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Despite constituting a noteworthy ~27% share of the total energy budget of our Universe, dark matter
(DM) has thus far eluded direct observations. Owing to its pervasive nature, there is a sincere expectation
that astrophysical black holes (BHs) encompassed by DM should leave distinctive imprints on the
gravitational waves arising from BH mergers. Theoretical models of DM present a diverse landscape of
possibilities, with perfect fluid dark matter (PFDM) emerging as a recent and notably intriguing candidate
model. In this work, utilizing the established quantum optical approach, we investigate the possibility of
catching DM signatures via acceleration radiation emitted by a freely falling detector (e.g., an atom) within
a PFDM-surrounded Schwarzschild BH. The setup involves a Casimir-type apparatus where the detector
interacts with the field, and this situation induces excitations in the detector in a manner consistent with
Unruh effect. We observe that our DM candidate, while making classical contributions to spacetime
geometry, has the potential to leave quantum imprints in the radiation flux. Notably, it is observed that, in
comparison to a pure Schwarzschild BH, PFDM can markedly reduce particle emission as long as its
density remains below a critical threshold, and vice versa. Given the lessons we have learnt from realizing
cosmological phenomena in simulated laboratory conditions, there is a remote possibility that such study
may perhaps provide insights (to whatever degree) into the future table-top experiments in analog gravity

paradigm.
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I. INTRODUCTION

Hawking radiation [1] and Unruh effect [2] are the
profound insights from quantum field theory in curved
spacetime (QFTCS) [3,4]. Although, in both of these
phenomena, field quanta are created out of vacuum, they
however differ in the underlying spacetime geometry.
Hawking radiation assumes curved background of black
holes (BHs), while as Unruh effect is registered by
accelerated (Rindler) observers in flat Minkowski space-
time [5]. These processes arise out of the same principle to
that of dynamical Casimir effect of Moore [6], where
accelerated boundaries (mirrors) hammer the vacuum to
radiate real particles [7]. One more example that shares
similar physics is the cosmological particle emission due to
expanding spacetimes [4]. For this interesting overlap of
atoms, fields, and geometries, we refer the reader to our
recent review article [8].

Our Universe does not only contain the familiar baryonic
matter, it is rather believed to be filled with all kinds of
mysterious dark stuff: dark matter (DM) and dark energy. In
fact, there is a mounting indirect evidence for the existence
of DM in our Universe, and current estimates put it at
approximately 27% of the total matter-energy content of
the Universe [9]. It is therefore more realistic to expect the
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influence of this “exotic” matter on those vacuum-origi-
nating phenomena.

From a cosmological scenario, DM is believed to be
underpinning some key phenomena, such as galactic
dynamics [10]. Since at the moment, we do not have direct
experimental/observational evidence of DM, there has been
a flurry of excitement for different models. Some notable
candidates include cold dark matter (CDM) [11,12], self-
interacting DM [13], Bose-Einstein condensation DM [14],
superfluid DM [15], and primordial black hole DM [16,17],
each with its own potential set of working assumptions.
Even though we have this long list of possibilities,
however, the doors for new candidate models have not
been shut as DM is still an outstanding problem in modern
cosmology and astrophysics. Some time ago, Kiselev
[18,19] and others [20] proposed what is now known as
perfect fluid dark matter (PFDM) to account for asymptotic
rotational curves of spiral galaxies. Since then, this DM
candidate has been scrutinized in various scenarios, like BH
shadow [21], thermodynamics [22], particle dynamics [23],
accretion disks [24], quasinormal modes (QNMs) [25], and
more. The interesting aspect of QNMs is that they find
connections to gravitational waves originating from coa-
lescing BHs [26].

In this work, we undertake a novel route whereby PFDM
might manifest via atom-field interactions. Namely, we con-
sider the emission of acceleration radiation by a freely-falling
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FIG. 1. Schematic view of acceleration radiation emitted from a
two-level atom falling into a BH in presence of PFDM halo.

atomin a Schwarzschild BH surrounded by PFDM halo. There
is a Casimir boundary (mirror) sitting close to BH event
horizon which is the source of accelerated field modes with
which the falling atom interacts in line with the Unruh’s
predictions [2]. A schematic view of our setupis showninFig. 1
(see discussion in Sec. II A). We provide evidence that PFDM
has the potential to either degrade or enhance the radiation
intensity. Given the recent advancements made in experimen-
tal search for DM [27,28], it seems credible that future
cosmological observations or table-top settings in analog
gravity program [29,30] might perhaps be able to test and
constrain the theoretical parameter space of DM. We believe
this study, to the best of our knowledge, is the first attempt to
incorporate DM in quantum optical or Casimir paradigm.

The paper is organized as follows: In the next section, we
lay down the necessary structure for understanding our
working principle. Section III is devoted to the calculation
of excitation probability. Results and discussions can be
found in Sec. IV. We draw conclusions in Sec. V.

II. THE UNDERLYING GEOMETRY AND THE
KLEIN-GORDON EQUATION

A. The schematic setup

We note that our work assembles ideas from Casimir
physics, QFTCS and cosmological settings. Hence, for the
sake of clarity, it becomes mandatory to sketch a bird’s eye
view of the different elements involved in our analysis. To
this end, we draw a schematic picture in Fig. 1.

Fig. I represents a Schwarzschild BH at the center (black
color) with the periphery depicting its event horizon. The
Casimir boundary (mirror), shown in white color, hovers
over the BH horizon and is in an accelerated frame of

reference as outlined by general relativity (GR). It also veils
the atom from any Hawking flux emanating from the BH.
The PFDM halo, shown in orange color, surrounds the
BH in such a way that its density is maximum near the BH
horizon and monotonically goes to zero at r — oo, thereby
perfectly reproducing Minkowski spacetime. The freely-
falling atom emits acceleration radiation (red color) which
is received by an observer at asymptotic infinity. The scalar
quantum field surrounding the BH is assumed to be in a
Boulware vacuum state defined by the asymptotic observer.

B. Horizon structure

The static, spherically symmetric metric of a BH
immersed in a PFDM halo is given by [18-20],

1

ds> = —f(r)dt* +f(r)

dr? + r2(d6* + sin 0dg?), (1)

where,

_ﬂnzl—%g+5m<r>, 2)

r r m

where a is the contribution from PFDM. The stress energy-
momentum tensor of the PFDM distribution is given by
T, = diag(—p. p,. pg. py). where the density, radial and
tangential pressures, respectively read as p = —p, = g7,
Po = Py = 1¢en- The value of a can be both positive and
negative, and is constrained theoretically as 0 < a < 2M
and —7.18M < a < 0, respectively [31]. As for a > 0, it is
a direct consequence of the weak energy condition of GR,
ensuring a positive energy density. Although the case @ < 0
finds its mention in few works [31,32], however, to the best
of our understanding, its true physical meaning is still
obscure as its represents a negative energy density.
Negative energy densities violate the energy conditions
of GR and classify as hypothetical matter distributions.
Therefore, in the present work, we only consider a > 0. For
a = 0, the above metric reduces to that of a Schwarzschild
BH. By determining roots of f(r), one gets

e o (2] o

which is the BH event horizon. Here W|:] is the Lambert W
function. It is widely accepted that the presence of DM does
not alter the number of horizons, and it rather affects the
horizon size only. To quantify its effect on the BH, we plot
rqin Fig. 2 against different PFDM density profiles (i.e., @).

It can be readily seen from Fig. 2 that, compared to a
pure Schwarzschild BH, the presence of PFDM reduces the
BH horizon radius monotonically until a certain minimum
value a, is reached, and then increases it again. This
minimum radius corresponds to a certain critical value of «,
which differentiates the two ways that PFDM alters the
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FIG. 2. Impact of positive PFDM density a on BH horizon
radius r, for different masses M. Here a = 0 corresponds to the
Schwarzschild BH, for which rg = 2M.

geometry of our BH. The situation in the former case
(a < a.) is similar to that of a charged or rotating BH (or a
BH with some extra “hair”) whose radius is usually less
compared to the Schwarzschild case. In the latter case
(a > a.), PFDM increases r, and depicts an effective mass
contribution to the BH, which, from a geometric perspec-
tive, is much like what dark energy does [33]. The critical
value of a is gotten by dr,/da = 0|y;_ . and comes out
to be

4)

which seems an interesting number due to appearance of e
in the denominator. Note that our plot axes are normalized
by M as the gist of the graph is to understand the nature of
ry and a.. However, from a quantitative perspective, one
realizes that for different values of BH mass M in Fig. 2,
a,. ~0.538, 0.592, 0.645, 0.70, and 0.753 respectively,
corresponding to M =1, 1.1, 1.2, 1.3, and 1.4. To verify
whether r, from f(r) =0 corresponds to the spacetime
singularity or not, one can calculate Kretschman scalar
from Riemann tensor R ie., K= RW"(;R”V”‘S, given
by [34]

1
K=— [120:21112 <5> +130% — 4aln <5>
r a a

x (12M + 5a) + 40aM + 48M2} : (5)

Hno»

which obviously diverges at r = 0 only. Hence the true
physical singularity appears only at r = 0, the center of the
BH, as seen from the above equation.

For this spacetime geometry, the tortoise coordinate
reads

dr

dr
= — 7
/1—%%111@) 7

la

which is quite difficult to be solved analytically. We will
numerically estimate it and use in final probability dis-
tribution given in Sec. III.

C. Geodesic equations

The solution to the geodesic equations for a radially
infalling atom, following a timelike geodesic, helps us to
compute the coordinate time ¢ and proper (conformal) time
7. We thus have [35]

d?x+

dx” dx°
dr? b =0

c - 5 — Y, 8
P dr dr (8)

where I, are the Christoffel connections. Since we
consider a spherically symmetrical spacetime, and after
restricting the motion of atom to an equatorial plane, we
take @ = 7/2, giving & = 0 = ¢. Hence one obtains the
following conservation equations,

(&) == () =LY e-r0 o)

Here, £ represents specific energy of the atom. It is
important to note that, in principle, £ = f(7)| - FOr
asymptotically flat spacetime, f(r)|,.x = 1 which actually
corresponds to » — oo, hence we have

dr\?
— ] =1
()

For an ingoing trajectory, when given the initial and final
positions of the atom as r; and r;, respectively, the
expressions for the coordinate time #(r) and the proper
time 7(r) can be written as

dr

-0 (§) = PON-r0l (o)

ry dr
== FNT=T0)
(1)

Making use of Eq. (2), it is possible to analytically solve the
equation for z(r), which is expressed by

o(r) :—\Eaexp (?)r(é,?—;m (;)) tro, (12)

where I'(+) is the incomplete gamma function, and 7, the
constant of integration. For #(r), it is difficult to obtain its
general analytical expression, hence we numerically solve
it to be used in Sec. IIl. These quantities are plotted
in Fig. 3.

0= |
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Impact of a on the behavior of coordinate time ¢ and proper time 7 against a rescaled radial coordinate r — r,. (a) and (b),

respectively, show 7 and 7 for the case @ < a, respectively, while as (c) and (d) represent quantities for the case @ > «,. @ increases both

of them for a < a,, and vice versa. For M = 1, a, ~ 0.538.

The behaviors of 7(r) and 7(r) demonstrate the typical
Schwarzschild-type character. The only difference is that
PFDM increases both of them when a < a,. This should be
obvious as it takes more time to reach the shrunken BH
horizon. The same reasoning goes for a > «,, where both
t and 7 decrease as the BH inflates now, and consequently
the atom takes less time to cross the BH horizon.

D. Field modes

The wave equation for a massless Klein-Gordon field in
the minimal coupling is given by V,V¥® = 0 [3], which
for spherical symmetry and the timelike Killing vector 9,,
furnishes the solution ® =1Y,(6, ¢)y(r,r), where Y, are
spherical harmonics and [/ is the multipole number. After
neglecting (6, ¢)-dependence (I = 0), the radial part obeys
a Schrodinger-type wave equation

<_f’_+0_2)w<t, N=v(wtn., (13

orr  or?

where V(r) is the effective potential offered by the
spacetime, and is responsible for creating scattering effects.
It can be ignored in our analysis given the assumption that
the emitted radiation frequency v is large enough to
overcome this scattering [36,37]. Thus the solution
w(t.r) = exp fiv(e - r.)]. (14)

represents an outgoing Boulware field mode detected by an
observer at asymptotic distances with frequency v. The
ingoing modes are lost into the boundary at the horizon.
It is pertinent to extend this discussion here by carefully
considering the definition of vacuum state and exclusion of
the potential. While in Minkowski spacetime, the field
vacuum state is Poincaré invariant and hence possesses
unique definition for every inertial detector. However, in
curved spaces, it becomes hard to define an objective
vacuum state [3.,4]. In our case, the observations as done by
the asymptotic observer really makes it plausible to assume
the field to be in a Boulware vacuum state, for which
normally there is no Hawking emission at asymptotic
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infinity. Other possible vacuum states which are quite
frequently used in these situations include Unruh and
Hartle-Hawking states [3,4]; however such states are not
relevant here as the radiative analysis is done specially via
the perspective of asymptotic observer for which Boulware
state is the suitable state. Moreover, as we have used mirror
to shroud the BH completely, it serves to shield the falling
atom from any Hawking quanta, as also found in Ref. [36].
That said, one makes sure that the observer only receives
acceleration radiation flux from the atom with no contri-
butions from Hawking quanta. Also, our consideration of
[ = 0 modes above is the simplest case one can consider. In
fact smaller v can be taken (V(r) # 0), where scattering
effects would emerge and some interesting behavior could
be expected by analyzing the situation via graybody
factors [38].

III. PARTICLE SPECTRUM

We first assume the field to be in Boulware vacuum state
[3], so that there is no Hawking flux received by the
asymptotic observer. Neglecting angular dependence of
radiation modes, the falling atom interacts with the field
pictured by the Hamiltonian [36]

M=1, w=50, a<a,

V(z) = hgla,y(1(z), r(z)) + H.c.][6(r)e”™" + H.c.], (15)

where ¢ is the coupling frequency that signifies strength of
interaction, ¢, is the annihilation operator for the field
modes, 6 is atomic lowering operator, and H.c. the
Hermitian conjugate. Using time-dependent perturbation
theory, the excitation probability for the atom to make a
transition from a ground state |b) to excited state |a) while
emitting a photon of frequency v is given by
1 2
P ex — ﬁ .

/dr(ly, alV(7)|0,b)

(16)

This simultaneous atomic excitation and photon emission is
rooted in acceleration, dictated by Unruh effect [2]. Making
use of Eq. (15), and some further calculations, one can
write down Eq. (16) as

2

Py = f‘/dﬂ/j*(t(r), r())eior

_ f‘/dr(%) v (r)er|

which after simplification becomes

M=1, w=50, a>aq,
b) , . 0, a2
10+
8.
3
S 6
X
2.
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FIG. 4. Radiation intensity P,, vs frequency v, affected by DM density « for the regime (a) a < a,, (b) @ > a,, (c) atomic frequency o,
and (d) BH mass M. The normalization of probability is done by suitable choice of g, which we take g = 10~ here.
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(a) . ‘ a:0.5,a/|:50,V:5 ‘ . (b)

M=1], w=50, a<a,

FIG.5. (a)P,, vs BH mass M. M enhances the particle emission nonlinearly, (b) P,, on a log scale. P, is a BE-type distribution being
finite as v — 0.

2 /oo dr exp [iv{1(r) - r.(1)}] mexp [_iw{\@aexp (%M)r(%%” - %m G)) H

which can be computed numerically. First, we consider ¢ and r, from Eqs. (11) and (7) for whole atomic trajectory,
respectively given by

2

, (18)

P.=g

Ty d [+3) d
“0=—/ : ’ m=/ywr. (19)
= (1204 in()] /2 = in() o LG

g
r a

Let’s make the substitution r = r,z, such that dr = r,dz. Hence for #(r) from Eq. (19), we have

= Iy (20)

= (1= 2] 2 ()

reZ

We further make substitute x = z — 1, such that z = x + 1, we get

® d
t(X):/ Hrlg) X . o
2M a ry(x M P AE:
0 [1 - rg(x+1) + rg(x+]) ln( a )] \/rg(x+l) - rg(erl) 111( P )
Similarly, for r,, we get
o rydx

r,(x) :/ g ‘ )

2M a ro(x+1)

0 1 - rg(x+1> +rg(x+1)1n( P )

Substituting all the necessary elements into Eq. (18), we get the probability expression as follows

/ \/exp liv{r(x) - ;Eﬁgl))exp [—ia){\/gaexp(37M>F<;,37M—% n<r‘](+jl)>>H

rqxl

2

ex_gr

9’

which holds the crux of our work. We now numerically solve it to see the effects of PFDM and other parameters. The plots
are given in Figs. 4 and 5.
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IV. RESULTS AND DISCUSSIONS

Keeping the above formulation in view, it is intriguing to
have the emission of radiation even though the field is in a
Boulware vacuum state for which normally there is no
Hawking flux at asymptotic infinity. However, this par-
ticular emission has stark contrasts to that of Hawking
radiation. Here, the field evolves as a pure state and
possesses phase correlations [36]. One can also trace the
origins of this radiation to near horizon approximation and
conformal quantum mechanics [39—41].

The above plots contain the impact on excitation prob-
ability P,, by PFDM density a as shown in Figs. 4(a) and
4(b), transition frequency of the atom w in Fig. 4(c), and BH
mass M in Fig. 4(d). We attempt to encapsulate the under-
lying physics in the following way.

In pure BHs with asymptotically flat spacetime, earlier
studies [36,40,42] have reported thermal generation of
particles depicting either a Planckian or a Bose-Einstein
(BE) distribution. As our plots also show a thermal BE-type
distribution for field quanta, it seems reasonable to con-
clude that PFDM keeps the thermality intact. Although
thermality is not broken, the excitation probability shows
two distinct behaviors depending on whether the PFDM
density a is less or greater than the critical density «,. given
by the Eq. (4).

When the PFDM density is less than the critical density,
ie.,a < a,, the probability diminishes as we approach «,.. In
particular, for the choice for BH mass M = 1, a, ~ 0.538 as
noted earlier. The amplitude is highest for the least value of
a, i.e., a = 0.1, shown as solid orange line in Fig. 4(a).
The decreasing trend for amplitude continues till the largest
a, ie., a = 0.5, depicted by dashed red curve in Fig. 4(a).
We note a very crucial point here. Compared to a pure
Schwarzschild case (@ = 0), shown by dashed blue curve in
Fig. 4(a), BHs surrounded with PFDM will always have
lesser particle creation profile provided one ensures o < a,.

In a stark contrast, once we cross a = a,., the probability
amplitude increases as seen from Fig. 4(b), while remem-
bering the maximum value allowed for a =2M. The
overall situation may be somewhat intuitively pictured as
follows.

There is a strong evidence in Hawking’s scenario that
particles once leaving the BH horizon suffer from back-
reaction from tidal forces of the BH [43], which weakens
the strength of flux. Tidal forces originate directly out of
surface gravity of the BH, and surface gravity stems out of
the size of the event horizon of the BH. Quantitatively
speaking, for a BH with a given horizon radius r,, surface
gravity o 1/ rf,, which obviously translates to the fact that
smaller BHs have large surface gravity, i.e., tidal forces,
while supermassive BHs have negligible surface gravity. In
the present case, for the PFDM regime characterized by
a < a., the BH radius consistently decreases thereby
increasing the surface gravity of the BH and hence the
tidal forces. This increasing surface gravity compared to the

pure Schwarzschild BH (o = 0) forces radiation flux to
experience more backreaction from the geometry, resulting
in a decreased intensity, as obvious from Fig. 4(a).

Conversely, for the PFDM regime a > a,., the BH size
increases continuously for all larger values of a (lesser
surface gravity), by virtue of which our spacetime offers
lesser backreaction. Hence the enhancement of flux. This
situation is again witnessed for the case when BH mass M
increases [see Fig. 4(d)], and is grounded in the same
reasons as stated above. To get a more clear insight into the
role of M, we plot P, against M in Fig. 5(a). We see that M
monotonically increases P,, in a nonlinear fashion. One
infers from this that the particle spectrum for supermassive
BHs immersed in PFDM distribution should be richer than
the stellar or intermediate-mass BHs.

By realizing the fact that PFDM seems to make its impact
by merely rescaling the BH size, it might be tempting to
conclude the close similarity the situation may bear with. For
example, there is a similar geometric structure for a Reissner-
Nordstrom BH with the same mass—at least for the range
a < a.—one could well argue that it might also generate
similar particle spectrum to that of Figs. 4 and 5. We
however note that there is a considerable difference between
BHs with hair (like Reissner-Nordstrém BH) which usually
possess multiple horizons and BHs with PFDM halo (no
hair). The role of charge on Reissner-Nordstrom BH in
Hawking radiation and quasinormal (QNM) spectrum is
quite well known [44,45]. In fact, Reissner-Norstrom BHs
has distinct features which are absent in pure Schwarzschild
BH, such as existence of long-lived QNM modes near
extremal case where charge and mass balance each other. In
contrast to this, our BH is geometry is very much
Schwarzschild-like and would be expected to possess
corresponding particle spectrum profile.

We also attempted to quantify the role of atomic
transition frequency @ on radiation flux as shown in
Fig. 4(c). Any increment in @ would make it difficult to
excite an atom and thus degrades the emission. This
corroborates to the standard Unruh effect [2]. In passing,
to check whether BE-type distribution diverges or stays
finite near the origin (v — 0), we plotted P, on log-scale as
shown in Fig. 5(b). It is evident that the spectrum remains
finite at v — 0. We also declare here that all numerical
computations were performed in Mathematica software.

Meanwhile, one may wonder whether there is any
possibility of having testable aspects of such study. To
that end, we may state the following. We do not claim that
this work may entail any direct observational/experimental
consequences for DM research. However, it is encouraging
to seek the possible relevance to analog gravity systems
[29,30,46]. Analog gravity experiments have recently been
very promising in providing rich insights into the trapped
horizons and the associated phenomena, such as Hawking
radiation [47], Unruh effect [48], and expanding spacetimes
involving cosmological particle creation [49]. It is tempting
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to note that these cosmological phenomena bear same
underlying principle to that of dynamical Casimir effect, as
mentioned in the beginning of this work. Most of the
analog gravity experiments are realized by manipulating
condensed matter and optical systems. In particular, con-
densed matter systems are becoming popular test beds for
phenomena beyond quantum field theoretic effects, such as
fluid/gravity correspondence [50]. Lets also note that DM
research is being increasingly devoted to getting any
signatures via condensed matter systems [51,52].
Gathering these facts that cosmological processes can be
realized in quantum matter and optics, it seems conceivable
to predict that future table-top experiments might also
possibly exploit these systems to simulate dark matter
candidates. The same logic goes for this particular accel-
eration radiation from atoms in free fall [36]. It may be true
to state that one should not expect any immediate advances
for such avenues as of now. We nevertheless could in
principle expect such possibilities in far future, however
daunting it may be. It is in this line that the particle
spectrum profile associated with PFDM reported here may
perhaps seem to make any relevance.

Finally, we remark that we attempted to provide the most
plausible explanation for our findings on physical grounds.
Hence, our results should not be taken as mere mathemati-
cal artifact.

V. CONCLUSIVE REMARKS

Dark matter (DM) is the mysterious invisible stuff that is
believed to be permeating all galaxies, dictating the structure
formation in the Universe. Even though it is a powerful
model to explain a plethora of observational aspects in the
Universe, it nevertheless does not surface in direct exper-
imental setups. Modeling and searching for DM is one the
pressing problems in modern cosmology and astrophysics.
Among these models, perfect fluid dark matter (PFDM) has
been one of potential hot candidates in recent times.

Given that precision techniques in DM search have made
great progress recently, the central concern about DM then
is whether it interacts with ordinary matter, and what and
how it leaves its imprints. It thus becomes increasingly
important to look for DM signatures in all possible known
phenomena.

Our work explores one such avenue by relating DM to
the Casimir paradigm. We analyzed the acceleration radi-
ation emitted by an atom interacting with a Casimir
boundary held fixed at the event horizon of a
Schwarzscihld BH surrounded by a PFDM halo. We
showed that PFDM can decrease or increase the intensity
of emitted quanta with sole dependence on the its density.
This degrading occurs if PFDM density stays below a
certain critical value, and vice versa. The impact of atomic
transition frequency @ and BH mass M were also
quantified.

Our work can be generalized to other models of DM, in
either classical or quantum gravity domain. In addition to
this, one can go beyond this simplistic quantum optical
model to invoke other formulations of atom-field dynamics.

Admitting the fact that our setup is a Gedanken experi-
ment, we however believe there still is a great scope for
deciphering the nature of PFDM physics. Hence this study
may possibly provide any hints in constraining DM
parameter space guided by precision experiments in the
future.
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