1 − 1,
for which the nonlocality vanishes.

E. Observables from the equations of motion

Having analyzed the implications of interpreting our
Hamiltonians as quantum operators, we proceed to consider
them as generating functions of the classical evolution of
the system. In particular, given a classical Hamiltonian
H2ðrðtÞ; pðtÞ;S1ðtÞ;K1ðtÞÞ of the form (5.10), the classical
time evolution of any quantity fðrðtÞ; pðtÞ;S1ðtÞ;K1ðtÞÞ is
determined by ḟ ¼ df=dt ¼ ff;H2g, where the classical
Poisson brackets ff; gg are given directly by the quantum-
operator algebra of Eqs. (5.3), (5.5), and (5.6) with f̂ → f
and ½f̂; ĝ� → iff; gg. This leads to the explicit equations of
motion

ṙ ¼ ∂H2

∂p
; Ṡ1 ¼

∂H2

∂S1

× S1 þ
∂H2

∂K1

×K1;

ṗ ¼ −
∂H2

∂r
; K̇1 ¼

∂H2

∂S1

×K1 −
∂H2

∂K1

× S1: ð5:29Þ

The addition of K1 as a dynamical quantity changes basic
properties of the equations. Specifically, the magnitude of
the spin S1 is no longer conserved.
We solve the equations of motion order by order in α.

Given that H2 ¼ E1 þ E2 þOðαÞ at zeroth order in the

coupling, with E1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1;2 þ p2
q

, we see that perturbative

solutions to these equations take the form

rðtÞ ¼ bð0Þ þ E1 þ E2

E1E2

pð0Þtþ αrð1ÞðtÞ þ α2rð2ÞðtÞ þ…;

pðtÞ ¼ pð0Þ þ αpð1ÞðtÞ þ α2pð2ÞðtÞ þ…;

S1ðtÞ ¼ Sð0Þ
1 þ αSð1Þ

1 ðtÞ þ α2Sð2Þ
1 ðtÞ þ…;

K1ðtÞ ¼ Kð0Þ
1 þ αKð1Þ

1 ðtÞ þ α2Kð2Þ
1 ðtÞ þ…; ð5:30Þ

where bð0Þ, pð0Þ, Sð0Þ
1 , and Kð0Þ

1 are constants determined
from the initial conditions. The constant bð0Þ is the usual
impact parameter for the scattering process. Substituting
these expansions into the equations of motion, using the
explicit Hamiltonian (5.10) and separating orders in α, we
obtain integral expressions for

OðnÞðtÞ ¼ frðnÞðtÞ; pðnÞðtÞ;SðnÞ
1 ðtÞ;KðnÞ

1 ðtÞg: ð5:31Þ
These depend on lower-order solutions OðñÞðtÞ, with
0 ≤ ñ < n, as well as the Hamiltonian coefficients

cðaÞn ðp2Þ and their derivatives evaluated at p2 ¼ ðpð0ÞÞ2.
Working iteratively, we obtain explicit expressions for
OðnÞðtÞ by performing simple one-dimensional integrals
with respect to t. We choose the integration constants by
enforcing OðnÞðtÞ → f0; 0; 0; 0g as t → −∞ for all n ≥ 1,

ensuring that bð0Þ, pð0Þ, Sð0Þ
1 , andKð0Þ

1 characterize the initial
conditions. Without loss of generality, we can choose bð0Þ ·
pð0Þ ¼ 0 and identify bð0Þ as the incoming impact parameter
vector. In particular, we choose

bð0Þ ¼ ð−b; 0; 0Þ; pð0Þ ¼ ð0; 0; p∞Þ;
Sð0Þ
1 ¼ ðSð0Þ1x ; S

ð0Þ
1y ; S

ð0Þ
1z Þ; Kð0Þ

1 ¼ ðKð0Þ
1x ; K

ð0Þ
1y ; K

ð0Þ
1z Þ:
ð5:32Þ

Following the above procedure, we finally obtain
ðp;S1;K1Þ in the outgoing state from the limit t → þ∞,

given as functions of the incoming fbð0Þ; pð0Þ;Sð0Þ
1 ;Kð0Þ

1 g.
As we emphasized, a key consequence of including K1

in the Hamiltonian is that the magnitude of S1 is not
conserved under time evolution. Indeed, it is a straightfor-
ward consequence of the equations of motion that

d
dt

ðS2
1 −K2

1Þ ¼ 0; ð5:33Þ

which reduces to the equation for spin-magnitude con-
servation only ifK1 is constant throughout the trajectory, as

19We stress that not every Hamiltonian which contains some
coefficient that does not admit a Taylor expansion around p2 ¼ 0
is nonlocal in the sense described here. Indeed, it is certainly
possible to alter the Hamiltonian coefficients by performing a
field redefinition in the quantum-mechanical context or a canoni-
cal transformation in the classical context, which may potentially
remove such a behavior. In addition, when dealing with more
than three three-dimensional vectors there exist Schouten iden-
tities that might cause the coefficients of the Hamiltonian to have
apparent singularities in the p2 → 0 limit.
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would hold for a rigid object with no internal degrees of
freedom other than the spin. Explicitly, solving the equa-
tions of motion we find that the spin magnitude does indeed
change. We define the change of the spin and boost
magnitude as

ΔS2
1 ≡ S2

1ðt ¼ ∞Þ − S2
1ðt ¼ −∞Þ;

ΔK2
1 ≡K2

1ðt ¼ ∞Þ −K2
1ðt ¼ −∞Þ: ð5:34Þ

We have that through 1PL they are given by

ΔS2
1 ¼ ΔK2

1 ¼
4αE1E2ðKð0Þ

1z S
ð0Þ
1y − Kð0Þ

1y S
ð0Þ
1z Þcð2Þ1 ðp2

∞Þ
bp∞ðE1 þ E2Þ

þOðα2Þ; ð5:35Þ

in accordance with Eq. (5.33). Thus the spin magnitude is
conserved to 1PL order if we choose the initial condition

Kð0Þ
1 ¼ 0. Similarly, the boost magnitude is also conserved

if Sð0Þ
1 ¼ 0. However, starting at 2PL order, this is no longer

true. In particular,

ΔS2
1jKð0Þ

1
→0

¼ ΔK2
1jKð0Þ

1
→0

¼ 4α2E2
1E

2
2ððSð0Þ1y Þ2 þ ðSð0Þ1z Þ2Þðcð2Þ1 ðp2

∞ÞÞ2
b2p2

∞ðE1 þ E2Þ2
þOðα3Þ: ð5:36Þ

As expected, the spin magnitude is conserved if we choose
D1 ¼ C1 − 1, as can be seen by combining the above
equations with Eq. (5.28).
The above equations further imply that for an object with

D1 ≠ C1 − 1 the intrinsic boost, and hence the induced
electric dipole moment [see Eq. (4.32)], is not a constant of
motion. In particular, even if a body has K1 ¼ 0 at some
moment in time, time evolution induces nonzero values for
K1. In other words, a body which satisfies the covariant
SSC at the initial time violates it at later times.
It is interesting to ask whether we could instead remove

S1 and have a system that is described only by K1. Up to
1PL order it is consistent to have S1 ¼ 0 with K1 ≠ 0, as
can be seen in Eq. (5.35). However, at 2PL order we find

ΔS2
1jSð0Þ

1
→0

¼ ΔK2
1jSð0Þ

1
→0

¼ 4α2E2
1E

2
2ððKð0Þ

1y Þ2 þ ðKð0Þ
1z Þ2Þðcð2Þ1 ðp2

∞ÞÞ2
b2p2

∞ðE1 þ E2Þ2
þOðα3Þ: ð5:37Þ

As for Eq. (5.36), this only vanishes for the special value
D1 ¼ C1 − 1. Hence, without the special choice, a non-
rotating body starts spinning via the electromagnetic
interaction if it starts with nonzero intrinsic boost K1.

The dynamics that we consider here are an extension of
those that satisfy an SSC along their evolution. Indeed, at
any step of the calculation one is free to set D1 ¼ C1 − 1
and retrieve the evolution of an SSC-satisfying body. Such
a restriction would remove all K1 dependence from the
Hamiltonian as we mentioned below Eq. (5.28) and render
K1 to be a constant of motion that does not affect the
dynamics.
The complete results of solving the equations of motion

throughOðα2Þ as outlined above are quite lengthy, hencewe
give the explicit solutions in the Supplemental Material
[185]. Amuchmore compact way to represent the amplitude
is through an eikonal formula, which we give below.

F. Observables from an eikonal formula

Analyzing the results of the perturbative integration of
Hamilton’s equations as described in the previous section,
we find that the outgoing-state observables can be simply
expressed in terms of derivatives of an eikonal phase, which
is a scalar function of the incoming-state variables. This is
motivated by the analogous eikonal formula found in
Ref. [78] for the pure spin case, except now there are
additional degrees of freedom from the intrinsic boost. At
the order to which we are working here, the eikonal phase
coincides with a two-dimensional Fourier transform of the
EFT amplitude.
For convenience we rename the incoming-state quan-

tities, called fbð0Þ; pð0Þ;Sð0Þ
1 ;Kð0Þ

1 g above, now simply as
fb; p;S1;K1g. Then we denote the outgoing-state observ-
ables by fpþ Δp;S1 þ ΔS1;K1 þ ΔK1g.
We find empirically that the changes in the observables

p, S1, and K1 are given in terms of an eikonal phase
χðb; p;S1;K1Þ as follows: The impulse is given by

Δp ¼ ∂χ

∂b
þ 1

2

�
χ;
∂χ

∂b

	
þDL

�
χ;
∂χ

∂b

�
−
1

2

∂

∂b
DLðχ; χÞ

−
p
2p2

�
∂χ

∂b

�
2

þOðχ3Þ; ð5:38Þ

which simultaneously gives contributions orthogonal and
along p. In this formula p · b ¼ 0 so all the b-derivatives
are projected orthogonal to the incoming momentum p.
The spin and boost kicks are given by

ΔS1 ¼ fχ;S1g þ
1

2
fχ; fχ;S1gg þDLðχ; fχ;S1gÞ

−
1

2
fDLðχ; χÞ;S1g þOðχ3Þ;

ΔK1 ¼ fχ;K1g þ
1

2
fχ; fχ;K1gg þDLðχ; fχ;K1gÞ

−
1

2
fDLðχ; χÞ;K1g þOðχ3Þ: ð5:39Þ

The brackets here are given by the Lorentz algebra,
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fS1i; S1jg ¼ ϵijkS1k; fS1i; K1jg ¼ ϵijkK1k;

fK1i; K1jg ¼ −ϵijkS1k; ð5:40Þ

with all others vanishing. We also define

DLðf; gÞ≡ −ϵijk
�
S1i

∂f
∂S1j

þ K1i
∂f
∂K1j

�
∂g
∂Lk

; ð5:41Þ

which is a K-dependent extension of the operator DSL of
Ref. [78]. The angular momentum L and the incoming
impact parameter b are related by L ¼ b × p and
b ¼ p × L=p2, implying ð∂=∂LiÞ ¼ ϵijkðpk=p2Þð∂=∂bjÞ in
Eq. (5.41). An all-orders generalization may follow along
the lines of Eq. (7.21) of Ref. [78] by includingK, although
at higher orders in α the radial action may be more natural
than the eikonal phase [151].
The appropriate eikonal function is proportional to the

two-dimensional Fourier transform (from q space to b
space) of the EFT amplitude as given in Eqs. (5.15) and
(5.16), while keeping only the triangle contribution in
Eq. (5.16) [78],

χ ¼ 1

4Ejpj
Z

d2q
ð2πÞ2 e

−iq·bðM1PL þM2PL
△

Þ þOðα3Þ; ð5:42Þ

the box contribution to the amplitude is effectively included
in the exponentiation of the tree-level amplitude M1PL.
Explicitly, we have

χ ¼ α
ξE
jpj

�
−að0Þ1 log jbj2 − 2að1Þ1

jbj2 b× p · S1 þ
2að2Þ1

jbj2 b ·K1

�

þ πα2
ξE
jpj

�
að0Þ2

jbj −
að1Þ2

jbj3 b× p · S1 þ
að2Þ2

jbj3 b ·K1

�
þOðα3Þ;

ð5:43Þ

where the amplitude coefficients aðmÞ
n ðp2Þ are given in

terms of the Hamiltonian coefficients cðmÞ
n ðp2Þ via the same

relations (5.18) and (5.19) found from the EFT matching,
here all evaluated at the incoming momentum p. The above
relations hold for general values of the Hamiltonian

coefficients cðmÞ
n ðp2Þ.

G. Comparison to observables
from the worldline theory

Having in hand the observables Δp, ΔS1, and ΔK1

obtained from Hamilton’s equations resulting from an
EFT matching to a QFT amplitude, we are in a position
to ask how these compare to equivalent observables
obtained from a worldline theory as in Sec. IV. We find
that the observables of the spinning-probe worldline theory
without an SSC match precisely onto those from the probe
limit of FT1g via the transformations of variables detailed

below—these are in one-to-one correspondence with the
transformations used to relate the EFT amplitudes to the
covariant forms of the field-theory amplitudes in Sec. V D.
As discussed in Sec. IV C 4, the probe limit provides a
nontrivial check.
In the worldline theory, we considered a probe/test

particle with mass m1, initial momentum pμ
1 ¼ m1u

μ
1,

and initial spin tensor Sμν
1 , scattering off the field of a

background Coulomb source with velocity uμ2. The changes
Δpμ

1 and ΔSμν
1 from the initial to the final state were

expressed in terms of these quantities and the initial impact
parameter bμ.
Using three-dimensional vectors in the rest frame of the

background source, we identify

uμ2 ¼ ð1; 0; 0; 0Þ; pμ
1 ¼ m1u

μ
1 ¼ ðm1γ; pÞ; ð5:44Þ

so p here is the spatial momentum of the probe in the
background frame, with p2 ¼ m2

1ðγ2 − 1Þ, and m1γ is its
energy, where γ ¼ u1 · u2 is the relative Lorentz factor.
For the spin tensor in the probe limit, just as in (5.23) and
(5.24), we decompose it into components Sμ1 and Kμ

1 in the
probe’s rest frame,

Sμν
1 ¼ ϵμνρλu1ρS1λ þ uμ1K

ν
1 − uν1K

μ
1; ð5:45Þ

and we then relate these, respectively, to three-dimensional
vectors S and K in the background frame by the standard
boost taking uμ2 into uμ1,

Sμ1 ¼
�
p · S1

m1

;S1 þ
p · S1

m2
1ðγ þ 1Þ p

�
;

Kμ
1 ¼

�
p ·K1

m1

;K1 þ
p ·K1

m2
1ðγ þ 1Þ p

�
: ð5:46Þ

Note that for the complete translation of the observables,
we must consider all of (5.44)–(5.46) applied to both the
initial state quantities and to the final state quantities.
Finally, for the impact parameter, we have bμ ¼ ð0; bcovÞ,
where this should be related to the vector b appearing in the
solution of Hamilton’s equations by

b ¼ bcov þ
p × S1

m2
1ðγ þ 1Þ þ

1

m1

�
K1 −

p ·K1

p2
p

�
; ð5:47Þ

which is the Fourier conjugate, under (5.42), of multipli-
cation by the factor E1 · Ē4 in Eq. (5.25), in the probe limit.
Taking the solutions for Δpμ

1 and ΔSμν
1 from solving the

worldline equations of motion, given in (4.44), and
converting them into three-vector forms using the trans-
lations given in the previous paragraph [again, being
careful to apply (5.45) and (5.46) separately to both the
initial and final states, using the initial and final momenta],
we find expressions for Δp, ΔS1, and ΔK1 which precisely
match those coming from solving the equations of motion
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coming from the Hamiltonian matched to FT1g, given by
(5.38) and (5.39) with (5.43), (5.28), and [185].

H. On the reality of K

We conclude this section by commenting on the
reality properties of K1. In the quantum theory K̂1 is an
anti-Hermitian operator for any finite-dimensional repre-
sentation20 of the Lorentz group, which implies that its
expectation valueK1 in any such state is imaginary. On the
other hand, if we allow for an infinite-dimensional repre-
sentation, K̂1 may be taken to be Hermitian, which would
result in K1 being real (see e.g. Sec. 10.3 of Ref. [204]).
We first consider the implications of choosing a finite-

dimensional representation, given that these are the repre-
sentations employed by our field-theory constructions. In
this case, for the Hamiltonian to be a Hermitian operator,
we need the coefficients of all Hamiltonian terms that
contain an odd number of factors of the boost operator to
be imaginary. This is indeed so for FT3g, while for FT1g
the coefficients are real. For the 1PL coefficients, this
can be seen by combining Eqs. (3.13) and (5.28). In this
way, the unphysical nature of the lower-spin states in FT1g
results into a non-Hermitian Hamiltonian. Interestingly, the
Hermitian Hamiltonian corresponding to FT3g breaks
time-reversal symmetry, which can be seen by combining
Eq. (5.7) with the fact that time reversal is an antiunitary
operator (see e.g. Sec. 2.6 of Ref. [203]).
Secondly, we examine the case of infinite-dimensional

representations. For these, all Hamiltonian coefficients may
be taken to be real. This implies that time-reversal sym-
metry is satisfied. Furthermore, this case meshes well with
the classical interpretation of K1 as a mass moment, which
implies that K1 is real.
While the above seem to suggest the use of a field theory

for an infinite-dimensional representation, we do not
attempt such a construction in the present paper. Instead,
we find that the analytical continuation below Eq. (4.30) is
sufficient for our purposes. In particular, such an analytical
continuation allows for the matching between our field-
theory and worldline constructions, and also results in a
Hermitian and time-reversal symmetric Hamiltonian. We
defer further analysis of this issue to the future.

VI. WILSON COEFFICIENTS AND PROPAGATING
DEGREES OF FREEDOM

We have seen in the previous section that the Compton
amplitudes computed in FT1s depend on additional Wilson
coefficients compared to those of FT2 (see Table I for the
Lagrangians for these field theories). In Sec. IV we showed

that the number of Wilson coefficients of FT2 matches the
usual worldline formulation WL1 with an SSC imposed.
We also found a modified worldline theory, WL2, con-
taining the same number of additional Wilson coefficients
as found in FT1s, FT1g and FT3. Thus, additional Wilson
coefficients (relative to e.g. FT2 or WL1) are a reflection of
additional degrees of freedom in the short-distance theory.
In FT1 some of these extra states are unphysical, having
negative norm, see Sec. II D. In this section we elaborate on
the rationale behind FT3, which may be thought of as a
rewriting of FT1 such that all states have positive norm, and
demonstrate that the same outcome—physically relevant
extra Wilson coefficients—can also result when all states
have positive norm.
As in previous discussions of FT3, we focus on fields in

the ðs; sÞ representation. We begin by separating such a
field into components with definite spin. While the external
states of the amplitudes AFT1s are transverse and thus spin
s, the intermediate states may contain lower-spin compo-
nents, some of which are unphysical. We use factorization
and gauge invariance to study the exchanges of lower-spin
particles in amplitudes with spin-s external states in FT1.
We find that the map given in Eq. (3.13) yields the results of
FT3s from those of FT1s; the imaginary unit in Eq. (3.13) is
indicative of the negative-norm nature of the exchanged
states of FT1. We also discuss from a general perspec-
tive the intermediate-state spins that can contribute in
the classical limit and construct their contribution to the
Compton amplitude. This analysis sets on firm footing the
field content we chose for the Lagrangian of FT3. Because
of the structure of the Lorentz generators in the ðs; sÞ
representation (2.38), the trace part of intermediate states
can be projected out by simply choosing traceless external
states, such as the coherent states in Eq. (2.30). We
therefore focus on the consequences of transversality or
lack thereof.

A. Resolution of the identity and amplitudes
with lower-spin states

As reviewed earlier, a field in the representation ðs; sÞ of
the Lorentz group contains states of all spins between 0 and
s. To develop a general picture of the interplay and
couplings of these states it is useful to formally expose
them in the Lagrangian of FT1. We use the resolution of the
identity operator in this representation,

δνðsÞμðsÞ ¼
Xs
n¼0

�
s

n

�
uðμ1…uμnu

ðν1…uνnPνnþ1…νsÞ
μnþ1…μsÞ; ð6:1Þ

with the on-shell transverse projectors Pν1ν2…νs
μ1μ2…μs ¼

Θν1
ðμ1Θ

ν2
μ2…Θνs

μsÞ, which is the j ¼ 0 term in the summation

of Eq. (2.14) and the symmetrization follows the definition
in footnote 7. For example, for the two-index and three-
index-symmetric representations this becomes

20Here we refer to the size of the spin space available to the
particle (e.g. the states j1=2;�1=2i for a spin-1=2 particle), in
other words the size of the little-group representation. In contrast,
the complete Hilbert space of a particle is always infinite due to
the momentum assuming continuous values.
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δðν1μ1 δ
ν2Þ
μ2 ¼ Pν1ν2

μ1μ2 þ 2uðμ1u
ðν1Pν2Þ

μ2Þ þ uμ1uμ2u
ν1uν2 ;

δðν1μ1 δ
ν2
μ2δ

ν3Þ
μ3 ¼ Pν1ν2ν3

μ1μ2μ3 þ 3uðμ1u
ðν1Pν2ν3Þ

μ2μ3Þ

þ 3uðμ1uμ2u
ðν1uν2Pν3Þ

μ3Þ þ uμ1uμ2uμ3u
ν1uν2uν3 :

ð6:2Þ

The projectors used here single out the longitudinal
components of fields but not traces. We ignore trace states;
while they are propagating, in four-point Compton ampli-
tudes they can be projected out from all diagrams that do
not include loops of higher-spin states by choosing trace-
less external states.
By inserting the resolution of the identity (6.1) into the

nonminimal interaction Lnon-min of FT1, we can expose and
identify the couplings of all the definite-spin components of
ϕs.

21 For example, in the OðS1Þ interaction FμνϕsMμνϕ̄s,
by using uμ → i∂μ=m, we get

ϕsMμνϕ̄s ¼
Xs

n¼0

ð−1Þn
m2n ϕρ1…ρs

s ðMμνÞμ1…μs
ρ1…ρs∂ðμ1…∂μnP

νnþ1…νs
μnþ1…μsÞ

× ð∂nϕ̄sÞνnþ1…νs
þ c:c:; ð6:3Þ

where ð∂nϕ̄sÞνnþ1…νs
¼∂

ν1…∂
νn ϕ̄sν1…νs is a field in the ðs−n;

s−nÞ representation of the Lorentz group, and the pro-
jector Pνnþ1…νs

μnþ1…μs singles out its spin-(s − n) component. In
Eq. (6.3) each term in the summation is given by partial
derivatives and is thus not invariant under the photon gauge
transformation. We only use this equation as a guide to
construct an effective field theory in which an s-index tensor
nonminimally couples to an (s − n)-index tensor.
Schematically, we identify Pνnþ1…νs

μnþ1…μsð∂nϕ̄sÞνnþ1…νs
≡

ðϕs−nÞμnþ1…μs
as an off-shell spin-(s − n) field and assign

to it the kinetic term is given by Ls−n
min defined in Eq. (2.7).

We further replace all the remaining partial derivatives by
their covariant version. For the coupling FμνϕsMμνϕ̄s at the
linear order in spin, this prescription leads to the following
interaction between ϕs and ϕs−1:

1

m
Fμν½ϕα1…αs

s Mμν
α1…αs;β1…βsD

ðβ1 ϕ̄β2…βsÞ
s−1 þ c:c:�: ð6:4Þ

This interaction agrees with the one included in FT3 for
C̃1 ¼ C̃2 [see Eq. (2.61)]. If we further relax the require-
ment that the interaction has to be mediated by the Lorentz
generator, we get one more gauge invariant structures and
thus arrive exactly at Eq. (2.61).
Having identified the off-shell component fields that

exist within the off-shell field ϕs, we may explore how the

amplitude changes if we restrict both the on-shell and the
off-shell states to (2sþ 1) states of spin-s particles. We
study this by building the four-point Compton amplitude
involving only massive spin-s degrees of freedom with
on-shell methods. On general grounds, we should find
AFT2; to carry out this calculation, we need to find products
of spin-s polarization tensors and the projector, similarly to
the products involving Lorentz generators we computed
in Sec. II C. We then subtract it from the corresponding
amplitude AFT1s to obtain the contribution from the lower-
spin degrees of freedom, i.e. the difference between AFT1s

and AFT2. In Sec. III, the Compton amplitudes of FT2 are
computed from fixed value of s and then extrapolated to the
generic case. Here, we will keep s arbitrary, but only
consider the linear order of spin; this will be sufficient to
illustrate the main points of our discussion.
We evaluate the products in question explicitly starting

from low and fixed values of the spin, extrapolating to
arbitrary s and then taking the classical limit. We find

EðsÞ
1 ·PðsÞðp1 þ q2Þ · ĒðsÞ

4

¼ EðsÞ
1 · ĒðsÞ

4

�
1þ sε1 · q2ε̄4 · q3

ε1 · ε̄4m2
þ…

�
;

EðsÞ
1 ·PðsÞðp1 þ q2Þ ·Mμν · ĒðsÞ

4

¼ EðsÞ
1 ·Mμν · ĒðsÞ

4 þ isðpμ
1 ε̄

ν
4 −pν

1ε̄
μ
4Þε1 · q2

ε1 · ε̄4m2
EðsÞ
1 · ĒðsÞ

4 þ…;

ð6:5Þ

where we used the on-shell conditions and transversality
and q2 and q3 are the momenta of the Compton amplitude
photons. We have omitted terms that do not contribute in
the classical limit of the Compton amplitude at OðS1Þ.
Using Eq. (6.5) it is straightforward to compute the pole

part of the Compton amplitude. To complete the amplitude
we construct an ansatz for the missing contact term and fix
it by demanding gauge invariance for the two photon
external lines. We find that the difference Aδ

4;cl between
the amplitude without the spin-s projector, AFT1s

4;cl , and the
amplitude with the spin-s projector, which is indeed AFT2,
is given by

Aδ
4;cl ¼ AFT1s

4;cl −AFT2
4;cl

¼ −ð−1Þs E
ðsÞ
1 · ĒðsÞ

4

m2

2ið1 − C1 þD1Þ2
p1 · q2

× p1 · f2 · Sðp1Þ · f3 · p1: ð6:6Þ

This is exactly the difference between Eqs. (3.8) and (3.10).
The sign difference compared to Eq. (3.12) reflects the
negative norm of the spin-(s − 1) states that are part of ϕs
compared to the positive norm of the analogous states
in FT3. Equation (6.6) also manifests that choosing

21The projectors may be replaced with their off-shell-trans-
verse version, constructed from ðημν − pμpν=p2Þ. However, this
yields a nonlocal Lagrangian. Moreover, transversality needs to
be only an on-shell property, so using Eq. (6.1) is sufficient.
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D1 ¼ C1 − 1 for AFT1s is equivalent to consistently
inserting the spin-s physical-state projector.

B. Lower-spin states and their scaling
in the classical limit

Having identified the relevance of the lower-spin states
for Compton amplitudes, we now proceed to examine the
processes whose classical limit receives contributions from
such states. While, as already noted, in FT1 such states
have negative norm, we may either construct field theories
such as FT3 in which their norm is positive so they are
physical, or we may simply use maps such as (3.13) or
(3.28) to modify the amplitudes of FT1 to agree with
amplitudes with physical intermediate states.
We wish to characterize the classical scaling of the

transitions from the spin-s to the spin-(s − n) state via the
emission of a photon. There are several distinct structures
that can appear in such an amplitude, as illustrated for
example in Eq. (3.1). For illustrative purposes we focus on
the first term in that equation which arises from the
covariant derivative in the quadratic Lagrangian Lmin of
FT1; other interactions may be treated similarly with
similar expected conclusions. We moreover interpret the
lower-spin field as the longitudinal components of a higher-
spin field, as discussed in Sec. II D. Thus, the three-point
amplitude we consider here and illustrated in Fig. 2 is

As→s−n
3;min ¼ iϵ3 · p1E

ðsÞ
1 · ðun2Ēðs−nÞ

2 Þ; ð6:7Þ

where all momenta are outgoing, the matter momenta are
p1 and p2, ui ¼ pi=m and the photon momentum is q.
Using the explicit form of the polarization tensors in
Eq. (2.45), this three-point amplitude becomes

As→s−n
3;min ¼ iϵ3 · p1ðε1 · ε̄2Þs−n

�
s

n

�
1=2�q · ε1

m

�
n
; ð6:8Þ

where we used the on-shell conditions p2 ¼ −p1 − q and
ε1 · p1 ¼ 0. For n ≪ s and 1 ≪ s we may approximate
ðsnÞ ≈ sn

n!. We may use the scaling of polarization tensors
implied by their embedding in a nontransverse ðs; sÞ
representation of their Lorentz group to obtain the scaling
of the transition amplitude. Together with Eqs. (2.46),
(2.47), and (2.54), Eq. (6.8) implies that the transition
three-point amplitude As→s−n

3;min depends on q and K as

As→s−n
3;min ∼ qnKn ∼ q0: ð6:9Þ

Thus, the transition three-point amplitudes scale as q0 in the
classical limit, so they are classical.
We now discuss the contribution of three-point ampli-

tudes to the residue of four-point amplitudes. Since in
Eq. (6.9) the polarization tensors have already been used to
generate the factors of K, the expression of the amplitudes
that is useful for residue computation is Eq. (6.8) together
with the fact that the sum of a product of spin-(s − k)
polarization tensors over all the physical states yields the
projector onto the spin-(s − k) states. It is then straightfor-
ward to see that the pole part of diagonal amplitudes, whose
diagrams are illustrated in Fig. 3, is

As→s
4 jexchangespin-ðs−nÞ ¼

X
ðs−nÞ states

�
As→s−n

3∶p1;q2;P
As−n→s

3∶−P;q3;p4

2p1 · q2

þAs→s−n
3∶p1;q3;P

As−n→s
3∶−P;q2;p4

2p1 · q3

�

∼
sn

2p1 · q2
ðε1 · ε̄4Þs−n

×

��
q2 · ε1
m

�
n
�
q3 · ε̄4
m

�
n

−
�
q3 · ε1
m

�
n
�
q2 · ε̄4
m

�
n
�
; ð6:10Þ

where we assumed that the relevant higher-spin theory has
standard factorization properties. The second term in (6.10)
follows by interchanging q2 and q3. In the large s limit,
Eqs. (2.40), (2.42), and (2.43) imply that

�
q2 · ε1
m

q3 · ε̄4
m

�
n
→

ðε1 · ε̄4Þn
ð2msÞn

�
iq2 · Sðp1Þ · q3

−
1

ms
q2 · Sðp1Þ · Sðp1Þ · q3

�
n

→
ðε1 · ε̄4Þn
ð2msÞn ½iq2 · Sðp1Þ · q3�n: ð6:11Þ

We observe that for any n the explicit factors of s cancel in
Eq. (6.10), i.e. the various factors combine such that
the only spin dependence is through ðε1 · ε̄4Þs and Sμν.

FIG. 3. Representative diagram of the contribution of the spin-
(s − n) exchanges in the Compton amplitude. Legs 1 and 4 are
massive spin-s particles, legs 2 and 3 are photons, and the
intermediate thick line corresponds to the spin-(s − n) particle for
some n > 0.

FIG. 2. The three-point amplitude involving a massive spin-s
particle (thin line), a massive spin-(s − n) particle (thick line) and
a photon (wiggly line).
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However, since the square parentheses in Eq. (6.11) scales
as qn and the propagator in Eq. (6.10) scales as 1=q, only
for n ¼ 1 the exchange term has a classical contribution.
Heuristically, the existence of one matter propagator allows
for transitions to spin states that differ from the external by
one unit (i.e. s → s − 1 → s).
A similar argument reveals the contribution of transition

three-point amplitudes to off-diagonal s → s −m two-
photon amplitudes. It is intuitive that intermediate spin-
(s − n) states can contribute if 0 ≤ n ≤ m. For n > m, we
find that the existence of one matter propagator in the
four-point amplitude allows for the state n ¼ mþ 1 to also
contribute. Indeed, factorization together with Eq. (6.8)
imply that

As→s−m
4 jexchangespin-ðs−nÞ ¼

X
ðs−nÞ states

�
As→s−n

3∶p1;q2;P
As−n→s−m

3∶−P;q3;p4

2p1 · q2

þAs→s−n
3∶p1;q3;P

As−n→s−m
3∶−P;q2;p4

2p1 · q3

�

∼
sn−m=2

2p1 · q2
ðε1 · ε̄4Þs−n

×

��
q2 · ε1
m

�
n
�
q3 · ε̄4
m

�
n−m

−
�
q3 · ε1
m

�
n
�
q2 · ε̄4
m

�
n−m

�
; ð6:12Þ

where we assumed that n ≥ m and that, as before,
the relevant higher-spin theory has standard factorization
properties.22 Equations (2.40), (2.42), and (2.43) imply
that, as in the diagonal amplitude, the factors with an equal
number of ε1 and ε̄4 can be effectively written in the large s
limit as
�
q2 · ε1
m

q3 · ε̄4
m

�
n−m

→
ðε1 · ε̄4Þn−m
ð2msÞn−m

�
iq2 · Sðp1Þ · q3

−
1

ms
q2 · Sðp1Þ · Sðp1Þ · q3

�
n−m

;

ð6:13Þ

and similarly for q2 ↔ q3. Equations (2.52) and (2.53) can
be used to write the remaining unbalanced dependence on
ε1 and ε̄4 as a linear combination of K and S vectors of
degree larger or equal tom, which contains at least one term
with m factors of K and has an overall factor of s−m=2 [see
e.g. Eq. (2.53)]. The overall factors of s cancel out, as in the
case of diagonal amplitudes. The terms with m factors of K

and one power of S if n > m and the terms withm factors of
K and no power of S if n ¼ m exhibit classical scaling. In
other words, suppressing factors of q and S, we have
As→s−m

4 ∼ Km as its three-point counterpart in Eq. (6.9).
This dependence prompted us to restrict our analysis of
FT3 to a single power of K or an arbitrary power of S and
no K, i.e.m ≤ 1, since these are the terms we may probe by
considering a spin-s and a spin-(s − 1) field. It would be
interesting to extend FT3 with further lower-spin fields and
access nonlinear dependence on S and K. Consistency of
the theory should lead to the cancellation of possible
superclassical terms.
The arguments above can be repeated to analyze the

possible intermediate states that can contribute to higher-
point tree-level amplitudes. For example, starting with
Eq. (6.9), the two-pole part of a diagonal s → s three-photon
amplitude can receive contributions from suitable combina-
tions of intermediate states of spin different from s. Further
contributions from single-pole termsdependon the scaling of
four-point contact terms; for example, if it is the same as for
the three-point amplitude, As→s−n

4 ∼ ðq · K=mÞn, then such
four-point amplitudes contribute to single-pole terms of the
five-point amplitude. Such higher-point amplitudes are some
of the ingredients of higher-PL spin-dependent calculations,
so it would be interesting to investigate them further.

C. Lower-spin states in the Compton amplitude

With the information we acquired from the analysis of the
soft-region scaling of amplitudeswith states of different large
spin wemay construct Compton amplitudes using a standard
on-shell approach:We start with three-point amplitudes with
the appropriate scaling and use them to construct the OðSÞ
exchange part of the Compton amplitude. We then fix the
contact terms by demanding gauge invariance and that their
dimension is the same as that of contact terms arising from
the Lagrangians of FT1, FT2 and FT3.
The three-point amplitude is shown diagrammatically in

Fig. 2. With n ¼ 1 and all-outgoing momenta, its expres-
sion that follows from a Lagrangian such as that of FT1 is

As→s−1
3 ¼ ð−1ÞsEðsÞ

1 ·M3ðp1; p2; q3; ϵ3Þ · ðu2Ēðs−1Þ
2 Þ;

ð6:14Þ

where M3 is given in Eq. (3.1). Using Eqs. (2.46) and
(2.47), the linear-in-S orK part of the three-point amplitude
to leading order in s can be written as

As→s−1
3

¼ ð−1Þs 2
ffiffiffi
s

p ðC1 −D1 − 1Þðp1 · ϵ3Þðε1 · qÞðε1 · ε̄2Þs−1
m

þ…; ð6:15Þ
where the ellipsis stands for terms of higher order in s
and q.

22An expression analogous with Eq. (6.12) can be written for
m > n. Both in that expression and in Eq. (6.12) the sum over
intermediate states yields an on-shell transverse projector. Trans-
versality of external states implies, however, that the momentum-
dependent terms in that projector are subleading in the classical
limit, which justifies why no projector is included in Eq. (6.12).
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Next, we sew together two of these three-point amplitudes to obtain the residues of the two matter-exchange poles of the
Compton amplitude corresponding to the two diagrams in Fig. 3. Focusing solely on the spin-(s − 1) exchange, we have

ResðA4;cljspin-ðs−1ÞÞj2p1·q2¼0 ¼ ð−1Þs 4sðC1 −D1 − 1Þ2ðp1 · ϵ2Þðε1 · q2Þðp4 · ϵ3Þðε̄4 · q3Þ
m2

×
X

phys εl states

ðε1 · ε̄lÞs−1ðεl · ε̄4Þs−1; ð6:16Þ

where ϵ2 and ϵ3 are photon polarization vectors. The physical state sum is evaluated using

X
phys εl states

ðε1 · ε̄lÞs−1ðεl · ε̄4Þs−1 ¼ ε1μ1…ε1μs−1ðPðs−1ÞðlÞÞμðs−1Þνðs−1Þ ε̄
ν1
4 …ε̄νs−14 ; ð6:17Þ

and Eq. (6.5). Given that the residue scales as q, we may replace the projector with the identity, as all the other terms are
subleading in small q. The residue becomes

ResðA4;cljspin−ðs−1ÞÞj2p1·q2¼0 ¼ ð−1Þs 4sðC1 −D1 − 1Þ2ðp1 · ϵ2Þðε1 · q2Þðp4 · ϵ3Þðε̄4 · q3Þ
m2

ðε1 · ε̄4Þs−1: ð6:18Þ

To complete the amplitude we need to add the other
exchange channel, with a pole at p1 · q3 ¼ 0, and to find
the contact term so that the result is invariant under photon
gauge transformations, εi → εi þ λqi with i ¼ 2 and sep-
arately i ¼ 3. Allowing for at most two powers of momenta
in the contact term, its effect is only the replacements

ðp1 · ϵ2Þðε1 · q2Þ → pμ
1f2;μνε

ν
1;

ðp4 · ϵ3Þðε̄4 · q3Þ → pα
4f3;αβε̄

β
4; ð6:19Þ

with fi;μν defined below Eq. (3.7). Thus, the classical
Compton amplitude of two spin-s particles due to an
intermediate spin-(s − 1) exchange is

As→s
4;cl jspin−ðs − 1Þ ¼ ð−1Þs ðε1 · ε̄4Þ

s−1

m2

4sðC1 −D1 − 1Þ2
2p1 · q2

× p1 · f2 · ε1p4 · f3 · ε̄4 þ ð2 ↔ 3Þ:
ð6:20Þ

Finally, replacing the polarization vectors ε1 and ε̄4 in terms
of the spin tensor as in Eq. (2.40) and keeping only the
classical terms leads to

As→s
4;cl jspin−ðs − 1Þ ¼ Aδ

4;cl ¼ AFT1s
4;cl −AFT2

4;cl ; ð6:21Þ

where for the second equality we used Eq. (6.6). Thus,
we explicitly identify the difference between AFT1s

4;cl and
AFT2

4;cl as due to the propagation of an intermediate (s − 1)-
spin state.

VII. DISCUSSION AND CONCLUSION

In this paper we addressed a puzzle regarding the
description and dynamical evolution of spinning bodies

in Lorentz invariant theories, with an eye toward applica-
tions to the two-body problem in general relativity. Their
gravitational or electromagnetic interactions are described
via an effective field theory of point particles in terms of a
set of higher-dimension operators each with a free Wilson
coefficient. Reference [64] found that the amplitudes-based
framework of Ref. [78] leads to additional independent
Wilson coefficients in observables compared to the usual
worldline description. These additional Wilson coefficients
appear to vanish identically for black holes, but seem to
contribute to scattering observables for more general
spinning objects starting at the second order in Newton’s
constant and at cubic order in the spin.
To identify the origin and the physics described by the

extra Wilson coefficients we analyzed the simpler case of
electromagnetic interactions of charged spinning bodies.
This theory is inherently simpler than general relativity
because it has no photon self-interactions and more impor-
tantly the analogous effects are already present at linear
order in spin. We constructed several such electromagnetic
field theories: one with two physical propagating higher-
spin fields, another with multiple physical and unphysical
propagating higher-spin states packaged in a single higher-
spin field, and finally onewith a single quantum spin.When
available, we also considered several possible classical
asymptotic states. In the classical limit we found that simple
maps connect the amplitudes of the various cases and
reached the conclusion that the presence of states beyond
those of a spin-s particle leads to additional Wilson
coefficients. These Wilson coefficients govern transitions
between states of different spinwhich in turn lead to changes
in the magnitude of the classical spin vector even for
conservative dynamics. While the magnitude of the spin
vector can change in theories with additional propagating
states, the magnitude of the spin tensor is conserved.
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We found that these results have an interpretation in a
more conventional worldline framework and exposed it by
analyzing two distinct worldline theories. The first one
corresponds to the standard construction [40,170] where a
spin supplementary condition is imposed. The second
theory relaxes this constraint, introducing additional
degrees of freedom. As for field theories with transitions
between states with different spin, the dynamics of this
theory allows for changes in the magnitude of the spin
vector along classical trajectories.
While the results of all of our field theories can be

obtained as limits of results of these two worldline theories,
we did not find a worldline theory that reproduces
observables obtained from AFT1s whose asymptotic states
are limited to a single quantum spin. It would be interesting
to pursue the construction of such a theory; to this end it
may be profitable to interpret AFT1s as a sequence of
absorption amplitudes and match them with a worldline
theory with additional nonasymptotic states, along the lines
of Ref. [178]. Another interesting direction would be to
generalize FT3, which was constructed using spin s and
(s − 1) states, to include spin (s − k) state with k ≥ 2, in
order to describe interactions beyond the spin-orbit case.
We evaluated tree-level Compton amplitudes to provide a

direct comparison between the various field and worldline
theories. We carried out this comparison to second order in
the spin tensor. Field theories restricted to propagate only
the states of a spin-s particle preserve the magnitude of the
classical spin vector, and the results match those of the
worldline with a spin supplementary condition imposed,
compatible with Refs. [97,175]. In contrast, if states of dif-
ferent spin propagate and transitions are allowed between
them, the field-theory Compton amplitudes contain addi-
tional Wilson coefficients and match those of the worldline
with no spin supplementary condition. The results of the
theory with propagating states of a single spin-s particle are
reproduced for special values of theWilson coefficients; thus,
for these values, the SSC condition is effectively imposed
(albeit not actively), and the spin gauge symmetry is restored.
This holds true both for the field theory where some of the
additional spin states were negative norm [78] and for the
alternative construction with all positive-norm states.
To establish a closer connection between the extra

degrees of freedom present in the various field-theory
descriptions of spinning bodies and classical observables,
we constructed a pair of two-body Hamiltonians where the
obtained amplitudes match the field-theory amplitudes [78].
The first of these Hamiltonians is the standard two-body one
including the standard spin-orbit terms. The second incor-
porates themassmoment as a new (boost) degree of freedom,
and is the one that can match both the field theories
with transitions between states of different spins and the
worldline with no spin supplementary condition imposed.
We carried out detailed comparisons of the impulse, and
spin and mass-moment kicks through Oðα2SÞ between the

predictions of these two-body Hamiltonians and the corre-
sponding worldline approaches and found agreement to this
order. It would be interesting to generalize our field theory
with two propagating fields to contain multiple propagating
fields and in this way verify the connection to the worldline
through Oðα2Sk≥2Þ.
We also succeeded in finding a compact way to express

scattering observables via an eikonal formula. The spin
eikonal formula of Ref. [78] provides a direct connection
between amplitudes and scattering observables and bypasses
explicit use of theHamiltonian.We found a generalization of
this formula, which is valid through Oðα2SÞ, compactly
contains the intricate results of Hamilton’s equations for
scattering observables and includes extra degrees of freedom
(in the form of the rest-frame boost vector) and all Wilson
coefficients. It would be interesting to extend this compari-
son to higher powers of the spin and boost vectors.While this
eikonal formula was not derived from first principles, its
existence strongly suggests that a first-principles derivation
should exist.
Our primary conclusion is that, whether using a four-

dimensional field-theory or a worldline description of
spinning bodies, the extra Wilson coefficients are directly
associated with additional propagating degrees of freedom.
These extra coefficients induce a dynamical change in the
magnitude of the rest-frame spin vector even for conser-
vative dynamics. This change in spin magnitude is neces-
sarily associated with a change in the mass moment, which
in turn induces a change in the electric dipole moment. It
would be very interesting to identify physical systems where
these additional degrees of freedom lead to observable effects
whether in electrodynamics or general relativity.
We expect that carrying out similar field-theory, world-

line and effective two-body Hamiltonian constructions
and comparisons for general relativity should be straight-
forward. We look forward to studying the phenomena
described here in detail for the case of general relativity
where they were originally observed.
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