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The observation of gravitational waves opens up a new window to probe the universe and the nature of
the gravitational field itself. As a result, they serve as a new and promising tool to not only test our current
theories but to study different models that go beyond our current understanding. In this paper, inspired
by recent successes in scalar and Maxwell electrodynamics, we analyze the role played by the (quantum)
Unruh effect on the production of both classical and quantum gravitational waves by a uniformly
accelerated mass. In particular, we show the fundamental role played by zero-energy (Rindler) gravitons in
building up the gravitational radiation, as measured by inertial observers, emitted by the body.
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I. INTRODUCTION

The prediction of the existence of gravitational waves is
one of the most important theoretical predictions brought
forward by general relativity. Today, due to the advent of
gravitational wave detectors such as LIGO and Virgo, it
also stands as one of the core pieces of evidence that
sustains this theory as our best tool to describe gravity.
The direct observation of these waves [1] has opened

new windows to probe the universe by broadening the
spectrum of possible phenomenological observations and
catapulted us to the era of gravitational wave astronomy.
This kind of radiation provides us with an important and
interesting set of astrophysical tools, and thus, it is vital to
study and understand the mechanisms under which it can
be generated.
One of the processes that gives rise to radiation is

acceleration, and the relationship between these two has
attracted the interest of physicists over the years (see, e.g.,
Refs. [2–5]). In this context, uniformly accelerated charges
have received special attention, mainly due to the apparent
contradictions that arise when the principle of equivalence
is considered [6]. Such issues are resolved when one notes
that radiation is not to be regarded as a covariant concept
but, rather, it depends on the observer measuring it [7–9].
In the context of quantum field theory in curved space-

times the connection between acceleration and radiation
has only been strengthened since the discovery that an
accelerated observer sees the inertial vacuum as a thermal
bath of particles at the Unruh temperature [10]

TU ¼ ℏa
2πckB

; ð1Þ

the so-called Unruh effect. In the decades that followed, the
interplay between acceleration, radiation, and the Unruh
effect has been scrutinized and their consequences analyzed
through several works such as Refs. [11–13].
Even though most of the examples above are related to

electrodynamics, the emission of both classical and quan-
tized gravitational waves by point particles has been
analyzed around several background geometries. In the
classical realm, Bičák [14] studies the radiative properties
of the solution provided by Bonnor and Swaminarayan
[15], describing four accelerated particles; Hopper and
Cardoso [16] examine the scattering of test particles and
their interactions with gravitational waves around a
Schwarzchild black hole; and Poisson [17] gives detailed
calculations to survey the waveforms from a binary system
where one of its members is much more massive than the
other. As for the quantum counterpart, quantized gravita-
tional perturbations around a classical Schwarzschild black
hole were studied by Bernar et al. [18], and these same
authors also provide a discussion on a de Sitter background
using a multipole source [19]. In addition to this, the
construction of propagators has also been previously
reported; see, for example, the gravitational two-point
functions in de Sitter spacetime of Refs. [20,21].
In this paper, we aim to describe the classical and

quantum gravitational waves emitted by a single mass,
which is uniformly accelerated in a Minkowski back-
ground. In particular, using traceless and transverse gravi-
tational Unruh modes, we show the main role played by
zero-Rindler-energy modes in building up the gravitational
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radiation emitted by the mass, as measured by inertial
observers in the asymptotic future.
For this purpose, the paper is structured as follows. In

Sec. II we present a summary of the basics of gravitational
wave theory and some tools needed for our description.
After this, in Sec. III, we define modes for the gravitational
perturbations that are based on some of the symmetry
properties of Minkowski spacetime. Then, in Sec. IV, we
present the physical setup we use and find the correspond-
ing stress-energy tensor that will serve as the source of
these gravitational waves. In Sec. V we present the classical
expansion of the retarded field seen from the perspective of
inertial observers in the asymptotic future. We then proceed
in Sec. VI to compare the quantum description between the
asymptotic past and asymptotic future, connecting the Fock
spaces of both of these constructions when the field is
initially in its vacuum state using the S matrix. Finally, we
give some concluding remarks to summarize our results in
Sec. VII.
Throughout this work, we use natural units: ℏ ¼ c ¼ 1,

and Newton’s constant is kept as G. We use the metric with
signature ð−;þ;þ;þÞ and indices of the beginning of the
Latin alphabet ða; b; c;…Þ to refer to components in the
entire spacetime (the bulk).

II. GRAVITATIONAL PERTURBATIONS
AROUND A FIXED METRIC

We begin by recalling the general formalism of
gravitational waves. Let us consider a four-dimensional
globally hyperbolic spacetime ðM; gabÞ, whereM is a four-
dimensional manifold with a Lorentzian metric gab.
Gravitational perturbations correspond with small devia-
tions from this metric: hab ¼ δgab, with hab ¼ hðabÞ and
jhabj ≪ 1. The dynamics of such perturbations are encoded
in the action (without cosmological constant) [22]

Ipert ¼
Z
M
d4xLpert ¼

Z
M
d4x ðLinv þ LgfÞ; ð2Þ

where

Linv ¼ −
ffiffiffiffiffiffi−gp

4κ2
ð∇chab∇chab −∇ch∇ch

þ 2∇ahab∇bh − 2∇ahac∇bhbcÞ ð3Þ

is the Lagrangian density invariant under gauge trans-
formations defined by an arbitrary vector field Λa,

hab → h̃ab ¼ hab − 2∇ðaΛbÞ; ð4Þ

and

Lgf ¼
ffiffiffiffiffiffi−gp

2ακ2

�
∇ahab −

1þ β

β
∇bh

�

×
�
∇chcb −

1þ β

β
∇bh

�
ð5Þ

is a gauge fixing term depending on the quantities α; β∈R.
This last term is added to the theory to eliminate spurious
non-normalizable modes, whereas the Lagrangian density
of Eq. (3) arises from the second-order perturbation of the
Einstein-Hilbert Lagrangian density LHE ¼ κ−2

ffiffiffiffiffiffi−gp
R. We

raise and lower indices using the background metric gab,
h ¼ gabhab is the trace of the perturbation, R is the
(background) Ricci scalar, g ¼ det gab is the determinant
of the background metric, ∇a is the (torsion-free) covariant
derivative compatible with gab, and κ2 ≡ 16πG.
Given two distinct gravitational perturbations, hð1Þab and

hð2Þab , and a Cauchy surface Σ, we define their tensor Klein-
Gordon product as

hhð1Þ; hð2Þit ≡ −i
Z
Σ
d3Σnc

h
hð1Þab π

cab
ð2Þ − πcabð1Þ h

ð2Þ
ab

i
; ð6Þ

where the overline symbolizes the complex conjugate, na is
the future-oriented unit vector orthogonal to Σ, and πcabð1Þ
and πcabð2Þ are the generalized momenta

πcab ≡ 1ffiffiffiffiffiffi−gp ∂Lpert

∂ð∇chabÞ
; ð7Þ

associated with hð1Þab and hð2Þab , respectively. As the four-
vector inside the square brackets in Eq. (6) has null
divergence, the result of this integral is conserved (it does
not depend on the choice of Cauchy surface) [23,24].
Given a matter distribution in the spacetime whose

dynamics is governed by the matter action Imat, the
stress-energy tensor is defined as

Tab ≡ 2ffiffiffiffiffiffi−gp δImat

δgab
: ð8Þ

In the context of gravitational perturbations we are con-
sidering, we can use the tensor above to describe the
coupling of matter with gravitational waves via the inter-
action action [25]

Iint½h; T�≡ 1

2

Z
M
d4x

ffiffiffiffiffiffi
−g

p
Tabhab: ð9Þ

In regions without sources, i.e., Tab ¼ 0, we can choose the
perturbations to be traceless and transverse, the TT gauge:

haa ¼ 0; ∇ahab ¼ 0; ð10Þ
which implies that the Euler-Lagrange equations arising
from the total action Ipert is given by
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∇c∇chab − 2Rc
ab

dhcd ¼ 0; ð11Þ

where Rd
abc is the Riemann curvature of the background

spacetime. For perturbations in the TT gauge, the gener-
alized four-momentum is simply πcab ¼ −ð2κ2Þ−1∇chab,
which implies the tensor Klein-Gordon inner product
reduces to

hhð1Þ; hð2Þit ¼
i

2κ2

Z
Σ
dΣncWc½hð1Þ; hð2Þ�; ð12Þ

with the current

Wa½hð1Þ; hð2Þ�≡ hcdð1Þ∇ah
ð2Þ
cd − hcdð2Þ∇ah

ð1Þ
cd ; ð13Þ

which we will use to normalize the modes. We now present
the modes in the class of background spacetimes we are
interested in describing.

III. MODES FOR THE GRAVITATIONAL
PERTURBATION AROUND MINKOWSKI

AND RINDLER BACKGROUNDS

We will concentrate on gravitational perturbations
around four-dimensional Minkowski spacetime, which is
a flat and globally hyperbolic solution of Einstein’s
homogeneous field equations. Mathematically, we model
it as the manifoldR4 endowed with the metric ηab which, in
Cartesian (inertial) coordinates ðt; x; y; zÞ, is written as

ηab ¼ diagð−1; 1; 1; 1Þ: ð14Þ

The condition t ¼ const defines a family of Cauchy
surfaces in which the Killing field ð∂tÞa is its (future-
pointing) normal. By arbitrarily choosing one spatial
direction, namely the z axis, we can separate this spacetime
into four distinct regions by the lightlike surfaces
t� z ¼ 0: the left Rindler wedge (LRW) as the region
where z < −jtj, the right Rindler wedge (RRW) by the
condition z > jtj, and the expanding and contracting
degenerate Kasner universes (EDKU and CDKU) by
t > jzj and t < −jzj, respectively; see Fig. 1. The
Rindler wedges are globally hyperbolic static spacetimes
in their own right, as they are globally hyperbolic regions
where the Lorentz boost generators in the z direction

Ξa ¼ zð∂tÞa þ tð∂zÞa ð15Þ

are (hypersurface-orthogonal) timelike killing fields. Each
of these wedges can be identified with a copy of the so-
called Rindler spacetime, from where they receive their
name. Note that the boost generators are spacelike in both
the EDKU and CDKU.
The Rindler spacetime is the manifold R4 mapped by the

coordinates ðλ; ξ; x; yÞ and with the metric defined by

ds2 ¼ gabdxadxb ¼ e2aξð−dλ2 þ dξ2Þ þ dx2 þ dy2; ð16Þ

where a (called the acceleration parameter) is a non-
negative constant. This spacetime can be identified as
the product between two subspaces: the Lorentzian orbit,
given by R2 with interval ds2orb ¼ e2aξð−dλ2 þ dξ2Þ; and
the xy plane, which is another copy of R2, but with the
metric defined by ds2ms ¼ dx2 þ dy2.
The correspondence between Rindler spacetime and the

RRW becomes evident with the aid of the coordinate
transformation

t¼ a−1eaξ sinhðaλÞ; z¼ a−1eaξ coshðaλÞ; ð17Þ

that keeps x⊥ ≡ ðx; yÞ invariant. From this, we see that a
particle that moves along a trajectory where the spatial
coordinates ξ and x⊥ are kept fixed measures a proper time
τ ¼ eaξλ and a constant proper acceleration ae−aξ. As a
result, we associate the Rindler spacetime (and the Rindler
wedges) with a family of uniformly accelerated observers
moving along the z direction. Note also that the only
nonzero components of the Christoffel symbols are

Γξ
ξξ ¼ Γξ

λλ ¼ Γλ
λξ ¼ Γλ

ξλ ¼ a; ð18Þ

so there is no mixing between the two subspaces of Rindler
spacetime when computing the covariant derivatives.
The treatment of the massless scalar field ϕwill be useful

further ahead, so it is convenient to present an abridged
version here. We recall that the dynamics of the field are
determined from the field equation, which in Rindler
spacetime is given by

FIG. 1. Schematics of Minkowski spacetime with the lightlike
surfaces t ¼ �z and segments of the integral curves of each of
the future-oriented timelike vectors. Examples of the Cauchy
surfaces are in blue: ΣI is generated by ð∂tÞa and is associated
with inertial observers; and ΣA is generated by Ξa and is
associated with accelerated observers whose motion is con-
strained to the RRW.
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e−2aξ
�
−
∂
2ϕ

∂λ2
þ ∂

2ϕ

∂ξ2

�
þ ∂

2ϕ

∂x2
þ ∂

2ϕ

∂y2
¼ 0; ð19Þ

and the classical solutions can be expanded in terms of the
positive-energy (with respect to Rindler time λ) modes
given by

vωk⊥ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðπω=aÞ

4π4a

r
eiðk⊥·x⊥−ωλÞKiω=a

�
k⊥eaξ
a

�
; ð20Þ

where KνðzÞ is the modified Bessel function of the second
kind, ω ≥ 0 and k⊥ ∈R2 − f0g. These have been chosen
so that they satisfy the normalization condition

hvωk⊥ ; vω0k0⊥is ¼ δðω − ω0Þδ2ðk⊥ − k0⊥Þ: ð21Þ

Here the integral is taken over a constant λ surface and
the subscript s indicates this is the scalar version of the
Klein-Gordon inner product [26]. On the other hand, on
Minkowski spacetime with global inertial coordinates
ðt; x; y; zÞ, the field equation satisfies the well-known wave
equation

−
∂
2ϕ

∂t2
þ ∂

2ϕ

∂x2
þ ∂

2ϕ

∂y2
þ ∂

2ϕ

∂z2
¼ 0; ð22Þ

and its solutions can be expanded in terms of the positive-
energy (with respect to the inertial time t) scalar inertial
modes

ψkðt;x⊥; zÞ≡ exp½iðk⊥ · x⊥ þ kzz − k0tÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k0ð2πÞ3

p ; ð23Þ

where k ¼ ðkx; ky; kzÞ and k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ k2z

p
defines the

energy carried by each mode according to an inertial
observer. These modes are also orthonormalized:

hψk;ψk0 is ¼ δ3ðk − k0Þ: ð24Þ

Since Minkowski spacetime contains two copies of
Rindler spacetime, we can identify two sets of scalar
Rindler modes: the left and the right ones, which can be
written as linear combinations of the scalar Minkowski
modes and their complex conjugates [26,27]:

vRωk⊥ðt;x⊥; zÞ ¼
Z

∞

−∞
dkz½αRωk⊥kzψkðt;x⊥; zÞ

þ βRωk⊥kzψkðt;−x⊥; zÞ�; ð25Þ

vLωk⊥ðt;x⊥; zÞ ¼
Z

∞

−∞
dkz½αLωk⊥kzψkðt;x⊥; zÞ

þ βLωk⊥kzψkðt;−x⊥; zÞ�; ð26Þ

where the Bogoliubov coefficients are

αRωk⊥kz ¼ αLωk⊥−kz ¼ −eπω=aβRωk⊥kz ¼ −eπω=aβLωk⊥−kz

¼ eπω=ð2aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πak0 sinhðπω=aÞ

p �
k0 þ kz
k0 − kz

�
−iω=ð2aÞ

: ð27Þ

The integrals of Eqs. (25) and (26) serve as the definition of
left and right scalar Rindler modes as distributions on the
entirety of Minkowski spacetime. Particularly, the right
modes converge to the form given in Eq. (20) on the RRW
and to 0 on the LRW. Similarly, left modes are given by
Eq. (20) on the LRW and are null on the RRW. These
expressions can be used to show that between two modes of
the same wedge, the normalization condition (21) still
holds when the integral is taken over Cauchy surfaces with
constant inertial time, and that left and right scalar Rindler
modes are orthogonal to each other.
We will now construct similar modes for the tensor case,

applying the procedure described in Refs. [28–30] in
Minkowski and Rindler spacetimes, taking advantage of
the symmetry of the xy plane. We will be using the scalar
and vector harmonics defined in this maximally symmetric
subspace as well as gauge invariants defined on the orbit to
build two independent sets of modes (or sectors), each of
which arises from (and is labeled by) the type of harmonic
used in its construction. We will only show details tailored
to our exposition and urge the reader to refer to the works
mentioned above for a comprehensive discussion on these
methods, as the derivations and proofs are quite involved
and far more general than the scope of this paper.

A. Harmonics on the plane

In the following, indices of the middle of the Latin
alphabet i; j; k;…, represent components in the xy plane.
The scalar harmonic Sðx⊥Þ is the solution to the eigen-

value problem of the Laplace-Beltrami operator, and this is

∂
2S
∂x2

þ ∂
2S
∂y2

þ k2⊥S ¼ 0; ð28Þ

from which we find solutions of the type [31]

Sk⊥ðx⊥Þ ¼ eik⊥·x⊥ : ð29Þ
The transverse momentum vector k⊥ ¼ðkx;kyÞ∈R2−f0g
labels the modes in such a way that the eigenvalues of
the harmonic equation are identified with the modulus of
this vector, i.e., jk⊥j2 ¼ k2x þ k2y ¼ k2⊥. Derivatives of the
harmonics are used to define the auxiliary two-vector and
two-tensor

Sk⊥
i ≡ −

1

k⊥
∂iSk⊥ ; ð30Þ

Sk⊥
ij ≡ 1

k2⊥
∂i∂jSk⊥ þ 1

2
gijSk⊥ ; ð31Þ
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which will represent the x⊥ dependence of the scalar
sector modes.
Similarly, the components of the vector harmonic V iðx⊥Þ

are defined by the equations

∂
2V i

∂x2
þ ∂

2V i

∂y2
þ k2⊥V i ¼ 0; ∇iV i ¼ 0: ð32Þ

By using the Levi-Civita tensor on the plane, defined by its
Cartesian components εxy ¼ −εyx ¼ 1, εxx ¼ εyy ¼ 0, we
can write the solution in Cartesian coordinates as

Vk⊥
i ¼ −iεimgmn

∂nSk⊥ : ð33Þ

These vectors have an associated tensor defined by

Vk⊥
ij ≡ −

1

2k⊥
ð∂iVk⊥

j þ ∂jV
k⊥
i Þ: ð34Þ

Properties of the definitions (30), (31), and (34) that are
relevant to our study can be found in Appendix A.
The tensor harmonic in the plane, T ijðx⊥Þ, is defined as

the symmetric solution of the system of equations

∂
2T ij

∂x2
þ∂

2T ij

∂y2
þk2⊥T ij¼0; ∇iT ij¼0; T i

i¼0: ð35Þ

We find that this is only satisfied by T ijðx⊥Þ ¼ 0.
Therefore, we can discard the tensor perturbations and
are left with the scalar and vector sectors only.

B. Master variables and normalizable
gravitational perturbations in Rindler spacetime

There have been previous reports of gravitational per-
turbations on Rindler spacetime, such as Ref. [32] where
the authors chose the Regge-Wheeler gauge [33,34].
However, as their even mode is not transverse, they are
not suited for our purposes. For this reason, in what
follows, we will build a different set of modes more
suitable for our application. We will use Greek indices
of the beginning of the alphabet α; β; γ;…, to label
components in the orbit.
The so-called master variables are governed by the

equation

∇α∇αΩ − k2⊥Ω ¼ 0; ð36Þ
with Ω∈ fΩs;Ωv;Ωtg. In Rindler coordinates, Eq. (36) can
be cast as

e−2aξ
�
∂
2Ω
∂ξ2

−
∂
2Ω
∂λ2

�
− k2⊥Ω ¼ 0; ð37Þ

and, given an energy ω ≥ 0measured by Rindler observers,
the positive (Klein-Gordon) norm regular master variables
are given by

Ωωk⊥
s ðλ; ξÞ ¼ Sωk⊥e

−iωλKiω=aða−1k⊥eaξÞ; ð38Þ

Ωωk⊥
v ðλ; ξÞ ¼ Vωk⊥e

−iωλKiω=aða−1k⊥eaξÞ; ð39Þ

Ωωk⊥
t ðλ; ξÞ ¼ Tωk⊥e

−iωλKiω=aða−1k⊥eaξÞ: ð40Þ

The coefficients Sωk⊥ and Vωk⊥ are to be found through
normalization. Note we have considered the tensor master
variable even though we have discarded the tensor pertur-
bation as it is still used in the definition of the remaining
sectors.
We use the master variables and the (Lorentzian) Levi-

Civita tensor of the orbit, defined in Rindler coordinates by
ϵλξ ¼ −ϵξλ ¼ e2aξ, ϵξξ ¼ ϵλλ ¼ 0, to construct the gauge
invariants

Fωk⊥ ¼ ðk2⊥=4ÞΩωk⊥
s ; ð41Þ

Fωk⊥
α ¼ ϵαβ∇βΩωk⊥

v ; ð42Þ

Fωk⊥
αβ ¼ ∇α∇βΩ

ωk⊥
s − ðk2⊥=2ÞgαβΩωk⊥

s : ð43Þ

From these we build the gauge dependent variables

Ωωk⊥
l ≡ Fωk⊥ − Ωωk⊥

t =2; ð44Þ

fωk⊥α ≡ Fωk⊥
α −∇αΩ

ωk⊥
t =k⊥; ð45Þ

fωk⊥αβ ≡ Fωk⊥
αβ − ð2=k⊥Þ∇ðαF

ωk⊥
βÞ ; ð46Þ

which we use to write the gravitational perturbations for the
scalar

hðs;ωk⊥Þ
αβ ¼ fωk⊥αβ Sk⊥ ;

hðs;ωk⊥Þ
αj ¼ fωk⊥α Sk⊥

j ;

hðs;ωk⊥Þ
ij ¼ 2gijΩ

ωk⊥
l Sk⊥ þ 2Ωωk⊥

t Sk⊥
ij ; ð47Þ

and vector sectors

hðv;ωk⊥Þ
αβ ¼ 0;

hðv;ωk⊥Þ
αi ¼ fωk⊥α Vk⊥

i ;

hðv;ωk⊥Þ
ij ¼ 2Ωωk⊥

t Vk⊥
ij : ð48Þ

Given the definitions in Eqs. (41)–(46), we see that these
modes are quite complicated, and the information between
the scalar, vector, and tensor sectors are coupled between
the different modes, as Ωωk⊥

t and Ωωk⊥
v appear explicitly in

both expressions.
Using the properties described in Appendix A, we

can see that the vector sector satisfies the TT gauge
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conditions (10) identically. However, imposing the same
requirement to the scalar sector enforces the condition

Ωωk⊥
t ¼ k2⊥

2
Ωωk⊥

s ; ð49Þ

or, equivalently, Ωωk⊥
l ¼ 0. We will now show the appro-

priate gauge transformations to further simplify these
modes while still remaining in the TT gauge.
Given an arbitrary gauge transformation (4), the vector

Λa characterizing it can be decomposed using scalar and
vector harmonics in a very similar way to what is done to
the gravitational perturbation [35]. Furthermore, the result-
ing tensor, h̃ab, will also have a unique decomposition in
terms of harmonics, and the gauge transformation trans-
lates to a transformation of the modes. From this, we can
show that

ΛðsÞ
α ¼ϕαðλ;ξÞSk⊥ ; ΛðsÞ

i ¼φðλ;ξÞSk⊥
i ; ð50Þ

is the most general form of vector fields that modifies the
scalar sector modes, while

ΛðvÞ
α ¼ 0; ΛðvÞ

i ¼ψðλ;ξÞVk⊥
i ; ð51Þ

is the most general transformation that can be applied to
the vector sector modes. We will choose the fields ϕα, ϕ,
and ψ in such a way that the modes are decoupled while
remaining in the TT gauge.
For the vector sector, we pick

ΛðvÞ
α ¼ 0; ΛðvÞ

i ¼−
1

k⊥
Ωωk⊥

t Vk⊥
i ; ð52Þ

to make the transformed vector perturbation (omitting the
tilde as we will discard the old form of the modes and the
distinction will no longer be necessary)

hðv;ωk⊥Þ
αβ ¼ 0;

hðv;ωk⊥Þ
αj ¼ ϵαβ∇βΩωk⊥

v Vk⊥
j ;

hðv;ωk⊥Þ
ij ¼ 0; ð53Þ

which we see is written in terms of the vector master
variable only. We also note that it is proportional to the odd
perturbation previously found in Ref. [32]. To transform the
scalar sector we use

ΛðsÞ
α ¼−

1

k⊥
ϵαβ∇βΩωk⊥

v Sk⊥ ; ΛðsÞ
i ¼ 0; ð54Þ

and Eq. (49), yielding

hðs;ωk⊥Þ
αβ ¼ ½∇α∇βΩ

ωk⊥
s − ðk2⊥=2ÞΩωk⊥

s gαβ�Sk⊥ ;

hðs;ωk⊥Þ
αj ¼ −ðk⊥=2Þ∇αΩ

ωk⊥
s Sk⊥

j ;

hðs;ωk⊥Þ
ij ¼ k2⊥Ω

ωk⊥
s Sk⊥

ij ; ð55Þ

which depends only on the scalar master variable. This
completely decouples the modes while satisfying the
chosen gauge condition (10), which is easily verified.
Normalization is a laborious but straightforward calcu-

lation (one can find some relevant identities needed in
Appendix B). We find, by choosing

Vωk⊥ ¼ Sωk⊥
2

¼ κ

k2⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðπω=aÞ

4π4a

r
; ð56Þ

and labeling with p either the scalar or vector sector, that the
modes satisfy the normalization conditions

hhðp;ωk⊥Þ; hðp0;ω0k0⊥Þit ¼ δpp0δðω − ω0Þδ2ðk⊥ − k0⊥Þ; ð57Þ

hhðp;ωk⊥Þ; hðp0;ω0k0⊥Þit ¼ 0: ð58Þ

Moreover, simple identifications allow us to write these
gravitational perturbations using the scalar modes of
Eq. (20). As a result, we find that the vector sector is
given by

hðv;ωk⊥Þ
αβ ¼ 0;

hðv;ωk⊥Þ
αj ¼ −iðκ=k2⊥Þϵαβεjl∇β∇lvωk⊥ ;

hðv;ωk⊥Þ
ij ¼ 0; ð59Þ

while the scalar sector corresponds to

hðs;ωk⊥Þ
αβ ¼ ð2κ=k2⊥Þ½∇α∇βvωk⊥ − ðk2⊥=2Þgαβvωk⊥ �;

hðs;ωk⊥Þ
αj ¼ ðκ=k2⊥Þ∇α∇jvωk⊥ ;

hðs;ωk⊥Þ
ij ¼ ð2κ=k2⊥Þ½∇i∇jvωk⊥ þ ðk2⊥=2Þgijvωk⊥ �: ð60Þ

Both representations of tensor Rindler modes, Eqs. (53)
and (55) or Eqs. (59) and (60), are equivalent, and we will
use either one indistinctly, depending only on what is
convenient for each situation.
It is interesting to note that the form of the modes given

in Eqs. (59) and (60) enables us to write the gravitational
Rindler modes as derivation operators applied over the
scalar Rindler modes (20). Hence, we can write

hðp;ωk⊥Þ
ab ¼ hðp;ωk⊥Þ

ab ½vωk⊥ �: ð61Þ
As a result, we can map from Rindler spacetime to the
Rindler wedges with the aid of these “operators” acting on
the left and right scalar modes of Eqs. (25) and (26),
respectively, as
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VðL;p;ωk⊥Þ
ab ≡ hðp;ωk⊥Þ

ab ½vLωk⊥ �; ð62Þ

VðR;p;ωk⊥Þ
ab ≡ hðp;ωk⊥Þ

ab ½vRωk⊥ �: ð63Þ

The above equations give us left and right gravitational
Rindler modes that can be used to describe gravitational
waves from the perspective of accelerated observers.
As we are ultimately interested in describing the radi-

ation seen from the inertial point of view (but connecting it
with the physics of accelerated observers), we need to
define modes that are, in fact, associated with a congruence
of observers following inertial trajectories but are labeled
with quantum numbers associated with uniformly accel-
erated observers. These are the so-called Unruh modes, and
they will be defined next.

C. Inertial modes

In this section greek indices refer to the ðt; zÞ coordi-
nates. In deriving the form of the Rindler modes given in
Eqs. (53) and (55), we have only used the properties of the
harmonics of the plane and covariant quantities in the orbit.
The only time the explicit form of the master variables was
used was for the normalization integrals. Given the fact that
Minkowski spacetime has the same maximally symmetric
subspace and the difference lies in the orbit, we can define
gravitational (plane waves) Minkowski modes using their
own master variables, Ψs and Ψv. The vector sector of
Minkowski modes is defined by

Hðv;kÞ
αβ ¼ 0;

Hðv;kÞ
αj ¼ ϵαβ∇βΨk⊥kz

v Vk⊥
j ;

Hðv;kÞ
ij ¼ 0; ð64Þ

and the scalar sector is defined by

Hðs;kÞ
αβ ¼ ½∇α∇βΨ

k⊥kz
s − ðk2⊥=2ÞΨk⊥kz

s gαβ�Sk⊥ ;

Hðs;kÞ
αj ¼ ðk⊥=2Þ∇αΨ

k⊥kz
s Sk⊥

j ;

Hðs;kÞ
ij ¼ k2⊥Ψ

k⊥kz
s Sk⊥

ij : ð65Þ
The dynamics of these modes are governed by the field
equations

∂
2Ψ
∂z2

−
∂
2Ψ
∂t2

− k2⊥Ψ ¼ 0; ð66Þ

with Ψ∈ fΨs;Ψvg. Introducing the inertial energy

k0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
, the positive-energy master variables

are chosen to be given by

Ψk⊥kz
s ¼ 2Ψk⊥kz

v ¼ κ

2k2⊥
ffiffiffiffiffiffiffiffiffi
π3k0

p eið−k0tþkzzÞ; ð67Þ

in order to have the normalization relations

hHðp;kÞ; Hðp0;k0Þit ¼ δpp0δ
3ðk − k0Þ; ð68Þ

hHðp;kÞ; Hðp0;k0Þit ¼ 0; ð69Þ

for the modesHðp;kÞ. From their explicit functional depend-
ence, it is straightforward to prove that these gravitational
inertial modes can be constructed by derivation operators
applied to the scalar inertialmodes, just aswe did for Rindler
spacetime. It is useful to note that the left and right
gravitational Rindler modes are also linear combinations
of positive- and negative-energy Minkowski tensor modes
following the same structure of the scalar field seen in
Eqs. (25) and (26) [36]. Therefore, we can define gravita-
tional Unruh modes from linear combinations of left and
right Rindler modes as

Wð1;p;ωk⊥Þ
bc ≡ VðR;p;ωk⊥Þ

bc þ e−πω=aVðL;p;ω−k⊥Þ
bcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p ; ð70Þ

Wð2;p;ωk⊥Þ
bc ≡ VðL;p;ωk⊥Þ

bc þ e−πω=aVðR;p;ω−k⊥Þ
bcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p : ð71Þ

These are purely positive-energy modes with respect to
inertial time t, which implies that they can be written as a
linear combination of the Minkowski modes (64) and (65).
However, they are intrinsically related to the physics of
accelerated observers, as they are labeled using the energy
and transverse momentum as seen by the fiduciary accel-
erated observers.
We can write the tensor Unruh modes, in terms of the

scalar Unruh modes

wσ
ωk⊥ðxÞ ¼

eik⊥·x⊥

4π2
ffiffiffiffiffiffi
2a

p
Z

∞

−∞
dϑ eið−1Þσϑω=a

× exp½ik⊥ðz sinhϑ − t coshϑÞ� ð72Þ

(here written as conditionally convergent distributions over
the entirety Minkowski spacetime), as

Wðσ;v;ωk⊥Þ
αβ ¼ 0;

Wðσ;v;ωk⊥Þ
αj ¼ −i

κ

k2⊥
ϵαβεjl∇β∇lwσ

ωk⊥ ;

Wðσ;v;ωk⊥Þ
ij ¼ 0; ð73Þ

for the vector sector and
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Wðσ;s;ωk⊥Þ
αβ ¼ 2κ

k2⊥
½∇α∇βwσ

ωk⊥ − ðk2⊥=2Þgαβwσ
ωk⊥ �;

Wðσ;s;ωk⊥Þ
αj ¼ κ

k2⊥
∇α∇jwσ

ωk⊥ ;

Wðσ;s;ωk⊥Þ
ij ¼ 2κ

k2⊥
½∇i∇jwσ

ωk⊥ þ ðk2⊥=2Þgijwσ
ωk⊥ �; ð74Þ

for the scalar one, where σ ¼ 1, 2.
Both Minkowski and Unruh tensor modes form (together

with their complex conjugates) two complete sets of modes
expanding any linearized gravitational perturbation in the
TT gauge. They will serve as our main tools to survey the
radiation content of the radiation emitted by an accelerated
mass in both the classical and the quantum contexts.

IV. ACCELERATED PARTICLE

Let us now consider a particle in Minkowski spacetime
ðR4; ηabÞ uniformly accelerated by the action of an external
agent. The corresponding worldline, parametrized by the
particle’s proper time τ∈R, is given by

χtðτÞ ¼ a−1 sinhðaτÞ; χxðτÞ ¼ 0;

χyðτÞ ¼ 0; χzðτÞ ¼ a−1 coshðaτÞ: ð75Þ

This worldline is entirely contained in the RRW, and as
such, we can use Rindler coordinates (17) to simplify the
description:

χλðτÞ ¼ τ; χξðτÞ ¼ χxðτÞ ¼ χyðτÞ ¼ 0; ð76Þ

i.e., the accelerated Rindler frame is the rest frame of the
particle.
To describe the gravitational waves emitted by such a

particle, we need the corresponding stress-energy tensor (8)
that arises from the matter action describing the particle as
well as the stress-energy tensor describing the external
agent accelerating the mass. The covariant equations of
motion for the particle are given by

d2χa

dτ2
þ Γa

bc
dχb

dτ
dχc

dτ
¼ FaðχÞ; ð77Þ

where Fa is a vector field representing the accelerating
agent, which can be written using inertial or Rindler
coordinates as

Fb ¼ a2tð∂tÞb þ a2zð∂zÞb ¼ að∂ξÞb: ð78Þ

The equations of motion (77) can be obtained as the Euler-
Lagrange equations for the action

Ip ¼ Ik þ ImF; ð79Þ

where

Ik ≡ −m
Z

∞

−∞
dτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gab

dχa

dτ
dχb

dτ

r
ð80Þ

is the kinetic term corresponding to the particle and

ImF ≡
Z

∞

−∞
dτ

m
2a2

FbFb ð81Þ

gives the interaction between the external agent and the
particle.
A full matter action must consider the action of the

accelerating agent, that is, an action IF that carries the
information of the acceleration field. Therefore, the com-
plete matter action is

Imat ¼ Ip þ IF: ð82Þ
From this action, we find that the stress-energy tensor can
be written as

Tab ¼ TA
ab þ TF

ab; ð83Þ
where

TA
abðxÞ ¼

mffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞp Z

∞

−∞
dτ uaubδ4(x − χðτÞ) ð84Þ

comes from the variation of Eq. (80) with gab and gives the
contribution to the stress-energy tensor coming exclusively
from the accelerated motion of the mass. The tensor TF

ab
comes from the variation of ImF þ IF with gab and
describes the contribution to the total stress-energy tensor
coming from the accelerating agent. Here, uaðτÞ≡ dχa=dτ
is the four-velocity of the particle, and we have introduced
the Dirac delta distribution δðxÞ that ensures the stress-
energy tensor is nonzero only in the events that form the
trajectory. We note that Tab satisfies ∇aTab ¼ 0, as it
should be.
Having established the stress-energy tensors describing

the uniformly accelerated particle and the external agent
accelerating it, we can use Eq. (84) in the (gauge-invariant)
interaction action (9) to write the Euler-Lagrange equations
arising from the total action

Itot ≡ Ipert þ Iint

in transverse gauge, ∇ahab ¼ 0, as

∇c∇chab ¼ −κ2
�
Tab −

1

2
Tηab

�
; ð85Þ

where T ≡ ηabTab and we have used the fact that Rabc
d ¼ 0

in Minkowski spacetime. Now, using Eq. (83) in Eq. (85)
enables us to split hab as

hab ≡ hAab þ hFab; ð86Þ
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where hAab and hFab satisfy

∇c∇chAab ¼ −κ2
�
TA

ab −
1

2
TAηab

�
ð87Þ

and

∇c∇chFab ¼ −κ2
�
TF

ab −
1

2
TFηab

�
; ð88Þ

respectively. Hence, we can see that hAab describes the
gravitational waves due to the accelerated motion of the
particle while hFab describes the gravitational waves coming
from the external agent and its interaction with the mass.
Here, we are only interested in the radiation emitted due to
the accelerated motion of the particle. As a result, we will
focus on hAab and its field equation, Eq. (87).
For computational reasons, we will be interested in using

a compactly supported stress-energy tensor to study the
gravitational wave emission and take the physical (non-
compact) limit at the end. Moreover, it is also interesting to
study the case in which the acceleration time is finite (and
take the infinite acceleration proper time at the end). To
include both of these conditions we introduce two positive
parameters, L and T, with L > T, to define

TA
LabðxÞ≡ mffiffiffiffiffiffiffiffiffiffiffiffi

−gðxÞp θðL − jtjÞ

×
Z

∞

−∞
dτ uaubδ4(x − χðτÞ): ð89Þ

Here, L is a compactification parameter that limits the
support of the stress-energy tensor to the region of
spacetime that satisfies −L < t < L, while T gives half
of the acceleration proper time and was introduced in such
a way that the right-hand side of Eq. (77) is turned off
outside the interval defined by jτj < T, meaning that the
particle experiences geodesic motion before and after the
acceleration. Explicitly, we can cast χLðτÞ in inertial
coordinates as

χbLðτÞ ¼

8>><
>>:

(½−a−1 sinhðaTÞ þ ðτ þ TÞ coshðaTÞ�; 0; 0; ½a−1 coshðaTÞ − ðτ þ TÞ sinhðaTÞ�); if − ΘL ≤ τ < −T;
(a−1 sinhðaτÞ; 0; 0; a−1 coshðaτÞ); if − T ≤ τ ≤ T;

(½a−1 sinhðaTÞ þ ðτ − TÞ coshðaTÞ�; 0; 0; ½a−1 coshðaTÞ þ ðτ − TÞ sinhðaTÞ�); if T < τ ≤ ΘL;

ð90Þ

where we have defined

ΘL ≡ T þ L − a−1 sinhðaTÞ
coshðaTÞ ð91Þ

as an auxiliary value that describes the proper times of
“birth” (τ ¼ −ΘL) and “death” (τ ¼ ΘL) of the particle, as
registered by an observer comoving with the particle
(which an inertial observer sees at times t ¼ −L and
t ¼ L, as explained above). The compactified trajectory
can be visualized in Fig. 2.
The physical setting for the particle is recovered by

taking the limit TA
∞ab ≡ limL→∞ TA

Lab. As such, we
will compute all quantities using TA

Lab and then recover
the true physical setup by taking the limit L → ∞ described
above. We can also recover the stress-energy tensor

associated with the trajectory (75) by taking the
limit limT→∞TA

∞ab ¼ TA
ab.

V. UNRUH MODE EXPANSION OF THE
CLASSICAL GRAVITATIONAL PERTURBATION

Let us now consider two distinct Cauchy surfaces, Σ−
and Σþ, lying outside the causal future and past, respec-
tively, of the support of the compactified stress-energy
tensor TA

L
ab; see Fig. 3 for a schematic view.

The advanced and retarded gravitational fields pro-
duced by the compactified stress-energy tensor is obtained
from [37]

AtALabðxÞ¼
Z
R4

d4x0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx0Þ

p
Gadvab

c0d0 ðx;x0ÞtALc0d0 ðx0Þ; ð92Þ

FIG. 2. Support of the compactified version of the stress-energy
tensor, showcasing the inertial (green) and accelerated (red) parts
of the motion of the mass.
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RtALabðxÞ¼
Z
R4

d4x0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx0Þ

p
Gretab

c0d0 ðx;x0ÞtALc0d0 ðx0Þ; ð93Þ

where we have defined tALab ≡ TA
Lab − 1

2
TA
Lηab. Advanced

and retarded bitensorial gravitational Green’s functions
associated with the operator ∇a∇a are reflective of the
causal structure of the background spacetime. As we are
working inMinkowski spacetime andwe are usingCartesian
coordinates, the field equation’s structure implies that

Gadvab
c0d0 ðx; x0Þ ¼ Gadvðx; x0Þδc0ðaδd

0
bÞ; ð94Þ

Gretab
c0d0 ðx; x0Þ ¼ Gretðx; x0Þδc0ðaδd

0
bÞ; ð95Þ

where Gadv and Gret are advanced and retarded Green’s
functions for the scalar field. Then, we can define the
regularized particular solution by

EtALabðxÞ≡ AtALabðxÞ − RtALabðxÞ: ð96Þ
Now, we note that for all events x∈R4 − J−ðsupptLabÞ, the
relation

RtALabðxÞ ¼ −EtALabðxÞ ð97Þ
holds. In particular, this is true for all x∈Σþ.
The radiation aspects of RtALab are described by its

projection into the TT sector. Hence, we can expand it in
Σþ using the Unruh modes (73) and (74) as

TTRtALab ¼ −
X2
σ¼1

X
p¼s;v

Z
∞

0

dω
Z
R2

d2k⊥

× ½hWðσ;p;ωk⊥Þ; EtALitWðσ;p;ωk⊥Þ
ab

þ hWðσ;p;ωk⊥Þ; EtALit Wðσ;p;ωk⊥Þ
ab �; ð98Þ

where the coefficients can be obtained from the identity

hWðσ;p;ωk⊥Þ; EtALit ¼ −
i
2

Z
R4

d4x
ffiffiffiffiffiffi
−g

p
tAL

abWðσ;p;ωk⊥Þ
ab ; ð99Þ

which holds for compactly supported tensors tab. We derive
this identity in Appendix C.
Now, due to the fact that the Wðσ;p;ωk⊥Þ modes are

traceless, we can writeZ
R4

d4x
ffiffiffiffiffiffi
−g

p
tAL

abWðσ;p;ωk⊥Þ
ab ¼

Z
R4

d4x
ffiffiffiffiffiffi
−g

p
TA
L
abWðσ;p;ωk⊥Þ

ab ;

ð100Þ

and thus

hWðσ;p;ωk⊥Þ; EtALit ¼ hWðσ;p;ωk⊥Þ; ETA
Lit: ð101Þ

Note that Eq. (101) implies that

TTRtALab ¼ TTRTA
Lab: ð102Þ

From the setup described in Sec. IV, we can see from
Eqs. (73) and (99) that the vector sector does not couple
with the stress-energy tensor, and hence

hWðσ;v;ωk⊥Þ; ETA
Lit ¼ 0: ð103Þ

The scalar sector involves a little more work. We can first
separate the contributions of the accelerated, Aσ;ωk⊥ðTÞ,
and inertial, Iσ;ωk⊥ðT; LÞ, parts of the motion as

hWðσ;s;ωk⊥Þ; ETA
Lit ¼ −

i
2
½Aσ;ωk⊥ðTÞ þ Iσ;ωk⊥ðT; LÞ�:

ð104Þ

To compute Aσ;ωk⊥ðTÞ, it is more suitable to use Rindler
coordinates yielding

FIG. 3. Conformal diagram of the setup. The Cauchy surfaces
are in blue. The green lines correspond with the inertial parts of
the trajectory of the mass, while the accelerated portion is in red.
The support of the compactified version of the stress-energy
tensor is the solid curve, while the limit L → ∞ is represented by
the dashed extensions in green that reach the time infinities. Note
the accelerated part of the motion is constrained to the RRW
(delimited by the black dotted line). The causal future of the
compactified trajectory is the light blue region, while its causal
past is the light magenta one.
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A1;ωk⊥ðTÞ ¼
Z

∞

−∞
dλ

Z
∞

−∞
dξ

Z
R2

d2x⊥
�
m
Z

T

−T
dτ uαðτÞuβðτÞδðλ − τÞδðξÞδ2ðx⊥Þ

�
Wð1;s;ωk⊥Þ

αβ ðλ; ξ;x⊥Þ

¼ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω=a

p
Z

T

−T
dτ uαðτÞuβðτÞVðR;s;ωk⊥Þ

αβ ðτ; 0; 0; 0Þ

¼ κm
k2⊥

ffiffiffiffiffiffiffiffiffiffi
eπω=a

2π4a

s
fðk2⊥ − 2ω2ÞKiω=aðk⊥=aÞ þ k⊥a½K1−iω=aðk⊥=aÞ þ K1þiω=aðk⊥=aÞ�g

sinðωTÞ
ω

ð105Þ

for σ ¼ 1 and, analogously,

A2;ωk⊥ðTÞ ¼ κm
k2⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e−πω=a

2π4a

s
fðk2⊥ − 2ω2ÞKiω=aðk⊥=aÞ þ k⊥a½K1−iω=aðk⊥=aÞ þ K1þiω=aðk⊥=aÞ�g

sinðωTÞ
ω

ð106Þ

for σ ¼ 2. The inertial contributions Iσ;ωk⊥ðT; LÞ are not relevant to our description as we are only interested in the
radiation emitted by the acceleration. They, however, must be convergent on the limit L → ∞, and we prove it in
Appendix D.
We can now concentrate on the case of infinite acceleration time. This corresponds to the situation of the particle

following the trajectory of Eq. (75) with stress-energy tensor (84). In this case, Iσ;ωk⊥ð∞;∞Þ ¼ 0 (see Appendix D), as
should be the case, since there is not going to be any inertial motion. By taking the limit T → ∞ we find that

hWð1;p;ωk⊥Þ; ETAit ¼ hWð2;p;ωk⊥Þ; ETAit ¼ −
imκffiffiffiffiffiffiffiffiffiffi
8π2a

p
�
K0ðk⊥=aÞ þ

2a
k⊥

K1ðk⊥=aÞ
�
δðωÞ; ð107Þ

where we have used the identity

lim
T→∞

ω−1 sinðωTÞ ¼ πδðωÞ: ð108Þ

Wecan further simplifyEq. (107) bymeans of the identity [38]

Kνþ1ðxÞ ¼ Kν−1ðxÞ þ ð2ν=xÞKνðxÞ;
which enables us to write

hWð1;p;ωk⊥Þ; ETAit ¼ hWð2;p;ωk⊥Þ; ETAit
¼ −

imκffiffiffiffiffiffiffiffiffiffi
8π2a

p K2ðk⊥=aÞδðωÞ: ð109Þ

From the above equations, we can see that only zero-
Rindler-energy Unruh modes contribute to building the
retarded field in the limit T → ∞.
Let us now explicitly compute the retarded solution (98).

To this end, let us first note that, by using Eq. (109) together

with the identity Wð1;s;ωk⊥Þ
ab ¼ Wð2;s;−ωk⊥Þ

ab , we can cast
Eq. (98) as

TTRTA
ab ¼

mκffiffiffiffiffiffiffiffiffiffi
8π2a

p
Z
R2

d2k⊥½iK2ðk⊥=aÞWð2;s;0k⊥Þ
ab þ c:c:�;

ð110Þ
where c:c: stands for complex conjugate of the expression
enclosed in the brackets and we have used Eq. (102) to
write the left-hand side in terms of TA

ab. Next, by using the
scalar form of the Unruh modes in the EDKU

w2
ωk⊥ ¼ −

ieπω=ð2aÞffiffiffiffiffiffiffiffiffiffiffiffi
32π2a

p eiðωζþk⊥·x⊥ÞHð2Þ
iω=aðk⊥eaη=aÞ; ð111Þ

along with Eq. (74), we find (see Appendix E for the
relevant integrals needed) that the nonzero components of
the perturbation are given by

TTRTA
ηη ¼ TTRTA

ζζ ¼
mκ2

4πa
e2aη

Z
∞

0

dk⊥k⊥J0ðk⊥x⊥Þ

× J2ðk⊥eaη=aÞK2ðk⊥=aÞ; ð112Þ

TTRTA
ηx ¼

mκ2

4πa
eaη cosφ

Z
∞

0

dk⊥k⊥J1ðk⊥x⊥Þ

× J1ðk⊥eaη=aÞK2ðk⊥=aÞ; ð113Þ

TTRTA
ηy ¼

mκ2

4πa
eaη sinφ

Z
∞

0

dk⊥k⊥J1ðk⊥x⊥Þ

× J1ðk⊥eaη=aÞK2ðk⊥=aÞ; ð114Þ

TTRTA
xy ¼

mκ2

4πa
sinð2φÞ

Z
∞

0

dk⊥k⊥J0ðk⊥eaη=aÞ

× J2ðk⊥x⊥ÞK2ðk⊥=aÞ; ð115Þ

TTRTA
xx ¼−TTRTA

yy ¼
mκ2

4πa
cosð2φÞ

Z
∞

0

dk⊥k⊥J0ðk⊥eaη=aÞ

×J2ðk⊥x⊥ÞK2ðk⊥=aÞ: ð116Þ

With the aid of the identities [27]
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Z
∞

0

ϑK2ðαϑÞJ2ðβϑÞJ0ðγϑÞdϑ

¼−
½α2þ β2þ γ2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα2þ β2þ γ2Þ2− 4α2β2

p
�2

4α2β2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα2þ β2þ γ2Þ2 − 4α2β2

p ; ð117Þ

valid for Reα > jReβj þ jImγj, andZ
∞

0

ϑK2ðαϑÞJ1ðβϑÞJ1ðγϑÞdϑ

¼ α2 þ β2 þ γ2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα2 þ β2 − γ2Þ2 þ 4α2γ2

p
2βγ

×

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðα2 þ β2 − γ2Þ2 þ 4α2γ2
p þ 1

α2

�
; ð118Þ

valid for γ > 0 and Re α > jImβj (see Refs. [39,40]), we
find that

TTRTA
ηη ¼ TTRTA

ζζ ¼
mκ2a2

4π

×

�½a−2 − e2aη=a2 þ x2⊥ − 2a−1ρ0ðxÞ�2
8a−2ρ0ðxÞ

�
; ð119Þ

TTRTA
ηx ¼

mκ2a2

4π

�
x

�
a−2 þ x2⊥ þ e2aη=a2 − 2ρ0ðxÞ=a

2x2⊥

�

×

�
1

2aρ0ðxÞ
þ 1

��
; ð120Þ

TTRTA
ηy ¼

mκ2a2

4π

�
y

�
a−2 þ x2⊥ þ e2aη=a2 − 2ρ0ðxÞ=a

2x2⊥

�

×

�
1

2aρ0ðxÞ
þ 1

��
; ð121Þ

TTRTA
xy ¼

mκ2a2

4π

"
xy

½a−2 þ e2aη=a2 − x2⊥ − 2a−1ρ0ðxÞ�2
4x4⊥ρ0ðxÞ

#
;

ð122Þ

TTRTA
xx ¼ −TTRTA

yy ¼
mκ2a2

4π

×

�
ðx2 − y2Þ ½a

−2 þ e2aη=a2 − x2⊥ − 2a−1ρ0ðxÞ�2
8x4⊥ρ0ðxÞ

�
;

ð123Þ

where we have introduced the auxiliary distance

ρ0ðxÞ≡ a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2⊥ − a−2e2aη þ a−2Þ2 þ 4e2aη

a4

s
; ð124Þ

for the sake of notation.

To conclude the classical analysis of the radiation emitted
by the accelerated mass, let us introduce a concept that will
provide an illuminating comparison with the quantum
calculations to follow. We define the so-called “classical
graviton number” radiated by the system (massþ
accelerating agent) as seen by inertial observers as [41]

NM ≡ hKRT;KRTit; ð125Þ
where

KRTab ¼ −
X2
σ¼1

X
p¼s;v

Z
∞

0

dω
Z
R2

d2k⊥

× hWðσ;p;ωk⊥Þ; ETitWðσ;p;ωk⊥Þ
ab ð126Þ

is the (inertial) positive-energy part of the retarded solution
TTRT with the limit L → ∞ already been taken. As Tab ¼
TA
ab þ TF

ab we have that

NM ¼ NA
M þ NF

M þ 2RefhKRTA; KRTFitg; ð127Þ
with

NA
M ≡ hKRTA; KRTAit; ð128Þ

and

NF
M ≡ hKRTF; KRTFit ð129Þ

being the particles emitted (independently) by the accel-
erated mass and accelerating agent, respectively, while
2RefhKRTA; KRTFitg is an interference term.
If we now take the limit of infinite acceleration proper

time, we have that [see Eq. (110)]

KRTA
ab ¼

mκffiffiffiffiffiffiffiffiffiffi
8π2a

p
Z
R2

d2k⊥iK2ðk⊥=aÞWð2;s;0k⊥Þ
ab : ð130Þ

By using Eq. (130) together with the orthonormality
relations

hWðσ;v;ωk⊥Þ;Wðσ0;v;ω0k0⊥Þit ¼ δσσ0δðω − ω0Þδ2ðk⊥ − k0⊥Þ
ð131Þ

in Eq. (125) one finds that

NA
M ¼ m2κ2

16π3a
T tot

Z
R2

d2k⊥½K2ðk⊥=aÞ�2; ð132Þ

which implies that the classical number of gravitons per
transverse momentum, k⊥, per acceleration proper time,
T tot, radiated by the mass due to its accelerated motion is
given by

1

Tout

dNA
k⊥

dk⊥
¼ m2κ2k⊥

8π2a
½K2ðk⊥=aÞ�2: ð133Þ
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VI. UNRUH MODE EXPANSION OF THE
QUANTUM GRAVITATIONAL PERTURBATION

Let us now perform the quantum analysis of the
gravitational perturbations due to the accelerating mass
around Minkowski spacetime. To this end, we promote the
gravitational perturbations hab and its associated general-
ized momentum πcab to operators ĥab and π̂cab, respec-
tively, and impose the equal-time canonical commutation
relations

½ĥabðt;xÞ; ĥcdðt;x0Þ� ¼ 0; ð134Þ

½ĥabðt;xÞ; neπ̂ecdðt;x0Þ� ¼ −iδcðaδ
d
bÞδ

3ðx − x0Þ; ð135Þ

½π̂fabðt;xÞ; π̂ecdðt;x0Þ� ¼ 0; ð136Þ

where na ¼ ð∂tÞa is the future-oriented normal vector
orthogonal to the Cauchy surface defined by Σt¼cte ≡
fðt;xÞ∈R4jt ¼ cteg.
Again, for calculational purposes, we will consider our

compactified worldline which gives rise to the compactified
stress-energy tensor TLab ≡ TA

Lab þ TF
Lab, where we recall

that TA
Lab is the contribution to the total stress-energy tensor

coming from the accelerated mass while TF
Lab is the

contribution coming from the external agent accelerating
it. In the end, we will take the limit L → ∞ to recover our
physical setup. The stress-energy tensor TLab will be the
classical source for the quantum field ĥab, and, in what
follows, we will use two Cauchy surfaces Σþ (asymptotic
future) and Σ− (asymptotic past) as in Sec. V (see Fig. 3).
The influence of the classical source TLab on the

quantized gravitational perturbation ĥab is determined by
the linearized Einstein equation

∇c∇cĥab ¼ −κ2tLab Î: ð137Þ

One possible solution to the above equation is given by

ĥabðxÞ ¼ ĥoutab ðxÞ þ AtLabðxÞÎ; ð138Þ

where AtLab is the advanced solution of Eq. (137) and ĥoutab
satisfies the homogeneous field equation in the TT gauge

∇c∇cĥ
out
ab ¼ 0: ð139Þ

Given a choice of orthonormal Minkowski positive-energy

modes vðjÞab ðxÞ in the TT gauge, characterized by appro-
priate quantum numbers j∈J, we can expand the homo-
geneous field as

ĥoutab ¼
X
j∈J

½vðjÞab âoutðvðjÞÞ þ vðjÞab â
†
outðvðjÞÞ�: ð140Þ

The vacuum state of such a construction is the state j0Mouti
defined from the action of the annihilation operators over
it by

âoutðvðjÞÞj0Mouti ¼ 0

for all j∈J. We can see that, as AtLabðxÞ ¼ 0 for all
x∈R4 − J−ðsupp tLabÞ, we can interpret the state j0Mouti as
the vacuum seen by inertial observers in the asymptotic
future.
Alternatively, we can also write the quantized field as the

following solution to Eq. (137):

ĥabðxÞ ¼ ĥinabðxÞ þ RtLabðxÞÎ; ð141Þ

where RtLab is the classical retarded field and ĥinab is a
homogeneous solution of the linearized Einstein field
equations in the TT gauge [Eq. (139)]. The latter can be
expanded using (another) orthonormal set of (Minkowski)

positive-energy modes uðkÞab ðxÞ in the TT gauge as

ĥinab ¼
X
k∈K

½uðkÞab âinðuðkÞÞ þ uðkÞab â
†
inðuðkÞÞ�; ð142Þ

where K is a suitable set of quantum numbers. We can
define the in-vacuum state j0Min i by the action of the

annihilation operator over it: âinðuðkÞÞj0Min i ¼ 0 for all
k∈K. Following the same reasoning as above, we can
see that RtLabðxÞ ¼ 0 for all x∈R4 − Jþðsupp tLabÞ,
which implies that j0Min i can be interpreted as the vacuum
seen by inertial observers in the asymptotic past.
The Fock space for each representation is built by the

successive application of the creation operators â†inðuðkÞÞ
and â†outðvðjÞÞ over their associated vacua j0Min i and j0Mouti,
respectively. These Fock spaces can be connected using the
S matrix [42]

Ŝ≡ expðiIint½ĥout; TL�Þ

¼ exp

�
i
2

Z
R4

d4x
ffiffiffiffiffiffi
−g

p
ĥoutab tLab

�
; ð143Þ

which relates the vacua by

j0Min i ¼ Ŝj0Mouti: ð144Þ

Note that, as ĥoutab is in the TT gauge, we can write the S
matrix (143) as

Ŝ ¼ exp

�
i
2

Z
R4

d4x
ffiffiffiffiffiffi
−g

p
ĥoutab TL

ab

�
: ð145Þ

Now, by using that TLab ¼ TA
Lab þ TF

Lab, we can cast
Eq. (145) as

Ŝ ¼ eiΘŜFŜA; ð146Þ
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where

ŜF ≡ exp

�
i
2

Z
R4

d4x
ffiffiffiffiffiffi
−g

p
ĥoutab TF

L
ab

�
; ð147Þ

ŜA ≡ exp

�
i
2

Z
R4

d4x
ffiffiffiffiffiffi
−g

p
ĥoutab T

A
L
ab;

�
; ð148Þ

and

Θ≡
Z
R4

d4x
ffiffiffiffiffiffi
−g

p Z
R4

d4x0
ffiffiffiffiffiffiffi
−g0

p
× Δabcdðx; x0ÞTF

L
abðxÞTF

L
cdðx0Þ; ð149Þ

with

½ĥoutab ðxÞ; ĥoutcd ðx0Þ�≡ iΔabcdðx; x0ÞÎ: ð150Þ

The operator ŜA describes the graviton production due to
the accelerated particle while ŜF describes gravitons
produced due to the accelerating source and its interaction
with the mass (both as seen by inertial observers in the
asymptotic future).
Let us analyze first the action of ŜA on j0Mouti. To this end,

we first write ĥoutab using tensor Unruh modes. In this case
j ¼ ðσ; p;ω;k⊥Þ, J ¼ f1; 2g × fv; sg × ½0;∞Þ ×R2, and
the annihilation and creation operators are found directly
from the inner product thanks to the normalization of the
modes:

âoutðWðσ;p;ωk⊥ÞÞ ¼ hWðσ;p;ωk⊥Þ; ĥit; ð151Þ

â†outðWðσ;p;ωk⊥ÞÞ ¼ hĥ;Wðσ;p;ωk⊥Þit: ð152Þ

Then, the S matrix is explicitly given by

ŜA ¼ exp

�
i
2

Z
R4

d4x
ffiffiffiffiffiffi
−g

p
TA
L
ab

�X
σ;p

Z
∞

0

dω
Z
R2

d2k⊥½Wðσ;p;ωk⊥Þ
ab âoutðWðσ;p;ωk⊥ÞÞ þ H:c:�

��
: ð153Þ

Here, H:c: stands for Hermitian conjugate of the expres-
sion before. This can be simplified by defining the
annihilation and creation operators associated with the
negative- and positive-energy parts of the expansion,

KETA
L and KETA

L, as

âoutðKETA
LÞ≡

X
σ;p

Z
∞

0

dω
Z
R2

d2k⊥

× hWðσ;p;ωk⊥Þ;ETA
LitâoutðWðσ;p;ωk⊥ÞÞ; ð154Þ

â†outðKETA
LÞ≡

X
σ;p

Z
∞

0

dω
Z
R2

d2k⊥

× hWðσ;p;ωk⊥Þ;ETA
Litâ†outðWðσ;p;ωk⊥ÞÞ; ð155Þ

respectively. Rearranging the integrals in Eq. (153) and
using Eq. (99) allow us to write

ŜA ¼ exp½âoutðKETA
LÞ − â†outðKETA

LÞ�: ð156Þ

Now, we can apply the Zassenhaus formula

eX̂þŶ ¼ eX̂eŶe−½X̂;Ŷ�=2;

valid when the operators X̂ and Ŷ satisfy [X̂; ½X̂; Ŷ�] ¼
[Ŷ; ½X̂; Ŷ�] ¼ 0, together with the identity

½âoutðKETA
LÞ; â†outðKETA

LÞ� ¼ kKETA
Lk2Î ð157Þ

to write

ŜA ¼ e−kKETA
Lk2=2e−â

†
outðKETA

LÞeâoutðKETA
LÞ; ð158Þ

where

kKETA
Lk2 ≡ hKETA

L; KET
A
Lit

¼
X
σ;p

Z
∞

0

dω
Z
R2

d2k⊥jhWðσ;p;ωk⊥Þ; ETA
Litj2:

ð159Þ

Now, applying Eq. (158) to j0Mouti yields

ŜAj0Mouti ¼ e−kKETA
Lk2=2e−â

†
outðKETA

LÞj0Mouti: ð160Þ

We can further work on this expression to show that
ŜAj0Mouti is a coherent state according to future inertial

observers. To this end, we apply âoutðWðσ;p;ωk⊥ÞÞ to it,

âoutðWðσ;p;ωk⊥ÞÞŜAj0Mouti
¼ e−kKETLk2=2e−â

†
outðKETLÞ½eâ†outðKETLÞ

× âoutðWðσ;p;ωk⊥ÞÞe−â†outðKETLÞ�j0Mouti; ð161Þ

use the identity

eX̂Ŷe−X̂ ¼ Ŷ þ ½X̂; Ŷ� þ 1

2!
[X̂; ½X̂; Ŷ�]þ � � � ; ð162Þ
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with X̂ ¼ â†outðKETA
LÞ and Ŷ ¼ âoutðWðσ;p;ωk⊥ÞÞ, and the

commutator

½â†outðKETA
LÞ; âoutðWðσ;p;ωk⊥ÞÞ� ¼ −hWðσ;p;ωk⊥Þ; ETA

Lit Î
ð163Þ

[which implies that the series of Eq. (162) will be truncated
after the second term] to obtain

âoutðWðσ;p;ωk⊥ÞÞŜAj0Mouti ¼ −hWðσ;p;ωk⊥Þ; ETA
LitŜAj0Mouti;

ð164Þ

i.e., ŜAj0Mouti is a multimode coherent state associated with
an arbitrary Unruh mode in the asymptotic future.
We can now consider the case where the acceleration

time is infinite. This is done by first taking the limit L → ∞
and then taking T → ∞. By doing so, we can see that the
creation operator that appears in Eq. (160) can be explicitly
written using the coefficients in Eq. (109) as

â†outðKETAÞ ¼ −
imκffiffiffiffiffiffiffiffiffiffi
8π2a

p
Z
R2

d2k⊥

× K2ðk⊥=aÞâ†outðWð2;s;0k⊥ÞÞ; ð165Þ

from which we can cast ŜAj0Mouti as

ŜAj0Mouti¼ ⊗
k⊥∈R2

exp

�
−
m2κ2

16π3a
T tot

Z
R2

d2k⊥½K2ðk⊥=aÞ�2
�

×exp

�
imκffiffiffiffiffiffiffiffiffiffi
8π2a

p K2ðk⊥=aÞâ†outðWð2;s;0k⊥ÞÞ
�
j0Mouti;

ð166Þ

where we have used

kKETAk2 ¼ m2κ2

16π3a
T tot

Z
R2

d2k⊥½K2ðk⊥=aÞ�2; ð167Þ

and T tot ¼ 2πδðωÞjω¼0. Equation (166) showcases the fact
that only zero-Rindler-energy Unruh modes participate in
building the vacuum.
Now, let us look at the expectation value of the field ĥoutab

in the in-vacuum. To do this, let us use Eqs. (149), (150),
and (162) to write

ŜF
†
ĥoutab Ŝ

F ¼ ĥoutab − TTETF
ab Î; ð168Þ

where we have used that Δabcdðx; x0Þ ¼ Gadvabcdðx; x0Þ−
Gretabcdðx; x0Þ,

TTETF
abðxÞ ¼

Z
R4

dx0
ffiffiffiffiffiffiffi
−g0

p
Δabcdðx; x0ÞTFcdðx0Þ; ð169Þ

and we have taken the L → ∞ limit. Note that, as ĥoutab is on
the TT gauge, TTETF

ab above is already projected in such a
subspace of solutions. By using Eqs. (144), (146), and
(168) one can write

h0Min jĥoutab j0Min i ¼ h0MoutjŜA†
ĥoutab Ŝ

Aj0Mouti − TTETF
ab; ð170Þ

which, by means of Eqs. (140) and (164), can be cast as

h0Min jĥoutab j0Min i ¼
X
σ;p

Z
∞

0

dω
Z
R2

d2k⊥½hWðσ;p;ωk⊥Þ; ETA
Lit

×Wðσ;p;ωk⊥Þ þ H:c.� − TTETF
ab: ð171Þ

We note that the first term in the above equation is the
expansion of ETA

ab in terms of Unruh modes, and hence, it
yields TTETA

ab. By using that, in Σþ, we have TTETA
ab ¼

−TTRTA
ab and TTETF

ab ¼ −TTRTF
ab, one can write

h0Min jĥoutab j0Min i ¼ TTRTA
ab þ TTRTF

ab: ð172Þ

Hence, the expectation value of the field after the inter-
action with the source is given by the retarded fields.
Furthermore, all other physical observables will correspond
with their classical counterparts. In particular, when one
takes the limit of infinite acceleration for the mass, one can
see from Eq. (110) that only zero-Rindler-energy Unruh
gravitons contribute to the radiation emitted by the accel-
erated mass.
Moreover, we can study the expectation value of the total

number of Unruh gravitons

hN̂i≡X
σ;p

Z
∞

0

dω
Z
R2

d2k⊥h0Min jN̂ðσ;pÞ
ωk⊥ j0Min i; ð173Þ

where we used the definition of the number operator

N̂ðσ;pÞ
ωk⊥ ≡ â†outðWðσ;p;ωk⊥ÞÞâoutðWðσ;p;ωk⊥ÞÞ which gives us

the number of particles per each Unruh mode σ, sector
p, Rindler energy ω, and transverse momentum k⊥. Note
that we have already taken the physical limit L → ∞. Using
Eqs. (140), (149), and (162) together with identity (99) one
can write

ŜF
†
âoutðWðσ;p;ωk⊥ÞÞŜF ¼ âoutðWðσ;p;ωk⊥ÞÞ

þ hWðσ;p;ωk⊥Þ; ETF
LitÎ: ð174Þ

Now, using Eqs. (144), (146), (164), and (174) in Eq. (173),
one can write
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hN̂i≡X
σ;p

Z
∞

0

dω
Z
R2

d2k⊥½jhWðσ;p;ωk⊥Þ; ETAitj2

þ jhWðσ;p;ωk⊥Þ; ETFitj2
þ hETA;Wðσ;p;ωk⊥ÞithWðσ;p;ωk⊥Þ; ETFit þ c:c:�

¼ kKETAk2 þ kKETFk2 þ 2RefhKETA;KETFitg;
ð175Þ

which coincides with the classical number of gravitons
derived in Eq. (127), where we recall that, in Σþ,
RTX

ab ¼ −ETX
ab, X ¼ A, F.

In the limit of infinite acceleration proper time (where
only zero-Rindler-energy Unruh modes contribute to the
radiation), we can use Eq. (167) to compute the total
number of gravitons produced in the asymptotic future
yielding

hN̂i ¼ m2κ2

16π3a
T tot

Z
R2

d2k⊥½K2ðk⊥=aÞ�2

þ kKETFk2 þ 2RefhKETA; KETFitg: ð176Þ

The above equation implies that the number of (zero-
Rindler-energy) gravitons per transverse momentum k⊥ per
proper time emitted solely due to the accelerated motion of
the mass can be written as

1

Tout

dNA
k⊥

dk⊥
¼ m2κ2k⊥

8π2a
½K2ðk⊥=aÞ�2; ð177Þ

which also agrees with its classical counterpart given
in Eq. (133).

VII. FINAL DISCUSSION

Here we have analyzed the classical and quantum
emission of gravitational radiation by a uniformly accel-
erated particle. We were successful in showing that only the
zero-Rindler-energy Unruh modes, whose definition we
have extended from the scalar and vector electrodynamics
to be tensor valued, contribute on the description of the
classical retarded gravitational wave solution where the
mass accelerates for infinite time.
From the quantum analysis we see that the interaction

with the accelerated mass, codified within the S matrix we
explicitly constructed, evolves the past vacuum for it to be
seen as a multimode coherent superposition of particles
according to the future observer’s perspective. If the
acceleration occurs forever, this process involves only
zero-Rindler-energy particles. The coherence of the in
vacuum reflects itself in the fact that the expectation value
of the evolved field corresponds with the classical result for
the gravitational perturbation.
This extends the results of the authors [43,44] to spin-

two fields, and clarifies the fundamental role played by

zero-Rindler-energy gravitons, recognizing they are no
simple mathematical artifact and do, in fact, contribute
to the measurable radiation content. In particular, it
vindicates the claim that each graviton emitted in the
inertial frame must correspond to either the absorption
or emission of a zero-energy Rindler particle in the
accelerated one.
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APPENDIX A: PROPERTIES OF THE VECTOR
AND TENSOR FIELDS DERIVED FROM THE

SCALAR AND VECTOR HARMONIC

For the scalar sector, the vector defined in Eq. (30) has a
divergence proportional to the scalar harmonic

∇iSk⊥
i ¼ k⊥Sk⊥ : ðA1Þ

On the other hand, the tensors of Eqs. (31) and (34) are
traceless

gijSk⊥
ij ¼ 0; gijVk⊥

ij ¼ 0; ðA2Þ

and both their divergences are proportional to the corre-
sponding vectors

∇jSk⊥
ij ¼ k⊥

2
Sk⊥
i ; ∇jVk⊥

ij ¼ k⊥
2
Vk⊥
i : ðA3Þ

APPENDIX B: EXPLICIT CALCULATIONS FOR
THE NORMALIZATION OF THE MODES

When normalizing the modes of Eqs. (53) and/or (55) we
use the following integrals (which can be checked straight-
forwardly by using the definitions of Sk⊥ and V i

k⊥):Z
R2

d2x⊥V i
k⊥S

k0⊥
i ¼ 0; ðB1Þ

Z
R2

d2x⊥Sk⊥Sk0⊥ ¼ 4π2δ2ðk⊥ − k0⊥Þ; ðB2Þ
Z
R2

d2x⊥V i
k⊥V

k0⊥
i ¼ 4π2k2⊥δ2ðk⊥ − k0⊥Þ; ðB3Þ

Z
R2

d2x⊥Si
k⊥S

k0⊥
i ¼ 4π2δ2ðk⊥ − k0⊥Þ; ðB4Þ

Z
R2

d2x⊥Sij
k⊥S

k0⊥
ij ¼ 2π2δ2ðk⊥ − k0⊥Þ: ðB5Þ
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We also use the normalization integral [12]Z
∞

−∞
Kiω=aðk⊥eaξ=aÞKiω0=aðk⊥eaξ=aÞdξ

¼ π2a
2ω sinhðπω=aÞ δðω − ω0Þ: ðB6Þ

Scalar functions of the orbit that satisfy Eq. (37) such as
the scalar (38), vector (39), or tensor (40) master variables
satisfy the equations

∇αΩωk⊥∇λ∇αΩω0k⊥ −∇αΩω0k⊥∇λ∇αΩωk⊥

¼ k2⊥
�
Ωω0k⊥ ∂Ω

ωk⊥

∂λ
−
∂Ωω0k⊥

∂λ
Ωωk⊥

�

þ ∂

∂ξ
ð∇λΩω0k⊥∇ξΩωk⊥ −∇λΩωk⊥∇ξΩω0k⊥Þ; ðB7Þ

∇α∇βΩωk⊥∇λ∇α∇βΩω0k⊥ −∇α∇βΩω0k⊥∇λ∇α∇βΩωk⊥

¼ −k2⊥ð∇βΩωk⊥∇λ∇βΩω0k⊥ þ∇βΩω0k⊥∇λ∇βΩωk⊥Þ

þ ∂

∂ξ
ð∇ξ∇βΩωk⊥∇λ∇βΩω0k⊥ −∇ξ∇βΩω0k⊥∇λ∇βΩωk⊥Þ;

ðB8Þ

which are useful for the normalization of the modes, as
border terms will not contribute to the result of the
integrals. These translate to the orbit of Minkowski
spacetime using the direct replacements ω ↦ kz,
ω0 ↦ k0z, λ ↦ t, and ξ ↦ z.

APPENDIX C: DERIVATION OF EQ. (99)

Consider the traceless and transverse gravitational per-
turbation hab around Minkowski spacetime that solves

∇c∇chab ¼ 0: ðC1Þ

Let Tab be any (compactly supported) symmetric tensor.
Then, by using hab and Tab, we define the functional

I½h; T�≡ −κ2
Z
R4

d4x
ffiffiffiffiffiffi
−g

p
Tabhab: ðC2Þ

If we take a Cauchy surface outside the causal future
of the support of the stress-energy tensor, i.e.,
Σ ⊂ R4 − JþðsuppTabÞ, we note that the causal past of
the Cauchy surface does not contribute to the integral and
thus

I½h; T� ¼ −κ2
Z
JþðΣÞ

d4x
ffiffiffiffiffiffi
−g

p
Tabhab: ðC3Þ

By taking ATab to be the advanced particular solution of the
equation

∇c∇cATab ¼ −κ2Tab; ðC4Þ

we can use Eq. (C4) in Eq. (C3) to write

I½h; T� ¼
Z
JþðΣÞ

d4x
ffiffiffiffiffiffi
−g

p ð∇c∇cATabÞhab: ðC5Þ

A small algebraic manipulation leads us to

hab∇c∇cATab ¼ ∇cWc½h; AT� þ∇c∇chabATab; ðC6Þ
where the currentWc½h; AT� is defined as in Eq. (13). Using
the Gauss theorem and the fact that hab satisfies Eq. (C1),
the integral reduces to

I½h; T� ¼
Z
JþðΣÞ

d4x
ffiffiffiffiffiffi
−g

p ½∇cWc½h; AT�

þ ATabð∇c∇chabÞ�
¼ −2iκ2hh; ATit; ðC7Þ

where the inner product is taken over Σ. This can be
simplified to

hh; ETit ¼ −
i
2

Z
R4

d4x
ffiffiffiffiffiffi
−g

p
Tabhab; ðC8Þ

by realizing that ETab ¼ ATab for all events in the Cauchy
surface Σ.

APPENDIX D: CONTRIBUTIONS DUE TO THE
INERTIAL PARTS OF THE MOTION

The total inertial contribution of Eq. (104) can be further
separated into two parts, one corresponding to before
(represented using a − sign) and the other to after
acceleration (denoted by þ) as

Iσ;ωk⊥ðT; LÞ ¼ Iσ;ωk⊥þ ðT; LÞ þ Iσ;ωk⊥− ðT; LÞ: ðD1Þ
Defining the auxiliary function

Δ�ðt;x⊥; zÞ≡ δ2ðx⊥Þδ(z − a−1sechðaTÞ � t tanhðaTÞ);
ðD2Þ

we can write the effective stress-energy tensor that appears
inside the integrals above as

TA
L;�

tt ¼ m coshðaTÞθðL − jtjÞΔ∓ðt;x⊥; zÞ; ðD3Þ

TA
L;�

tz¼TA
L;�

zt¼�m sinhðaTÞθðL− jtjÞΔ∓ðt;x⊥;zÞ; ðD4Þ

TA
L;�

zz¼msinh2ðaTÞsechðaTÞθðL− jtjÞΔ∓ðt;x⊥;zÞ: ðD5Þ

We can now use the form of the tensor modes of Eq. (74)
and the distribution version of the scalar Unruh modes (72)
to write explicitly the components we need, obtaining
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Iσ;ωk⊥þ ¼ mκ sechðaTÞ
k2⊥2π2

ffiffiffiffiffiffi
2a

p
Z

∞

−∞
dϑ e−ið−1Þσϑω=a

�
cosh2ðϑ − aTÞ þ k2⊥

2

�
exp½−ik⊥a−1sechðaTÞ sinhϑ�

×
Z

L

a−1 sinhðaTÞ
dt expf−ik⊥t½tanhðaTÞ sinhϑ − coshϑ�g; ðD6Þ

Iσ;ωk⊥− ¼ mκ sechðaTÞ
k2⊥2π2

ffiffiffiffiffiffi
2a

p
Z

∞

−∞
dϑ e−ið−1Þσϑω=a

�
cosh2ðϑþ aTÞ þ k2⊥

2

�
exp½−ik⊥a−1sechðaTÞ sinhϑ�

×
Z

−a−1 sinhðaTÞ

−L
dt expfik⊥t½tanhðaTÞ sinhϑþ coshϑ�g: ðD7Þ

These depend on the integrals

fþðϑ; T:LÞ≡
Z

L

a−1 sinhðaTÞ
dt expf−ik⊥t½tanhðaTÞ sinhϑ − coshϑ�g

¼ −
i

k⊥½tanhðaTÞ sinhϑ − coshϑ� ðexpf−ik⊥a sinhðaTÞ½tanhðaTÞ sinhϑ − coshϑ�g

− expf−ik⊥L½tanhðaTÞ sinhϑ − coshϑ�gÞ ðD8Þ
and

f−ðϑ; T; LÞ≡
Z

−a−1 sinhðaTÞ

−L
dt expfik⊥t½tanhðaTÞ sinhϑþ coshϑ�g

¼ −
i

k⊥½tanhðaTÞ sinhϑþ coshϑ� ðexpf−ik⊥a sinhðaTÞ½tanhðaTÞ sinhϑþ coshϑ�g

− expf−ik⊥L½tanhðaTÞ sinhϑþ coshϑ�gÞ: ðD9Þ

We can see from the above equations that the L-dependent
terms behave as oscillatory distributions around zero. Thus,
on the limit L → ∞, we find that expf−ik⊥L½tanhðaTÞ×
sinhϑ� coshϑ�g averages out to zero. Explicitly,

lim
L→∞

f�ðϑ;T;LÞ¼−
ie−ik⊥asinhðaTÞ½tanhðaTÞsinhϑ∓coshϑ�

k⊥½tanhðaTÞsinhϑ∓coshϑ� : ðD10Þ

The same arguments can be used in the limit T → ∞, as the
hyperbolic sine is a strictly increasing function. As a result

lim
T→∞

�
lim
L→∞

Iσ;ωk⊥
� ðT; LÞ

�
¼ 0; ðD11Þ

meaning there is no contribution from the inertial parts of
the motion in the case the particle is accelerated for an
infinite amount of its proper time, as we expected.

APPENDIX E: USEFUL INTEGRALS TO
COMPUTE THE FINAL FORM OF THE

EXPANSION

To arrive at Eqs. (112) to (116), we need to use some of
the generating functions of the Bessel functions. In par-
ticular, we will need the expression [38,40]Z

2π

0

eiu cosðϑ−φÞdϑ ¼ 2πJ0ðuÞ; ðE1Þ

With this in hand, we can also find the integrals

Z
2π

0

eiu cosðϑ−φÞ sin ϑdϑ ¼ 2πi sinφJ1ðuÞ; ðE2Þ

Z
2π

0

eiu cosðϑ−φÞ cosϑdϑ ¼ 2πi cosφJ1ðuÞ; ðE3Þ

by taking partial derivatives of (E1) with respect to u
and φ. Taking the partial derivatives of Eqs. (E2) and (E3)
with respect to u and combining them, we can also
show that

Z
2π

0

eiu cosðϑ−φÞ sinð2ϑÞdϑ ¼ −2π sinð2φÞJ2ðuÞ; ðE4Þ

Z
2π

0

eiu cosðϑ−φÞ cosð2ϑÞdϑ ¼ −2π cosð2φÞJ2ðuÞ: ðE5Þ

These expressions are related to the generating integral for
Bessel functions

JnðuÞ ¼
1

π

Z
π

0

cosðnϑ − u sin ϑÞdϑ; ðE6Þ

valid for n ¼ 0; 1; 2; 3;….
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