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We explore the properties of a simple renormalizable shift-symmetric model with a higher-derivative
kinetic energy and quartic-derivative coupling that can serve as a toy model for higher-derivative theories of
gravity. The scattering amplitude behaves as in a normal effective field theory below the threshold for the
production of ghosts, but has an unexpectedly soft behavior above the threshold. The physical running of
the parameters is extracted from the two-point and four-point amplitudes. The results are compared to those
obtained by other methods and are found to agree only in limiting cases. We draw several lessons that may
also apply to gravity.
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I. INTRODUCTION

There are various ways of understanding the notion of
“running coupling” and the associated renormalization
group (RG), and they do not always give equivalent results.
We can distinguish at least three different notions. The one
that is of greatest significance in particle physics arises
when one identifies the running coupling by a measurement
of a physical amplitude, at a renormalization scale μR. We
refer to this as “physical running.” It is in this sense that one
understands, for example, the running of the couplings of
the standard model. The second notion is the dependence of
the renormalization of the coupling on a scale μ that is
introduced to fix dimensions, such as factors μ4−d in
dimensional regularization or logðΛ=μÞ if cutoff regulari-
zation is used. This is a less physical notion because such a
scale is just an intermediate device that does not appear in
physical observables. In particular, μ is conceptually differ-
ent from the renormalization scale μR. However, it is often
useful because it can be easier to calculate, and in the right
circumstances (that we discuss in more detail later) it is a
good proxy for the momentum dependence. Finally, there
is a more general notion of “running,” defined as the
dependence of a coupling on some external mass or energy
scale, typically a UV or IR cutoff, where one often
considers the simultaneous running of many (even infi-
nitely many) couplings, collected into some kind of

potential or action. This originated with Wilson’s RG [1]
and its generalizations [2,3]. A more recent version of it
applies to a scale-dependent one-particle-irreducible effec-
tive action, which we refer to here as the functional RG
(FRG) [4,5]. These are much more broader definitions of
RG, but in some particular cases they can be related to the
other two. They have proven very useful in the under-
standing of critical phenomena and in other contexts; see
Ref. [6] for a recent review.
One of the goals of this paper is to illustrate the relations

between these notions in a very simple model consisting of
a single scalar with the Lagrangian1

L ¼ −
1

2
Z1ð∂ϕÞ2 −

1

2
Z2ð□ϕÞ2 − 1

4
gðð∂ϕÞ2Þ2: ð1Þ

It has a shift symmetry ϕ → ϕþ const and reflection
symmetry ϕ → −ϕ, and it is renormalizable despite the
derivative interaction term. The higher-derivative interactions
are similar to those that appear in gravitational theories. The
inclusion of both two and four derivatives in the kinetic
energies is typical of many applications of the FRG in which
operators of different dimensions appear. It is also a crucial
part of Lee-Wick theories [7] and quadratic gravity [8,9].
Superficially, this theory appears to be pathological.

First, theories with higher-derivative kinetic energies con-
tain extra degrees of freedom. This can be seen from the
propagator in the full theory (with Z1 ¼ 1 and Z2 ¼ 1=m2)

iDFðq2Þ ¼
−i

p2 þ p4

m2

¼ −i
�
1

p2
−

1

p2 þm2

�
: ð2Þ
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PHYSICAL REVIEW D 109, 045008 (2024)

2470-0010=2024=109(4)=045008(16) 045008-1 Published by the American Physical Society

https://orcid.org/0009-0002-9423-4029
https://orcid.org/0000-0002-3355-331X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.045008&domain=pdf&date_stamp=2024-02-15
https://doi.org/10.1103/PhysRevD.109.045008
https://doi.org/10.1103/PhysRevD.109.045008
https://doi.org/10.1103/PhysRevD.109.045008
https://doi.org/10.1103/PhysRevD.109.045008
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


We see that besides a normal massless particle there is also
a ghost with mass m. The signs in the original Lagrangian
have been chosen to have the massive pole at timelike
momentum, because the opposite sign would have the pole
being tachyonic. Second, as we discuss, the theory is
asymptotically free in the sense that the coupling runs
logarithmically to zero in the UV limit, but only for
negative coupling. In this way it is reminiscent of
Symanzik’s observation that ordinary λΦ4 theory is asymp-
totically free for λ < 0 [10]. In spite of this, we can study
the renormalization of this model and draw from it some
useful lessons.
Besides being an interesting case study for several

aspects of renormalization theory, our model is also of
independent interest and has appeared recently in various
different contexts. Without the higher-derivative kinetic
term it is a textbook example of effective field theory
(EFT), being the low-energy description of aUð1Þ-invariant
linear sigma model in the Higgs phase [11,12]. With the
higher-derivative kinetic term, it is the low-energy EFT for
the higher-derivative version of the same model. As a
conformal field theory, the higher-derivative model has been
discussed in [13]. In the context of asymptotic safety, it has
been presented as a type of matter interaction that would
necessarily have to be present if gravity has a nontrivial fixed
point [14,15]. It has also been treated by the fullmachinery of
the FRGby twoof the present authors [16], viewing it as a toy
model for gravity. It was found to run from the higher-
derivative free fixed point at high energy to the standard free
fixed point at low energy. Finally, it has been studied recently
by Tseytlin [17] and by Holdom [18], who found evidence
that the model may be less pathological than would first
appear.
We always assume that the field ϕ has mass dimension

one, which is the natural choice when we interpret the two-
derivative term as defining the propagator. Then, Z2 and g
have dimension of inverse mass to the power of 2 and 4,
respectively. It is thus natural to reparametrize

L¼−
Z1

2
∂μϕ∂

μϕ−
Z1

2m2
□ϕ□ϕ−

Z2
1g

4M4
ð∂μϕ∂μϕÞð∂νϕ∂νϕÞ;

ð3Þ

where m and M are masses and g is dimensionless.
Moreover, we have defined the coupling constant with
an explicit factor of the mass M in order to make g
dimensionless. The value of this somewhat redundant
notation is that it facilitates the use of dimensional analysis
by showing the mass factors explicitly. The notation is
natural when one views this as the low-energy limit of the
Uð1Þ linear sigma model, in which case the masses m and
M are parametrically independent. Even though here we
consider the theory as being potentially UV complete in
itself, without the radial mode, we retain this notation. One
can set M ¼ m without loss of generality.

In order to see this as a toy model for gravity, we recall
that the action of quadratic gravity is schematically of the
form m2

PRþ 1
ξC

2 (where C is the Weyl tensor), so if we
rescale the metric fluctuation by mP ∼ 1=

ffiffiffiffi
G

p
, the action

contains, among other terms,

ð∂hÞ2 þ 1

ξm2
P
ð□hÞ2 þ 1

ξm4
P
ð∂hÞ4:

Recalling that the mass of the ghost is m ¼ ξm2
P, this

becomes essentially the same as (3) with Z1 ¼ 1, M ¼ m,
and g ¼ ξ.
Irrespective of the notation, it is important to keep in

mind that the Lagrangian contains two mass scales: the
mass of the ghost, m, and the scale M=

ffiffiffi
g4

p
at which tree-

level unitarity is violated and above which one would
appear to be in a strongly interacting regime, due to the E4

derivative interaction. In this paper we always assume that
m < M=

ffiffiffi
g4

p
, in such a way that the massive ghosts can

propagate and still be weakly interacting. Depending on the
characteristic scale of the process, we thus have three
energy regions which have different behavior:
(1) Low energy: This region is defined by energies that

are small compared to the ghost mass m. The heavy
ghost is not dynamically active and can be inte-
grated out.

(2) Intermediate energy: This corresponds to energies
above the mass m, but below the apparent strongly
interacting regime. Here the heavy ghost is dynami-
cally active. In the Appendix we also briefly com-
ment on an intermediate case where s ∼ −u ≫ m2

but t ≪ m2.
(3) High energy: This occurs when the energy is high

enough that gE4=M4 > 1. At these energies, pertur-
bation theory would seem to break down.

In this paper, we study the scattering amplitude of this
theory in the first two regimes. At tree level it is given by

−
1

2
gðs2 þ t2 þ u2Þ: ð4Þ

At low energy, quantum corrections generate new effective
interactions with six or eight derivatives. This is the
expected behavior of a nonrenormalizable theory, treated
with standard EFT methods. Somewhat unexpectedly, the
higher-dimension operators cancel above the mass thresh-
old for the production of ghosts, leaving us with a theory
that looks renormalizable, with a logarithmically running
coupling.
By comparing the loop corrections with the two- and

four-point amplitudes, we identify the physical running (or
lack of running) of the parameters. The results differ in
general from those given by other methods, but agree in
some limits.
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We proceed as follows. We begin by describing the
model in the absence of the higher-derivative kinetic term.
It is useful to have this description because the full theory
reduces to this EFT in the low-energy limit. In Secs. III and
IV the calculation of the two-point function and the four-
point scattering amplitude are presented. The final results
are given in Eq. (16) for the two-point quantum correction,
and in Eq. (29) for the full four-point correction. Section V
is devoted to an analysis of the amplitude. In particular, we
see how to match it at low energy to the previously obtained
EFT results, and also consider the remarkable simpli-
fications that occur in the high-energy limit [Eqs. (37)
and (42)]. In Sec. VI we compare the physical beta
functions derived from the amplitude to the beta functions
obtained from the FRG and other definitions. Our main
conclusions are summarized in Sec. VII.

II. EFFECTIVE FIELD THEORYATLOWENERGY

In generating an EFT one needs to know the low-energy
degrees of freedom and the symmetries. The massless mode
is the only one that is dynamical at low energy. The
symmetry is the same as that of the full theory, which in this
case consists of the shift-and-reflection symmetry. One then
writes out a normal theory with only the massless particle,
consistent with these symmetries. In general, this may have
higher-derivative nonrenormalizable interactions. By this
procedure we arrive at the Lagrangian

L ¼ −
1

2
∂μϕ∂

μϕ −
g
M4

ð∂μϕ∂μϕÞð∂νϕ∂νϕÞ þ L6 þ L8 þ…

ð5Þ

Here L6 and L8 are Lagrangians with six and eight
derivatives, which will be described more fully below. In
principle, one might consider a notation where the coupling
strength g differs from that of the original theory. However,
we will see that the coupling in the effective theory is
identified with the coupling of the full theory when the
latter is renormalized at low energy.
At one loop, wave-function renormalization would arise

from the tadpole diagram with two external legs, as shown
in the two-point diagram of Fig. 1. However, this vanishes
because the tadpole integral

Z
ddk
ð2πÞd

kμkν
k2

ð6Þ

is a scaleless integral which vanishes in dimensional
regularization. This sets Z1 ¼ 1 in the EFT limit.

For the scattering amplitude, the one-loop amplitude
arises at order E8 or, equivalently, it is described by a
Lagrangian with eight derivatives. This can be seen dimen-
sionally from the factor of g2=M8 which arises from two
factors of the fundamental interaction. In dimensional
regularization there are no other mass scales in the theory,
and so the numerator factors arising from the one-loop
amplitude must be powers of the external energies. There
will be a divergence in this amplitude and the coefficients at
order E8 will need to be renormalized. Along with the
renormalization will come the usual logs, and because this
is a mass-independent renormalization, these must be
factors of log s=μ2 or similar logarithms. This tells us that
the coefficients at order E8 can be interpreted as “physically
running” couplings. These logarithms will be finite and are
predictions of the EFT.
In contrast, there will be no renormalization of the

coefficients at order E4 or E6, as seen by the power
counting described in the previous paragraph. This implies
that no logarithms will be generated as well. The couplings
at order E4 and E6 will not be running in the physical sense.
Let us see this in explicit detail. In ϕþ ϕ → ϕþ ϕ

scattering, there are a limited number of kinematic invar-
iants involved consistent with the crossing symmetry of the
amplitude. This limits the number of effective Lagrangians
involved. At dimensions six and eight, these can be taken
to be

L6 ¼
g6
4M6

∂μϕ∂
μϕ□∂νϕ∂

νϕþ g06
4M6

∂μϕ∂νϕ□∂
μϕ∂νϕ;

L8 ¼ −
g8
4M8

∂μϕ∂
μϕ□2

∂νϕ∂
νϕ −

g08
4M8

∂μϕ∂νϕ□
2
∂
μϕ∂νϕ:

ð7Þ

The coupling constants in these Lagrangians cannot be
predicted from EFT alone.
We have calculated the one-loop scattering amplitude

in this theory. From the explicit calculation, the s channel
gives

ig2s2ð41s2 þ t2 þ u2Þ
1920π2M8ϵ

−
ig2s2

�
15ðlogð −s

4πμ2
Þ þ γEÞð41s2 þ t2 þ u2Þ − 1301s2 − 46t2 − 46u2

�
28800π2M8

þOðϵ1Þ; ð8Þ

FIG. 1. Diagrams giving corrections to the two- and four-point
functions.
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while the t and u channels can be found thanks to crossing symmetry. The t channel is given by the substitution s → t and
t → s, and u corresponds to the cyclic permutation s → u, t → s, u → t. The total one-loop quantum correction to the four-
point amplitude is

g2
�
41ðs4 þ t4 þ u4Þ þ 2ðs2t2 þ t2u2 þ u2s2Þ�

1920π2M8ϵ
−

g2

28800π2M8

�
15

�
s2ð41s2 þ t2 þ u2Þ log

�
−s
4πμ2

	

þ t2ðs2 þ 41t2 þ u2Þ log
�

−t
4πμ2

	
þ u2ðs2 þ t2 þ 41u2Þ log

�
−u
4πμ2

	�

− ð1301 − 615γEÞðs4 þ t4 þ u4Þ − 2ð46 − 15γÞðs2t2 þ t2u2 þ u2s2Þ


þOðϵ1Þ: ð9Þ

Because the field here is massless, the logarithms can only involve kinematic factors of s, t, and u.
The divergence in this expression can be absorbed into the renormalization of the dimension-eight coefficients in the

effective Lagrangian. When renormalized at a scale s ¼ t ¼ u ¼ μ2R, the amplitude has the form

M ¼ −
g

2M4
ðs2 þ t2 þ u2Þ þ g6

2M6
ðs3 þ t3 þ u3Þ þ g06

4M6
ðs2tþ s2uþ t2uþ t2sþ u2sþ u2tÞ

−
g8ðμRÞ
M8

ðs4 þ t4 þ u4Þ − g08ðμRÞ
2M8

ðs2t2 þ s2u2 þ t2u2Þ

−
g2

1920π2M8

�
41s4 log

�
−s
μ2R

	
þ 41t4 log

�
−t
μ2R

	
þ 41u4 log

�
−u
μ2R

	

þ s2ðt2 þ u2Þ log
�
−s
μ2R

	
þ t2ðs2 þ u2Þ log

�
−t
μ2R

	
þ u2ðt2 þ s2Þ log

�
−u
μ2R

	�
: ð10Þ

The values of g6; g06; g8ðμRÞ, and g08ðμRÞ are not predictions
of the EFT and must be determined by either measurement
or matching to the full theory. We will explicitly perform
the matching below, using the amplitude of the full theory.
The “physical” beta functions of the various couplings

can be read off from the amplitude. These are

βg ¼ 0;

βg6 ¼ 0;

βg0
6
¼ 0;

βg8 ¼
41g2

480π2
;

βg0
8
¼ g2

240π2
: ð11Þ

These beta functions are predictions of the EFT.
The expected maximum limit of the EFT treatment of

this matrix element occurs when

gE4

M4
∼ 1; ð12Þ

where E4 here represents any of the kinematic invariants
E4 ∼ s2; t2; u2. At these energies the interaction strength
becomes large and the EFT treatment fails. All of the terms

in the derivative expansion become relevant, with unknown
coefficients. The actual limit of the EFTwill be either when
new degrees of freedom become dynamically active or at
the energy implied by Eq. (12), whichever is lower.
The key elements of this section are that in the

EFT treatment (1) the original coupling g is not renormal-
ized and does not run in the physical sense, and (2) we
need to renormalize the couplings of the eight-derivative
Lagrangian, and these couplings are running couplings.

III. TWO-POINT FUNCTION

In this section, we continue to use the notation of Eq. (3).
The Feynman rules are given by the propagator

−
i

p2 þ 1
m2 p4

ð13Þ

and the four-point vertex

−
2ig2

M4

�ðp1 · p2Þðp3 · p4Þ þ ðp1 · p3Þðp4 · p2Þ
þ ðp1 · p4Þðp3 · p2Þ

�
: ð14Þ

At one loop, the quantum corrections to the two-point
function are given by the (tadpole) integral
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−
g

Z1M4
μ4−d

Z
ddq
ð2πÞd

1

q2 þ 1
m2 q4

�
p2q2 þ 2ðp · qÞ2�: ð15Þ

In the absence of the four-derivative kinetic term (i.e., for
m → ∞), this is quartically divergent and is zero in
dimensional regularization.
In the general case, setting d ¼ 4 − 2ϵ, it is equal to

i
3

2

g
Z1

�
m
M

	
4

p2
1

ð4πÞ2
�
1

ϵ
þ log4π−γ− log

m2

μ2
þ7

6
þOðϵÞ

	
:

ð16Þ

At one loop, only Z1 receives quantum corrections, since
there are no terms proportional to p4. However, the μ
dependence in (16) does not correspond to a logarithmic p
dependence of the two-point function. This means that the
μ dependence of the field renormalization can be reab-
sorbed once and for all without producing any large logs
with the physical energy scale of the scattering process. For
example, when setting μ ¼ m the logarithm disappears
altogether.

IV. THE SCATTERING AMPLITUDE

Let us now compute the corrections to the four-point
function. Since we use the signature −þþþ, the
Mandelstam variables are defined as

s ¼ −ðp1 þ p2Þ2; ð17Þ

t ¼ −ðp1 þ p3Þ2; ð18Þ

u ¼ −ðp1 þ p4Þ2; ð19Þ

where all momenta are incoming. For this section we use
the notation Z2 ¼ 1=m2 and work in units with M ¼ 1, as
this matches the previous work using the FRG.
In this case, one has to consider three Feynman diagrams

that correspond to the s, t, and u channels. These are related
by crossing symmetry. In the s channel, the integral one has
to evaluate is

2g2μ4−d

Z2
1M

8

Z
ddq
ð2πÞd

N
ðq2 þ 1

m2 q4Þððqþ pÞ2 þ 1
m2 ðqþ pÞ4Þ ;

ð20Þ

where p ¼ p1 þ p2 and the numerator is

N ¼ �ðp1 · p2Þðq · ðqþ pÞÞ þ ðp1 · qÞðp2 · ðqþ pÞÞ þ ðq · p2Þðp1 · ðqþ pÞÞ�
×
�ðp3 · p4Þðq · ðqþ pÞÞ þ ðp3 · qÞðp4 · ðqþ pÞÞ þ ðq · p4Þðp3 · ðqþ pÞÞ�: ð21Þ

The other channels only differ by permutations of the
external momenta.
Using (2), the fourth-order propagators in the integral

can be decomposed into a massless second-order propa-
gator and a massive ghost propagator. This is equivalent to
replacing the quartic propagators in the diagrams with
either the massless or massive ones and summing over all
possible combinations. In this way, for each channel the
correction to the scattering amplitude becomes

δM ¼ M1 −M2 −M3 þM4;

where M1 contains only the contributions of the massless
particles, M4 contains that of the massive ghosts, and the
other two mixed contributions with one massive and one
massless propagator. In each partial amplitude we introduce
a Feynman parameter, such that the denominators become
(for the s channel)

1

q2ðqþpÞ2¼
Z

1

0

dx
1

ðq02þΔ1Þ2
with Δ1¼xð1−xÞp2;

ð22Þ

1

q2½ðqþ pÞ2 þm2� ¼
Z

1

0

dx
1

ðq02 þ Δ2Þ2
with

Δ2 ¼ xð1 − xÞp2 þ xm2; ð23Þ

1

ðq2 þm2Þðqþ pÞ2 ¼
Z

1

0

dx
1

ðq02 þ Δ3Þ2
with

Δ3 ¼ ð1 − xÞðxp2 þm2Þ; ð24Þ

1

ðq2 þm2Þ½ðqþ pÞ2 þm2� ¼
Z

1

0

dx
1

ðq02 þ Δ4Þ2
with

Δ4 ¼ xð1 − xÞp2 þm2; ð25Þ

and q0 ¼ qþ xp. After some manipulations, the numer-
ators become

N ¼ N0 þ N1ðq0Þ2 þ N2ðq0Þ4;

where
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N0 ¼ x2ð1 − xÞ2s4;

N1 ¼ −
1

d

�ð6þ dÞðx2 − xÞ þ 1
�
s3;

N2 ¼
1

4dðdþ 2Þ
�ðd2 þ 6dþ 12Þs2 þ 4ðt2 þ u2Þ�: ð26Þ

Thus, the partial corrections to the amplitude become, in d dimensions,

Ml ¼ 2g2
1

Z2
1

Z
ddq0

ð2πÞd
Z

1

0

dx
N

ððq0Þ2 þ ΔlÞ2

¼ 1

ð4πÞd=2
2g2

Z2
1

Z
1

0

dx
�
Γ
�
2 −

d
2

	
Δðd−4Þ=2

l N0 þ
d
2
Γ
�
1 −

d
2

	
Δðd−2Þ=2

l N1 þ
dðdþ 2Þ

4
Γ
�
−
d
2

	
Δd=2

l N2

�
: ð27Þ

Finally, performing the x integration, without making any assumptions on the relative size of s,m, andM, we obtain for the
s channel

g2m4ð13s2 þ t2 þ u2Þ
192πM8ϵ

−
g2

5760π2s3M8

�
−3s5ð41s2 þ t2 þ u2Þ log

�
−
m2

s

	

− 6m4ð−sþm2Þ3
�
ðs2 þ t2 þ u2Þ − 2

s
m2

ð−9s2 þ t2 þ u2Þ þ s2

m4
ð41s2 þ t2 þ u2Þ

�
log

�
m2

m2 − s

	

þ s2m6

�
−2

s
m2

ð352s2 þ 37ðt2 þ u2Þ − 15γEð13s2 þ t2 þ u2ÞÞ

− 3ð−31s2 þ 9ðt2 þ u2ÞÞ þ 6
m2

s
ðs2 þ t2 þ u2Þ

�

þ 6s5=2m4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 − s

p �
16ð6s2 þ t2 þ u2Þ − 8

s
m2

ð16s2 þ t2 þ u2Þ þ s2

m4
ð41s2 þ t2 þ u2Þ

	
arccot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

s
− 1

r

− 30s3m4ð13s2 þ t2 þ u2Þ log
�
4πμ2

m2

	

: ð28Þ

In this expression we can find a diverging contribution to the ð∂ϕÞ4 operator, but again the scale parameter μ appears only
in logs divided by the ghost mass m, and hence the most convenient choice is to set μ ¼ m for each value of the kinematic
variables s, t, and u. The scattering amplitude gains an imaginary part from both the on-shell loops of the massless modes
thanks to log ð− m2

s Þ and the on-shell ghosts in loops when s > m2 in logð m2

m2−sÞ. The total quantum correction to the four-
point amplitude is

5g2m4ðs2 þ t2 þ u2Þ
64π2M8ϵ

þ g2

5760π2M8

�
þm4

s2

h
−6m4ðs2 þ t2 þ u2Þ þ 3sm2

�
−31s2 þ 9ðt2 þ u2Þ�

þ 2s2
�ð352− 195γEÞs2 − ð15γE − 37Þðt2 þ u2Þ�iþ 6s−1=2m4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 − s

p h
16m4ð6s2 þ t2 þ u2Þ

− 8sm2ð16s2 þ t2 þ u2Þ þ s2ð41s2 þ t2 þ u2Þ
i
arccot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

s
− 1

r
þm4

t2

h
−6m4ðs2 þ t2 þ u2Þ þ 3tm2ð−31t2 þ 9ðs2 þ u2ÞÞ

þ 2t2ðð352− 195γEÞt2 − ð15γE − 37Þðs2 þ u2Þ�iþ 6t−1=2m4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 − t

p h
16m4ðs2 þ 6t2 þ u2Þ

− 8tm2ðs2 þ 16t2 þ u2Þ þ t2ðs2 þ 41t2 þ u2Þ
i
arccot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

t
− 1

r

þm4

u2

h
−6m4ðs2 þ t2 þ u2Þ þ 3m2

�
−31u2 þ 9ðs2 þ t2Þ�þ 2u2

�ð352− 195γEÞu2 − ð15γE − 37Þðs2 þ t2Þ�i
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þ 6u−1=2m4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 − u

p �
16m4ðs2 þ t2 þ 6u2Þ − 8um2ðs2 þ t2 þ 16u2Þ þ u2ðs2 þ t2 þ 41u2Þ�arccot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

u
− 1

r

þ 3s2ð41s2 þ t2 þ u2Þ log
�
−
m2

s

	
þ 3t2ðs2 þ 41t2 þ u2Þ log

�
−
m2

t

	
þ 3u2ðs2 þ t2 þ 41u2Þ log

�
−
m2

u

	

þ 6ðu −m2Þ3
u3

log

�
m2

m2 − u

	�
m4ðs2 þ t2 þ u2Þ − 2um2ðs2 þ t2 − 9u2Þ þ u2ðs2 þ t2 þ 41u2Þ�

þ 6ðt −m2Þ3
t3

log

�
m2

m2 − t

	�
m4ðs2 þ t2 þ u2Þ − 2tm2ðs2 − 9t2 þ u2Þ þ t2ðs2 þ 41t2 þ u2Þ�

þ 6ðs −m2Þ3
s3

log

�
m2

m2 − s

	�
m4ðs2 þ t2 þ u2Þ − 2sm2ð−9s2 þ t2 þ u2Þ þ s2ð41s2 þ t2 þ u2Þ�

þ 450m4ðs2 þ t2 þ u2Þ log
�
4πμ2

m2

	

: ð29Þ

The arccot functions can be rewritten as logs, using

arccot
ffiffiffiffiffiffiffiffiffiffi
x−1

p
¼ i
2

�
log

�
1−

iffiffiffiffiffiffiffiffiffiffi
x−1

p
	
− log

�
1þ iffiffiffiffiffiffiffiffiffiffi

x−1
p

		
:

ð30Þ

A. The Z1 = 0 case

It will be instructive to consider the case when there is no
two-derivative kinetic term. Clearly, in this case we cannot
assume the canonical normalization Z1 ¼ 1. In fact, we
want to consider the limit when Z1,m, andM all go to zero
at the same rate. Defining the dimensionless field φ and the
coupling γ by

Z1

m2
ϕ2 ¼ φ2;

Z2
1

M4
ϕ4 ¼ γφ4;

the action (3) becomes

L ¼ 1

2
m2

∂μφ∂
μφ −

1

2
□φ□φ −

γ

4
ð∂μφ∂μφÞð∂νφ∂νφÞ; ð31Þ

where the field is now canonically normalized with respect
to the four-derivative kinetic term. Now we can simply
set m ¼ 0.
The calculation of the amplitude follows the steps of the

general case but is much simpler. The s channel brings the
following quantum correction:

γ2ð13s2 þ t2 þ u2Þ
192π2ϵ

þ γ2ð3ð13s2 þ t2 þ u2Þðlogð4πμ2−s Þ − γEÞ þ 32s2 þ 5ðt2 þ u2ÞÞ
576π2

þOðϵ1Þ: ð32Þ

Defining the renormalized coupling at the scale s ¼ t ¼ u ¼ μ2R by the formula

γðμRÞ ¼ γ −
γ2

16π2

�
5

2

�
1

ϵ
þ log

�
4πμ2

μ2R

	
− γE

	
þ 7

3

�
; ð33Þ

(where the couplings on the rhs are the bare ones) and exploiting crossing symmetry, we obtain the complete four-point
amplitude

−
γðμRÞ
2

ðs2þ t2þu2Þþ γ2

192π2

�
log

�
μ2R
−s

	
ð13s2þ t2þu2Þþ log

�
μ2R
−t

	
ðs2þ13t2þu2Þþ log

�
μ2R
−u

	
ðs2þ t2þ13u2Þ

�
þOðϵ1Þ:

ð34Þ
This agrees with [17].
In this case, the μR dependence is always associated with the dependence on the kinematic variables s, t, and u. The

physical beta function is

μR
∂γ

∂μR
¼ 5γ2

16π2
: ð35Þ
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V. UNDERSTANDING THE GENERAL
AMPLITUDE

We study the scattering amplitude in this theory and
identify the physical running (or lack of running) of the
parameters. The results differ from those given by usual
methods. The amplitude calculation is also an instructive
example of EFT when treated at low energy. Finally, we
identify a novel (as far as we know) phenomenon of the
disappearance of certain operators as one increases the
energy.
Here we discuss the general case where we start with Z1

and Z2 in principle different from zero. For this section, we
revert to the notation of Eq. (3), where Z2 ¼ 1=m2 and g is
rescaled by a factor of M4.
At one loop there is no renormalization of Z2 ¼ 1=m2, as

the one-loop tadpole diagram only has two factors of the
external momentum. We have seen in (16) that the one-loop

contribution to Z1 is independent of the momentum.
Therefore, we can renormalize to Z1 ¼ 1, and this
result will be valid for all energies. From this we see that
Z1 is not a running parameter in the amplitude analysis and
therefore

βZ1
¼ 0 ð36Þ

for all energies. For the rest of this section we set Z1 ¼ 1.

A. Low energy

The full result simplifies in the low-energy limit. The
logarithms involving mass factors can be Taylor expanded
in the momentum, so that the only logarithms remaining are
of the form log−s, log−t, and log−u.
For Z2s ≪ Z1, we find that the quantum correction is

given by

5g2m4ðs2 þ t2 þ u2Þ
64π2M8ϵ

−
g2

11520π2M8

�
−900m4ðs2 þ t2 þ u2Þ log

�
4πμ2

m2

	
þ 30ð30γE − 11Þm4ðs2 þ t2 þ u2Þ

þ 6

�
s2ð41s2 þ t2 þ u2Þ log

�
−s
m2

	
þ t2ðs2 þ 41t2 þ u2Þ log

�
−t
m2

	
þ u2ðs2 þ t2 þ 41u2Þ log

�
−u
m2

	�

− 3ð79ðs4 þ t4 þ u4Þ þ 6ðs2t2 þ t2u2 þ u2s2ÞÞ−760m2ðs3 þ t3 þ u3Þ


: ð37Þ

One can see that the logarithm, which is proportional to
the original interaction, i.e., s2 þ t2 þ u2, involves
logðμ2=m2Þ and is independent of the kinematic variables.
This means that we can define a renormalized value of the
coupling g by collecting all of the factors that multiply the
invariant s2 þ t2 þ u2 and identifying it with the coupling
measured at low energy using the fundamental interaction.
Then, we find

gðμÞ ¼ gB −
5g2m4

32π2M4

�
1

ϵ
− γE − log

�
4πμ2

m2

	
þ 11

30

�
: ð38Þ

Here gB is the original unrenormalized coupling. Now, if
we define the beta function by the usual recipe of deriving
with respect to μ, we find

βμg ¼ μ
∂gðμÞ
∂μ

¼ 5g2m4

16π2M4
: ð39Þ

However, g does not depend on the energy so the physical
beta function is

βg ¼ 0 ð40Þ

in the low-energy region.

The remainder of the amplitude involves powers of
energy at order E6 ∼ s3; s2t;… and at order
E8 ∼ s4; s2t2. Those of order E6 do not involve any
logarithms, while there are logarithms at order E4. A bit
of inspection shows that the amplitude is exactly that of the
EFT given in Eq. (10), with the identifications

g ¼ g;

g6 ¼ −
53g2m2

384π2M2
;

g06 ¼ −
7g2m2

516π2M2
;

g8ðμRÞ ¼
79g2

1920π2
þ 41g2

960π2
log

μ2R
m2

;

g08ðμRÞ ¼
3g2

320π2
þ g2

480π2
log

μ2R
m2

: ð41Þ

Whereas in the EFT by itself these parameters were
unknown, here we see that they are predicted by the full
theory. This procedure is referred to asmatching the EFT to
the full theory.
We see that in this region the heavy ghost is not

dynamically active and the one-loop calculation amounts
to integrating it out of the full theory to one-loop order. The
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result is described by an EFT, with specific values of the
coupling. This is an instructive example of EFT reasoning.

B. Above the mass threshold

Assume that all of the kinematic invariants are greater
than m2 in magnitude, i.e., ðs; jtj; jujÞ ≫ m2. If we use the
definition (38) of the renormalized coupling defined below
the mass threshold, the amplitude is finite and can be
written in the form

M ¼ −
g

2M4

�
1 −

17gm4

192π2M4

�
ðs2 þ t2 þ u2Þ

−
g2m4

192π2M8

�
log

�
−s
m2

	
ð13s2 þ t2 þ u2Þ

þ log

�
−t
m2

	
ðs2 þ 13t2 þ u2Þ

þ log

�
−u
m2

	
ðs2 þ t2 þ 13u2Þ

�
: ð42Þ

We can instead define the coupling at the (off-shell)
renormalization point s ¼ t ¼ u ¼ μ2R by making the finite
renormalization

ḡðμRÞ ¼ gþ 5g2m4

32π2M4

�
log

�
μ2R
m2

	
−
17

30

�
; ð43Þ

in which case the amplitude becomes

M ¼ −
ḡðμRÞ
2M4

ðs2 þ t2 þ u2Þ

−
ḡ2m4

192π2M8

�
log

�
−s
μ2R

	
ð13s2 þ t2 þ u2Þ

þ log

�
−t
μ2R

	
ðs2 þ 13t2 þ u2Þ

þ log

�
−u
μ2R

	
ðs2 þ t2 þ 13u2Þ

�
; ð44Þ

which agrees with the one calculated in the limit Z1 ¼ 0
[Eq. (34)]. This is understandable because at high energy
the quartic terms in the propagator dominate the quadratic
terms, and simply ignoring the quadratic terms yields the
correct result.
There are a couple of striking observations that can be

made from this result. The first is that all of the terms of
order E8 and E6 have disappeared from the result. Because
the general amplitude of Eq. (29) has many such terms, this
requires special cancellations, which we will discuss below.
The second is that here we can define a running coupling
that removes the potentially large logarithms of the form
log s=m2. We consider the (off-shell) renormalization
point s ¼ t ¼ u ¼ μ2R.
For ðs; jtj; jujÞ ≫ m2 this captures an important part of

the quantum correction. There are still logarithms left over,
but they are not large. This corresponds to a beta function

βḡ ¼
5ḡ2m4

16π2M4
: ð45Þ

The factor of 17=30 in Eq. (43) amounts to an optional
threshold correction matching the amplitude above and
below the threshold.
The disappearance of the E8 and E6 terms appears

initially surprising. There are many such terms with factors
such as s4; t4;… and s3; t3;… in the general result.
However, we can begin to see that there are cancellations
by looking at the logarithmic-type terms that arise at the
highest order, E8. We recall the result of Passarino and
Veltman that all one-loop diagrams can be expressed in
terms of factors of the scalar tadpole, bubble, triangle, and
box diagrams. Here only the tadpoles and bubbles con-
tribute. The tadpoles do not depend on the external
momenta and do not give kinematic logs. These kinematic
factors inside the logarithms come from the scalar bubble
diagrams, which have the form

I2ðm1; m2; q2Þ ¼
1

16π2

�
1

ϵ
þ γ − log 4π −

Z
1

0

dx log

�
xm2

1 þ ð1 − xÞm2
2 − q2xð1 − xÞ

μ2

	�
: ð46Þ

The logarithmic integral has the form

Z
1

0

dx log

�
xm2

1þð1−xÞm2
2−q2xð1−xÞ

μ2

	
¼ log

�
−
q2

μ2

	
−2; ðm1¼m2¼0Þ

¼ log
m2

μ2
þ
�
1−

m2

q2

	
log

�
1−

q2

m2

	
−2; ðm1¼0;m2¼mÞ

¼ log
m2

μ2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4m2

q2

s
log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4m2=q2

p
þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−4m2=q2
p

−1

	
−2; ðm1¼m2¼mÞ: ð47Þ
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The reader can see these logarithmic factors in the general
amplitude. Moreover, one can see that there are common
factors preceding these logs and the result involves the
combination

I2ð0; 0; q2Þ − 2I2ð0; m; q2Þ þ I2ðm;m; q2Þ: ð48Þ

The divergences and the factor of log μ2 cancel with this
combination, leaving a finite result, as observed. In the low-
energy region, the latter two components of this expression
go to constants, and only I2ð0; 0; q2Þ gives kinematic
logarithms. This leads to the log dependence found in the
low-energy/EFT limit in Eq. (10). However, at high energy
each of the components involves equal factors of logð−q2Þ,
and the leading energy dependence of this combination will
cancel. This leads to the vanishing of the terms of orderE8 at
high energy. It requires detailed work to verify that the
remaining terms of orderE6 also cancel, but the general idea
is the same. The amplitude that starts out containing orders
E4, E6, E8 at low energy ends up at order E4 only at high
energy. To the best of our knowledge, this vanishing of high-
order energy dependence that was requiredwithin the EFT is
a novel effect not previously described in the literature.

C. The very-high-energy region

The results of the preceding section hold for all energy
scales such that the mass can be ignored. However, in the
Introduction we distinguished an intermediate-energy scale
from a high-energy scale. In the high-energy region a
puzzling situation now presents itself. From Eq. (35) or
Eq. (45) one sees that for g < 0 the coupling is asymp-
totically free (in agreement with earlier calculations [17]).
However, it appears that a focus on the coupling constant is
insufficient. Even if the coupling constant is running
logarithmically to an asymptotically free fixed point, the
amplitude itself is blowing up with energy.
At high enough energy, the one-loop scattering ampli-

tude will become greater than unity. This occurs when the
kinematic invariants s, t, u ∼ E2 are of order

gðEÞE4

M4
∼ 1: ð49Þ

A logarithmic decrease in the coupling does not offset the
power-law growth. This behavior puts the notion of
asymptotic freedom in question. We leave a more detailed
discussion to a separate publication.

VI. DIFFERENT DEFINITIONS
OF RUNNING PARAMETERS

Here we return to our introductory point that there are
different flavors of RG techniques. In turn, we address the
three that we highlighted.

A. Physical beta functions

Part of the renormalization program is the measurement
process. Because we do not know the bare couplings, we
need to measure the parameters. Within a given scheme,
this involves measurements at a renormalization scale μR.
When the physical amplitude depends on the energy in a
particular way, then measurements at different renormal-
ization scales will lead to different values of the coupling.
What we refer to as the physical beta function describes
how the coupling changes with μR.
The important point here is that this procedure studies the

physical amplitudes and their dependence on the energy.We
haveused thismethod in the preceding analysis. In ourwork,
the renormalization scheme involved identifies the cou-
plings at the symmetric point s ¼ t ¼ u ¼ μ2R.

B. Using divergences or log μ
to define running couplings

Rather than calculate physical amplitudes, we often just
look at the renormalization constants required for renorm-
alizing the parameters. In dimensional regularization, these
depend on log μ2, where μð4−dÞ is the parameter introduced
to keep the dimensions of Feynman integrals constant.
The dependence on log μ comes along with the 1=ϵ of the
renormalization constant and hence log μ2 appears in
the renormalization in the same way every time that the
coupling appears. Then, beta functions can be calculated
from μ ∂

∂μ. In regularization schemes with a cutoff, beta

functions can be found using Λ ∂

∂Λ.
In mass-independent renormalization schemes, this pro-

cedure will identify the physical running. Because there are
no other dimensionful factors around, the factors of log μ
will always be accompanied by factors of logE2, as in
log s=μ2; log t=μ2… when applied in an amplitude.
However, there are a couple of ways that this could go

wrong when there are factors of masses around. The
logarithm could involve logm2=μ2 or logm2=Λ2. In this
case, the log μ2 or logΛ2 dependence does not correlate
with any energy dependence in the physical amplitude. It is
just a constant and disappears when the renormalized
coupling is defined.
A somewhat more unusual case where this method fails

is in running parameters that are not associated with
1=ϵ; logΛ, or log μ. An example of this is seen in our
scattering amplitude. The low-energy analysis using the
EFT shows that the couplings at order E8 are running
couplings at one loop; see Eq. (10). This occurs for the
usual reason, with the EFT involving mass-independent
renormalization, and the quantum corrections at order E8

involving 1=ϵ − logE2=μ2. However, in the full theory
these terms do not involve any renormalization or factors of
log μ, as can be seen in Eq. (41), as they are finite
predictions. Yet, since the amplitudes match the EFT
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analysis exactly, g8 and g08 are physically running
parameters.

C. One-loop beta functions from the FRG

In [16] the Lagrangian was parametrized as in (1) and the
running of Z1, Z2, and g was calculated using the full FRG.
The coupling then depends on a scale k that has the
meaning of an IR cutoff. This calculation goes beyond the
one-loop approximation, because the couplings on the rhs
of the FRG equation are treated as running couplings. This
kind of “RG improvement” amounts to a resummation of
infinitely many diagrams. In order to compare with the
amplitude calculation, we have to downgrade those results
to the one-loop approximation. This is easily achieved by
neglecting the RG improvement.
Assuming that the field has dimension of mass, one

arrives at the following beta functions:

k∂kZ1 ¼ −
Z1 þ 2k2Z2

16π2ðZ1 þ k2Z2Þ2
gk4; ð50Þ

k∂kZ2 ¼ 0; ð51Þ

k∂kg ¼
5ðZ1 þ 2k2Z2Þ

32π2ðZ1 þ k2Z2Þ3
g2k4: ð52Þ

With dimensionless field the numerical coefficients in the
beta functions remain the same, but of course the dimension
of the couplings is different and so are the powers of k on
the rhs. These one-loop beta functions differ from the full
ones of [16], but the qualitative features of the RG flow
remain the same.
In order to study the RG flow one has to make the

couplings dimensionless, multiplying them by powers
of k. One then obtains different results depending on the
dimension of the field. When the field has dimension one,
one finds the low-energy Gaussian fixed point correspond-
ing to the free theory with a two-derivative propagator, as
well as a bunch of other nontrivial fixed points. When the
field is dimensionless, one finds the high-energy Gaussian
fixed point corresponding to the free theory with a four-
derivative propagator, as well as a bunch of other nontrivial
fixed points. The two descriptions can be seen as two charts
on a manifold, related by a well-defined coordinate trans-
formation. In each chart, one of the free fixed points sits at
the origin, while the other lies asymptotically at infinity.
The nice feature that was observed in [16] is that the

running of Z1 can be absorbed into a redefinition of the field,
and then the dimensionof the field changes continuously from
zero near the UV fixed point to one near the IR fixed point.

D. Comparisons

We are now ready to compare the physical running with
the results of the FRG and the μ running.

We begin by comparing the physical running of g to the μ
running. At low energy, below the mass m, the amplitude
does not give a physical running for g:

βg ¼ 0; E ≪ m: ð53Þ

This is in disagreement with the logμ derivative approach,
which predicts a logarithmic running; see Eq. (39). This β
function comes out from the logm2=μ2 in (38). Here μ is an
unphysical parameter that disappears from all physical
reactions after renormalization. The apparent running of
the coupling g arises from taking the negative logarithmic
derivative of the correction (38)with respect toμ. This often is
appropriate in other settings because in mass-independent
renormalization schemes the logarithmic factor is log q2=μ2

(where q is some kinematic energy factor) so that taking the
derivative with respect to μ reveals the dependence of the
amplitude on the kinematic variables log q2. However, here
there is no dependence on any kinematic variable. If we
perform renormalization at any kinematic scale below the
mass threshold, it remains that value as long as the ghosts stay
frozen.Of the two definitions of runninggiven in dimensional
regularization, the physical one matches the results from the
EFT in Sec. II, where we did not observe any quantum
corrections to the coupling g.
Awell-known example can illustrate this point. In QED,

the vacuum polarization correction involving a top-quark
loop yields the correction

Πðq2Þ ¼ α

3π

�
1

ϵ
− γ þ log 4π − log

m2
t

μ2
þ q2

5m2
t
þ…

�
ð54Þ

at low energy. However, despite the dependence on log μ,
this does not imply that the top-quark loop contributes to
the running of the electric charge at low energy. The top
quark makes a contribution to the running of α only at
energies above mt, where the logarithmic factor involves
logq2 instead of logm2

t .
There is agreement in the running of g in the high-

energy region for energies above the mass m. Here the
beta function describing the running coupling in the
amplitude is

βg ¼
5g2m4

16π2M4
; E ≫ m: ð55Þ

This indeed agrees with Eq. (39), and does not change if we
add a finite piece as in (43).
Again, we can see the relevant physics in the simpler

case of the QED vacuum polarization. While the low-
energy form of the function is given in Eq. (54), the high-
energy version of this is

Πðq2Þ¼ α

3π

�
1

ϵ
−γþ log4π− log

m2
t

μ2
− log

−q2

m2
t
þ…

�
: ð56Þ

AMPLITUDES AND RENORMALIZATION GROUP TECHNIQUES: … PHYS. REV. D 109, 045008 (2024)

045008-11



Asymptotically the mass cancels out, and we could have
performed the renormalization using a mass-independent
scheme. However, since we previously chose to renorm-
alize the electric charge at low energy, absorbing the
logm2

t =μ2 factor into the coupling, the latter logarithm is
potentially a large logarithm and should be resummed in a
running coupling constant. The top-quark contribution to
the electric charge is constant at low energy and runs at high
energy.
This is the same behavior as is revealed in the running of

g. We can see this relatively simply in the calculation. The
loop integral in this model is proportional to

Iμναβ ¼ m4

Z
ddp
ð2πÞd

pμpνðp − qÞαðp − qÞβ
½m2p2 − p4�½ðm2ðp − qÞ2 − ðp − qÞ4�

¼ Fðq2Þðημνηαβ þ ημαηνβ þ ημβηναÞ þ order q terms:

ð57Þ

The only divergence appears in the first term F. We can
simply evaluate this divergence by taking the trace of this
integral,

ημνηαβIμναβ ¼ m4

Z
ddp
ð2πÞd

1

½m2 − p2�½ðm2 − ðp − qÞ2�
¼ m4I2ðm;m; qÞ ¼ dðdþ 2ÞF þ…; ð58Þ

where I2 is given in Eq. (46). This is just the scalar bubble
diagram, which along with the divergence carries the
logm2=μ2 factor at low energy and log q2=μ2 at high
energy, just as we have seen above. Other logarithms are
possible in the amplitude, but this one is tied to the
renormalization of the coupling at low energy and the
running at high energy. The FRG and dimensional regu-
larization of the running agree because it is uniquely the
bubble diagram that determines the divergent factor in this
calculation.
We now compare the physical running of g to the FRG

results. At low energy the FRG running is a power law:

βg¼
5ðZ1þ2k2=m2Þ

32π2ðZ1þk2=m2Þ3
g2k4

M4
→

5g2k4

32π2M4
; for k≪m: ð59Þ

This beta function rapidly runs to zero at lower energies,
asymptoting to the constant value of g found in the
amplitude calculation.
On the other hand, at high energy the FRG gives

βg¼
5ðZ1þ2k2=m2Þ

32π2ðZ1þk2=m2Þ3
g2k4

M4
→

5g2m4

16π2M4
; k≫m; ð60Þ

which agrees with both the physical running and the μ
running.

Between these two limits, the behavior of the amplitude
is more complicated, and if one tries to define a running
coupling as in (43), namely, isolating the coefficient
of s2 þ t2 þ u2 in the full amplitude (29) and setting
s ¼ t ¼ u ¼ μ2R, it turns out to be impossible to unambig-
uously identify it. Hence, the definition of a physical
running is only meaningful in the asymptotic regions,
where different power laws are clearly separated. The
standard, conventional way of joining them is to assume
that g does not run all the way up to the mass m and to
match this to the high-energy logarithmic behavior (44)
via (43). This is shown by the black dashed line in Fig. 2.
We note that, whereas the beta function becomes

universal (scheme independent) at high energy, the relation
between the low-energy value of the coupling and its high-
energy behavior is not. By choosing a different constant in
the brackets in (43) we can change the offset between the
low- and high-energy parts of the curve in Fig. 2 and shift
up or down the part of the curve above the thresh-
old k=m ¼ 1.
The same effect can also be obtained by using a different

renormalization point. In the UV, the nonpolynomial
dependence on the kinematical variables of the terms of
the amplitude proportional to s2, t2, and u2 is given by
logð−s=μÞ, logð−t=μÞ or logð−u=μÞ. Thus, if we choose to
renormalize at s ¼ at ¼ bu ¼ μ2R where a and b are fixed
constants, the coupling gets shifted by − logðabÞ, at the
price of having logð−ta

μ2R
Þ and logð−ub

μ2R
Þ in Eq. (44). In this

work we have used the symmetric point a ¼ b ¼ 1 and the
definition (43), because these best capture the behavior of
the amplitude and are best suited for comparison to the
FRG, but we stress that these are arbitrary choices.
In on-shell configurations, choosing the parameters a

and b is equivalent to fixing the scattering angle. This angle
should be held fixed along the running from the IR to the
UV regime; otherwise, one could observe different beta
functions and consequently different runnings of the

FIG. 2. Running coupling calculated from the FRG (blue
continuous curve) and the one obtained by matching the low-
and high-energy physical running (black dashed). They have
been calculated here for the same low-energy limit g ¼ 0.01.
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coupling. If one allows the scattering angle to also depend
on s, the amplitude is no longer described by the universal
running coupling, as demonstrated by the example of
peripheral scattering in the Appendix.
The FRG gives a continuous interpolation for the

running of the quartic coupling and can separately account
for the six- and eight-derivative couplings that will inevi-
tably be generated.
In order to compare the RG trajectory of the coupling in

the FRG with the trajectory of the physical coupling, we
have to make an identification of the argument of the
former, which is an arbitrary cutoff scale k, with the
argument of the latter, which at the symmetric point isffiffiffi
s

p
. If we just put k2 ¼ s and we adjust the initial

conditions so that the two trajectories have the same IR
limit gð0Þ, then in the UV limit they differ by a small offset.
This can be fixed by choosing k ¼ ffiffiffi

s
p

=ξ, where
ξ ¼ e25=40−17=60 ≈ 1.4. This is illustrated again in Fig. 2.
The other running parameter within the FRG is Z1. In the

notation of this section, the general expression was

βZ1
¼ −

Z1 þ 2k2=m2

16π2ðZ1 þ k2=m2Þ2
gk4

M4
: ð61Þ

This is in disagreement with the amplitude calculation, for
which Z1 does not run at all energies,

βZ1
¼ 0: ð62Þ

If we had defined the running of Z1 not by the
dependence on energy or renormalization scale, but by
the dependence of the counterterm on the unphysical
parameter μ that appears in dimensional regularization,
we would have identified

βμZ1
¼ 3

16π2
gm4

M4
: ð63Þ

We noted that the asymptotic form at large k of the FRG
result was

βZ1
¼ gm2k2

M4
þ 3

16π2
gm4

M4
þ… ð64Þ

which, if one disregards the power-law running, would
agree on the logarithmic running. So in this case the
difference between schemes is not limited to a particular
kinematical domain and Z1 should not be considered a
physically running coupling at all.
The one-loop correction to the kinetic energy term was

found to be

3gm4

16π2M4
p2

�
1

ϵ
− γ þ log 4π − log

m2

μ2
þ 7

6

�
: ð65Þ

The portion to focus on is again the logm2=μ2 and what is
going on is very similar to the low-energy regime of g. If we
perform wave-function renormalization at any kinematic
scale, setting Z1 ¼ 1, it remains that value at any other
scale. Taking the derivative with respect to μ does not give
us physical information in this case.
The other issue is that of power-law corrections found

within the FRG. In the case of Z1 this is a less significant
issue than for g, since Z1 is a redundant coupling and is not
associated directly with any scattering process. Another
way to say this is that in a two-point function the only
invariant scale is p2, which on shell is just equal to the pole
mass m2. Nevertheless, we can interpret the difference
between the beta functions computed here and those
coming from the FRG as follows. In this paper we have
perturbed around a generic free theory containing both
kinetic terms, which is not a fixed point in general: only the
theories with Z1 ¼ 0 or Z2 ¼ 0 are fixed points. There is a
trivial running with p that goes from one to the other, since
the quartic term dominates in the UVand the quadratic one
dominates in the IR, but the dimension of the field remains
fixed and does not enter in any of our conclusions.
However, the canonical dimension of the field at a free
fixed point is fixed: it is one at the two-derivative fixed
point and zero at the four-derivative one. In the FRG this is
correctly taken into account. Within the context of the FRG,
the power running of Z1 with the scale k is necessary to
correctly interpolate between the low-energy and high-
energy Gaussian fixed points.

VII. DISCUSSION

We have explored the running of couplings in a simple
model with higher-derivative interactions and kinetic
energy. The scattering amplitude reveals what we are
calling the “physical” running, as it describes the running
parameters seen in physical processes. This differs from
some other definitions of running couplings using different
methods, and we have used explicit calculations to illustrate
these differences.
Some of the lessons from this work can be summarized

as follows.
(1) Physical running couplings can only be defined far

from mass thresholds, and there are different pat-
terns of running above and below the threshold. In
our case, the coupling g does not run below the
threshold and runs logarithmically above it. EFT is
useful in understanding the low-energy region.

(2) Power-law running is not seen in the physical
amplitudes. Instead, in the EFT regime, the effects
that depend on higher powers of the kinematic
invariants are organized as higher-order operators
in an effective Lagrangian. These higher-order
operators disappear altogether above the mass
threshold (operator “melting”).
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(3) Alternate methods of defining running couplings
usingΛ ∂

∂Λ, k
∂

∂k, or μ
∂

∂μ (whereΛ, k, and μ refer to UV
cutoffs, IR cutoffs, and the dimensional regulariza-
tion auxiliary scale) sometimes yield running behav-
ior which is not seen in physical processes. In our
case, this is found in the coupling Z1. The culprit is
factors of logm2=Λ2, etc., which do not involve any
of the kinematic invariants and hence do not change
with the energy scale of the physical reaction.

The last point calls into question the utility of these
alternate methods if the results are not reflected in
physical amplitudes. In the case of the μ running, terms
like logðμ2=m2Þ in the amplitude do not correspond to
physical running. Sometimes such terms arise below the
mass threshold and are replaced by genuine running
logðμ2= − q2Þ above threshold, as we have seen in the
example of the top-quark contribution to the running of the
electromagnetic coupling. However, there may be other
examples of beta functions where this is not properly
accounted for. This seems to be the case, for example,
in the nonlinear sigma models [19,20] and quadratic gravity
[21,22] whose beta functions need to be recalculated. We
will report these results separately in joint work with G.
Menezes.
The FRG deserves a separate discussion. One way of

viewing it is as a method to compute the effective action,
i.e., as an alternative to the path integral. One starts from a
given form of the scale-dependent effective action, pre-
sumed valid at some UV scale Λ, and then includes the
effect of quantum fluctuations with momenta between Λ
and a lower scale k by integrating the FRG from Λ to k.
When one integrates down to k ¼ 0 the full effective
action is obtained, and it contains all of the information
about all scattering amplitudes. For an explicit example of
such a calculation in the context of ϕ4 theory, we refer to
[23]. Used in this way, k is by itself an unphysical
variable. If one were to calculate at some nonzero value
of k ¼ k� one should then add in the quantum corrections
that come from the region of k ¼ 0 up to that value of
k ¼ k�, which were excluded by the cutoff. The physical
amplitudes would be independent of the choice to work at
any nonzero value of k�. This is the origin of the
renormalization group equations: describing how the
coupling must change with the cutoff in order to hold
the physical properties fixed.
The second way to use the FRG is based on giving a

physical meaning to k (a so-called “cutoff identification”).
It rests on the ability of the FRG to account for decoupling
phenomena, which is one of its main strengths (see,
e.g., [24]). If some physical variable F, with dimension
of mass, is the only mass scale of the system, and if it enters
in loop calculations in the same way as a mass or an IR
cutoff, then the F dependence of the effective action (at

k ¼ 0) will be the same as the k dependence of the running
effective action. This is because for k < F the decoupling
theorem implies that the effective action becomes inde-
pendent of k. We refer to [25] for a clear exposition of
this logic.
In our calculations, the identification of the cutoff with

external momenta sometimes works and sometimes does
not. Consider first the corrections to the two-point function.
If one had calculated the tadpole diagram with cutoff
regularization rather than dimensional regularization, the
tadpole integral is quadratically divergent and one would
find a result that has the form

3gm4

16π2M4
p2

�
cΛ2 − log

m2

Λ2
þ…:

�
; ð66Þ

where the constant c would depend on how the cutoff is
implemented. In this case,Λ is a UV cutoff so that quantum
corrections below Λ are included. However, in this case we
know that, treated as a regularization scheme, both the
power-law and logarithmic dependence on Λ disappear
after renormalization and we again have Z1 ¼ 1. So in this
case, tracing the cutoff dependence of the counterterm does
not say anything about the two-point function. In the FRG
calculation the tadpole gives rise to quadratic running of Z1.
However, the external momentum does not enter in any
way in the tadpole integral and so this not a case where one
can trade the external momentum dependence for k
dependence.
In the running of the coupling g we see both outcomes.

At low energy the power-law running found in the FRG is
not observed in the amplitude. It is an aspect of the
threshold behavior, interpolating between a constant in
the IR limit and the logarithmic behavior at the high energy.
The threshold behavior of the couplings in FRG is not
universal, and in any case there is no definition of physical
running to compare with in that regime.
At high energy, the dependence on log k2 correctly

mirrors the dependence of the amplitude on logE2 and
gives the correct beta function. This is due to the fact that
for fixed ratios t=s and u=s, and in the limit whenm=s → 0,
the amplitude depends only on a single mass scale s,
which enters in the denominators of the loop integrals in a
way that is reminiscent of an IR cutoff. Thus, in this regime,
the k dependence of the running coupling correctly
reflects the s dependence of the amplitude. At energies
close to m, the amplitude becomes a complicated function
of s and m and no RG calculation exactly reproduces the
amplitude.
The model discussed in this paper reiterates several

points made by one of us in the past [26–28], but there are
also some new aspects. The disappearance of the higher-
order operators of the low-energy EFT is expected when
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the model is UV completed in a linear Uð1Þ sigma model,
but surprisingly also happens when the four-derivative
kinetic term becomes important. This offers a glimpse
of how, in a derivatively coupled theory, one could
transition from the low-energy EFT regime to an asymp-
totically free (and possibly asymptotically safe) regime.
In principle, this could provide an alternative UV com-
pletion to the Uð1Þ linear sigma model, mentioned in the
Introduction.
This kind of behavior may also be extended to gravi-

tational theories. For example, it raises the possibility that
at least some of these higher-order operators, such as those
of order R3, should not be used above certain thresholds,
because the coefficients of the higher-order operators
vanish. Our model seems to enter a strong-coupling regime
at very high energy. This is because the powers of
momentum of the interaction overwhelm the logarithmic
decrease of the coupling. We have not discussed the physics
of this regime in this paper, but we plan to return to it in the
future.
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APPENDIX: PERIPHERAL SCATTERING

The peripheral scattering limit is that of large s and t ∼ 0.
Although this appendix is only peripheral to our main
discussion (pun intended), it does have an interesting
feature which we comment on in the discussion.
In this case, the s and u channels give similar contri-

butions to the scattering amplitude, since on shell u ¼ −s
and the Mandelstam variables appear only quadratically or
in the log in the dominant terms in the high-energy limit:

7g2m4s2

48M8π2ϵ
þ g2m4

576M8π2

�
ð74 − 84γEÞs2 þ 42s2

�
log

�
4πμ2

s

	
þ log

�
−
4πμ2

s

	�

þOðϵ1Þ: ðA1Þ

On the other hand, the t channel is a bit more subtle, since the terms that are powers of t in the denominator could give some
divergences. However, if we expand (28) with t and s exchanged at small t, all of the divergent terms are actually zero and
we obtain

g2m4s2

96π2M8ϵ
þ g2m4s2

�
6 logð4πμ2m2 Þ − ð6γ − 5Þ�
576π2M8

þ g2m2st
96π2M8ϵ

þ g2m2st
�
7sþ 12m2 logð4πμ2m2 Þ þ 2m2ð−6γ þ 5Þ�

1152π2M8

þ 7g2t2m4

96π2M8ϵ
þ g2t2

�
−6s2 log ð− t

m2Þ þ 9s2 þ 35m2sþ 420m4 logð4πμ2m2 Þ −m4ð420γ þ 140Þ�
5760π2M8

þOðt3Þ: ðA2Þ

Anyway, the first line is clearly dominant. Hence, the one-loop quantum corrections in peripheral scattering are

5g2m4s2

32π2ϵM8
þ g2m4s2

576M8π2

�
ð79 − 90γEÞ þ 42

�
log

�
4πμ2

s

	
þ log

�
−
4πμ2

s

	�
þ 6 log

�
4πμ2

m2

	

þOðtÞ: ðA3Þ

After renormalization, in the present notation the amplitude has the form

M ¼ gs2

M4

�
1þ 7gm4

96π2M4

�
log

�
−s
m2

	
þ log

�
s
m2

		
þ 79gm4

576π2M4

�
þOðstÞ: ðA4Þ

For this process one can define a running coupling

g̃ðμRÞ ¼ gþ 7g2m4

48π2M4
log

μ2R
m2

þ 79g2m4

576π2M4

when renormalizing at the scale s ¼ μ2R, where again the 79=576π2 factor is optional. This removes the potentially large
logarithms, and carries the beta function
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βg̃ ¼
7g2m4

24π2M4
:

It is interesting that one can define a physical beta function
in this region, yet it is different from that found when all of
the kinematic variables are large.
We can understand this in the following way. The

universal beta functions that one calculates from perturba-
tion theory are only universal as long as one considers

processes that depend on a single momentum scale. This is
the case, for example, for 2 → 2 scattering at a fixed angle:
the ratios of the Mandelstam variables are fixed and the
amplitude depends just on s. In the case of peripheral
scattering we are changing the scattering angle together
with the energy, and the amplitude is not a function of s
alone. While there is no guarantee that a running coupling
can be defined in this setting, it appears possible in the one-
loop calculation.
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