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and Lorentz violation
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We examine one of the standard loci for studying electromagnetic wave emission—the radiation from an
oscillating electric dipole—in a model in which the electromagnetic sector is modified to include novel
CPT- and Lorentz-violating propagation effects involving a preferred axial vector background. We
evaluate the vacuum-birefringent radiation fields, including nonperturbative terms where appropriate.
In general, the energy momentum carried by the fields in this model is known to have a complicated
nonperturbative structure, which cannot be captured by naive power-series expansions in the components
of the preferred background vector. However, we nevertheless find that at the lowest nontrivial orders, there
are actually no modifications to the Larmor expressions for the energy-momentum emission.
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I. INTRODUCTION

The special theory of relativity underlies all of funda-
mental physics as we currently understand it—including
the general theory, as well as relativistic quantum field
theory. Moreover, the development of relativity contributed
tremendously to our understanding of the critical impor-
tance of symmetries in physics. Nevertheless, there have
always been questions—both theoretical and empirical—
about whether special relativity as it was introduced by
Einstein in 1905 truly represents an exact local symmetry
structure for spacetime, or whether it is merely an
extremely accurate approximate model. In the twentieth
century and beyond, the study of apparent symmetries
that are eventually discovered to be not exactly but only
approximately valid has become extremely important and
has provided many fruitful insights about the fundamental
interactions of nature.

However, experimental tests of relativity and theoretical
analyses of test theories with broken Lorentz symmetry
were not really approached in a systematic fashion until
the 1990s. Using modern effective field theory (EFT), it
became comparatively straightforward to parametrize very
general test theories for Lorentz violation in particle
physics and gravitation. It turns out that these systematic
EFTs allow for much wider arrays of types of anisotropy
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and Lorentz boost violations than had previously been
examined. These theoretical developments were followed
by an upsurge in experimental interest in Lorentz symmetry
tests, because it was realized that there was a much broader
landscape of potentially symmetry-violating phenomena.
So far, the new generations of experiments have not found
any convincing evidence of Lorentz violation, but the
increasingly precise tests have continued to be a significant
area of research. One key reason for the continued interest
is that, however unlikely Lorentz violation is deemed to be,
if it is ever confirmed experimentally, that would be such a
profound discovery that it would change a lot of what we
think we understand about the fundamental nature of the
universe we live in.

It is now well understood how to set up the general local
EFT that describes Lorentz-violating modifications to the
physics of known standard-model species [1,2]. This EFT,
known as the standard-model extension (SME), is also
capable of describing all stable, unitary, and local forms of
CPT violation, because of the close connections between
CPT violation and Lorentz violation in theories with well-
defined S-matrices [3]. Moreover, the SME can also be
expanded to cover gravitation, although the extension to
metric theories of gravity creates additional complications
beyond those seen in the particle physics sector. Part of the
reason for this is that the particle sector of the SME is
formulated using the language of quantum field theory, just
as the standard model, while metric theories of gravity
(such as general relativity and its generalizations) are not
really understood beyond the classical level.

In many situations (such as interpreting the results of
laboratory Lorentz and CPT tests), it makes sense to
consider only a truncated version of the SME. The most
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important such truncation is the minimal SME. The
minimal SME is the subsector of the theory that is expected
to be renormalizable, because it contains only a finite
number of local, gauge-invariant operators which are
constructed from standard-model scalar, spinor, and vector
fields, and which have dimensions of (momentum)* or less.
These operators resemble those in the conventional stan-
dard-model Lagrange density, except that they possess
additional Lorentz indices that are not contracted with other
dynamical quantities but with preferred background vectors
and tensors. When dealing with electromagnetic phenom-
ena, it is typical to truncate the minimal SME even further,
to just a minimal Lorentz- and CPT-violating extension of
quantum electrodynamics (QED).

Although the minimal SME and the minimal QED
extension are quantum theories, they exhibit many poten-
tially novel phenomena already at the classical level. In
particular, radiation emission may be heavily modified by
the presence of the symmetry-breaking terms in the action.
For example, in theories in which the maximum speeds of
all species are not equal, it is easy to envision that there
could be Cerenkov radiation in a vacuum. This paper will
look at another radiation process that is particularly simple
in the Maxwell theory—emission by a harmonically
oscillating dipole.

While a completely new effect that can only occur
because of Lorentz violation (such as vacuum Cerenkov
radiation when boost symmetry is broken, or a transition
between two states with different angular momentum
values in a theory with broken rotation symmetry) will
typically appear at second order in the symmetry-breaking
interaction coefficients, modifications to phenomena that
already occur in the standard theory can be observable at
lower order—for example, as small interference effects on
top of conventional observables. Our approach in this paper
will be to look for a modification of this nature—a change
to the conventional Larmor expression for the energy
momentum radiated by a harmonically oscillating dipole.
Radiation spectra are known to be substantially and non-
perturbatively modified at second order in the magnitude
of a Lorentz-violating Chern-Simons term in the photon
sector. However, by looking for modifications to standard
dipole radiation, we open up the possibility of finding
observable changes already at first order. Dipole radiation
also provides an extremely clean theoretical laboratory for
identifying novel behavior. For example, radiation damping
is typically a very awkward topic in classical electro-
dynamics; however, for the dipole source created by a
harmonically oscillating charge, it is possible to define a
radiative friction term which (so long as the radiation is not
too rapid) avoids most of the awkwardness that typically
accompanies the evaluation of the self-force on an accel-
erated charge.

This paper is organized as follows. In Sec. II, we describe
the model of Lorentz-violating electrodynamics with a

CPT-odd Chern-Simons term. In this theory, the free
propagation models of the electromagnetic field exhibit
vacuum birefringence. Taking what is known about these
plane wave modes, we determine the lowest-order mod-
ifications to the radiation-zone fields of an oscillating
dipole in Sec. IIT and evaluate the standard Poynting vector

-

§ — E x B with the modified fields. Then, in Sec. IV, we
look at two additional ways in which the energy and
momentum emission may be modified, which were not
captured by the first set of calculations. Finally, Sec. V
presents our conclusions and the outlook for further
extensions of this work.

II. CPT- AND LORENTZ-VIOLATING
ELECTRODYNAMICS

In the minimal SME, the Lagrange density for the
electromagnetic sector is [1,2]

1 1 - 1 )
L= _ZFWFMD _Zklll?l/p FMDF/)U"'EkﬁFeyu/mFWAG _JMAy-
(1)

This includes all the superficially renormalizable operators
that can be constructed solely out of photon fields. The
CPT-even operators are the ones that multiply the 19
independent k%77 coefficients. Although there are many
potentially interesting phenomena that could appear in the
presence of nonzero k%"’ terms, we shall not be focusing
on them here. Instead we shall be looking at possible effects
of the four-component (axial vector) K, » term. The asso-
ciated operators are all CPT odd, and kY itself has
dimension (momentum)’.

Up-to-date bounds on the SME coefficients may be
found in Ref. [4]. The terms in the minimal SME action
that produce vacuum birefringence have been tightly
bounded using polarimetric data from cosmologically
distant sources. For the four components of K, which
give rise to wavelength-independent rotations in the planes
of polarization of initially linear-polarized waves and
parity-violating correlations in the polarization of the
cosmic microwave background (CMB), the bounds have
been placed at the 107** GeV level or better, beginning
with Ref. [5] for quasar jets and more recently using CMB
data [6]. Of the 19 independent coefficients in k%", 10 of
them also generate photon birefringence, and they are also
quite tightly constrained, at the 1073*-1073% [7-9] levels.
On the other hand, the remaining nine coefficients from
K" are much more difficult to measure, and precision
optical experiments and astrophysical data have been used
to bound them only at 10'4~1072? levels [10—12]. However,
this last group of parameters, the nonbirefringent ones that
are the most challenging to measure directly, actually have
effects on dipole radiation that are already completely
understood, since they may actually be eliminated from the
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photon sector entirely by means of an oblique linear
transformation of the spacetime coordinates.

In contrast, although they have already been extremely
well constrained by polarimetry, the CPT-odd k', terms
are still of interest for theoretical, but also potentially
practical, reasons. From its first introduction, there have
been questions about whether it is even possible to have a
nonzero k. in a consistent field theory, and so far there
have been conflicting indications [5,13—15]. The theory
with just the Chern-Simons term does not appear to be
energetically stable, even classically, and there were con-
cerns about whether it was even possible for such a theory
to have a well-defined, unitary S-matrix—which is a fairly
basic requirement for a physically meaningful theory. One
obvious way that such an inconsistency might manifest
itself would be through runaway vacuum Cerenkov radi-
ation, because the Chern-Simons theory contains arbitrarily
slow phase speeds. In fact, any radiation process might
potentially be subject to unstable, nonperturbative behavior
that might invalidate the theory, so studying standard
radiation scenarios in the presence of the Chern-Simons
term could potentially lead us to new physical conclusions
about the phenomenalistic viability of the theory. This is
one of the key motivations for this work. Moreover,
questions about whether the structure of the Chern-
Simons term could make a &/, theory mathematically or
physically inconsistent are actually fairly reasonable, in
light of its unusual structural properties. The term’s
structure means that potential radiative corrections to the
photon k%, must come from virtual processes that are
extremely similar to those that appear in chiral anomaly
triangle diagrams [16-18], and the cancellation of the
related gauge anomalies is already known to give nontrivial
restrictions on the structure of internally consistent quan-
tum field theories.

For brevity, we shall drop the “AF” labels and henceforth
write k. = k*. With the Chern-Simons term present, the
purely electromagnetic part of the energy-momentum
tensor becomes [5]

1 1
O = —FHrIFY 4 Zg’“’F“ﬁFaﬁ - Ek”e’“WFﬂyAa. (2)
The tensor is not symmetric, and the asymmetry is in fact
a measure of the Lorentz violation. The main terms of

interest are the energy density (€ = ©%), energy flux
(S; = ©9), and momentum density (P; = ©%),

B, (3)

[\

§:EXE—k0A0§+kogXEE§(O) —k0A0§+kogXE,
(4)

B ExB-i(i-B)=5"—KA-B), (5)

-

in terms of the time and space components of k&* = (kg, k).
Note that none of these quantities are gauge invariant,
because they depend not just on the field strengths E and B,
but also on the scalar and vector potentials. However, the
total energy and total momentum, found by integrating &£

and P over all space, are gauge invariant. This is not
necessarily obvious from the forms of these densities, but

the key property is that £ and P (and also the Lagrange
density £) change under gauge transformations by terms
that are total derivatives, and which thus make no con-
tributions to the integrated quantities.

The form of the energy density exhibits one of the
elements that makes the analysis of this theory somewhat

tricky—that the energy is not bounded below. The — kog -B
term may be made arbitrarily negative by increasing the

magnitude of the field A (and thus simultaneously increas-

ing the magnitude of B=V x A). For modes of the field
with sufficiently long wavelengths, the —kog B in &
will win out over the usual %éz This downward unbound-

edness of the energy also has a manifestation in the
plane wave dispersion relations. If k* is purely timelike,
meaning k= 0, the (birefringent) dispersion relation is
% = Q(Q F 2k), for waves with wave vector é and
positive and negative helicities, respectively. This is a
special case of (11) below, and it identifies the Fourier
modes with Q < 2|k| as precisely those for which insta-
bilities may occur. For these modes, the time dependence
may be exponentially growing, rather than oscillatory.
This kind of runaway growth is “powered” by the ever-

decreasing energy of the —koﬁ - B term in &.

These runaway modes do not necessarily have to ruin the
Chern-Simons theory with timelike k#, but they certainly
do raise significant questions. It is possible to avoid the
instability by giving up causality. Green’s functions for the
theory may be chosen so that the exponentially growing
modes are never populated, but the cost is having solutions
in which charged sources will begin to radiate before they
actually begin to move [5]. The acausality is relatively
weak so long as k is small, so that using acausal Green’s
functions to describe the emission of long radio-frequency
wave trains is probably unproblematic. However, it remains
unclear whether, at a more fundamental level, it is physi-
cally sensible to have a theory with these kinds of acausal
behavior. Perhaps even more strangely, the modes with
0O < 2|ky| actually seem to rescue the timelike Chern-
Simons theory from other kinds of instability, rather than
causing it. Any photon dispersion relation with w/Q < 1
opens up the possibility of Cerenkov radiation. Conven-
tional Cerenkov radiation is a phenomenon that occurs in
material media, in which the phase speed of light is slowed
down. When charged particles move through faster than the
in-medium w/Q, they emit a burst of radiation, analogous
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to how masses moving faster than the speed of sound in
a fluid produce sonic booms. Since the real branch of
the Chern-Simons dispersion relation @? = Q(Q — 2|ko|)
extends all the way down to w = 0, any moving charge
with speed v is going to outpace some of the propagating
electromagnetic field modes, no matter how small » is. A
natural expectation (based on phase space availability
considerations [19]) would therefore be that any charge
in uniform motion would lose energy to vacuum Cerenkov

radiation, until it came to rest in the frame where k=0.
However, this turns out not to be case, for the following
subtle reason [14,20,21]. Modes of the field with 2|ky| <
Q < 2|ko|/(1 = v?) do carry power away, but the modes
with Q < 2|ky| actually carry away negative power, in an
amount that exactly cancels the net positive emission. For
the fields following a charged particle in uniform motion,
the w? < 0 modes are actually associated with propagating
solutions carrying negative energies. The result is that in the
timelike Chern-Simons theory, just as in standard electro-
dynamics, charges in uniform motion lose no net energy via
radiation.

The theory with a spacelike Chern-Simons four-vector
k* is potentially better behaved than the timelike theory,
but it has other, closely related, peculiarities. The energy
instability, which is unavoidable if k* is timelike, instead
depends on the choice of frame. In particular, there is only
an obvious vacuum state, with the energy density function
& bounded from below, in the ky, = 0 reference frame.
Analyzing the theory in this preferred frame (including
potentially quantizing it) looks like it may be relatively
unproblematic, but this leaves open the question of how the
theory should be quantized in a different frame, in which

the —koﬁ -B term in & is present. The existence of the
particular frame in which the theory is manifestly stable
energetically actually has important implications for the
vacuum Cerenkov radiation in the spacelike theory. Once
again, a charged particle with a constant velocity 7 may
emit radiation. This radiation tends to damp out the motion,
until the charge is at rest in the frame where & has no
temporal component [22]. This is a remarkable explicit
connection between the energetic stability condition and
the dynamics of individual charges, and this connection
was a very important motivation for the current work.
Understanding radiation processes in the Chern-Simons
theory is tricky, and there have already been a number of
different innovative approaches. For the timelike theory,
the original derivation of acausal Green’s functions was a
major step, since it showed that there were systems that
obeyed the equations of motion and emitted radiation,
without the amplitudes of long-wavelength modes growing
uncontrollably. However, the acausality was an obvious
drawback. Looking specifically at the vacuum Cerenkov
radiation emitted by a charge in uniform motion provided
one way out of this dilemma. If the electromagnetic field,
including the radiation component, is moving along in

synchronization with the source charge, the time depend-
ences of the field components can be inferred from their
spatial profiles at a fixed time, leaving no room of runaway
behavior. Considering only versions of the theory with
spacelike k# also eliminates the obvious stability problem,
but only in one frame, and the radiation rate calculated in
Ref. [22] takes an extremely unusual and manifestly
nonperturbative form—meaning that the effect cannot be
found by expanding the theory in powers of the space and
time components of the background four-vector k. Instead,
the rate of momentum emission via the vacuum Cerenkov
radiation coming from a stationary charge is proportional to

—kok|ko|*/|k|>. (However, in contrast, in the presence of
the other types of Lorentz violation, vacuum Cerenkov
radiation is more typically a threshold effect, as it is in
matter [23,24].)

When investigating a modified version of a generally
well-understood theory, looking at modifications to effects
that are permitted in the standard theory can, in many cases,
be more fruitful than studying entirely new phenomena.
Vacuum Cerenkov radiation would be a strikingly novel
phenomenon if it were ever to be observed, but the emission
rate may be very small. In the spacelike k* theory, the
spontaneous force—something which does not exist at all

in conventional electrodynamics—is of O(k3/ /?2) This
work was, in part, an outgrowth of the hope that by looking
at a different radiation process—one which does exist in
standard electrodynamics—we might uncover qualitatively
similar radiation effects, but that the mathematical descrip-
tions of the modified radiation could be found by expand-
ing all quantities to leading order in k*.

We shall therefore consider the radiation emitted by a
very simple system—a harmonically oscillating electric
dipole p. There are several different ways of expressing the
charge and current densities of a radiating source in terms
of sums (or integrals) of simple basis functions. Thanks to
the linearity of electrodynamics, the resulting electromag-
netic fields will be coherent sums of the fields produced by
just the basis functions. For example, the radiation fields
generated by an accelerated charge may be written as
integrals of the radiation fields (with kinked electric and
magnetic field lines) produced by instantaneous impulsive
accelerations. However, this method would probably be
inapt in the general Chern-Simons theory, because it
provides no evident way to control the excitation of
unstable long-wavelength modes. In contrast, a description
of the sources and fields using a Fourier transform in the
time domain deals with the problem quite neatly. By
working with a source that is excited solely at a frequency
w, we can be assured that no modes with other time
dependences will be excited. Moreover, the presence of @
serves another mathematical purpose. In the analyses of
vacuum Cerenkov radiation, the only physical quantities on
which the radiation rate can depend are the charge ¢, its
velocity ¥ (both dimensionless), and the Lorentz-violating
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k*, which has units of (momentum)'. Since the power
emitted has units of (momentum)?, it must—for dimen-
sional reasons alone—be a homogeneous function of
degree two of the components of k*. It is simply not
possible to have an effect that appears at perturbative O(k).
However, with the oscillating dipole, there are additional
dimensional quantities involved. Multipole moments have
units of (momentum)~, but ® has units of positive
(momentum)!. That makes it possible to have radiation
emission effects at only linear order in k*. The standard
radiation fields may mix with the k*-modified fields to
produce correction terms of O(kw?).

So for our source, we shall take an oscillating electric
dipole at the origin and extrapolate its fields outwards into
the radiation zone. At very short distances, the sources on
the right-hand side of the modified Gauss law

— S > o
V-E=p+2k-B (6)

are dominated by the conventional term, since the charge

density p has a strong singularity, p = —p - 6233(?); and
similarly for the modified Ampere-Maxwell law,

= 61_1:' > - - S

VxB—E:J—i—ZkOB—kaE, (7)
where the singular current distribution of the oscillating
dipole dominates the right-hand side in the immediate
vicinity of the dipole.

A key consequence of this is that we may use the
standard forms for the oscillating fields at infinitesimally
short distances from the origin, and then propagate them
out to larger radii using the known propagation character-
istics of the Chern-Simons theory. This takes advantage
of the fact that the Fourier spectrum of the propagating
modes is well known. Meanwhile we shall, whenever it is
convenient, neglect any near-field terms that fall off too
rapidly with distance to contribute to the energy and
momentum flows at large distances. We shall also take
k* to be small, so that we never need consider terms beyond
first order in the components of k—except when they are
multiplied by a large distance r. This last caveat is
necessary because we are interested in the behavior of the
fields at arbitrarily large distances. Note also that additional
care may be specifically needed for waves propagating in

a direction 7 for which k7, = ko — ki 0, since the
normal mode polarization vectors may be significantly
modified in these angular regions.

III. RADIATION FIELDS MODIFIED BY *

The standard far-field form for the magnetic field of
the oscillating dipole with complexified amplitude p(7) =

- ,—iwt

pe is

B=—(@Fxp
4”(r><p) r

(8)

To find the version of this in the Chern-Simons theory, it
suffices to calculate the projections of this field along the
polarization eigenvectors of the modified theory and to
attach to each projection a modified propagation factor
¢(@7=@1) When the Chern-Simons vector is purely time-

-

like, k* = (ky,0), the polarization vectors for the normal
modes of propagation are circular,

e =—=(0£id). ©)

When k* has spatial components as well, these are still very
close to the exact polarization vectors, differing only
meaningfully around k*#, ~ 0. To leading order, the wave
numbers corresponding to these circular polarization
modes are

Qs =0+ kP, =w+ (k—k-7). (10)

This is the leading approximation to the exact (but implicit)
relationship between frequency and wave vector [5]

o Alkx O\™"?
w? — i::FZ[koQi_(k'r)w]<l_a|)z%g:lt) .
(11)

With the leading order Q., the propagating part of the
magnetic field in the Lorentz-violating theory must be

. 2 io(r—t)
p=2°¢
dr r

S len - (¢ x p)]etitor-Fg,  (12)
+

(with the sum referring to the sum over the £ modes).
We shall select a coordinate system so that the oscillating
dipole lies in the xy-plane,

P = DX+ pyY = pi3+ e“py3, (13)

where p;, p,, and a are real quantities. Although the
components p, and p, would generally be complex, we
have taken advantage of the fact that we can shift the
overall phase (either by a redefinition of the zero of ¢ or by
a rotation of the xy-plane) to make the quadrature compo-
nent along the x-direction real. It will also be convenient
to have a separation of the oscillating dipole moment
into its phase components—that is, its real and imaginary
parts,

P = Dr+ip; (14)

Then the necessary triple products are
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- 1

e (Fxp)= — (O T ip)- [(p1 sin ¢ — €@ p, cos )0 + (p cos ¢ + € p, sin ) coch?)], (15)

V2

so that the expressions for the full summand terms are

) 2 1 ) ) . A ”
[% - (7 x p)]etithor—kTg, = 3 (pysing — ep, cos¢ F ip; cos@cosp F ie®p, cosOsinp)e K=k (9 £ igh).  (16)

Note that the two terms (corresponding to 4= subscripts) are almost complex conjugates, except that the e® factors are
unchanged between the two. Thus it will be convenient to write the expressions in the forms

R R P
[ - (7 x p)letitorFe, = 2 (A0 +idi g + e“ A0 + ie* Ay ), (17)
- R S T S
[65 - (7 x p)le ithor=kTe_ = 3 (A10 — iAj + e A30 — ie™ Asd), (18)
where A, and A, are
A = p,(sing — i cos 0 cos ¢) [cos (kor — k-F)+ isin (kor —k - 7] (19)

— P1{[Sin¢cos (kor —k- 7) 4 cos @ cos ¢ sin (kor k- 7)]

— i[cos @ cos ¢ cos (kor — k- F) — sin¢sin (kor — k - BIe (20)

Ay = —ps(cos ¢ + icosOsingp) [cos (kor — k- 7) + isin (kor — k- 7)] (21)
= po{[—cos¢cos (kor — k- ) 4 cos @sin ¢ sin (kor — k- 7]

—i[cos @sin ¢ cos (kor — k- 7) + cos ¢sin (kogr — k - A} (22)

For a linear dipole, @ = 0, these expressions reduce to a
familiar birefringent form. The 0-component of the mag-
netic field is proportional to R{A, + A,}, or

By « (py sing — p, cos @) cos (kor — k- 7)
+ (p1 cos ¢ + p,sin ) cos Osin (kof’ k- 7) (23)

- . g
occos{(kor_k. )—tan—l (p1cosgp+ pysing)cos ]}

p1sing — p,cos¢
(24)

Similarly, the ¢»-component may be seen to be proportional
in the same fashion to the imaginary part,

B!II & (pl sin ¢ — poOS¢) sin (kor—]_(). 7)
— (p1cos ¢ + pasing) cos @ cos (kor — k- ) (25)

i .71 [ (155 s )

pi1sing — pycosg
(26)

|
This shows a linearly polarized field of constant amplitude

|1§ , but with a polarization direction that is corkscrewing
around the propagation direction 7. This effect has been
used as the basis for placing extremely tight constraints on
the components of the physical k& coefficients [5,25-27].
The phase constant in (24) and (26) is independent of the
radius. It depends only on the oscillating dipole p and
the angles (6, ¢) that describe the radiation direction. The
quantities p;cos¢ + p,sing and p;sin¢ — p,cos¢ are
the projections of p parallel and perpendicular to the axial
direction p, and the former appears with the geometrical
foreshortening factor cos 8. Obviously, the same holds for
the amplitude of the local magnetic field oscillations, which
is proportional to the square root of

(p1cos¢ + p,sing)>cos’d + (p, sing — p, cos ¢)?
=p*=(p ") (27)

although for this quantity the dependence on the projec-
tions of p is a well-known feature of the standard theory.

To the extent that the polarization vectors are accurately
represented by (9) in the Chern-Simons theory, it continues
to be the case that the plane wave propagating modes of the
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theory have electric and magnetic components related by
E = B x 7, so that Ey = B, and E;, = —By. The effect of
k* is to cause the electric field direction to revolve in the

same way as the magnetic field direction, while E and B
remain transverse and perpendicular. Therefore, the radial
component of the unmodified expression for the Poynting
vector when the source dipole p is linearly polarized is

= ‘)t{BgB*—I—Bq;B} (28)

- 1 - -
50 P= WExBY} -

BgO(

[(p1cos ¢ + p,cosasingp)?cos®d + (p; sing — p, cos acos ¢)?]

which—as is evident from (24) and (26)—is unchanged
from the value taken in conventional, Lorentz-invariant
electrodynamics.

However, things may become significantly trickier
when the dipole is oscillating elliptically. In (23)—(26),
the magnetic field amplitudes (with e?("=") factored out)
reduced to real expressions, but this will not be true in
the presence of a nonzero a. Instead of p,, e“p, =
pa(cosa + isina) always appears. Reading off, by anal-
ogy with (23)—(26),

1/2

X COS { (kor — k- 7) —tan™! {(

— ip, sina[cos ¢ cos (kor — k-

B{/)O(

[(p1cos¢ + py cosasinp)?cos’d + (p; sing — p, cos acos ¢)?]

P1COS ¢ + p,cosasin ) cos 9] }

Py sing — p, cos acos ¢
7) — cos @sin g sin (kor — k- 7)], (29)

1/2

X sin{(kor—%- 7) —tan‘l[

—ipy sina[cosqﬁsin (kor —k-

(p1cos@ + p,cosasing) cos 6] }

p1sing — p, cosacos ¢

7) + cos @sin ¢ cos (kor — k- 7], (30)

the real parts of these expressions are still straightforward; however, one more set of trigonometric identities are necessary to
simplify the imaginary parts. The amplitudes of the imaginary parts of (29) and (30) are

pa sina(cos’p + cos’Osin’p) /% = [p7 — (p; - #)?] /2. (31)
With this simplification, we finally have
> eiw(r—t) . Lo 12 >
0= {[pR—(pR-r) ] cos[(kor—k r)+19R] —I—l[p (pr-7) ] cos [(kor—k-r)+81]}, (32)
> eiw(r—t) . ST 12 >
B'/):E . {[pR—(pR-r) ] sin [(kor—k )+19R]+1[ —(pr- 7 ] sm[(kor—k-r)+19,]}. (33)

The phase 9 was previously given, and the phase for the
imaginary part J; may be determined analogously. Since
these expressions depend on the separation of the dipole
moment p only into its real and imaginary parts, and not on
the specific planar form (14), they must actually hold for
arbitrary p (although with a more general p the specific
formulas for the phases d and §; would need modification).

From (32) and (33), it is evident that the radial compo-
nent of the unmodified Poynting vector (28) is unaffected
by k* even when the oscillating dipole is generating
elliptically polarized radiation. This is actually not unex-

pected, for dimensional reasons. S has units of energy per
unit area per unit time, or (momentum)* The field
strengths E and B are each proportional to @?, so there
is no way for a product of the E and B fields we have found
to give a quantity with the right dimensions that also

04

depends linearly on k*. However, there are still other terms
through which the energy and momentum outflows might
be modified.

IV. FURTHER POSSIBILITIES FOR
ENERGY-MOMENTUM FLOW

These additional possibilities come in two types. One of
them arises from the fact that, as already noted, §(0) 1S not
the correct expression for the energy flux density or the
momentum density. There are additional terms appearing
in (4) and (5) involving the potentials A, and A. Since the
potentials are normally linearly proportional to @, and

because the novel terms [with the forms P = —1?(2 . E)
and SV = —koAOE + kog X E] also depend linearly on &,
we expect that they may give rise to dimensionally correct
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corrections to the energy and momentum flow that are
proportional to ke?.

The other way in which additional contributions to the
energy and momentum transport might arise would be if
the circular polarization vectors (9) were insufficiently
accurate. When k* is purely timelike, the ¢, are the exact
polarization vectors for propagating plane wave modes.

However, if k # 0, these forms are only approximate, and
the corrections can become substantial when k* is space-

like, for propagation along directions 7 for which & - 7, =

ko — k- #is small. Possibly compensating for this, however,
is the fact that these are exactly the directions for which the
splitting in the dispersion relation (10) is also small.

One potentially tricky fact about the modified polariza-
tion states is that the basis vectors for the normal modes of

propagation do not need to be the same for the E and B
fields. This is evident, for example, from the divergence
equations for plane waves in vacuum. Gauss’s law is
modified,

i0-E =2k-B, (34)

but iQ - B = 0 is not. So the polarization basis vectors for

E, but not for E, may acquire longitudinal components.
Moreover, the other homogeneous Maxwell’s equation
(Faraday’s law),

iQ x E = iwB, (35)

still provides the relationship between the polarization
bases for the two fields.

In fact, the exact polarization vectors for arbitrary k* are
known. The transverse polarization vectors for the mag-
netic field are [22,28,29]

o) o (07 = 02)0 - 2i(ko Qs — k- 7). (36)

However, in order to find the k-linear corrections to these
polarization vectors, it is necessary to use a more precise
expression for the relationship between w and Q.. This is
discussed in Sec. IV B.

A. Explicit modifications to @

Note that, in general, these two types of pathways for
finding contributions to the net energy and momentum
outflow could potentially come into play simultaneously.
However, there is a straightforward power counting argu-
ment that the modified polarization structure cannot, at
leading order, play a role in physical contributions from

5" and P, When expanding all quantities in powers of
k* and neglecting all modifications beyond linear order, the
explicit presence of a k* component in a formula such as

kog x E would mean that we would only need to use the

conventional expressions for A and E, as derived in the
Lorentz-invariant Maxwell theory. In any case, from the

fact that the propagating B remains exactly transverse even
in the Chern-Simons theory, we can actually conclude that

the —koAoB term can never contribute to a net energy
outflow away from the dipole, since the dot product of this
term with 7 is vanishing.

Nonetheless, it is worth adding a few words about the
peculiar character of the scalar potential in the kind of
analysis that we are undertaking. The standard forms for the
(seemingly) propagating part of the scalar and vector
potentials in the Lorenz gauge (which is frequently con-
sidered the most convenient for radiation problems) are

iw(r—t)

w e
Av=—iZ (G p : 37
0 l4ﬂ #-p) . (37)

iw(r—t)

- w e

A=—i—p 38
l47z r (38)

For X it appears to be straightforward to separate this
expression into separate right- and left-circular polarization
modes, which can each then be modified to account for the
nonstandard energy-momentum relation in the Chern-
Simons theory. However, this methodology does not appear
to be applicable to A, precisely because it is a scalar
quantity with no reference to polarization directions.
Moreover, A, evidently only depends on the radial com-
ponent of the p, whereas in the standard theory the 7 - p
component of the dipole moment is precisely the part which

does not affect the E and B radiation fields in the direction
7. Clearly, an A with this form cannot contribute to any
physically observable characteristics of the emitted radia-
tion; in fact, the role that A, actually plays is simply to

cancel other equally unphysical contributions to E that

come from the longitudinal component of A. The reason
that there is no straightforward separation of A, into two
pieces, associated with the two physical polarization
modes, is that A, is actually only associated with the
unphysical longitudinal mode—which, quite naturally,
does not even really have a well-defined dispersion relation.
Moreover, had we chosen a transverse gauge with

ﬁ A= 0, the far-field, wavelike part of Ay would have
been vanishing and the issue of trying to disentangle to
right- and left-handed modes in the scalar field would never
have arisen.

This, in turn, suggests another interesting possibility.
We have already observed that the radial component of the

first term in §<l) =

—kOAOE + koﬁ x E is necessarily zero,
because of the structure of E; this is true regardless of what
form A, takes and thus whatever gauge conditions have
been imposed. It is then tempting to wonder whether it

might be possible, with a judicious choice of gauge, to
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make the radial component of the second term also vanish.
However, we shall set this question aside for now, in favor
of a direct evaluation of A x E in the Lorenz gauge.

The separation of A into its two circularly polarized
components follows straightforwardly along the same lines
as the separation of the magnetic field B. The analog of (12) is
W eia}(r—t)

A=—i—
1471' r

Z(é*i . ]—D')e:ti(kor—/zf)@i + IKL. (39)
+

Although the two vectors €. do not form a complete basis for
three-dimensional space, they do span the two-dimensional
space of transverse polarizations. The (longitudinal) remain-
der term A 1 1s unphysical, with its contributions to the
electric field E being canceled by those coming from A,. In
the transverse gauge, A . =0, and we shall adopt this
simplifying convention henceforth. The full decomposition
may be carried out, but it is simpler to notice that if Ag = 0
(which is the case in the far field if A . = 0 also), then we
simply have A = A; = -4 E

Consequently, the outward component of the explicit
modified part of the formula for S is

s p = lkom{—ié x E} P
2 0]
k : * *
= —ﬁﬁ}i{z(EgE(ﬁ —E4E;)}.  (40)

If the dipole is oscillating linearly, so that E has a form of
a real-valued vector field times a spherical wave phase

factor /("1 then (40) is manifestly zero. However, for a
complex dipole, (32) and (33) give

30

<>

e o P Ry
167[2r2[PR_(PR"’>] [Pl—(PI'r)]

x sin(g — 9). (41)

This looks like the signature of a new effect; however, this

modification to the energy flow is actually illusory. Since S
and & are not gauge invariant, the only physically mean-
ingful measure of energy outflow is the total integral of S-7
over the sphere at spatial infinity. While R may be
nonzero in certain directions, it is odd as a function of
angles, so that when integrated over the whole sphere, the
result is necessarily vanishing. This can be seen from the
previous expression for 9p,

(p1cose + p,cosasing)cosd

Py sing — p, cosacos ¢

9z = —tan”! . (42)

and the similar formula for §;. Comparing the values of 95
in antipodal directions (0, ¢) and (¢',¢') = (x — 0, ¢ + x),

the trigonometric functions cos® = —cos®, cos¢’ =
—cos¢, and sing’ = —sin¢ all change signs, so that
9% = —9%. Qualitatively, we might expect that the radial
component of S should depend on the quantity
(Pr x P;) - 7, which is a pseudoscalar and so has opposite
signs in the 7- and (—7)-directions. This is related to the fact
that the net ellipticity, seen over the entire 4z range of
solid angles, is expected to be zero, since any right-
elliptically polarized waves emitted along 7 will be
counterbalanced by left-elliptically polarized emission in
the antipodal direction.

For any modified contributions to the momentum out-
flow, it turns out that there is a very similar argument.
Notice that in the explicitly k*-dependent term in (2),
the second index is simply that of k* itself, so the spatial
densities © all have modifications of the form —k“A - B.
The corresponding integrated quantities are the compo-
nents of the electromagnetic energy-momentum four-
vector,

P = k¥ / dxA-B=—k'H, (43)

proportional to the total magnetic helicity H [30,31]. The
relationships between the novel terms in the Poynting

vector S and the Maxwell stress tensor is

-

< PR N N N N < k -
T=TO+k(-ApB+AxE) =T+ k—S‘”. (44)
0

Since the net momentum loss rate of the radiation is the

integral of T - 7 over the sphere at infinity, the vanishing
of the integral of (40) over all directions dictates that the

<>
integral of the analogous term for the momentum, 7). #
must also give zero.

B. Modified polarization structure

This leaves the only possible channel for modifications
to the energy or momentum emission at O(kw?) to be
through the k*-modified polarization vectors (36). Along

with (36) for E, there are also the modified polarization
vectors for the electric field [22,28,29],

éf) x 2(kgQs — wk - ?’)9 — (@ = Q?t)‘z + [éf) PP,
(45)

The radial term is nonzero, but its effects can be neglected.
There are several reasons for this. First, the radial compo-
nent is smaller than the other two by a factor of O(ko™!),
so it only affects the normalization of éf) [noting that (36)

and (45) are, as yet, not normalized] at linear order in k*.
This radial term will also not affect the projection of the
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standard E (which is transverse, apart from nonpropagating

terms that fall off rapidly with distance) onto é(f). Finally,

no radial E field can contribute to S - 7.

Therefore, to the order of interest, (35) still reduces to
E =B x# and so the expression (28) for the outgoing
Poynting vector is still valid. However, the previous
expressions for By and Bj—derived using (9) instead
of (36)—are not. Instead, we must apply

. 2 iw(r—t)
p=2°¢
dr  r

S [l )]sttt ()

Evaluating the components of éf) directly from (36) is
actually trickier than it looks. Expanding the two compo-
nents to leading order in k# and then normalizing, the
k*-dependence actually cancels out, leaving just (9).

Instead, the most straightforward way to evaluate éf) is

to notice that the #- and &)—components of (36) also appear
in the exact dispersion relation (11). Since the ratio of the
components is known exactly, it immediately follows that

1 Al s 312\ 14 alk x +12\ 14

om = LI JAx AN L 1—72]””'2 y
\/5_ o — 0% o — Q1

(47)

1 11}'x%|2>A < 1|1§x?|2>A

= (1 )i+ )
ﬁ_( 2kg—k- 2k — k-

(48)

The approximation made in the last expression (48) is
clearly dicey in the small ranges of angles for which k* - 7,
is very small—O(k?), instead of merely O(k). (And ob-
viously, these angular ranges only exist for spacelike k*.)
However, this should actually not pose a problem, because
the birefringence itself vanishes as k& - 7, — 0. Note that
the denominators in (47) are precisely w?> — Q2 so that
when these quantities are O(k?), the right-left difference in
phase speeds is also O(k?), meaning the propagation is
conventional at leading order in k*.

The relative simplicity of the common factors in (48)
means that the polarization vectors take the elliptical forms

(B . U<\, R
N e )
k-

With the angular dependence in (49), there does not appear
to be any prospect for cancellations between the energy
outflow in antipodal directions, since the term in paren-
theses (which we have denoted 7°) does not simply change
sign under ¥ — —rF—unless, clearly, if k, = 0. In fact, if k¥

is spacelike, then there is an observer frame in which k is
indeed vanishing, and this is precisely the frame in which
the stability of the theory is manifest, since the energy
density € = £ is unmodified, meaning that the total
energy is bounded below.

Moreover, since the O(ka?) contributions to S that come
from the k#-dependent terms in (49) come entirely from the

5O part of (4), these contributions are gauge invariant at

the level of S itself, rather than only in integrated form. That
suggests that it may be possible to identify the angular
distribution of the emitted radiation, not merely the total
rate of power emission. However, the gauge invariance of

5O does not, on its own, guarantee that it actually has a

physical interpretation, since 5O is not actually the spatial
part of a conserved energy-density current without the
inclusion of the explicitly Lorentz-violating terms in ©*.

The triple products needed for calculating B with the
modified éf) polarization vectors are again given by (15).
The calculation proceeds along the same lines as in Sec. III,
and the result is the same—no change to the power emitted.
However, there still remains the possibility that the radi-
ation fields may carry away a net momentum, which can be

calculated by integrating 7). # over the sphere at spatial
e £(0
infinity. The dot product of the standard stress tensor 7'
with the radial unit vector is

TO.3 = E(E-#) + B(B-#) - €07 (50)

Of the three terms on the right-hand side of (50), only the
first can be associated with a O(7 ) net momentum outflow.

The explicit expression for the longitudinal part of the
modified polarization vector (45) is fairly awkward.
However, to leading order in k* and the far-field approxi-
mation, the radial component of the electric field may be
found simply from the modified Gauss law (6), which
reduces to

iwE, =2k - B. (51)

Note that this means that the leading contribution to the
radial field E, simply depends linearly on k*, rather than via
the more elaborate nonperturbative quantity 7, and this
actually presages the fact that this term too will have a
vanishing net contribution to the total energy-momentum
outflow. In fact, there is already a clear issue with the

- <~
EE, term in T(%) . # Because of the vacuum birefringence,
the direction of E corkscrews around, varying with dis-

<>
tance. This r-dependent behavior means that 7% - # cannot
have a gauge-independent interpretation, describing the
emission of momentum in different directions in a fashion

than can be verified experimentally. Evaluating 7© . # at

045005-10



RADIATION FROM AN OSCILLATING DIPOLE IN THE ...

PHYS. REV. D 109, 045005 (2024)

different large r values along a single ray will give vector
expressions pointing different directions. At this stage,
however, this does not necessarily rule out having a well-
defined, nonvanishing, k*-dependent modification to the

total momentum outflow rate, found by integrating %0) -7
over a sphere at large r, if the angular integration conspires
to make the directional variability seen along different rays
cancel out, producing an integrated quantity that does not
have such an unphysical dependence on r.

However, this turns out not to happen, and instead the

momentum outflow rate, ?(0) - 7 integrated over a sphere at
r — oo, simply vanishes. This may be seen explicitly by
decomposing the expression into Cartesian components—
and the result is actually the most straightforward in the

Iz-direction, which is precisely the direction in which we
would expect a net momentum transfer to be most likely.
(This is the direction in which a stationary charge emits
vacuum Cerenkov radiation, for example.) In this direction,
the key contribution comes from

(EB-B)(E-7) = [(Bx?) T <_§§.E> (52)

[0)

1 xJ * *
--= N{i[k5ByB; — kjByB;,
+ koky (ByBj, — BgBj)] }. (53)

The kyk, term is purely imaginary and so vanishes when
the real part is taken. On the other hand, the k7 and k3 terms

vanish when integrated over all angles, just as happened
with the expression in (40).

V. CONCLUSIONS AND OUTLOOK

The net result of our calculations is therefore that the
Larmor power emission, which (along with vanishing net
momentum outflow) characterizes the radiation from a
classical oscillating dipole, is unchanged in the Lorentz-
violating Chern-Simons theory at leading order in the size
of the Lorentz violation coefficients. This is not actually
extremely unexpected. Indeed, one might be tempted to
argue that the vanishing results ought to follow from the
discrete symmetries of the Chern-Simons term alone. The
operator parametrized by k, is odd under parity, while those

parametrized by k are odd under time reversal. However,
this is probably too facile, since our calculations went
beyond a perturbative power-series expansion in the com-
ponents of k*. We considered the k&, > 1 regime and thus
effectively resummed certain terms to all orders in k*. This
allowed for the inclusion of the key phenomenon of
polarization rotation, which we found—in the discussion

<(0
of T( )—could actually lead to useful insights about the

extent to which various quantities could be assigned
gauge-independent physical interpretations. Equally inter-
esting was the appearance of the fundamentally nonper-
turbative quantity 7 in the transverse components of the
modified polarization vectors. [It is the case, however, that
whenever a key quantity to be integrated over all angles can
be expressed using a form like (51)—with the k#-dependent
right-hand side taking the form of the first term in an
uncomplicated-looking power-series expansion—the axial
vector character of k# does guarantee that the integral must
vanish.]

The peculiar form of 7 offered a possible mechanism
for how symmetry-driven angular cancellations could be
evaded—although that mechanism did not actually come
into action at the orders we were considering. All the
energetic quantities that involved 7 specifically turned out
to have their 7 -dependent behavior cancel out along each
individual emission direction; in spite of the nonperturba-
tive modifications to the polarization structure, the
Poynting vector maintained the standard form (28).

Nevertheless, the structure of 7 does provide some
guidance for understanding how the radiation structure will
be modified at higher orders in the Lorentz violation, and
there is no question that there will be modifications at the
next order in k*; this was already demonstrated with the
calculation of the vacuum Cerenkov emission in the theory
with a spacelike k*. For an oscillating dipole composed of
point charges separated by a characteristic size d ~ v/w,
the O(g*k?) factor in the Cerenkov emission rate for the
individual moving charges is O(p*k*w?)—leaving out the
Cerenkov radiation’s dependence on the charge velocity v,
which is complicated and fundamentally nonperturbative;
even a stationary charge may spontaneously radiate unless
ko = 0. Thus, the expected O(p?k*w?) emission rate
behavior found in the Cerenkov process agrees with what
we would expect to find from extending the formalism in
this paper to the next order in k*; and it may actually be
interesting to connect the formalism we have used to the
Cerenkov radiation calculations by carrying out that exten-
sion. Since radiation damping is fairly easily described in
the standard oscillating dipole system, such calculations
could provide a way of finding a generalized radiative
friction term applicable in the Lorentz-violating theory.

Moreover, all these questions about radiation are also
naturally connected to questions about the behavior of
photonic quanta in the Chern-Simons theory. The quanti-
zation of the theory would lead to further changes in how
energy momentum is transported to infinity, although we
appear to be limited in our ability to quantize the Chern-
Simons theory, due to the energy instability created by the
time component of k*. The potential divergence of the
energy density can be seen directly in the formula (3) for &.
The instability can also be seen by evaluating the group
velocity of the negative-frequency modes [32]. To deal with

045005-11



JOSHUA O’CONNOR and BRETT ALTSCHUL

PHYS. REV. D 109, 045005 (2024)

this obstruction, it appears that we must bound the energy
density from below, so that the quantum states of the theory
can be built up in the usual way as excitations atop the
vacuum. In fact, a spacelike CPT-odd axial vector k* picks
out a preferred frame in which the energetics are well
behaved; the theory may be quantized in the ky =0
reference frame. The existence of this special frame, where
the stability of the energy density is manifest from the form
of &, affects the structure of vacuum Cerenkov radiation in
the spacelike theory. A charged particle moving with a
velocity 7 which exceeds the phase speed of light will emit
radiation, and the radiation applies a backreaction force
on the charge, which tends to bring the charge to rest in
precisely the frame where k* has no temporal component.
This connection between the condition for the energy to
become stable and the dynamics of individual charges was
a very important motivation for the current work. It seems
that there should also be a connection between the radiative
reaction force on a dipole that is emitting radiation by
oscillating, but the order of calculations in this paper has
not been sufficient to capture this phenomenon.

Another obvious direction along which the calculations
in this paper could be generalized would be to look at
radiation from higher-£Z multipoles. However, our expect-
ation based on what we have found for the electric dipole
case is that there would again be no leading-order
k*-dependent effects. Nevertheless, it may be an interesting
mathematical physics exercise to generalize the methods
we have utilized in this paper to account for radiation in all
possible electric and magnetic multipole modes.

More generally, it is interesting to ask how the elaborate
details of radiation theory will change in the presence of
Lorentz-violating preferred backgrounds such as k#. Many
useful techniques have been developed for making quanti-
tative calculations of tricky quantities in Maxwellian
electrodynamics and for understanding their qualitative
characteristics. To what extent these methods continue to
be useful—and what adjustments are needed to keep them
so—in a theory with exotic modifications to the charged
particle and photon sectors may provide insights both into
the specific theories being considered and the general
structure of classical (or quantum) radiation processes.
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