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Gravitational waves emitted by a uniformly accelerated mass:
The role of zero-Rindler-energy modes in the classical and quantum descriptions
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The observation of gravitational waves opens up a new window to probe the universe and the nature of
the gravitational field itself. As a result, they serve as a new and promising tool to not only test our current
theories but to study different models that go beyond our current understanding. In this paper, inspired
by recent successes in scalar and Maxwell electrodynamics, we analyze the role played by the (quantum)
Unruh effect on the production of both classical and quantum gravitational waves by a uniformly
accelerated mass. In particular, we show the fundamental role played by zero-energy (Rindler) gravitons in
building up the gravitational radiation, as measured by inertial observers, emitted by the body.
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I. INTRODUCTION

The prediction of the existence of gravitational waves is
one of the most important theoretical predictions brought
forward by general relativity. Today, due to the advent of
gravitational wave detectors such as LIGO and Virgo, it
also stands as one of the core pieces of evidence that
sustains this theory as our best tool to describe gravity.

The direct observation of these waves [1] has opened
new windows to probe the universe by broadening the
spectrum of possible phenomenological observations and
catapulted us to the era of gravitational wave astronomy.
This kind of radiation provides us with an important and
interesting set of astrophysical tools, and thus, it is vital to
study and understand the mechanisms under which it can
be generated.

One of the processes that gives rise to radiation is
acceleration, and the relationship between these two has
attracted the interest of physicists over the years (see, e.g.,
Refs. [2-5]). In this context, uniformly accelerated charges
have received special attention, mainly due to the apparent
contradictions that arise when the principle of equivalence
is considered [6]. Such issues are resolved when one notes
that radiation is not to be regarded as a covariant concept
but, rather, it depends on the observer measuring it [7-9].

In the context of quantum field theory in curved space-
times the connection between acceleration and radiation
has only been strengthened since the discovery that an
accelerated observer sees the inertial vacuum as a thermal
bath of particles at the Unruh temperature [10]

*felipe.portales @ufabc.edu.br
"andre.landulfo @ufabc.edu.br

2470-0010/2024/109(4)/045006(20)

045006-1

_ ha
U 2rcky’

(1)

the so-called Unruh effect. In the decades that followed, the
interplay between acceleration, radiation, and the Unruh
effect has been scrutinized and their consequences analyzed
through several works such as Refs. [11-13].

Even though most of the examples above are related to
electrodynamics, the emission of both classical and quan-
tized gravitational waves by point particles has been
analyzed around several background geometries. In the
classical realm, Bicak [14] studies the radiative properties
of the solution provided by Bonnor and Swaminarayan
[15], describing four accelerated particles; Hopper and
Cardoso [16] examine the scattering of test particles and
their interactions with gravitational waves around a
Schwarzchild black hole; and Poisson [17] gives detailed
calculations to survey the waveforms from a binary system
where one of its members is much more massive than the
other. As for the quantum counterpart, quantized gravita-
tional perturbations around a classical Schwarzschild black
hole were studied by Bernar et al. [18], and these same
authors also provide a discussion on a de Sitter background
using a multipole source [19]. In addition to this, the
construction of propagators has also been previously
reported; see, for example, the gravitational two-point
functions in de Sitter spacetime of Refs. [20,21].

In this paper, we aim to describe the classical and
quantum gravitational waves emitted by a single mass,
which is uniformly accelerated in a Minkowski back-
ground. In particular, using traceless and transverse gravi-
tational Unruh modes, we show the main role played by
zero-Rindler-energy modes in building up the gravitational
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radiation emitted by the mass, as measured by inertial
observers in the asymptotic future.

For this purpose, the paper is structured as follows. In
Sec. II we present a summary of the basics of gravitational
wave theory and some tools needed for our description.
After this, in Sec. III, we define modes for the gravitational
perturbations that are based on some of the symmetry
properties of Minkowski spacetime. Then, in Sec. IV, we
present the physical setup we use and find the correspond-
ing stress-energy tensor that will serve as the source of
these gravitational waves. In Sec. V we present the classical
expansion of the retarded field seen from the perspective of
inertial observers in the asymptotic future. We then proceed
in Sec. VI to compare the quantum description between the
asymptotic past and asymptotic future, connecting the Fock
spaces of both of these constructions when the field is
initially in its vacuum state using the S matrix. Finally, we
give some concluding remarks to summarize our results in
Sec. VIL

Throughout this work, we use natural units: 2 = ¢ = 1,
and Newton’s constant is kept as G. We use the metric with
signature (—, +, +, +) and indices of the beginning of the
Latin alphabet (a, b, c, ...) to refer to components in the
entire spacetime (the bulk).

II. GRAVITATIONAL PERTURBATIONS
AROUND A FIXED METRIC

We begin by recalling the general formalism of
gravitational waves. Let us consider a four-dimensional
globally hyperbolic spacetime (M, g,,,), where M is a four-
dimensional manifold with a Lorentzian metric g,,.
Gravitational perturbations correspond with small devia-
tions from this metric: h,, = 694y, With hy, = h,) and
|| < 1. The dynamics of such perturbations are encoded
in the action (without cosmological constant) [22]

Ipert = / d*x 'Cpert = / d*x ('Cinv + ['gf)’ (2)
M M

where

Einv = _4—_29 (vchabvchab - VChV‘h
K
42V BV b — 2V, V) (3)

is the Lagrangian density invariant under gauge trans-
formations defined by an arbitrary vector field A,,

hab - ilab = hab - 2v(aAb)7 (4)

and

f p—
g 2ax?

« (Vch"” - #v%) (s)

LYY (V“hab -%v@

is a gauge fixing term depending on the quantities a, f € R.
This last term is added to the theory to eliminate spurious
non-normalizable modes, whereas the Lagrangian density
of Eq. (3) arises from the second-order perturbation of the
Einstein-Hilbert Lagrangian density Lyp = k> /—9gR. We
raise and lower indices using the background metric g,
h = g*®h,, is the trace of the perturbation, R is the
(background) Ricci scalar, g = det g,;, is the determinant
of the background metric, V, is the (torsion-free) covariant
derivative compatible with g,;,, and x> = 167G.

Given two distinct gravitational perturbations, hilg and

hfb), and a Cauchy surface X, we define their tensor Klein-
Gordon product as

) V) _cab _ _cab (2
<h(1),h(2)>t5—1/2d32nc [hib)ﬂ.’@)h_”(l)bhib)}’ (6)

where the overline symbolizes the complex conjugate, n“ is

the future-oriented unit vector orthogonal to X, and fcff)b

and ngé‘)h are the generalized momenta

cab — 1 a‘C’Pert

B \/—__ga<vchab) ’ (7)

associated with hilb) and hElzb), respectively. As the four-

vector inside the square brackets in Eq. (6) has null
divergence, the result of this integral is conserved (it does
not depend on the choice of Cauchy surface) [23,24].

Given a matter distribution in the spacetime whose
dynamics is governed by the matter action [, the
stress-energy tensor is defined as

2 Sl
V=9 69ap

In the context of gravitational perturbations we are con-
sidering, we can use the tensor above to describe the
coupling of matter with gravitational waves via the inter-
action action [25]

Tab

(8)

1
nlh.7)=3 [ degr e (©)

In regions without sources, i.e., T,;, = 0, we can choose the
perturbations to be traceless and transverse, the TT gauge:
ht, =0, Veh,, =0, (10)

which implies that the Euler-Lagrange equations arising
from the total action /. is given by
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V.Veh,, — 2R yeh.y = 0, (11)

where R?,,. is the Riemann curvature of the background
spacetime. For perturbations in the TT gauge, the gener-
alized four-momentum is simply 7% = —(2«?)~!'V¢ha?,
which implies the tensor Klein-Gordon inner product
reduces to

(0RO, = = / azn W [hV 2], (12)
z

with the current

W, [h0, W) = hIV G — g V). (13)
which we will use to normalize the modes. We now present
the modes in the class of background spacetimes we are

interested in describing.

III. MODES FOR THE GRAVITATIONAL
PERTURBATION AROUND MINKOWSKI
AND RINDLER BACKGROUNDS

We will concentrate on gravitational perturbations
around four-dimensional Minkowski spacetime, which is
a flat and globally hyperbolic solution of Einstein’s
homogeneous field equations. Mathematically, we model
it as the manifold R* endowed with the metric 7,, which, in
Cartesian (inertial) coordinates (7, x,y, z), is written as

Ny = diag(=1,1,1,1). (14)

The condition ¢ = const defines a family of Cauchy
surfaces in which the Killing field (9,)* is its (future-
pointing) normal. By arbitrarily choosing one spatial
direction, namely the z axis, we can separate this spacetime
into four distinct regions by the lightlike surfaces
t £z =0: the left Rindler wedge (LRW) as the region
where z < —|t], the right Rindler wedge (RRW) by the
condition z > |7/, and the expanding and contracting
degenerate Kasner universes (EDKU and CDKU) by
t>|z] and ¢ < —|z|, respectively; see Fig. 1. The
Rindler wedges are globally hyperbolic static spacetimes
in their own right, as they are globally hyperbolic regions
where the Lorentz boost generators in the z direction

B = 2(0))" + 1(0.) (15)

are (hypersurface-orthogonal) timelike killing fields. Each
of these wedges can be identified with a copy of the so-
called Rindler spacetime, from where they receive their
name. Note that the boost generators are spacelike in both
the EDKU and CDKU.

The Rindler spacetime is the manifold R* mapped by the
coordinates (4, ¢, x,y) and with the metric defined by

t—z=0

FIG. 1. Schematics of Minkowski spacetime with the lightlike
surfaces t = £z and segments of the integral curves of each of
the future-oriented timelike vectors. Examples of the Cauchy
surfaces are in blue: X is generated by (9,)¢ and is associated
with inertial observers; and X, is generated by Z¢ and is
associated with accelerated observers whose motion is con-
strained to the RRW.

ds* = gpdxdx? = e2*(=dA* + d&*) + dx* +dy*,  (16)

where a (called the acceleration parameter) is a non-
negative constant. This spacetime can be identified as
the product between two subspaces: the Lorentzian orbit,
given by R? with interval ds2, = e2%(—dA? + d&?); and
the xy plane, which is another copy of R?, but with the
metric defined by ds2,, = dx? + dy>.

The correspondence between Rindler spacetime and the
RRW becomes evident with the aid of the coordinate
transformation

t=a"'esinh(al), z=a"'e%cosh(al), (17)
that keeps x; = (x,y) invariant. From this, we see that a
particle that moves along a trajectory where the spatial
coordinates £ and x | are kept fixed measures a proper time
7 =¢e%) and a constant proper acceleration ae™*. As a
result, we associate the Rindler spacetime (and the Rindler
wedges) with a family of uniformly accelerated observers
moving along the z direction. Note also that the only
nonzero components of the Christoffel symbols are

[€e =T%, =T =T*;, =a, (18)

so there is no mixing between the two subspaces of Rindler
spacetime when computing the covariant derivatives.

The treatment of the massless scalar field ¢ will be useful
further ahead, so it is convenient to present an abridged
version here. We recall that the dynamics of the field are
determined from the field equation, which in Rindler
spacetime is given by
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*p 0
4 ¢> o — =0, (19)
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e +

( " og
and the classical solutions can be expanded in terms of the
positive-energy (with respect to Rindler time A4) modes
given by

h ke
Ua)kL(x) = w (kLXL_wﬂ)Kiw/a( Lae )7 (20)

47%a

where K, (z) is the modified Bessel function of the second
kind, > 0 and k ;| € R? — {0}. These have been chosen
so that they satisfy the normalization condition

(Vak,» Vot )s = 8(@ —a)& (kL —K}). (21)

Here the integral is taken over a constant A surface and
the subscript s indicates this is the scalar version of the
Klein-Gordon inner product [26]. On the other hand, on
Minkowski spacetime with global inertial coordinates
(1,x,,7), the field equation satisfies the well-known wave
equation

82 @ @ @

(f 9 94 94 =0, (22)
ot ox> oy 072
and its solutions can be expanded in terms of the positive-
energy (with respect to the inertial time 7) scalar inertial
modes

expli(k, - x| + k.z — kot)]
wi(f, X1, 2) 2o (27) . (23)

where k = (k. k,.k,) and ko = \/k} + k? defines the
energy carried by each mode according to an inertial
observer. These modes are also orthonormalized:

<l//k’ l//k’>s = 63(1( - k/) (2’4)

Since Minkowski spacetime contains two copies of
Rindler spacetime, we can identify two sets of scalar
Rindler modes: the left and the right ones, which can be
written as linear combinations of the scalar Minkowski
modes and their complex conjugates [26,27]:

ngl(t’ XJJZ) _/ dk [ (uklk Wk(t X,Z )

+ Bop i Wi (1. =X 1, 7)), (25)

(9]
by (1,X1,2) = / dk_ o 4w (1,%1.2)
—00

+ B i (. =X 1. )], (26)

where the Bogoliubov coefficients are

agk kT “le =k, = —e™/ “ﬂg = —em/ aﬁw ki —k,
zw/(2a) k k —iw/(2a)
SR [ IHTT @)
\/4nak, sinh(zw/a) ko — k.

The integrals of Eqs. (25) and (26) serve as the definition of
left and right scalar Rindler modes as distributions on the
entirety of Minkowski spacetime. Particularly, the right
modes converge to the form given in Eq. (20) on the RRW
and to 0 on the LRW. Similarly, left modes are given by
Eq. (20) on the LRW and are null on the RRW. These
expressions can be used to show that between two modes of
the same wedge, the normalization condition (21) still
holds when the integral is taken over Cauchy surfaces with
constant inertial time, and that left and right scalar Rindler
modes are orthogonal to each other.

We will now construct similar modes for the tensor case,
applying the procedure described in Refs. [28-30] in
Minkowski and Rindler spacetimes, taking advantage of
the symmetry of the xy plane. We will be using the scalar
and vector harmonics defined in this maximally symmetric
subspace as well as gauge invariants defined on the orbit to
build two independent sets of modes (or sectors), each of
which arises from (and is labeled by) the type of harmonic
used in its construction. We will only show details tailored
to our exposition and urge the reader to refer to the works
mentioned above for a comprehensive discussion on these
methods, as the derivations and proofs are quite involved
and far more general than the scope of this paper.

A. Harmonics on the plane

In the following, indices of the middle of the Latin

alphabet i, j, k, ..., represent components in the xy plane.

The scalar harmonic S(x ) is the solution to the eigen-

value problem of the Laplace-Beltrami operator, and this is
’S 0*S

5T tis=o. (28)

from which we find solutions of the type [31]
Ski(x ) = ek, (29)

The transverse momentum vector k | = (k,,k,) €R* — {0}
labels the modes in such a way that the eigenvalues of
the harmonic equation are identified with the modulus of
this vector, i.e., =k + k% = k3. Derivatives of the
harmonics are used to define the auxiliary two-vector and
two-tensor

1
Sk =— . —0,;Sk:, (30)
iR
1 1
S?;—kzaas +5 9 Sk, (31)
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which will represent the x, dependence of the scalar
sector modes.

Similarly, the components of the vector harmonic V;(x )
are defined by the equations

+ KV, =0,

A’V PV, :
) =+ = oy Vv; = 0. (32)
By using the Levi-Civita tensor on the plane, defined by its
Cartesian components &,, = —&,, = 1, &, = &,, = 0, we
can write the solution in Cartesian coordinates as

V= —ig;, g0, Sk (33)

1

These vectors have an associated tensor defined by

1
k K K
Vit = —m(ai\/ﬁ +0;V;i ). (34)
Properties of the definitions (30), (31), and (34) that are
relevant to our study can be found in Appendix A.

The tensor harmonic in the plane, T;;(x ), is defined as
the symmetric solution of the system of equations

0°T;; +a21r
ox*  09y?

+ k2 —l]_l] - 0, V’TU - O, —I]—il' - O (35)

We find that this is only satisfied by T,(x;)=0.
Therefore, we can discard the tensor perturbations and
are left with the scalar and vector sectors only.

B. Master variables and normalizable
gravitational perturbations in Rindler spacetime

There have been previous reports of gravitational per-
turbations on Rindler spacetime, such as Ref. [32] where
the authors chose the Regge-Wheeler gauge [33,34].
However, as their even mode is not transverse, they are
not suited for our purposes. For this reason, in what
follows, we will build a different set of modes more
suitable for our application. We will use Greek indices
of the beginning of the alphabet a,p,y,..., to label
components in the orbit.

The so-called master variables are governed by the
equation

VeV,Q -2 Q =0, (36)

with Q € {Q,, Q,, Q;}. In Rindler coordinates, Eq. (36) can
be cast as

’Q PQ
e —= - — | kK Q =0, (37)
082 0A?
and, given an energy @ > 0 measured by Rindler observers,
the positive (Klein-Gordon) norm regular master variables
are given by

Qg)kL (/I, f) = S(nkLe_ leiw/a(a_] klea{:)’ (38)

Qs/)kL (j" ‘f) = V(ukle_iwﬂKiw/a (a_lkLeag)’ (39)

QU (A, 8) = Top €Ky a(a™ 'k e%).  (40)
The coefficients S, and V,, are to be found through
normalization. Note we have considered the tensor master
variable even though we have discarded the tensor pertur-
bation as it is still used in the definition of the remaining
sectors.

We use the master variables and the (Lorentzian) Levi-

Civita tensor of the orbit, defined in Rindler coordinates by

€ = —€g = e, €z = €, = 0, to construct the gauge
invariants
Foke = (K2 /4)Q0% (41)
Pt = e, V0L (42)

ka va v/}gwlﬂ (k /2) ga[)’ kal (43)

From these we build the gauge dependent variables

Q' = Fok — QP 2, (44)
Zl)kl = F:;!)kl - v(lQ;HkL/kJ_’ (45)
fogt = Fapt = (2/k)ViFy", (46)

which we use to write the gravitational perturbations for the
scalar

(s\wk )

h f
(s,wk )
(I]

hg]s ok ) _ 2 kaLSkl + 2Qa)kL§5(JL’

= f oky gk | ,

fa)k n Sk n
(47)
and vector sectors

™ =0

h(‘fs‘“kﬁ

= foks \/‘.‘L
Ry = 20tk (48)

t

Given the definitions in Egs. (41)—(46), we see that these
modes are quite complicated, and the information between
the scalar, vector, and tensor sectors are coupled between
the different modes, as Q" and QU appear explicitly in
both expressions.

Using the properties described in Appendix A, we
can see that the vector sector satisfies the TT gauge
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conditions (10) identically. However, imposing the same
requirement to the scalar sector enforces the condition

k2
Qks = TL Qoke (49)

or, equivalently, Qi"ki = 0. We will now show the appro-
priate gauge transformations to further simplify these
modes while still remaining in the TT gauge.

Given an arbitrary gauge transformation (4), the vector
A, characterizing it can be decomposed using scalar and
vector harmonics in a very similar way to what is done to
the gravitational perturbation [35]. Furthermore, the result-
ing tensor, /1, will also have a unique decomposition in
terms of harmonics, and the gauge transformation trans-
lates to a transformation of the modes. From this, we can
show that

AY =g (8)Ske, AV =gp(1.E)Sk,  (50)
is the most general form of vector fields that modifies the
scalar sector modes, while

AS =0, A =y, (51)
is the most general transformation that can be applied to
the vector sector modes. We will choose the fields ¢,, ¢,
and y in such a way that the modes are decoupled while
remaining in the TT gauge.

For the vector sector, we pick

1
T N €)'
ki

to make the transformed vector perturbation (omitting the
tilde as we will discard the old form of the modes and the
distinction will no longer be necessary)

g™ =0,
ROy = e, VPQUE VR
iy <o, (53)

which we see is written in terms of the vector master
variable only. We also note that it is proportional to the odd
perturbation previously found in Ref. [32]. To transform the
scalar sector we use

N 1 i S
A==V Sh AT =0, (54)
€

and Eq. (49), yielding

s,wk @ 7
B = 19,,000 — (1 /2)Q0% g 58k

B = —(k 2V, Q00 S

aj

heRD) = k2 Qrhisty, (55)
which depends only on the scalar master variable. This
completely decouples the modes while satisfying the
chosen gauge condition (10), which is easily verified.

Normalization is a laborious but straightforward calcu-
lation (one can find some relevant identities needed in
Appendix B). We find, by choosing

Sor, _ & [sinh(zw/a) (56)

V =
ok T T2 4r*a

and labeling with p either the scalar or vector sector, that the
modes satisfy the normalization conditions

(hlpoks) pP o)y =5 5w — )8 (k, — k'), (57)
(k) RO KDy — 0, (58)

Moreover, simple identifications allow us to write these
gravitational perturbations using the scalar modes of
Eq. (20). As a result, we find that the vector sector is
given by

) o
hg}'wkm = —i(k/k7 )€eqpe VPV 0
By =0, (59)

while the scalar sector corresponds to

hl();;wkl) — (2K/ki>[vavﬁvka - (ki/z)gaﬂvwki]a
pookL) _ (k/k3)VoV 0,k

aj

hy ™) = 26/ ViV ok, + (3 /2)giva, ). (60)
Both representations of tensor Rindler modes, Eqs. (53)
and (55) or Egs. (59) and (60), are equivalent, and we will
use either one indistinctly, depending only on what is
convenient for each situation.

It is interesting to note that the form of the modes given
in Egs. (59) and (60) enables us to write the gravitational
Rindler modes as derivation operators applied over the
scalar Rindler modes (20). Hence, we can write

h(P,wki) _ h(l;;wh)[ymkl}. (61)

ab a

As a result, we can map from Rindler spacetime to the
Rindler wedges with the aid of these “operators” acting on
the left and right scalar modes of Egs. (25) and (26),
respectively, as
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Lpwk,) ok |

V™™ = hl™ ol . (62)
R.p.wk ok

V" = hi "l ) (63)

The above equations give us left and right gravitational
Rindler modes that can be used to describe gravitational
waves from the perspective of accelerated observers.

As we are ultimately interested in describing the radi-
ation seen from the inertial point of view (but connecting it
with the physics of accelerated observers), we need to
define modes that are, in fact, associated with a congruence
of observers following inertial trajectories but are labeled
with quantum numbers associated with uniformly accel-
erated observers. These are the so-called Unruh modes, and
they will be defined next.

C. Inertial modes

In this section greek indices refer to the (7,z) coordi-
nates. In deriving the form of the Rindler modes given in
Egs. (53) and (55), we have only used the properties of the
harmonics of the plane and covariant quantities in the orbit.
The only time the explicit form of the master variables was
used was for the normalization integrals. Given the fact that
Minkowski spacetime has the same maximally symmetric
subspace and the difference lies in the orbit, we can define
gravitational (plane waves) Minkowski modes using their
own master variables, W, and W¥,. The vector sector of
Minkowski modes is defined by

Hy =0,

HOM = ¢, VPgihvhe,
(v.k)
i

HYY =0, (64)

and the scalar sector is defined by

s,k k k., kyk,

HSY = [V, V085 — (13 /2) Wi g )%
HGY = (k /2)V, 945 s),

()
ij

HSY = )2 pitshs (65)

ij

The dynamics of these modes are governed by the field
equations

Y Y

— - — kY =0, 66
022 o ot (66)

with WY e{¥,,¥,}. Introducing the inertial energy

ko = \/ k% + k3 + k2, the positive-energy master variables

are chosen to be given by

k k. ki k. K
lI[SL Z :ZlPVL z

23 \/7k

ei(—kot-i—k,z)’ (67)

in order to have the normalization relations

(HPX) HOK)Y =5 .8 (k — k'), (68)

(HPK), H(pﬂk’)>t =0, (69)

for the modes H(P¥). From their explicit functional depend-
ence, it is straightforward to prove that these gravitational
inertial modes can be constructed by derivation operators
applied to the scalar inertial modes, just as we did for Rindler
spacetime. It is useful to note that the left and right
gravitational Rindler modes are also linear combinations
of positive- and negative-energy Minkowski tensor modes
following the same structure of the scalar field seen in
Egs. (25) and (26) [36]. Therefore, we can define gravita-
tional Unruh modes from linear combinations of left and
right Rindler modes as

V(RvPﬂ’kL) _I_e—lm)/av<L-Ps‘U_ki)

(Lp.wk ) be be
Wbc 1— e—Zﬂw/a ’ (70)

(L.p.wk ) _r (R.pw—k )
Vv Yoae w/avbc L

(2pwki) _ Ve
Wbc - 1 — e 2m0/a ’ (71)

These are purely positive-energy modes with respect to
inertial time ¢, which implies that they can be written as a
linear combination of the Minkowski modes (64) and (65).
However, they are intrinsically related to the physics of
accelerated observers, as they are labeled using the energy
and transverse momentum as seen by the fiduciary accel-
erated observers.

We can write the tensor Unruh modes, in terms of the
scalar Unruh modes

elklx, o
—_ do ei(—l)"&w/a
4ﬂ'2 2a J-

x explik, (zsinhd —zcosh9)]  (72)

Wok (x)

(here written as conditionally convergent distributions over
the entirety Minkowski spacetime), as

(ovwk;)
wisok) — o,

W(a,v.a}kj_)

K
i Av/AviNa

py = 1k2 €qp€ii VIV Wok -
1

W(J,v.a)kl) —0. (73)

ij

for the vector sector and
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o.s,0k 2k o o
Wfl/i Y - —i [vavﬂwwkl - (ki/z)gaﬁWMkJ’
W 9T
wloseks) _ _K[v‘vwa + (K3 /2)g:iw°, ] (74)
ij - kzl iV %ok, L/ 2)9iiWok, >

for the scalar one, where 6 = 1, 2.

Both Minkowski and Unruh tensor modes form (together
with their complex conjugates) two complete sets of modes
expanding any linearized gravitational perturbation in the
TT gauge. They will serve as our main tools to survey the
radiation content of the radiation emitted by an accelerated
mass in both the classical and the quantum contexts.

IV. ACCELERATED PARTICLE

Let us now consider a particle in Minkowski spacetime
(R*,5,5) uniformly accelerated by the action of an external
agent. The corresponding worldline, parametrized by the
particle’s proper time 7 €R, is given by

x'(z) =0,
I'cosh(ar). (75)

x'(zr) = a”'sinh(ar),

() =0, xy(r)=a"
This worldline is entirely contained in the RRW, and as
such, we can use Rindler coordinates (17) to simplify the
description:

Y@ =7 )=

i.e., the accelerated Rindler frame is the rest frame of the
particle.

To describe the gravitational waves emitted by such a
particle, we need the corresponding stress-energy tensor (8)
that arises from the matter action describing the particle as
well as the stress-energy tensor describing the external
agent accelerating the mass. The covariant equations of
motion for the particle are given by

=2@) =0 (76)

dQ)(a r d){b d)(C

a

dr? berdr dr

= F(y), (17)

where F“ is a vector field representing the accelerating
agent, which can be written using inertial or Rindler
coordinates as

F? = a*1(0,)" + a?z(0,)" = a(0;)". (78)

The equations of motion (77) can be obtained as the Euler-
Lagrange equations for the action

Ip:Ik+ImF! (79)

where

dy* d){

dr dr (80)

Ly =-m dT —Gab——

is the kinetic term corresponding to the particle and

= / dc ", F (81)
e 247

gives the interaction between the external agent and the

particle.

A full matter action must consider the action of the
accelerating agent, that is, an action Iy that carries the
information of the acceleration field. Therefore, the com-
plete matter action is

Lo =1, + IF. (82)

From this action, we find that the stress-energy tensor can
be written as

Tab = TAab + TFab’ (83)
where
m o0
T a0) = [ druns - 2(0) (84
V=9(x) -0

comes from the variation of Eq. (80) with g,;, and gives the
contribution to the stress-energy tensor coming exclusively
from the accelerated motion of the mass. The tensor 77,
comes from the variation of I,,r+ I with g,, and
describes the contribution to the total stress-energy tensor
coming from the accelerating agent. Here, u(7) = dy*/dz
is the four-velocity of the particle, and we have introduced
the Dirac delta distribution §(x) that ensures the stress-
energy tensor is nonzero only in the events that form the
trajectory. We note that T, satisfies V, 7% =0, as it
should be.

Having established the stress-energy tensors describing
the uniformly accelerated particle and the external agent
accelerating it, we can use Eq. (84) in the (gauge-invariant)
interaction action (9) to write the Euler-Lagrange equations
arising from the total action

Itot = Ipert =+ Iint

in transverse gauge, V9h,, = 0, as
) 1
vcvchab =k |\Tuy — ETnab ’ (85)

where T = “*T,;, and we have used the fact that R, = 0
in Minkowski spacetime. Now, using Eq. (83) in Eq. (85)
enables us to split &, as

ab = hab + hab’ (86)
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where 74, and hf, satisfy

1
chchﬁb = —K> {TAab - ETAnab:| (87)
and
1
chchan = —K |:TFab 5 TFnab:| > (88)

respectively. Hence, we can see that %, describes the
gravitational waves due to the accelerated motion of the
particle while A%, describes the gravitational waves coming
from the external agent and its interaction with the mass.
Here, we are only interested in the radiation emitted due to
the accelerated motion of the particle. As a result, we will
focus on h’;‘b and its field equation, Eq. (87).

For computational reasons, we will be interested in using
a compactly supported stress-energy tensor to study the
gravitational wave emission and take the physical (non-
compact) limit at the end. Moreover, it is also interesting to
study the case in which the acceleration time is finite (and
take the infinite acceleration proper time at the end). To
include both of these conditions we introduce two positive
parameters, L and 7, with L > T, to define

T () = %@"“ ~ |t
X /_: dru,u,d* (x — x(7)). (89)

([=a~'sinh(aT) + (7 + T) cosh(aT)], 0,0, [a~! cosh(aT) — (z + T) sinh(aT)]),

x5 (t) = ¢ (a 'sinh(ar),0,0,a"! cosh(ar)),

([a='sinh(aT) + (t = T) cosh(aT)], 0,0, [a~" cosh(aT) + (7 — T) sinh(aT))]),

where we have defined

L — a~'sinh(aT)
0, =T 91
L + cosh(aT) (1)

as an auxiliary value that describes the proper times of
“birth” (r = —0;) and “death” (z = ®;) of the particle, as
registered by an observer comoving with the particle
(which an inertial observer sees at times t = —L and
t =L, as explained above). The compactified trajectory
can be visualized in Fig. 2.

The physical setting for the particle is recovered by
taking the limit 74, =lim;_ T}, As such, we
will compute all quantities using 7%, and then recover
the true physical setup by taking the limit L — oo described
above. We can also recover the stress-energy tensor

t—z=0
t=L - - - . _
after acceleration
T=T-F-~+ ]
acceleration
z
T==T-F - ="
before acceleration
t=—=L --------
t+z=0

FIG. 2. Support of the compactified version of the stress-energy
tensor, showcasing the inertial (green) and accelerated (red) parts
of the motion of the mass.

Here, L is a compactification parameter that limits the
support of the stress-energy tensor to the region of
spacetime that satisfies —L < ¢t < L, while T gives half
of the acceleration proper time and was introduced in such
a way that the right-hand side of Eq. (77) is turned off
outside the interval defined by |z| < T, meaning that the
particle experiences geodesic motion before and after the
acceleration. Explicitly, we can cast y;(z) in inertial
coordinates as

if —®LST<—T,
if —-T<z<T, (90)
ifT<71<0,,

|
associated with the trajectory (75) by taking the
limit limy_, T4 = T4,.

V. UNRUH MODE EXPANSION OF THE
CLASSICAL GRAVITATIONAL PERTURBATION

Let us now consider two distinct Cauchy surfaces, X_
and 2, lying outside the causal future and past, respec-
tively, of the support of the compactified stress-energy
tensor T7%; see Fig. 3 for a schematic view.

The advanced and retarded gravitational fields pro-
duced by the compactified stress-energy tensor is obtained
from [37]

At‘zab(x) ZAACV‘X, \Y _g(x/)GadvahC/d’ (xvx/)téc’d’ (x/)’ (92)
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i+

1

FIG. 3. Conformal diagram of the setup. The Cauchy surfaces
are in blue. The green lines correspond with the inertial parts of
the trajectory of the mass, while the accelerated portion is in red.
The support of the compactified version of the stress-energy
tensor is the solid curve, while the limit L — oo is represented by
the dashed extensions in green that reach the time infinities. Note
the accelerated part of the motion is constrained to the RRW
(delimited by the black dotted line). The causal future of the
compactified trajectory is the light blue region, while its causal
past is the light magenta one.

RtLab / d4 /\/ Gretab x x th’d’( /)’ (93)
where we have defined t} , = T4 , —3T}n,,. Advanced
and retarded bitensorial gravitational Green s functions
associated with the operator V¢V, are reflective of the
causal structure of the background spacetime. As we are
working in Minkowski spacetime and we are using Cartesian
coordinates, the field equation’s structure implies that

Gavar" ! (x.X') = Gogy (x.X)8788. (94)
Gretas” @ (6,3') = Grey(x, x')85,50, (95)

where G,q, and G, are advanced and retarded Green’s
functions for the scalar field. Then, we can define the
regularized particular solution by

EtLab( ) Atéab(x)

Now, we note that for all events x € R*
relation

= Rtj (). (96)

— J~(supptk, ), the

Rt} (x) = —Et] 4 (x) (97)

holds. In particular, this is true for all xeX, .

The radiation aspects of Rt} are described by its
projection into the TT sector. Hence, we can expand it in
X, using the Unruh modes (73) and (74) as

/ da)/ dsz
o= lp Y R

X [<W(0~p,ka)’ Eti‘%Wi(Zp’ka)

TTRtLab -

+ <W(6.p’WkL)’ Eté>t v‘/l(l{;?.p’aﬂ(l)]7 (98)

where the coefficients can be obtained from the identity
(wiepaks), ), = / dhey/=gtpt Wt (99)

which holds for compactly supported tensors t ;. We derive
this identity in Appendix C.

Now, due to the fact that the Wleroki) modes are
traceless, we can write

a o.p.wk a o.p.wk
[ aevmaew ) = [ atmgriowr o,

(100)
and thus
(Wlepokl) ptdy — (Wlepek) ET4) - (101)
Note that Eq. (101) implies that
VIR, = TIRTY,, (102)

From the setup described in Sec. IV, we can see from
Egs. (73) and (99) that the vector sector does not couple
with the stress-energy tensor, and hence

(Wlevekl) ET4) =0, (103)
The scalar sector involves a little more work. We can first

separate the contributions of the accelerated, A%<k (T),
and inertial, Z%“k.(T, L), parts of the motion as

<W(a.s.wkj_)’ ETfL\>I _ _%[Aﬁ,wa_(T) 4 TowkL (T’L)].

(104)

To compute A%“K+(T), it is more suitable to use Rindler
coordinates yielding
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Al,ka

dr u*(

~ el

xm ™ /a

[ de | &x, dru(7)ul (2)5(2 — 1)8(£)8 (x ) [ W™ (2.&.x1)
e s ]

Mﬁ(T) Rﬂ(z)kL ( ,0,0, O)

sin(wT)

=z —2”4a{(k2¢ = 20%)K (ki /a) + kyalKy iy (ki /a) + Kitiwa(ky/a)]} (105)
1
for ¢ = 1 and, analogously,
2,0k N i ) sin(wT)
A J'(T) = k_2 {( —2w )Kia)/a(kJ_/a) + kLa[Kl—iw/a(kJ_/a) + Kl+iw/a<kJ_/a)]} (106)
1

for ¢ = 2. The inertial contributions Z°“K1(T, L) are not relevant to our description as we are only interested in the
radiation emitted by the acceleration. They, however, must be convergent on the limit L — oo, and we prove it in

Appendix D.

We can now concentrate on the case of infinite acceleration time. This corresponds to the situation of the particle
following the trajectory of Eq. (75) with stress-energy tensor (84). In this case, Z7“k1 (0, 00) = 0 (see Appendix D), as
should be the case, since there is not going to be any inertial motion. By taking the limit 7 — oo we find that

<W(l,p,(ukL)’ E'TA>t —

where we have used the identity

lim ™! sin(wT) = 76(w).

T—o0

(108)

We can further simplify Eq. (107) by means of the identity [38]
Ky 1(x) = Kooy (x) + (20/%)K, (x),
which enables us to write

<W(1,p,a)kl)’ ETA>t = <W(2,p,ka)’ETA>t

_ o imx Kk /a)s(w).

872a

(109)

From the above equations, we can see that only zero-
Rindler-energy Unruh modes contribute to building the
retarded field in the limit 7 — oo.

Let us now explicitly compute the retarded solution (98).
To this end, let us first note that, by using Eq. (109) together

with the identity W“wh) = Wfb’s’_wkﬂ, we can cast

Eq. (98) as

TIRTA, — \/’;Lz A @k, K (k fa WS e,
r*a

(110)

where c.c. stands for complex conjugate of the expression
enclosed in the brackets and we have used Eq. (102) to
write the left-hand side in terms of T4 . Next, by using the
scalar form of the Unruh modes in the EDKU

(W(Zp-wkm, ETA>t —

imk 2a
Ko (k K, (k 107
\/87[—(1 0( L/a)+k 1( L/a) ( ) ( )
[
sartw/(2a)
2 __® 1(wé’+kJ_XJ_) ) a
w = H k,e/a 111
ok | m (L / ) ( )

along with Eq. (74), we find (see Appendix E for the
relevant integrals needed) that the nonzero components of
the perturbation are given by

mk? o
TRTy, = TIRTy, = ﬂezan /o dk ki Jo(kox)
x Jp(k e®/a)Ky(ky/a), (112)
mx> o
TIRTY, = —e“ cos (p/ dk k3 (ki x))
dra 0
x Jy(kpe™/a)Ky(ky/a), (113)
mx? o
TIRTA, = me“" sin (pA dk kT (kyx,))
x Jy(kpe®/a)Ky(ky/a), (114)
mk? o
TRTY, =T Sin(29) A dk, Kk Jo(k e /a)
x Jy(kpxy)Ka(ky/a), (115)
mxk? ©
TIRTY, = -"RT}, = 4—cos(2(p) / dk  k,Jo(k e™/a)
na 0
xJy(kyx))Ky(ky/a). (116)

With the aid of the identities [27]

0450006-11



PORTALES-OLIVA and LANDULFO

PHYS. REV. D 109, 045006 (2024)

A ™ 9K (a0)1,($9)o(79)d9

:_[a2+ﬂ2+72—\/(a2+ﬁ2+y2)2—4a2ﬂ2]2 )
4a2ﬂ2\/(a2 +ﬂ2 +]/2)2—4a2ﬂ2 ’

valid for Rea > |Ref}| + |[Imy

, and

/ " 9K, (a8)T, (PO, (79)d9

2Py

(118)

1 1
X + |
e )

valid for y > 0 and Rea > [Imp| (see Refs. [39,40]), we
find that

2.2
TTpTA _ TTpTa _ MK°d
RT), = TRTY, == —
8 [a—Z_CZaW/QZtxi_za—ll)O(x)]Z ’ (119)
8a~*po(x)

TTppA _ mi*a® . a? +x3 +e*/a*> - 2py(x)/a
" Ag 2x3
1
—+ 1], 120
()] 20
TTRpt mita® [ (a7 +x% +€*/a* - 2py(x)/a
W An 2x2
1
1
——+1 121
) (26000(%)1L )] 120
TTRpA _ mk>a’ . [a™2 4+ e /a? — X3 —2a7 py(x)]?
v dr 4x4 po(x) '
(122)
mk*a®
VIRTY, = TR, =
2 gy la e/ a’ =X =2a po(x))?
x| (x* =) 4 ’
8x7 po(x)
(123)
where we have introduced the auxiliary distance
a 4ean
polx) =3 \/ (F—aeM taT) +— (124)

for the sake of notation.

To conclude the classical analysis of the radiation emitted
by the accelerated mass, let us introduce a concept that will
provide an illuminating comparison with the quantum
calculations to follow. We define the so-called “classical
graviton number” radiated by the system (mass+
accelerating agent) as seen by inertial observers as [41]

Ny = (KRT, KRT),, (125)
where
2 (e
KR, ==>" 3" [T [ ok
o=1 p=s,v 0 R?
X (Wlepaks) ET) wioPeks) — (126)

is the (inertial) positive-energy part of the retarded solution
TIRT with the limit L — oo already been taken. As T, =
T4, + T%, we have that

Ny = Niy + NE + 2Re{(KRT*, KRTF),},  (127)
with
N{, = (KRT*, KRT*),, (128)
and
NE = (KRT*, KRTT), (129)

being the particles emitted (independently) by the accel-
erated mass and accelerating agent, respectively, while
2Re{(KRT*, KRTF),} is an interference term.

If we now take the limit of infinite acceleration proper
time, we have that [see Eq. (110)]

mK . 2.5.0K )
KRTA, = &k K, (ky Ja) W% (130)
¢ V8rla Jr ab

By using Eq. (130) together with the orthonormality
relations

<W(z7,v.(okL)’ vv’(o{v,a)’kl))t _ 560’5(0) _ w/)éZ(kl _ kl)

(131)
in Eq. (125) one finds that
m2i>
Ny = @Tm /R2 &’k [Ky(ky /@), (132)

which implies that the classical number of gravitons per
transverse momentum, k, per acceleration proper time,
T» radiated by the mass due to its accelerated motion is
given by

1 de?L - m’k’k |
Tou dk | 87%a

[Ka (ki /a)]. (133)
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VI. UNRUH MODE EXPANSION OF THE
QUANTUM GRAVITATIONAL PERTURBATION

Let us now perform the quantum analysis of the
gravitational perturbations due to the accelerating mass
around Minkowski spacetime. To this end, we promote the
gravitational perturbations /,, and its associated general-
ized momentum 7 to operators h,, and #“, respec-
tively, and impose the equal-time canonical commutation
relations

A

[ (£,%), hea(t,X')] = 0, (134)
[ (1, %), no (1, X')] = =i6(,80, 5% (x = x),  (135)
(7798 (1, ), 7 (£, x")] = 0, (136)

where n? = (9,)* is the future-oriented normal vector
orthogonal to the Cauchy surface defined by X, .. =
{(t,x) e R*|t = cte}.

Again, for calculational purposes, we will consider our
compactified worldline which gives rise to the compactified
stress-energy tensor T ., = T4, + T% ,, where we recall
that T4, is the contribution to the total stress-energy tensor
coming from the accelerated mass while 7%, is the
contribution coming from the external agent accelerating
it. In the end, we will take the limit L — oo to recover our
physical setup. The stress-energy tensor 7' ,, will be the
classical source for the quantum field izab, and, in what
follows, we will use two Cauchy surfaces X, (asymptotic
future) and X_ (asymptotic past) as in Sec. V (see Fig. 3).

The influence of the classical source 7;,, on the
quantized gravitational perturbation }Azab is determined by
the linearized Einstein equation

VeV, gy = =Kty gl (137)

One possible solution to the above equation is given by

hay(x) = G (x) + Aty o (01, (138)

where At; ,, is the advanced solution of Eq. (137) and 7%
satisfies the homogeneous field equation in the TT gauge

VeV, o = 0. (139)

Given a choice of orthonormal Minkowski positive-energy
modes vfljb) (x) in the TT gauge, characterized by appro-
priate quantum numbers j € ¥, we can expand the homo-

geneous field as

hey = Z[ngjb)&out@(j)) + USZ&ZM(UU))]'

JETY

(140)

The vacuum state of such a construction is the state |0,

defined from the action of the annihilation operators over
it by

Gou (V) OM) = 0

for all j€JF. We can see that, as At;,,(x) =0 for all
x€R?* — J=(suppt; ), we can interpret the state |0M,) as
the vacuum seen by inertial observers in the asymptotic
future.

Alternatively, we can also write the quantized field as the

following solution to Eq. (137):

hap(x) = gy (x) + Rty g (x)T, (141)
where Rt; ., is the classical retarded field and iz;“,, is a
homogeneous solution of the linearized Einstein field
equations in the TT gauge [Eq. (139)]. The latter can be
expanded using (another) orthonormal set of (Minkowski)

positive-energy modes ”5112 (x) in the TT gauge as

i, = 7 ) i (u®) + ull)ad ()],
kel

(142)

where & is a suitable set of quantum numbers. We can
define the in-vacuum state [OM) by the action of the

annihilation operator over it: &, (u®)|0M) =0 for all
k€ K. Following the same reasoning as above, we can
see that Rt;,,(x) =0 for all x€R*—J*(suppt; ),
which implies that |OM) can be interpreted as the vacuum
seen by inertial observers in the asymptotic past.

The Fock space for each representation is built by the
successive application of the creation operators EliTn(u(”)
and &, (vV)) over their associated vacua [OM) and |0M,),
respectively. These Fock spaces can be connected using the
S matrix [42]

§ = exp(iliy [, T1))

— exp <l / dx, /——g/%gz‘tLa">, (143)

2 R4

which relates the vacua by
|0}) = S|0bL,)- (144)

Note that, as 4% is in the TT gauge, we can write the S
matrix (143) as

S =exp <% A4 d4x\/—gf121},tTL“b>. (145)

Now, by using that T;,, = T4, + T% ,,» We can cast
Eq. (145) as

S =987 54, (146)
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where
SF=e ( / d4x\/_h°‘“TF‘1”>, (147)
A = exp (; 44 d*x. /—gfzz;‘}T/zab, > (148)
and
@E/ d4x\/—g/ d*x'\/—¢
R R
X Aupea (0, X)TLP()TLA(X),  (149)
with
[y (x). 12 ()] = 18 gpea (e )1 (150)

84 —exp[ / d4x\/_TA“b<Z / do /

Here, H.c. stands for Hermitian conjugate of the expres-
sion before. This can be simplified by defining the
annihilation and creation operators associated with the
negative- and positive-energy parts of the expansion,

KET} and KET}, as

aom(KETQ)EZ A dw A 2 d’k |
o.p

X <W(6p("kl) ETA)taout(W(g’p'ka))’ (154)
aout KETA Z/ dez dsz_
X (WD) ET4) al (Wopoh.)), (155)

respectively. Rearranging the integrals in Eq. (153) and
using Eq. (99) allow us to write

§ = exp[aout(KET ) - aout(KETA)] (156)

Now, we can apply the Zassenhaus formula

X+ Kol e-lX1/2.

valid when the operators X and ¥ satisfy [X,[X,¥]] =
[V, [X. Y]] = 0, together with the identity

laou(KET?), a3 (KET})] = |KETE|PT  (157)

The operator $4 describes the graviton production due to
the accelerated particle while S* describes gravitons
produced due to the accelerating source and its interaction
with the mass (both as seen by inertial observers in the
asymptotic future).

Let us analyze first the action of $* on [0M,). To this end,
we first write 2% using tensor Unruh modes. In this case
j=(o,p,w, kJ_), S ={1,2} x {v,s} x [0,0) x R?, and
the annihilation and creation operators are found directly
from the inner product thanks to the normalization of the
modes:

Ao (WIOPHRL)) = (WEPOKD o) (151)
al (Wlepekl)) — (f wlepok)) (152)
Then, the S matrix is explicitly given by
apka Ou(Wap(Ukl))-i-HC])] (153)
[
to write
A _ ol KET}|?/20-a], (KET} ) glon(KETY) (158)
where

|KET}||> = (KET{,KET?),
_Z/ dw/ &k, [(Wlepokl) ET}) 2.
o,p R?

(159)
Now, applying Eq. (158) to |0M,) yields

e_HKET? HZ/Ze—aom(

$4108) = KETL|03L,)-

(160)

We can further work on this expression to show that
SA)0M.) is a coherent state according to future inertial

observers. To this end, we apply &g, (WP“k0) to it,

Agu(WoP%)) 54|03, )

— o~ IKET.|?/2 —aom(KETL)[e&Zm<KETL>
X g (WP ok )emtua KETDJ 0N, (161)
use the identity
v % A SN 1 A A A
XYe X =Y +[X,Y] +§[X, X, Y]]+---, (162)
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with X = a! (KET}) and ¥ = o, (WP“k1)), and the
commutator

[ out(KETL) aout(W(a.p’ka))] = _<W(0,p.wkl)’ ET2>tﬁ
(

63)

[which implies that the series of Eq. (162) will be truncated
after the second term] to obtain

Ao (WEPoKD)SAOM ) = —(Wlepekn) ET1) §4|0M,),
(164)

i.e., $4/0M) is a multimode coherent state associated with
an arbitrary Unruh mode in the asymptotic future.

We can now consider the case where the acceleration
time is infinite. This is done by first taking the limit L — oo
and then taking 7 — o0. By doing so, we can see that the
creation operator that appears in Eq. (160) can be explicitly
written using the coefficients in Eq. (109) as

imk
\/ 8n2a Jr?
x Ky (ki /@) by, (WEs0k),

al (KET) = d’k |
(165)

from which we can cast $*|0M,) as

2.2
ﬂmw—®emfmkmjdmmﬂuﬁ]

k, eR? 167Z3

Ko (K, /)iy (WESOK) >] oM,

(166)

N [ imk
exp | —
V8rta

where we have used

m2K

|KETA|]? = ——~
167°a

"1, T [ KoKk /R (167

and T = 276(w)|,—o- Equation (166) showcases the fact
that only zero-Rindler-energy Unruh modes participate in
building the vacuum.

Now, let us look at the expectation value of the field 7%}
in the in-vacuum. To do this, let us use Eqs. (149), (150),
and (162) to write

SFT hout SF hOut

TTETF 1, (168)

where we have used that A ;. (x,x")
Gretabcd (X, )C/),

= Gadvabcd(x’ X/) -

TIETF , (x) = / '/~ Bapea 2. 2)TF(X), (169
R4

and we have taken the L — oo limit. Note that, as A" is on

the TT gauge, TTETT ,;, above is already projected in such a
subspace of solutions. By using Egs. (144), (146), and
(168) one can write

(OMI7g3|O}) = (OMLIS* AghS*|03k) — TETY,.  (170)

which, by means of Eqgs. (140) and (164), can be cast as

Z/ dw/ d2k | [(Wlepoks) ETAY
RZ

— TTETE,.

<OM ‘hout

x Wepeki) 4 He (171)

We note that the first term in the above equation is the
expansion of ETZ‘h in terms of Unruh modes, and hence, it
yields TTET4,. By using that, in X, we have TTET4,, =
~TTRTA ) and 'ET? ,, = —TTRTF ,,, one can write

(OM|AS4tjOMY = TTRTA, + TIRTE, . (172)

Hence, the expectation value of the field after the inter-
action with the source is given by the retarded fields.
Furthermore, all other physical observables will correspond
with their classical counterparts. In particular, when one
takes the limit of infinite acceleration for the mass, one can
see from Eq. (110) that only zero-Rindler-energy Unruh
gravitons contribute to the radiation emitted by the accel-
erated mass.

Moreover, we can study the expectation value of the total
number of Unruh gravitons

(173)

W= [Taw [ @k oao.
o.p

where we used the definition of the number operator
NP =gt (Wepek)a  (WEPek)) which gives us

wk |
the number of particles per each Unruh mode o, sector
p, Rindler energy w, and transverse momentum k ;. Note
that we have already taken the physical limit L — oo0. Using
Egs. (140), (149), and (162) together with identity (99) one

can write

S‘F%é\lout(W(G»P.wa))SF == é\lol,lt(‘/‘V(O-yp’wkj_))
+ <W(o—,p,ka)’ ET{%]’I (174)

Now, using Egs. (144), (146), (164), and (174) in Eq. (173),
one can write
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() EZ/O dcu/Rz &k | [|(Wlepak) ETAY P
o.p

+[(wiepaks) ET7) 2
+ (ETA, Wlepok)) (Wiepok) ETFY 4 c.c.]
= |[KETA|*> + | KETT||> + 2Re{(KET*, KET"),},
(175)

which coincides with the classical number of gravitons
derived in Eq. (127), where we recall that, in X,
RTX, = —ETX,, X =A, F.

In the limit of infinite acceleration proper time (where
only zero-Rindler-energy Unruh modes contribute to the
radiation), we can use Eq. (167) to compute the total
number of gravitons produced in the asymptotic future
yielding

m2k

2
167[3 tot/ d kL[KZ(kL/a)]

+ ||KETF|]> + 2Re{(KET*, KETF),}.

(N) =
(176)
The above equation implies that the number of (zero-
Rindler-energy) gravitons per transverse momentum k | per

proper time emitted solely due to the accelerated motion of
the mass can be written as

1 dN;jL 22k,
Tou dk | 87t a

[Ka(ky/a), (177)

which also agrees with its classical counterpart given
in Eq. (133).

VII. FINAL DISCUSSION

Here we have analyzed the classical and quantum
emission of gravitational radiation by a uniformly accel-
erated particle. We were successful in showing that only the
zero-Rindler-energy Unruh modes, whose definition we
have extended from the scalar and vector electrodynamics
to be tensor valued, contribute on the description of the
classical retarded gravitational wave solution where the
mass accelerates for infinite time.

From the quantum analysis we see that the interaction
with the accelerated mass, codified within the S matrix we
explicitly constructed, evolves the past vacuum for it to be
seen as a multimode coherent superposition of particles
according to the future observer’s perspective. If the
acceleration occurs forever, this process involves only
zero-Rindler-energy particles. The coherence of the in
vacuum reflects itself in the fact that the expectation value
of the evolved field corresponds with the classical result for
the gravitational perturbation.

This extends the results of the authors [43,44] to spin-
two fields, and clarifies the fundamental role played by

zero-Rindler-energy gravitons, recognizing they are no
simple mathematical artifact and do, in fact, contribute
to the measurable radiation content. In particular, it
vindicates the claim that each graviton emitted in the
inertial frame must correspond to either the absorption
or emission of a zero-energy Rindler particle in the
accelerated one.
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APPENDIX A: PROPERTIES OF THE VECTOR
AND TENSOR FIELDS DERIVED FROM THE
SCALAR AND VECTOR HARMONIC

For the scalar sector, the vector defined in Eq. (30) has a

divergence proportional to the scalar harmonic

Viskr =k, Sk (A1)

On the other hand, the tensors of Egs. (31) and (34) are
traceless

gISiH =0, gV =0, (A2)

and both their divergences are proportional to the corre-

sponding vectors

. k 4 k
Vfgg‘ji — %Sg‘i, VJ\/f"jL ==V (A3)

APPENDIX B: EXPLICIT CALCULATIONS FOR
THE NORMALIZATION OF THE MODES

When normalizing the modes of Egs. (53) and/or (55) we
use the following integrals (which can be checked straight-
forwardly by using the definitions of S¥* and \/{(l):

Az @x, VS =0, (B1)
/Rz dx Sk S =42 (k, — k), (B2)
Az @x, Vp Vit =423 8 (k- K)).  (B3)
AdeXLS’ S L_4ﬂ252(kl_kl)’ (B4)
Azdz g L_2ﬂ252(kJ—_kl). (B5)
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We also use the normalization integral [12]

/ Kiy/a(k1e%/a)Kiy q(k 6% /a)dE

77.'261

" 2w sinh(zw/a) 8w = a).

(B6)

Scalar functions of the orbit that satisfy Eq. (37) such as
the scalar (38), vector (39), or tensor (40) master variables
satisfy the equations

V,QokV,VeQeks — v, ,Qok Y, VeQeks
o 0QUkL 9Q@ kL
— k2 Qe ky _ ka 1
+ ( 0 A )

a / 7 i /
+ 675 (vﬁga) kvagmkl _ vﬁgwlqvggm kl)7 (B7)

VevPQekiV, v, V,,Qek — VevPQokiy, v,V ,,Qok
_ _ki (V/"Q’”’ﬂ v/1 v/}Q‘”/kL 4 vﬂQ“’lkL v/l V/}Q“”ﬂ )

9 __ , , .
+ 5 (VYRR - VI VY008,
(B8)

which are useful for the normalization of the modes, as
border terms will not contribute to the result of the
integrals. These translate to the orbit of Minkowski
spacetime using the direct replacements o — k_,
@' > ki, A1, and £ 2z,

APPENDIX C: DERIVATION OF EQ. (99)

Consider the traceless and transverse gravitational per-
turbation 4, around Minkowski spacetime that solves

V.V¢h,, =0. (C1)

Let T,, be any (compactly supported) symmetric tensor.
Then, by using &, and T,;,, we define the functional

I[h, T] = -« / d*x\/=gT ,,h“. (C2)
R4

If we take a Cauchy surface outside the causal future

of the support of the stress-energy tensor, i.e.,

¥ c R* = J*(suppTy,), we note that the causal past of

the Cauchy surface does not contribute to the integral and

thus

I[h, T) = —«? / d*x\/=gTh,. (C3)
TH(D)

By taking AT, to be the advanced particular solution of the
equation

V. VCAT® = — 2T, (C4)

we can use Eq. (C4) in Eq. (C3) to write
1h, 7] = / dx/ =GV VAT iy, (C5)
JHE)

A small algebraic manipulation leads us to

hoy V. VAT =N W€ [h,AT] + V . Vh, AT, (C6)

where the current W¢[h, AT] is defined as in Eq. (13). Using
the Gauss theorem and the fact that 4, satisfies Eq. (C1),
the integral reduces to

I[h,T] = [ . d*x\/=g[V.W¢[h, AT]

AT (V,VT)

= —2i(h, AT),, (C7)

where the inner product is taken over X. This can be
simplified to

i _
BTy = =5 [ g, ()

by realizing that ET,, = AT, for all events in the Cauchy
surface X.

APPENDIX D: CONTRIBUTIONS DUE TO THE
INERTIAL PARTS OF THE MOTION

The total inertial contribution of Eq. (104) can be further
separated into two parts, one corresponding to before
(represented using a — sign) and the other to after
acceleration (denoted by +) as

Zowki (T, L) = T9"8(T, L) + Z2“%(T,L). ~ (DI)

Defining the auxiliary function

A, (t,x,,7) = 6%(x,)8(z — a'sech(aT) + ttanh(aT)),
(D2)

we can write the effective stress-energy tensor that appears
inside the integrals above as

Ti‘,i” = m cosh(aT)O(L — |t|)A£(t,x,,2), (D3)
T4 “=T} ¥=xmsinh(aT)0(L—|1|)A+(1.x,2), (D4)
T} % =msinh*(aT)sech(aT)O(L —|t|) A4 (1.x,.z). (D5)
We can now use the form of the tensor modes of Eq. (74)

and the distribution version of the scalar Unruh modes (72)
to write explicitly the components we need, obtaining
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2

TowkL mi sech(aT) 49 emi-1"80/a ( cosh?(9 — aT —kk—l exp|—ik | a~'sech(aT) sinh 9
+ 3 p 1

12 212\ 2a

(s

L
X / dt exp{—ik  t[tanh(aT) sinh 9 — cosh 9]}, (D6)
a~! sinh(aT)
h(aT) [ (e KA
Zowky — m;csec(a)/ dg e i(-1)79w/a <cosh2(8 +aTl) + l> exp[—ik, a~'sech(aT) sinh 9]
K2 27*V2a J- 2
—a~"sinh(aT)
X / dt exp{ik  t[tanh(aT) sinh d + cosh 9] }. (D7)
-L
These depend on the integrals
L
fLQ,TL)= / dt exp{—ik, f[tanh(aT’) sinh 9 — cosh 9] }
a~!'sinh(aT)
i
=- —ik | asinh(aT)|tanh(aT) sinh & — cosh d
k| [tanh(aT) sinh 9 — cosh 9] (exp{~ik asinh(aT)[anh(aT’) sin cosh 8]}
— exp{—ik  Ltanh(aT) sinh 9 — cosh J]}) (D8)
and
—a~" sinh(aT)
f-(8,T,L)= / dt exp{ik  f[tanh(aT) sinh § + cosh 9]}
-L
i
=- —ik a sinh(aT)[tanh(aT) sinh 9 hd
k [tanh(aT) sinh 9 + cosh 9] (exp{~ik,a sinh(aT)[tanh(aT) sinh § 4 cosh ]}
— exp{—ik  L[tanh(aT) sinh 9 + coshd]}). (D9)
[
We can see from the above equations that the L-dependent ~ With this in hand, we can also find the integrals
terms behave as oscillatory distributions around zero. Thus,
on the limit L — oo, we find that exp{—ik L[tanh(aT) x 2 i cos(8—g) < .
sinhd & cosh 9]} averages out to zero. Explicitly, /0 © sin§d9 = 2zisingl; (u).  (E2)
ie—ikLasinh(aT) [tanh(aT)sinh9Fcosh 9]
li ,T,L)=— - . (D10 2z :
Ll—rfofi( ) k, [tanh(aT)sinhd F coshd)] (b10) / el ©s(=0) cos 949 = 2zicos I (u),  (E3)
0

The same arguments can be used in the limit 7 — oo, as the
hyperbolic sine is a strictly increasing function. As a result

lim (lim T59%(T, L)) —0,

T—oo \L—>o0

(D11)

meaning there is no contribution from the inertial parts of
the motion in the case the particle is accelerated for an
infinite amount of its proper time, as we expected.

APPENDIX E: USEFUL INTEGRALS TO
COMPUTE THE FINAL FORM OF THE
EXPANSION

To arrive at Egs. (112) to (116), we need to use some of
the generating functions of the Bessel functions. In par-
ticular, we will need the expression [38,40]

2r
/ elu 605(19—(/')(119 = 271'.]0(”)’ (El)

0

by taking partial derivatives of (E1) with respect to u
and ¢. Taking the partial derivatives of Eqs. (E2) and (E3)
with respect to u# and combining them, we can also
show that

2r .
/ eitt ©os(9-¢) gin(29)d9 = -2z sin(2¢)T,(u), (E4)
0

2r .
/ eitt cos(9-0) cos(29)dd = —2x cos(2¢)T,(u).  (ES)
0

These expressions are related to the generating integral for
Bessel functions

(E6)

T

1 [=
I.(u) = —A cos(nd — usin 9)d9,

valid forn =0,1,2,3, ....
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