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We illustrate how the conformal Ward identities (CWI) and the gravitational chiral anomaly completely
determine the structure of the hTTJ5i (graviton-graviton-chiral gauge current) correlator in momentum
space. This analysis extends our previous results on the anomaly vertices hAVVi and hAAAi, as well as the
hTJJi parity-odd conformal anomaly vertex in general CFTs. The hTTJ5i plays a fundamental role in
the analysis of the conformal backreaction in early Universe cosmology, affecting the particle content and
the evolution of the primordial plasma. Our approach is nonperturbative and not Lagrangian based,
requiring the inclusion of a single anomaly pole in the solution of the anomaly constraint. The pole and its
residue, along with the CWIs, determine the entire correlator in all of its sectors (longitudinal/transverse),
all of which are proportional to the same anomaly coefficient. The method does not rely on a specific
expression of the CP-odd anomalous current, which in free field theory can be represented either by a
bilinear fermion current or by a gauge-dependent Chern-Simons current; it relies solely on the symmetry
constraints. We compute the correlator perturbatively at one loop in free field theory and verify its exact
agreement with the nonperturbative result. A comparison with the perturbative analysis confirms the
presence of a sum rule satisfied by the correlator, similar to the parity-even hTJJi and the chiral hAVVi.
DOI: 10.1103/PhysRevD.109.045004

I. INTRODUCTION

The original approach to identifying correlation func-
tions in conformal field theories (CFTs) has traditionally
been formulated using coordinate space methods, both for
scalar and tensor correlators. In the presence of anomalies,
the solutions of the corresponding conformal Ward iden-
tities (CWIs) have been obtained by partitioning the
domain of definition of each correlator into nonlocal and
contact contributions. The equations are initially solved for
the regions in which the external coordinate points of the
correlators are all noncoincident. Anomalous corrections,
which arise when all the points coincide, are manually
added by including additional local terms with support
defined by products of delta functions.
This methodology was pioneered in ground-breaking

works [1,2], and it was successfully applied to correlators
containing the stress-energy tensor (T) and conserved
vector currents (J), specifically the hTTTi and the hTJJi

correlators, respectively. On the other hand, investigations
of the conformal constraints in momentum space, in the
presence of conformal anomalies, are more recent. This
approach has been explored in several works [3–8], using
a general formulation, and it has been further examined in
perturbation theory [9–11] for correlation functions such
as the hTJJi and the hTTTi, using free field theory
realizations. The analysis of 4-point functions in both
generic CFTs and in free-field realizations has been
discussed in [12,13]. These analyses have predominantly
focused on the parity-even sector, including the contri-
bution of the conformal anomaly. In contrast, investiga-
tions into anomaly-free correlators of odd parity have only
recently emerged [14–16]. Given the intricate nature of
chiral and conformal anomalies, which are related to
contact interactions, the coordinate approach becomes
unwieldy, and the hierarchical character of the CWIs
certainly becomes rather involved. Consequently, shifting
to momentum space offers advantages due to its con-
nection with ordinary off shell scattering amplitudes.

A. The hTTJ5i from parity-odd CFT

Gravitational anomalies generated by spin 1=2 and spin
3=2 particles have been extensively studied in several works
since the 1970s, due to their connection with ordinary gauge
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theories [17,18], supergravity [19] and self-dual antisym-
metric fields in string theory [20], just to mention a few
(see also [21] for a recent study on the properties of chiral
anomalies in the context of black holes). The gravitational
anomaly RR̃ can appear in different settings. The non-
perturbative approach developed in this paper is general
and adaptable to many contexts, yet the anomaly’s impact
can vary from benign to dangerous, based on the circum-
stances. Consider, for example, a scenario involving a
Dirac fermion interacting with gravity and a vector
potential Vμ. Kimura, Delbourgo, and Salam were the
first to compute the anomaly in this case, observed in the
divergence of J5 [17,18]. This specific anomaly poses no
threat and may be of interest in phenomenology. For
convenience, we can also introduce an axial-vector field
Aμ, which couples to J5, but only as an external source
since an anomalous gauge symmetry for Aμ would spoil
unitarity and renormalizability.
Another instance involves a chiral model incorporating a

Weyl fermion ψL=R interacting with gravity and a gauge
field. In this case, the anomaly emerges in the divergence of
JL=R, potentially endangering unitarity and renormaliza-
tion, unless it is canceled [20]. See [22] for a detailed
account on the types of chiral anomalies and their relation
to diffeomorphism invariance.
In general, in perturbation theory, the evaluation of

a chiral trace of Dirac matrices hinges on the choice of a
specific regularization and the related treatment of the
antisymmetric ε tensor in the loop. In the case of the
Breitenlohner-Maison-’t Hooft-Veltman scheme [23], for
example, the anomaly of parity-odd correlators is present
only on the Ward identity of the chiral current, while the
energy-momentum tensor and the vector currents are
conserved. In other regularizations, one can potentially
find a violation of the latter as well.
The correlator under scrutiny in this work is the hTTJ5i,

reinvestigated using CFT in momentum space (see [24] for
a review). We will utilize a formalism developed for curved
spacetime, from which the flat spacetime CWIs will be
consistently derived in d ¼ 4, as constraints from special
background metrics [25]. This correlator involves two
stress-energy tensors and one parity-odd current, denoted
as J5. A study of this correlator was previously discussed in
[26] using coordinate space methods. In the Standard
Model, when J5 is the non-Abelian SUð2Þ gauge current
or the hypercharge gauge current, this anomaly cancels out
by summing over the chiral spectrum of each fermion
generation. This feature is usually interpreted as an indi-
cation of the compatibility of the Standard Model when
coupled to a gravitational background, providing an essen-
tial constraint on its possible extensions. The correlator
plays a crucial role in mediating anomalies of global
currents associated with baryon (B) and lepton (L) numbers
in the presence of gravity.

In condensed matter theory, correlators affected both by
chiral and conformal anomalies, as well as by discrete
anomalies, play an important role in the context of
topological materials [27–31]. In our analysis, we dem-
onstrate how investigating CFT in momentum space allows
us to independently reproduce previous results found in
coordinate space [26].
The solution is uniquely constructed by assuming the

exchange of a single anomaly pole in the longitudinal sector
of this correlator when we proceed with its sector decom-
position. We will show that the momentum space solution,
derived from the CFT constraints, is unique and depends on
a single constant; the anomaly coefficient at the pole.
This result appears to be a common feature in correla-

tion functions that are finite and affected by parity-odd
anomalies, complementing our previous analysis of similar
correlation functions such as the hJJJ5i (or hAVVi chiral
anomaly vertex) and the parity-odd hTJJi.
However, there are also some differences between the

hAVVi and hTTJ5i cases, which are affected by a chiral
anomaly, and the hTJJiodd, when this correlator is assumed
to develop a parity-odd trace anomaly. In the hAVVi and
the hTTJ5i, both the longitudinal and transverse sectors are
nonzero and completely determined by the anomaly pole,
initially introduced in the longitudinal sector as a solution
of the anomaly constraint [32]. Instead, in the hTJJiodd,
only the longitudinal sector survives after imposing the
conformal constraints together with the (chiral) trace
anomaly [33], while the remaining sectors vanish.

B. Fermionic and Chern-Simons currents

In free field theory, two realizations of currents have
been discussed for this correlator; the bilinear (axial-vector)
fermion current J5f and the bilinear gauge-dependent
Chern-Simons (CS) current ðJ5 ≡ JCSÞ [34,35]. We recall
that in previous analysis it has been shown that both
currents of the form

Jλ5f ¼ ψ̄γ5γ
λψ ð1Þ

or of the Chern-Simons form

JλCS ¼ ϵλμνρVμ∂νVρ; ð2Þ

could be considered in a perturbative realization of the same
correlator and generate a gravitational anomaly. Notice that
this second version of the current can be incorporated into
an ordinary partition function—in an ordinary Lagrangian
realization by a path integral—only in the presence of a
coupling to an axial-vector gauge field ðAλÞ via an inter-
action of the form

SAVF ≡
Z

d4x
ffiffiffi
g

p
AλJλCS: ð3Þ
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The term, usually denoted as AV ∧ FV , is the Abelian
Chern-Simons form that allows to move the anomaly from
one vertex to another in the usual hAVVi diagram. Details
on these point can be found in [36,37]. Notice that both
currents satisfy the parity-odd constraint given in (14).
JCS is responsible for mediating the gravitational chiral

anomaly with spin-1 virtual photons in the loops, resulting
in a difference between their two circular modes and
inducing an optical helicity. This interaction is relevant
in early Universe cosmology and has an impact on
the polarization of the cosmic microwave background
(CMB) [38].
In this case, the classical symmetry to be violated is

the discrete duality invariance (E → B, B → −E) of
the Maxwell equations in the vacuum (see [39,40]). The
hTTJ5i correlator induces similar effects on gravitational
waves [41,42]. Spectral asymmetries induced by chiral
anomalies, particularly the ordinary chiral anomaly (the
FF̃ ∼ E · B term), have been investigated for their impact
on the evolution of the primordial plasma, affecting the
magnetohydrodynamical (MHD) equations and the gen-
eration of cosmological magnetic fields [43–45].
As previously mentioned, our method exclusively

exploits the correlator’s symmetries to identify its structure,
which remains identical for a generic parity-odd J5. In both
cases (J5f and JCS), the solution is entirely centered around
the anomaly pole, serving as a pivot for the complete
reconstruction of the corresponding correlators.
Both realizations of the hTTJ5i correlator—using a JCS

current or a J5f current—have been shown in [34,35] to
reduce to the exchange of an anomaly pole for on shell
gluons and photons for the unique form factors present in
the diagrams.
In these works, the authors introduced a mass deforma-

tion of the propagators in the loops and showed the
emergence of the pole as the mass was sent to zero. The
method relies on the spectral density of the amplitude and it
has been used also more recently in [46,47], in studies of the
parity-even hTJJi and in supersymmetric variants.
We comment on this point in Sec. IX and illustrate, by a

simple computation, that the spectral densities of the only
surviving form factors in the on shell hTTJ5i, with J5 ≡ J5f
and J5 ≡ JCS, satisfy two (mass-independent) sum rules.

C. Organization of the work

The outline of the paper is as follows. In Sec. II we review
some of the feature of the perturbative approach. We
examine the link between anomalies and the presence of
poles in the expression of correlators in momentum space.
In Sec. III, we briefly comment on the methodology
followed in the solution of the 4d CWIs in two previous
analyses by us [32,33] involving anomalous parity-odd
correlators, which may help clarify some of the technical
points contained in this work. Then, in Sec. IV, we examine
the constraints following from diffeomorphism, gauge and

Weyl invariance. In particular, we express the conformal
constraints on the hTTJ5i as 4d differential equations first in
coordinates and then in momentum space. The two follow-
ing sections then discuss the general decomposition of the
correlator, following the methods of [4], extended to the
parity-odd case, and the solution of the conformal con-
straints. We present the general expression of the conformal
hTTJ5i correlator in momentum space. In Sec. VII we
perform a perturbative analysis of the correlator and in
Sec. VIII we verify that the conformal solution and the
perturbative one coincide.
Then, in Sec. IX we show that, similarly to previous

dispersive analysis of the anomalous form factors for the
hTJJi and hAVVi diagrams, the spectral density of the
anomalous form factor of the hTTJ5i satisfies a sum rule.
We summarize our findings in Sec. X and discuss the
nonrenormalizability of the hAVVi and hTTJ5i in Sec. XI.
We leave to the Appendixes A–D a discussion of some
technical points concerning 3K integrals, the use of the
Schouten relations, and the identities we have used to
identify the correlator by the perturbative and nonpertur-
bative methods.
It is worth noting that the analysis of the conformal

constraints and the reconstruction method of [4], here
implemented in the parity-odd case, allows us to express
the correlator in terms of a minimal number of form factors.
For example, in the case of the parity-even hTJJi, the
reduction in their numbers has been from thirteen down to
three [4,10] by the inclusion of the conformal constraints
and a special choice of the parametrization of the tensor
structures symmetric in the external momenta. A similar
analysis has been performed for 4-point functions in the
parity-even hTTJJi [13] and hTOOOi [12], where O are
identical conformal primary scalars.

II. THE NONPERTURBATIVE APPROACH

Wewill investigate the structure of the full (uncontracted)
vertices, in contrast to the majority of previous literature that
has focused solely on computing the anomaly, namely the
Ward identity (WI).
As demonstrated in previous works through perturbative

analyses of correlators such as the hJJJ5i and the parity-
even hTJJi [46,48], or the superconformal anomaly multi-
plet [47], the anomaly in momentum space is associated
with the exchange of an anomaly pole [49]. While the
coordinate space approach is valuable, it has limitations in
revealing the underlying dynamical source of the anomaly.
This aspect becomes considerably clearer in momentum
space when conducting a dispersive analysis of the anomaly
form factor.
In the case of the hTTJ5i, previous analyses, conducted

for JCS, have identified the presence of such pole in the
correlator [34]. This analysis was based on perturbation
theory for on shell gravitons. We will provide further
comments on these previous findings in a following section.
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It has been established, in a somewhat general context,
that various types of anomalies (chiral, conformal, super-
symmetric, etc.) are invariably characterized by the pres-
ence of a form factor with a pole, which multiplies a tensor
structure responsible for generating the anomaly. The
nonlocality of the anomaly is, therefore, summarized, at
least in the context of flat spacetime, by an effective action
of the form [46,48],

SJJJ5 ¼
Z

d4xd4y∂ ·A□−1ðx;yÞFVF̃VðyÞþ…; ð4Þ

for an anomalous hJ5JJi (axial-vector/vector/vector) ver-
tex, with Aμ denoting an external axial vector and Vμ a
vector gauge field. A similar nonlocal action,

STJJ

Z
d4xd4yRð1ÞðxÞ□−1ðx; yÞFVFVðyÞ þ…; ð5Þ

can be written down for the parity-even hTJJi vertex, with
one stress-energy tensor T and two conserved vector
currents J [46,50]. Rð1Þ is the linearized Ricci scalar.
The ellipsies in the expressions above indicate terms
which do not contribute to the anomaly, either chiral (4)
or conformal (5). If we identify the hAVVi vertex in
momentum space as

hJμ1ðp1ÞJμ2ðp2ÞJμ35 ðp3Þi

¼
Z

d4x1d4x2d4x3e−ip1·x1−ip2·x2−ip3·x3

× hJμ1ðx1ÞJμ2ðx2ÞJμ35 ðx3Þi ð6Þ

the contribution isolated in (4) is obtained from the
solution of the constraint,

p3μ3hJμ1ðp1ÞJμ2ðp2ÞJμ35 ðp3Þi ¼ −8a1iεμ1μ2αβp1αp2β

≡ −8a1iεμ1μ2p1p2 ; ð7Þ

in the form,

hJμ1ðp1ÞJμ2ðp2ÞJμ35 ðp3Þi ¼ −8a1i
pμ3
3

p2
3

ϵμ1μ2p1p2 þ…; ð8Þ

with the ellipsis referring to to the transverse components.
The 1=p2

3 contribution is the anomaly pole.
In a similar fashion, in the hTJJi, the momentum space

analysis reveals that the correlator is decomposed in the
form [46,48],

hTμ1ν1ðp1ÞJμ2ðp2ÞJμ3ðp3Þi

¼ b4
3p2

1

ðδμ1ν1p2
1 − pμ1

1 p
ν1
1 Þuμ2μ3ðp2; p3Þ; ð9Þ

where b4 is the anomalous coefficient in Eq. (12) and

uμ2μ3ðp2; p3Þ≡ ðp2 · p3Þgμ2μ3 − pμ3
2 p

μ2
3 ; ð10Þ

is given by the Fourier transform of the anomaly functional
(FF̃) differentiated with respect to the external gauge field

uμ2μ3ðp2; p3Þ ¼ −
1

4

Z
d4x2

Z
d4x3e−ip2·x2−ip3·x3

×
δ2fFVμνF

μν
V ð0Þg

δVμ2ðx2ÞδVμ3ðx3Þ
: ð11Þ

It is evident that, based on this information, one anticipates
that each anomalous vertex should exhibit a nonlocal
interaction in flat spacetime, mirroring the two aforemen-
tioned instances. What presents a greater challenge is the
determination of whether the inclusion of a pole as a
solution to the anomalous WI, in conjunction with the
conformal constraints, suffices to ascertain the complete
expression of the correlators. In other words, concerning
the parity-odd correlators hTJJi, hAVVi, and hTTJ5i, it is
conceivable that the 3-point functions can be wholly
reconstructed from the residue at the pole, which is defined
by the anomaly coefficient.
It is worth noting that, within our methodology, the pole

is not directly associated with the current but with the entire
correlator itself. Hence, in the context of the hTTJ5i
correlator under investigation in this study, the specific
form of the parity-odd operator current that satisfies the
anomaly constraint does not play an essential role.

III. PARITY-ODD TERMS

A common track of parity-odd correlation functions is
the presence of anomaly constraints, either in the form of
chiral trace anomalies, or just of chiral anomalies, inducing
CP violation. In the case of chirally-odd trace anomalies,
which have been at the center of several recent debates, the
anomaly functional, constraining the form of the correlator,
is related to CP violating terms beside the usual parity-even
ones in the form,

gμνhTμνi ¼ b1E4 þ b2CμνρσCμνρσ þ b3∇2Rþ b4FμνFμν

þ f1εμνρσRαβμνRαβ
ρσ þ f2εμνρσFμνFρσ; ð12Þ

where Fμν can be either an axial or vector gauge field.
Parity-odd terms corresponding to the constant f1 and f2
have been conjectured long ago by Capper and Duff [51,52]
on dimensional grounds and by requiring covariance. From
a cohomological point of view, such term are consistent
and cannot be discarded. In previous work we have shown
that the CWIs severely constrain the structure of parity-
odd correlators [33]. For example, a correlator such as the
(rank-4) hTJJiodd, if we resort to a longitudinal/transverse-
traceless/trace decomposition of its tensorial structure, is
constrained only to contain a nonvanishing trace sector, with
the remaining sectors being zero. We will illustrate a similar
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decomposition in the case of the hTTJ5i, that we are going
to investigate in the next sections.
A similar analysis has been performed in the case of the

hAVVi diagram [32], decomposed into a transverse and a
longitudinal sectors. We have shown that the entire chiral
anomaly vertex can be derived from CFT by solving the
anomaly constraints, with the anomaly attributed to the
axial-vector current

∂αhJα5i ¼ a1εμνρσFμνFρσ: ð13Þ

The reconstruction of the correlator is performed using as
a pivot the anomaly pole present in the decomposition of
this correlator in its anomaly sector. In the case of the
hJJJ5i or of the hJ5J5J5i, we satisfy the anomaly con-
straint with one or three anomaly poles respectively, and
all the remaining sectors are fixed by this choice. The
general character of this reconstruction procedure, based
on the inclusion of the anomaly constraint, will be proven
also in the case of the hTTJ5i. In all these three cases, our
analysis shows that the anomaly phenomenon, at least in
the parity odd case, is entirely associated with the presence
of an anomaly pole. Once the coefficient in front of the
anomaly is determined, then the entire correlator is fixed,
if we impose the conformal symmetry. In the hTTJ5i, if we
include in the background both a gauge field and a general
metric background, the anomalous WI that we will be
using for the definition of the correlator in CFT is given by
the equation

∇μhJμ5i ¼ a1εμνρσFμνFρσ þ a2εμνρσRαβ
μνRαβρσ; ð14Þ

that defines a boundary condition for the CWIs.
These results can also be extended to the non-Abelian

case. For a general chiral current Jμi , we can write

∇μhJμi i¼a1Dijkε
μνρσFj

μνFk
ρσþa2Diε

μνρσRαβ
μνRαβρσ; ð15Þ

where we have introduced the anomaly tensors

Dijk ¼
1

2
Tr½fTi; TjgTk�; Di ¼ Tr½Ti�: ð16Þ

constructed with the non-Abelian generators of the theory.
In the case of the Di’s, for example, in the Standard Model,

where the symmetry is SUð3Þ × SUð2Þ ×Uð1ÞY , only the
hypercharge ½Uð1ÞY � contribution hTTJYi is taken onto
account, since the SUð2Þ and SUð3Þ generators are trace-
less. Both the chiral ðFF̃Þ and gravitational ðRR̃Þ anomalies
cancel once we sum over each generation of chiral fermions
[53]. The cancellation of the gravitational anomaly in the
Standard Model can be interpreted in two possible ways.
On one hand, it shows the consistency of the coupling of
the Standard Model to gravity, since the gauge currents are
conserved in a gravitational background. On the other
hand, the stress-energy tensor is just another operator of the
Standard Model and the conservation of the currents is
required for the analysis of the mixing of such operator with
the gauge currents at perturbative level.

IV. WARD IDENTITIES

The correlator is constrained by diffeomorphism invari-
ance, gauge invariance and the CWIs, derived from Weyl
invariance. For this purpose, it is convenient to obtain the
identities directly from the functional integral, by requiring
the invariance of the effective action S in the Euclidean
space

e−S½g� ≡
Z

½dΦ�e−S0½Φ;g� ð17Þ

under the corresponding symmetries. The integration runs
over all the matter/radiation fields, here denoted as Φ. The
equations can also define the constraints for any non-
Lagrangian CFT.
We couple the external gauge field source Aμ to the

current J5. We define the quantum averages of the energy-
momentum tensor and of the current in terms of the
generating functional of the theory S

hTμνðxÞi ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞp δS

δgμνðxÞ
����
g¼δ

;

hJμ5ðxÞi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞp δS

δAμðxÞ
����
A¼0

; ð18Þ

from which we derive the correlator of interest

hTμ1ν1ðx1ÞTμ2ν2ðx2ÞJμ35 ðx3Þi≡ 22ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx2Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx3Þ

p δ3S
δgμ1ν1ðx1Þδgμ2ν2ðx2ÞδAμ3ðx3Þ

����
g¼δ;
A¼0;

: ð19Þ
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A. Diffeomorphism invariance

We start from diffeomorphism invariance. Under a
diffeomorphism the fields transform with a Lie derivative

δgμν ¼ ∇μξν þ∇νξμ;

δAμ ¼ ξν∇νAμ þ∇μξ
νAν: ð20Þ

The WIs follow from the requirement that the generating
functional S is invariant under these transformations:

0 ¼ δξS ¼
Z

ddx

�
ð∇μξν þ∇νξμÞ

δ

δgμν

þ ðξν∇νAμ þ∇μξ
νAνÞ

δ

δAμ

�
S

¼
Z

ddx
ffiffiffiffiffiffi
−g

p
ξν½−∇μhTμνðxÞi þ∇νAμhJμ5ðxÞi

−∇μðAνhJμ5ðxÞiÞ� ð21Þ

obtaining

∇μhTμνi − FAνμhJμ5i þ Aν∇μhJμ5i ¼ 0: ð22Þ

In order to find a WI for the correlator hTTJ5i we need to
apply to this equation the functional derivatives δ

δgδA. Due to
the vanishing of all 1-point and 2-point functions in 4d in

the limit gμν → δμν and Aμ → 0, only the first term in the
Eq. (22) survives. Going to momentum space, this pro-
cedure generates the equation,

0 ¼ piμihTμ1ν1ðp1ÞTμ2ν2ðp2ÞJμ35 ðp3Þi; i ¼ 1;2: ð23Þ

B. Gauge invariance

We proceed in a similar manner for gauge invariance.
The action of a gauge transformation, with parameter αðxÞ
on the fields, gives the infinitesimal variations

δgμν ¼ 0; δAμ ¼ ∂μα: ð24Þ

The requirement that the generating functional S is
invariant under these transformations leads to the conser-
vation of the current Jα5 . If we allow an anomaly from the
path integral measure we obtain the relation

∇αhJα5i ¼ a1εμνρσFμνFρσ þ a2εμνρσRαβμνRαβ
ρσ: ð25Þ

We now apply two functional derivatives with respect to the
metric to such equation, and perform the limit gμν → δμν
and Aμ → 0 as above. After going to the momentum space,
we derive the relation

p3μ3hTμ1ν1ðp1ÞTμ2ν2ðp2ÞJμ35 ðp3Þi ¼ 4ia2ðp1 · p2Þ
��

εν1ν2p1p2

�
gμ1μ2 −

pμ2
1 p

μ1
2

p1 · p2

�
þ ðμ1 ↔ ν1Þ

�
þ ðμ2 ↔ ν2Þ

	
: ð26Þ

This constraint will be satisfied by the inclusion of an
anomaly pole in the correlator.

C. Weyl invariance

By requiring the invariance of the partition function
under the conformal transformations in flat space, we
identify five extra constraints, beside those related to
diffeomorphism invariance, corresponding to the special
conformal transformations and the dilatations. Taken
together, diffeomorphism plus Weyl invariance in curved
spacetime determine in any local free-falling frame asso-
ciated with the metric gμν, the symmetry constraints of the
conformal group on the correlator.
The derivation of these constraints, from a curved

spacetime perspective, requires a background metric that
allows conformal Killing vectors. This imposes a formal
restriction on the class of metric backgrounds with respect
to which the functional variations are performed. In other
words, this approach allows to patch together the con-
straints in each local frame. If the classical action is Weyl
invariant, a metric that allows conformal Killing vectors

requires that σðxÞ is at most quadratic in the local
coordinates, and is expressed in terms of 15 parameters,
which are the parameter of the conformal group. We try to
clarify this point, that has been discussed in [25] in the case
of the hTTTi correlator, extending it to the hTTJ5i, with its
specific expression of the anomaly.
The action of a Weyl transformation with a dilaton σðxÞ

on the fields, acting as a parameter is

δgμν ¼ 2gμνσ;

δAμ ¼ 0: ð27Þ

If the metric is selected in such a way to allow conformal
Killing vectors, then the diffeomorphisms xμ → x0μ ¼ xμ þ
KμðxÞ induce a simple rescaling of the infinitesimal
distance, under a local rescaling with σðxÞ

ðds0Þ2 ¼ e2σðxÞðdsÞ2: ð28Þ

This require that σðxÞ and the same vectors are related
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∇μKν þ∇νKμ ¼ 2σδμν; σ ¼ 1

d
∇ · K: ð29Þ

At this stage, from the action we define the conformal
currents JK , with their quantum averages given by

hJμKi≡ KνhTμνi ð30Þ

that differentiated give

∇μhJμKi ¼
1

2
ð∇μKν þ∇νKμÞhTμνi þ Kν∇μhTμνi: ð31Þ

At this stage we can use both the property of the back-
ground metric (29) and resort to the definition of the stress
energy tensor to rewrite the equation into the form

ffiffiffi
g

p ∇μhJμKi ¼ σ
δ

δσ
hS0i þ 2Kν∇μ



δ

δgμν
S0

�
; ð32Þ

where

δ

δσ
≡ 2gμν

δ

δgμν
: ð33Þ

The conservation of the conformal currents

∇μhJμKi ¼ 0; ð34Þ

requires that

δ

δσ
S0 ¼ 0; ð35Þ

plus the ordinary diffeomorphism invariance, that guaran-
tees the vanishing of the second addend in (32)

∇μ



δ

δgμν
S0

�
¼ 0: ð36Þ

At quantum level (35) may be affected by a conformal
anomaly with

δ

δσ
hS0i ¼

ffiffiffi
g

p hTμ
μi

¼ ffiffiffi
g

p
A; ð37Þ

whereA is the anomaly functional. The conservation of JK
is violated in the case of such conformal anomaly.
The invariance of the generating functional S under the

transformations (27) leads to the tracelessness of the
energy-momentum tensor. However, in general we need
to consider anomalous terms coming from the path integral
measure

A ¼ gμνhTμνi
¼ b1E4 þ b2CμνρσCμνρσ þ b3∇2Rþ b4FμνFμν

þ f1εμνρσRαβμνRαβ
ρσ þ f2εμνρσFμνFρσ: ð38Þ

After applying the functional derivatives δ
δg

δ
δA and perform-

ing the limit gμν → δμν and Aμ → 0, the anomalous terms
do not survive. Going to momentum space, we obtain the
constraint

gμiνihTμ1ν1ðp1ÞTμ2ν2ðp2ÞJμ35 ðp3Þi ¼ 0; i ¼ 1; 2; ð39Þ

which is a nonanomalous trace WI.
We now consider the conformal transformations. The

conformal Killing vectors for the dilatations are

KðDÞ
μ ðxÞ≡ xμ; ∂ · KðDÞ ¼ d; ð40Þ

while for the special conformal transformation they are given by

KðSÞκ
μðxÞ≡ 2xκxμ − x2δκμ; ∂ · KðSÞκðxÞ ¼ ð2dÞxκ; κ ¼ 1;…; d: ð41Þ

As discussed in [25], the derivation of the CWIs requires a rank-4 correlator and can be directly formulated in the local
frame. In this case, we focus on the 4-point function hTTTJ5i and consider the divergence condition

0 ¼
Z

dx∂ðxÞμ ½KνðxÞhTμνðxÞTμ1ν1ðx1ÞTμ2ν2ðx2ÞJμ35 ðx3Þi�

¼
Z

dxð∂μKνÞhTμνðxÞTμ1ν1ðx1ÞTμ2ν2ðx2ÞJμ35 ðx3Þi þ Kν∂μhTμνðxÞTμ1ν1ðx1ÞTμ2ν2ðx2ÞJμ35 ðx3Þi: ð42Þ

Recalling the conformal Killing vector equation (29), we can then derive the equation
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0 ¼
Z

dx

�
∂ · K
d

�
ημνhTμνðxÞTμ1ν1ðx1ÞTμ2ν2ðx2ÞJμ35 ðx3Þi þ Kν∂μhTμνðxÞTμ1ν1ðx1ÞTμ2ν2ðx2ÞJμ35 ðx3Þi: ð43Þ

On the right-hand side of the last equation we have the trace and the divergence of a 4-point correlator function. We can use
the anomalous trace equation and the conservation of the energy-momentum tensor in order to rewrite such terms. We will
show this in the following. We first focus on the dilatations. The Killing vectors in this case are given by (23). The
invariance under diffeomorphism of the partition function (22), differentiated and in the flat limit gives,

0 ¼ ∂μhTμνðxÞTμ1ν1ðx1ÞTμ2ν2ðx2ÞJμ35 ðx3Þi þ ½ð∂μδxx1Þδνμ1δν1λ þ ð∂μδxx1Þδνν1δμ1λ − ð∂νδxx1Þδμ1μ δν1λ �hTλμðxÞTμ2ν2ðx2ÞJμ35 ðx3Þi
þ ½ð∂μδxx2Þδνμ2δν2λ þ ð∂μδxx2Þδνν2δμ2λ − ð∂νδxx2Þδμ2μ δν2λ �hTλμðxÞTμ1ν1ðx1ÞJμ35 ðx3Þi
þ ½−ð∂νδxx3Þδμ3μ þ ð∂μδxx3Þδμ3ν þ δμ3ν δxx3∂μ�hTμ1ν1ðx1ÞTμ2ν2ðx2ÞJμ5ðxÞi; ð44Þ

where δxy is the dirac delta function δ4ðx − yÞ and all the derivatives are with respect to the x variable. Similarly, we
differentiate the anomalous trace equation (22) obtaining in the flat limit

δμνhTμνðxÞTμ1ν1ðx1ÞTμ2ν2ðx2ÞJμ35 ðx3Þi ¼ −2ðδxx1 þ δxx2ÞhTμ1ν1ðx1ÞTμ2ν2ðx2ÞJμ35 ðx3Þi: ð45Þ

Inserting Eqs. (23), (30), and (32) into (28) and integrating by parts we obtain the ordinary dilatation Ward identity

0 ¼
�X

i

xμi ∂
ðxiÞ
μ þ 3d − 1

�
hTμ1ν1ðx1ÞTμ2ν2ðx2ÞJμ35 ðx3Þi; ð46Þ

that in momentum space takes the form

 X3
i¼1

Δi − 2d −
X2
i¼1

pμ
i

∂

∂pμ
i

!
hTμ1ν1ðp1ÞTμ2ν2ðp2ÞJμ35 ðp3Þi ¼ 0: ð47Þ

If, instead, we consider the special conformal transformations, the Killing vectors are given in (24). Proceeding in a similar
manner we arrive at the expression,

0 ¼
X3
i¼1

�
2xκi

�
Δi þ xαi

∂

∂xαi

�
− x2i δ

κα ∂

∂xαi

�
hTμ1ν1ðx1ÞTμ2ν2ðx2ÞJμ35 ðx3Þi

þ 2½δκμ1x1α − δκαx
μ1
1 �hTαν1ðx1ÞTμ2ν2ðx2ÞJμ35 ðx3Þi þ 2½δκν1x1α − δκαx

ν1
1 �hTμ1αðx1ÞTμ2ν2ðx2ÞJμ35 ðx3Þi

þ 2½δκμ2x2α − δκαx
μ2
2 �hTμ1ν1ðx1ÞTαν2ðx2ÞJμ35 ðx3Þi þ 2½δκν2x2α − δκαx

ν2
2 �hTμ1ν1ðx1ÞTμ2αðx2ÞJμ35 ðx3Þi

þ 2½δκμ3x3α − δκαx
μ3
3 �hTμ1ν1ðx1ÞTμ2ν2ðx2ÞJα5ðx3Þi; ð48Þ

that in momentum space takes the form

0 ¼ KκhTμ1ν1ðp1ÞTμ2ν2ðp2ÞJμ35 ðp3Þi

¼
X2
j¼1

�
2ðΔj − dÞ ∂

∂pjκ
− 2pα

j
∂

∂pα
j

∂

∂pjκ
þ ðpjÞκ

∂

∂pα
j

∂

∂pjα

�
hTμ1ν1ðp1ÞTμ2ν2ðp2ÞJμ35 ðp3Þi

þ 4

�
δκðμ1

∂

∂pα1
1

− δκα1δ
ðμ1
λ

∂

∂p1λ

�
hTν1Þα1ðp1ÞTμ2ν2ðp2ÞJμ35 ðp3Þi

þ 4

�
δκðμ2

∂

∂pα2
2

− δκα2δ
ðμ2
λ

∂

∂p2λ

�
hTν2Þα2ðp2ÞTμ1ν1ðp1ÞJμ35 ðp3Þi: ð49Þ

At this stage we are ready to proceed with the decomposition of the correlator into all of its sectors and derive the scalar
equations for its reconstruction [4]. We will first proceed with a parametrizaton of the form factors and tensors structures of
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the transverse-traceless sector. We introduce a form factor
in the longitudinal part, in the form of an anomaly pole, and
proceed with a complete determination of the entire
correlation function by solving the equations of all the
remaining sectors. We follow the steps introduced in [4],
extended to the parity-odd case, and split the equations into
primary and secondary CWIs. The solution, as we are going
to show, will coincide with the perturbative one and will
depend on a single constant, the coefficient of the anomaly.
The off shell parametrization of the vertex that results from
this construction is quite economical, and is expressed in
terms of only two form factors in the transverse traceless
sector, plus the anomaly form factor that takes the form of a
1=p2

3 anomaly pole. The anomaly, in this formulation, is the
residue at the pole.

V. DECOMPOSITION OF THE CORRELATOR

In this section we find the most general expression of the
hTTJ5i correlator, satisfying the anomalous conservation
WI and trace WI. The analysis is performed by applying the
L/T decomposition to the correlator. We focus on a parity
odd four-dimensional correlator, therefore its tensorial
structure will involve the antisymmetric tensor εμνρσ.
We start by decomposing the energy-momentum tensor

Tμν and the current Jμ5 in terms of their transverse-traceless
part and longitudinal ones (also called “local”)

TμiνiðpiÞ ¼ tμiνiðpiÞ þ tμiνiloc ðpiÞ; ð50Þ

Jμi5 ðpiÞ ¼ jμi5 ðpiÞ þ jμi5locðpiÞ; ð51Þ

where

tμiνiðpiÞ ¼ Πμiνi
αiβi

ðpiÞTαiβiðpiÞ; tμiνiloc ðpiÞ ¼ Σμiνi
αiβi

ðpÞTαiβiðpiÞ;

jμi5 ðpiÞ ¼ πμiαiðpiÞJαi5 ðpiÞ; jμi5locðpiÞ ¼
pμi
i piαi

p2
i

Jαi5 ðpiÞ; ð52Þ

having introduced the transverse-traceless (Π), transverse (π), and longitudinal (Σ) projectors, given respectively by

πμα ¼ δμα −
pμpα

p2
; ð53Þ

Πμν
αβ ¼

1

2
ðπμαπνβ þ πμβπ

ν
αÞ −

1

d − 1
πμνπαβ; ð54Þ

Σμiνi
αiβi

¼ piβi

p2
i

�
2δðνiαi p

μiÞ
i −

piαi

ðd − 1Þ
�
δμiνi þ ðd − 2Þp

μi
i p

νi
i

p2
i

��
þ πμiνiðpiÞ

ðd − 1Þ δαiβi : ð55Þ

Such decomposition allows to split our correlation function into the following terms

hTμ1ν1Tμ2ν2Jμ35 i ¼ htμ1ν1tμ2ν2jμ35 i þ hTμ1ν1Tμ2ν2jμ35loci þ hTμ1ν1tμ2ν2loc Jμ35 i þ htμ1ν1loc Tμ2ν2Jμ35 i
− hTμ1ν1tμ2ν2loc jμ35loci − htμ1ν1loc tμ2ν2loc Jμ35 i − htμ1ν1loc Tμ2ν2jμ35loci þ htμ1ν1loc tμ2ν2loc jμ35loci: ð56Þ

Using the conservation and traceWIs derived in the previous section, it is then possible to completely fix all the longitudinal
parts, i.e., the terms containing at least one tμνloc or j

μ
5loc. We start by considering the nonanomalous equations,

δμiνihTμ1ν1ðp1ÞTμ2ν2ðp2ÞJμ35 ðp3Þi ¼ 0; i ¼ f1; 2g;
piμihTμ1ν1ðp1ÞTμ2ν2ðp2ÞJμ35 ðp3Þi ¼ 0; i ¼ f1; 2g: ð57Þ

Thanks to these WIs, we can eliminate most of terms on the right-hand side of Eq. (56), ending up only with two terms

hTμ1ν1Tμ2ν2Jμ35 i ¼ htμ1ν1tμ2ν2jμ35 i þ hTμ1ν1Tμ2ν2jμ35loci ¼ htμ1ν1tμ2ν2jμ35 i þ htμ1ν1tμ2ν2jμ35loci: ð58Þ

The remaining local term is then fixed by the anomalous WI of J5. First, we construct the most general expression in terms
of tensorial structures and form factors,

htμ1ν1tμ2ν2jμ35loci ¼ pμ3
3 Π

μ1ν1
α1β1

ðp1ÞΠμ2ν2
α2β2

ðp2Þεα1α2p1p2ðF1gβ1β2 þ F2p
β2
1 p

β1
2 Þ; ð59Þ
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where, due to the Bose symmetry, both F1 and F2 are symmetric under the exchange ðp1 ↔ p2Þ. Then, recalling the
definition of j5loc and the anomalous WI

p3μ3hTμ1ν1ðp1ÞTμ2ν2ðp2ÞJμ35 ðp3Þi ¼ 4ia2ðp1 · p2Þ
��

εν1ν2p1p2

�
gμ1μ2 −

pμ2
1 p

μ1
2

p1 · p2

�
þ ðμ1 ↔ ν1Þ

�
þ ðμ2 ↔ ν2Þ

	
; ð60Þ

we can write

htμ1ν1tμ2ν2jμ35loci ¼ 4ia2
pμ3
3

p2
3

ðp1 · p2Þ
��

εν1ν2p1p2

�
gμ1μ2 −

pμ2
1 p

μ1
2

p1 · p2

�
þ ðμ1 ↔ ν1Þ

�
þ ðμ2 ↔ ν2Þ

	
: ð61Þ

One can show that this formula coincides with Eq. (59) after contracting the projectors’ indices and fixing the form factors
in the following way:

F1 ¼
16ia2ðp1 · p2Þ

p2
3

; F2 ¼ −
16ia2
p2
3

: ð62Þ

Therefore, all the local terms of the hTTJ5i are fixed. The only remaining term to be studied in order to reconstruct the entire
correlator is the transverse-traceless part htμ1ν1tμ2ν2jμ35 i. Its explicit form is given by

htμ1ν1ðp1Þtμ2ν2ðp2Þjμ35 ðp3Þi ¼ Πμ1ν1
α1β1

ðp1ÞΠμ2ν2
α2β2

ðp2Þπμ3α3ðp3ÞXα1β1α2β2α3 ; ð63Þ

where Xα1β1α2β2α3 is a general rank five tensor built by products of metric tensors, momenta and the Levi-Civita symbol with
the appropriate choice of indices. Indeed, as a consequence of the projectors in (63), Xα1β1α2β2α3 can not be constructed by
using gαiβi , nor by piαi with i ¼ f1; 2; 3g. We also must keep in mind that, due to symmetries of the correlator, form factors
associated with structures linked by a ð1 ↔ 2Þ transformation (the gravitons exchange) are dependent. Then, the transverse-
traceless part can be written as

htμ1ν1ðp1Þtμ2ν2ðp2Þjμ35 ðp3Þi ¼ Πμ1ν1
α1β1

ðp1ÞΠμ2ν2
α2β2

ðp2Þπμ3α3ðp3Þ
× ½A1ε

p1α1α2α3pβ1
2 p

β2
3 − A1ðp1 ↔ p2Þεp2α1α2α3pβ1

2 p
β2
3

þ A2ε
p1α1α2α3δβ1β2 − A2ðp1 ↔ p2Þεp2α1α2α3δβ1β2

þ A3ε
p1p2α1α2pβ1

2 p
β2
3 p

α3
1 þ A4ε

p1p2α1α2δβ1β2pα3
1

þ A5ε
p1p2α1α3pβ1

2 p
α2
3 pβ2

3 þ A5ðp1 ↔ p2Þεp1p2α2α3pβ2
3 pα1

2 pβ1
2

þ A6ε
p1p2α1α3pα2

3 δβ1β2 þ A6ðp1 ↔ p2Þεp1p2α2α3pα1
2 δβ1β2

þ A7ε
p1p2α1α2pβ1

2 δ
β2α3 − A7ðp1 ↔ p2Þεp1p2α1α2pβ2

3 δ
β1α3 �; ð64Þ

where A3 and A4 are antisymmetric under the exchange ðp1 ↔ p2Þ and we have made a choice on which independent
momenta to consider for each index

fα1; β1g ↔ p2; fα2; β2g ↔ p3; fα3g ↔ p1: ð65Þ

Since we are working in d ¼ 4 the form factors in Eq. (64) are not all independent and the decomposition is not minimal.
Indeed, one needs to consider the following class of tensor identities

0 ¼ ε½p1p2α1α2δα3�α ð66Þ

If we set α ¼ β1 or α ¼ β2 and apply the projectors, we have

Πμ1ν1
α1β1

ðp1ÞΠμ2ν2
α2β2

ðp2Þπμ3α3ðp3Þ½εp1p2α1α2δα3β1 � ¼ Πμ1ν1
α1β1

ðp1ÞΠμ2ν2
α2β2

ðp2Þπμ3α3ðp3Þ½εp1α1α2α3pβ1
2 þ εp1p2α1α3δα2β1 �;

Πμ1ν1
α1β1

ðp1ÞΠμ2ν2
α2β2

ðp2Þπμ3α3ðp3Þ½εp1p2α1α2δα3β2 � ¼ Πμ1ν1
α1β1

ðp1ÞΠμ2ν2
α2β2

ðp2Þπμ3α3ðp3Þ½εp2α1α2α3pβ2
3 − εp1p2α2α3δα1β2 �; ð67Þ
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according to which we can rewrite the tensorial structures multiplying A7 in terms of the others. If we instead contract the
identity (66) with p1α and p2α, we arrive to

Πμ1ν1
α1β1

ðp1ÞΠμ2ν2
α2β2

ðp2Þπμ3α3ðp3Þ½εp1p2α1α3pα2
3 � ¼ Πμ1ν1

α1β1
ðp1ÞΠμ2ν2

α2β2
ðp2Þπμ3α3ðp3Þ½εp1α1α2α3ðp1 · p2Þ − εp1p2α1α2pα3

1 − εp2α1α2α3p2
1�;

Πμ1ν1
α1β1

ðp1ÞΠμ2ν2
α2β2

ðp2Þπμ3α3ðp3Þ½εp1p2α2α3pα1
2 � ¼ Πμ1ν1

α1β1
ðp1ÞΠμ2ν2

α2β2
ðp2Þπμ3α3ðp3Þ½εp1α1α2α3p2

2 þ εp1p2α1α2pα3
1 − εp2α1α2α3ðp1 · p2Þ�;

ð68Þ

according to which we can rewrite the form factors A5 and A6 in terms of the first four. We conclude that the general
structure of the transverse-traceless part is given by

htμ1ν1ðp1Þtμ2ν2ðp2Þjμ35 ðp3Þi ¼ Πμ1ν1
α1β1

ðp1ÞΠμ2ν2
α2β2

ðp2Þπμ3α3ðp3Þ
× ½A1ε

p1α1α2α3pβ1
2 p

β2
3 − A1ðp1 ↔ p2Þεp2α1α2α3pβ1

2 p
β2
3

þ A2ε
p1α1α2α3δβ1β2 − A2ðp1 ↔ p2Þεp2α1α2α3δβ1β2

þ A3ε
p1p2α1α2pβ1

2 pβ2
3 p

α3
1 þ A4ε

p1p2α1α2δβ1β2pα3
1 � ð69Þ

where we have redefined the form factors A1;…; A4. Once
again, A3 and A4 are antisymmetric under the exchange
ðp1 ↔ p2Þ.

VI. THE CONFORMAL ANALYSIS OF THE hTTJ5i
In the previous section we have seen that the conserva-

tion and trace WIs fix the longitudinal part of the correlator.
In this section we examine the conformal constraints on the
hTTJ5i, following closely the methodology adopted in [4].
We will see that the transverse-traceless part of the
correlator is completely determined by conformal invari-
ance together with the RR̃ part of the boundary condition
coming from the anomaly relation (14), corresponding to
the anomalous coefficient a2.

A. Dilatation Ward identities

The invariance of the correlator under dilatation is
reflected in Eq. (47). Due to this constraint, the trans-
verse-traceless part of the correlator has to satisfy the
equation X3

i¼1

Δi−2d−
X2
i¼1

pμ
i

∂

∂pμ
i

!
htμ1ν1ðp1Þtμ2ν2ðp2Þjμ35 ðp3Þi¼0:

ð70Þ

By using the chain rule

∂

∂pμ
i
¼
X3
j¼1

∂pj

∂pμ
i

∂

∂pj
ð71Þ

to express the derivatives respect to 4-vectors in term of the
invariants pi ¼ j

ffiffiffiffiffi
p2
i

p
j, we rewrite (70) as a constraint on

the form factors

X3
i¼1

pi
∂Aj

∂pi
−

 X3
i¼1

Δi − 2d − Nj

!
Aj ¼ 0 ð72Þ

with Nj the number of momenta that the form factors
multiply in the decomposition of Eq. (69)

N1 ¼ 3; N2 ¼ 1; N3 ¼ 5; N4 ¼ 3; ð73Þ

B. Special conformal Ward identities

The invariance of the correlator with respect to the special
conformal transformations is encoded in the following
equation:

0 ¼ KκhTμ1ν1ðp1ÞTμ2ν2ðp2ÞJμ35 ðp3Þi

≡X2
j¼1

�
2ðΔj − dÞ ∂

∂pjκ
− 2pα

j
∂

∂pα
j

∂

∂pjκ
þ ðpjÞκ

∂

∂pα
j

∂

∂pjα

�
hTμ1ν1ðp1ÞTμ2ν2ðp2ÞJμ35 ðp3Þi

þ 4

�
δκðμ1

∂

∂pα1
1

− δκα1δ
ðμ1
λ

∂

∂p1λ

�
hTν1Þα1ðp1ÞTμ2ν2ðp2ÞJμ35 ðp3Þi

þ 4

�
δκðμ2

∂

∂pα2
2

− δκα2δ
ðμ2
λ

∂

∂p2λ

�
hTν2Þα2ðp2ÞTμ1ν1ðp1ÞJμ35 ðp3Þi: ð74Þ
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The special conformal operator Kκ acts as an endomorphism on the transverse-traceless sector of the entire correlator.
Therefore we can perform a transverse-traceless projection on all the indices in order to identify a set of partial differential
equations

0 ¼ Πρ1σ1
μ1ν1 ðp1ÞΠρ2σ2

μ2ν2 ðp2Þπρ3μ3ðp3ÞKκhTμ1ν1ðp1ÞTμ2ν2ðp2ÞJμ35 ðp3Þi
¼ Πρ1σ1

μ1ν1 ðp1ÞΠρ2σ2
μ2ν2 ðp2Þπρ3μ3ðp3ÞKκðhtμ1ν1tμ2ν2jμ35 i þ htμ1ν1tμ2ν2jμ35lociÞ; ð75Þ

splitting the correlator into its transverse and longitudinal parts. The action of the special conformal operator Kκ on the
longitudinal part of the correlator is given by

Πρ1σ1
μ1ν1 ðp1ÞΠρ2σ2

μ2ν2 ðp2Þπρ3μ3ðp3Þ½Kκhtμ1ν1tμ2ν2jμ35loci� ¼ Πρ1σ1
μ1ν1 ðp1ÞΠρ2σ2

μ2ν2 ðp2Þπρ3μ3ðp3Þ
�
2
ðΔ3 − 1Þ

p2
3

δκμ3p3αhtμ1ν1tμ2ν2jα5loci
�
: ð76Þ

Using Eq. (60) together with the Schouten identities mentioned in the Appendix B, we can write

Πρ1σ1
μ1ν1 ðp1ÞΠρ2σ2

μ2ν2 ðp2Þπρ3μ3ðp3Þ½Kκhtμ1ν1tμ2ν2jμ35loci�

¼ Πρ1σ1
μ1ν1 ðp1ÞΠρ2σ2

μ2ν2 ðp2Þπρ3μ3ðp3Þ
16ia2ðΔ3 − 1Þ

p2
3

½pκ
1ε

p2μ1μ2μ3ð−2pν1
2 p

ν2
3 þ ðp2

1 þ p2
2 − p2

3Þδν1ν2Þ

þ pκ
2ε

p1μ1μ2μ3ð2pν1
2 p

ν2
3 − ðp2

1 þ p2
2 − p2

3Þδν1ν2Þδκμ1ðþðp2
1 þ p2

2 − p2
3Þεp1p2μ2μ3δν1ν2 − 2p2

2ε
p1μ2μ3ν1pν2

3

− ðp2
1 þ p2

2 − p2
3Þεp2μ2μ3ν1pν2

3 þ 2εp1p2μ2ν1pμ3
1 p

ν2
3 Þδκμ2ð−ðp2

1 þ p2
2 − p2

3Þεp1p2μ1μ3δν1ν2 þ 2p2
1ε

p2μ1μ3ν2pν1
2

þ ðp2
1 þ p2

2 − p2
3Þεp1μ1μ3ν2pν1

2 − 2εp1p2μ1ν2pμ3
1 p

ν1
2 Þ�: ð77Þ

Using the Schouten identities reported in Appendix B, we can then decompose the action of the special conformal operator
on the entire correlator in the following minimal expression:

0 ¼ Πρ1σ1
μ1ν1 ðp1ÞΠρ2σ2

μ2ν2 ðp2Þπρ3μ3ðp3ÞðKκhTμ1ν1ðp1ÞTμ2ν2ðp2ÞJμ35 ðp3ÞiÞ
¼ Πρ1σ1

μ1ν1 ðp1ÞΠρ2σ2
μ2ν2 ðp2Þπρ3μ3ðp3Þ½pκ

1ðC11ε
p1μ1μ2μ3pν1

2 p
ν2
3 þ C12ε

p2μ1μ2μ3pν1
2 p

ν2
3

þ C13ε
p1μ1μ2μ3δν1ν2 þ C14ε

p2μ1μ2μ3δν1ν2 þ C15ε
p1p2μ1μ2pν1

2 p
ν2
3 p

μ3
1 þ C16ε

p1p2μ1μ2δν1ν2pμ3
1 Þ

þ pκ
2ðC21ε

p1μ1μ2μ3pν1
2 p

ν2
3 þ C22ε

p2μ1μ2μ3pν1
2 p

ν2
3 þ C23ε

p1μ1μ2μ3δν1ν2 þ C24ε
p2μ1μ2μ3δν1ν2

þ C25ε
p1p2μ1μ2pν1

2 p
ν2
3 p

μ3
1 þ C26ε

p1p2μ1μ2δν1ν2pμ3
1 Þ þ δκμ1ðC31ε

p1μ2μ3ν1pν2
3 þ C32ε

p2μ2μ3ν1pν2
3

þ C33ε
p1p2μ2ν1pμ3

1 p
ν2
3 þ C34ε

p1p2μ2μ3δν1ν2Þ þ δκμ2ðC41ε
p1μ1μ3ν2pν1

2 þ C42ε
p2μ1μ3ν2pν1

2 þ C43ε
p1p2μ1ν2pμ3

1 p
ν1
2

þ C44ε
p1p2μ1μ3δν1ν2Þ þ C51ε

κμ1μ2μ3δν1ν2 þ C52ε
κμ1μ2μ3pν1

2 p
ν2
3 þ C53ε

p1κμ1μ2pμ3
1 δ

ν1ν2 þ C54ε
p2κμ1μ2pμ3

1 δ
ν1ν2 �; ð78Þ

where the coefficients Cij depend on the gravitational-
anomalous coefficient a2, the form factors Ai and their
derivatives with respect to the momenta.
Due to the independence of the tensorial structures listed

in the equation above, all the coefficients Cij need to
vanish. In particular the primary equations are

0 ¼ Cij; i ¼ f1; 2g; j ¼ f1;…6g: ð79Þ

They correspond to second-order differential equations.
The secondary equations are instead given by

0 ¼ Cij; i ¼ f3; 4; 5g; j ¼ f1;…4g; ð80Þ

and they are differential equations of the first order.

C. Solving the conformal Ward Identities

The most general solution of the CWIs of the hTTJ5i can
be written in terms of integrals involving a product of three
Bessel functions, namely 3K integrals [4]. For a detailed
review on the properties of such integrals, see also [54]. We
recall the definition of the general 3K integral,

Iαfβ1;β2;β3gðp1; p2; p3Þ ¼
Z

dxxα
Y3
j¼1

p
βj
j KβjðpjxÞ; ð81Þ
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where Kν is a modified Bessel function of the second kind

KνðxÞ ¼
π

2

I−νðxÞ − IνðxÞ
sinðνπÞ ; ν ∉ Z

IνðxÞ ¼
�
x
2

�
νX∞
k¼0

1

Γðkþ 1ÞΓðνþ 1þ kÞ
�
x
2

�
2k

ð82Þ

with the property

KnðxÞ ¼ lim
ϵ→0

KnþϵðxÞ; n∈Z: ð83Þ

We will also use the reduced version of the 3K integral
defined as

JNfkjg ¼ Id
2
−1þNfΔj−d

2
þkjg; ð84Þ

where we introduced the condensed notation fkjg ¼
fk1; k2; k3g. The 3K integrals satisfy an equation analogous
to the dilatation equation with scaling degree [4]

degðJNfkjgÞ ¼ Δt þ kt − 2d − N; ð85Þ

where

kt ¼ k1 þ k2 þ k3; Δt ¼ Δ1 þ Δ2 þ Δ3: ð86Þ

From this analysis, it is simple to relate the form factors to
the 3K integrals. Indeed, the dilatation WI tells us that the
form factors Ai can to be written as a combination of
integrals of the following type:

JNiþkt;fk1;k2;k3g; ð87Þ

where Ni is the number of momenta that the form factors
multiplies in the decomposition (69). The special CWIs fix
the remaining indices k1, k2, and k3.
We start by considering the explicit form of the primary

equations (79) involving the form factor A3

K31A3 ¼ 0; K32A3 ¼ 0; ð88Þ

where we have defined

Ki ¼
∂
2

∂p2
i
þ ðdþ 1− 2ΔiÞ

pi

∂

∂pi
; Kij ¼ Ki −Kj: ð89Þ

Recalling the following property of the 3K integrals

KnmJNfkjg ¼ −2knJNþ1fkj−δjng þ 2kmJNþ1fkj−δjmg; ð90Þ

we can write the most general solution of the primary
equations as

A3 ¼ ζ1Jf5;0;0;0g; ð91Þ

where ζ1 is an arbitrary constant. Note that this solution is
symmetric under the exchange of momenta p1 ↔ p2.
Indeed, from the definition of the 3K integral, it follows
that for any permutation σ of the set f1; 2; 3g we have

JNfkσð1Þ;kσð2Þ;kσð3Þgðp1; p2; p3Þ
¼ JNfk1;k2;k3gðpσ−1ð1Þ; pσ−1ð2Þ; pσ−1ð3ÞÞ: ð92Þ

However, due to the Bose symmetry, the form factor A3

needs to be antisymmetric under the exchange of momenta
p1 ↔ p2. This leads to

ζ1 ¼ 0 ⇒ A3 ¼ 0: ð93Þ

After setting A3 ¼ 0, the explicit form of the primary
equations involving the form factor A4 can be written as

K31A4 ¼ 0; K32A4 ¼ 0: ð94Þ

The solution is given by

A4 ¼ ζ2Jf3;0;0;0g; ð95Þ

where ζ2 is an arbitrary constant. Once again, due to the
Bose symmetry, A4 needs to be antisymmetric under the
exchange of momenta p1 ↔ p2. This leads to

ζ2 ¼ 0 ⇒ A4 ¼ 0: ð96Þ

After setting A4 ¼ 0, we can write the remaining primary
equations as1

0¼K31A1; 0¼K32A1þ
2

p2
1

�
p1

∂

∂p1

− 4

�
A1ðp1 ↔ p2Þ;

0¼K31A2þ 4A1;

0¼K32A2þ
2

p2
1

�
p1

∂

∂p1

− 4

�
A2ðp1 ↔ p2Þþ 4A1: ð97Þ

These equations can also be reduced to a set of homog-
enous equations by repeatedly applying the operator Kij

0 ¼ K31A1; 0 ¼ K32K32A1;

0 ¼ K31K31A2; 0 ¼ K32K32K32A2: ð98Þ

The most general solution of such homogenous equations
can be written in terms of the following 3K integrals:

1For simplicity, we are actually considering on the right side
two equations that are obtained by a combination of primary and
secondary equations; 0 ¼ C21 − C33 and 0 ¼ C23 − C34. The
contribution of the anomalous term coming from Eq. (77) does
not appear in such combinations of equations.
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A1 ¼ η1J3f0;0;0g þ η2J4f0;1;0g;

A2 ¼ θ1J4f1;2;0g þ θ2J3f0;2;0g þ θ3J3f1;1;0g þ θ4J2f0;1;0g
þ θ5J2f1;0;0g þ θ6J1f0;0;0g þ θ7J3f0;1;1g þ θ8J2f0;0;1g;

ð99Þ

where ηi and θi are arbitrary constants. The explicit form of
such 3K integrals can be determined by following the
procedure in [4,54,55]. Before moving on, we need to
examine the divergences in the 3K integrals. For a more
detailed review of the topic, see Appendix A and [4,5,54].
In general, it can be shown that a 3K integral Iαfβ1;β2;β3g
diverges if

αþ 1� β1 � β2 � β3 ¼ −2k; k ¼ 0; 1; 2;…: ð100Þ

If the above condition is satisfied, we need to regularize the
integral. Therefore, we shift its parameters by small
amounts proportional to a regulator ϵ according to the
formula

Iαfβ1;β2;β3g ↦ Iαþuϵfβ1þv1ϵ;β2þv2ϵ;β3þv3ϵg;
JNfk1;k2;k3g ↦ JNþuϵfk1þv1ϵ;k2þv2ϵ;k3þv3ϵg: ð101Þ

The arbitrary numbers u, v1, v2, and v3 specify the direction
of the shift. In general the regulated integral exists, but
exhibits singularities when ϵ is taken to zero. If a 3K integral
in our solution diverges, we can expand the coefficient in
front of such integral in the solution in powers of ϵ

ηi ¼
X∞
j¼−∞

ηðjÞi ϵj; θi ¼
X∞
j¼−∞

θðjÞi ϵj; ð102Þ

and then we can require that our entire solution is finite for

ϵ → 0 by constraining the coefficients ηðjÞi and θðjÞi . Both of
the 3K integrals appearing in the Eq. (99) in the solution for
A1 diverge like 1=ϵ. Therefore, we require

η1 ¼ ηð0Þ1 þ ηð1Þ1 ϵ; η2 ¼ ηð0Þ2 þ ηð1Þ2 ϵ: ð103Þ

Higher-order terms do not contribute to the solution and
therefore they can be neglected. In the case of A2, since
some of the 3K integrals diverge like 1=ϵ2, we need to set

θ1 ¼ θð0Þ1 þ θð1Þ1 ϵþ θð2Þ1 ϵ2; θ2 ¼ θð0Þ2 þ θð1Þ2 ϵþ θð2Þ2 ϵ2; θ3 ¼ θð0Þ3 þ θð1Þ3 ϵþ θð2Þ3 ϵ2;

θ4 ¼ θð0Þ4 þ θð1Þ4 ϵþ θð2Þ4 ϵ2; θ5 ¼ θð0Þ5 þ θð1Þ5 ϵþ θð2Þ5 ϵ2; θ6 ¼ θð0Þ6 þ θð1Þ6 ϵþ θð2Þ6 ϵ2;

θ7 ¼ θð0Þ7 þ θð1Þ7 ϵ; θ8 ¼ θð0Þ8 þ θð1Þ8 ϵ: ð104Þ

The last step consists in analyzing all the conformal constraints on the numerical coefficients ηðjÞi and θðjÞi . In order to do that,
we insert our solution back into the primary nonhomogenous equations (97) and into the secondary equations. The explicit
form of the secondary equations is given by2

0 ¼ −2p1

∂

∂p1

A1 þ 2p2

∂

∂p2

A1ðp1 ↔ p2Þ;

0 ¼ −ðp2
1 − p2

2 þ p2
3ÞA1 þ ð−p2

1 þ p2
2 þ p2

3ÞA1ðp1 ↔ p2Þ − 2p1

∂

∂p1

A2 þ 2p2

∂

∂p2

A2ðp1 ↔ p2Þ

þ 2A2 − 2A2ðp1 ↔ p2Þ;

0 ¼ −
2p3

2

p2
3

∂

∂p2

A1ðp1 ↔ p2Þ − 2

�
p2
2 þ p2

3

p2
3

�
p2

∂

∂p2

A1 þ
�
−
2p2

2

p2
3

þ p2
3 − p2

2 − p2
1

p2
1

�
p1

∂

∂p1

A1

þ 2p2
2

�
p2
3 − p2

1

p2
3p1

�
∂

∂p1

A1ðp1 ↔ p2Þ − 4p2
2

�
2

p2
1

þ 1

p2
3

�
A1ðp1 ↔ p2Þ þ 4

�
p2
1 þ p2

2 − p2
3

p2
1

−
p2
2

p2
3

�
A1

−
2

p1

∂

∂p1

A2 þ
8

p2
1

A2 −
64iap2

2

p2
3

;

2Not all of the secondary equations are independent from each other. Here we listed only the relevant ones.
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0 ¼ −
�
p2
1 þ p2

2 − p2
3

p2
3

�
p1

∂

∂p1

A1 −
ðp2

1 − 2p2
3Þðp2

1 þ p2
2 − p2

3Þ
p1p2

3

∂

∂p1

A1ðp1 ↔ p2Þ −
�
p2
1 þ p2

2 − p2
3

p2
3

�
p2

∂

∂p2

A1

−
�
p2
1 þ p2

2 − 3p2
3

p2
3

�
p2

∂

∂p2

A1ðp1 ↔ p2Þ − 2

�
p2
1 þ p2

2 − 2p2
3

p2
3

þ 4
p2
1 þ p2

2 − p2
3

p2
1

�
A1ðp1 ↔ p2Þ

− 2

�
p2
1 þ p2

2 − 2p2
3

p2
3

�
A1 þ

2

p1

∂

∂p1

A2ðp1 ↔ p2Þ −
8

p2
1

A2ðp1 ↔ p2Þ −
32iaðp2

1 þ p2
2 − p2

3Þ
p2
3

;

0 ¼ 2p1

p2
3

∂

∂p1

A1 þ 2

�
p2
1 − p2

3

p2
3p1

�
∂

∂p1

A1ðp1 ↔ p2Þ þ
2p2

p2
3

∂

∂p2

A1 þ
2p2

p2
3

∂

∂p2

A1ðp1 ↔ p2Þ

þ 4

�
2

p2
1

þ 1

p2
3

�
A1ðp1 ↔ p2Þ þ

4

p2
3

A1 þ
64ia
p2
3

;

0 ¼ −
2p1

p2
3

∂

∂p1

A2 þ 2

�
p2
3 − p2

1

p2
3p1

�
∂

∂p1

A2ðp1 ↔ p2Þ −
2p2

p2
3

∂

∂p2

A2 −
2p2

p2
3

∂

∂p2

A2ðp1 ↔ p2Þ −
8

p2
1

A2ðp1 ↔ p2Þ

þ 32iaðp2
1 þ p2

2 − p2
3Þ

p2
3

: ð105Þ

We can solve all these equations by performing the limit
pi → 0, as explained in the Appendix A 2. After some
lengthy computations, using all the properties of the 3K
integral listed in the Appendix A, we find that all the

nonvanishing coefficients ηðjÞi and θðjÞi depend on the
anomaly coefficient a2 of Eq. (14). In particular the final
solution can be written in the compact form

A1 ¼ −4ia2p2
2I5f2;1;1g;

A2 ¼ −8ia2p2
2ðp2

3I4f2;1;0g − 1Þ;
A3 ¼ 0:

A4 ¼ 0: ð106Þ

VII. PERTURBATIVE REALIZATION

In this section we compute the hTTJ5i correlator
perturbatevely at one-loop, working in the Breitenlohner-
Maison scheme. For this analysis we shift to the Minkowski
space where

eiS½g� ≡
Z

½dΦ�eiS0½Φ;g�: ð107Þ

We consider the following action with a fermionic field in a
gravitational and axial gauge-field background

S0 ¼
Z

ddx
e
2
eμa½iψ̄γaðDμψÞ − iðDμψ̄Þγaψ �; ð108Þ

where eμa is the vielbein, e is its determinant and Dμ is the
covariant derivative defined as

Dμψ ¼ ð∇μ þ igγ5AμÞψ ¼
�
∂μ þ igγ5Aμ þ

1

2
ωμabΣab

�
ψ ;

Dμψ̄ ¼ ð∇μ − igγ5AμÞψ̄ ¼
�
∂μ − igγ5Aμ −

1

2
ωμabΣab

�
ψ̄ :

ð109Þ

Σab are the generators of the Lorentz group in the case of a
spin 1=2-field, while the spin connection is given by

ωμab ≡ eνað∂μeνb − Γλ
μνeλbÞ: ð110Þ

The Latin and Greek indices are related to the (locally) flat
basis and the curved background respectively. Using the
explicit expression of the generators of the Lorentz group
one can reexpress the action S0 as follows:

S0 ¼
Z

ddxe

�
i
2
ψ̄eμaγað∂μψÞ −

i
2
ð∂μψ̄Þeμaγaψ

− gAμψ̄e
μ
aγaγ5ψ þ i

4
ωμabe

μ
cψ̄γabcψ

�
ð111Þ

with

γabc ¼ fΣab; γcg: ð112Þ

Taking a first variation of the action with respect to the
metric one can construct the energy momentum tensor as

Tμν ¼ −
i
2
½ψ̄γðμ∇νÞψ −∇ðμψ̄γνÞψ − gμνðψ̄γλ∇λψ

−∇λψ̄γ
λψÞ� − gψ̄ðgμνγλAλ − γðμAνÞÞγ5ψ : ð113Þ
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The computation of the vertices can be done by taking functional derivatives of the action with respect to the metric and the
gauge field and Fourier transforming to momentum space. Their explicit expressions is reported in Appendix C.

A. Feynman diagrams

The hTTJ5i correlator around flat space is extracted by taking three functional derivatives of the effective action with
respect to the metric and the gauge field, evaluated when the sources are turned off

hTμ1ν1ðx1ÞTμ2ν2ðx2ÞJμ35 ðx3Þi≡ 4
δ3S

δgμ1ν1ðx1Þδgμ2ν2ðx2ÞδAμ3ðx3Þ
����
g¼η;
A¼0;

ð114Þ

Having denoted with S0 the conformal invariant classical action, recalling Eq. (17), we can write

hTμ1ν1ðx1ÞTμ2ν2ðx2ÞJμ35 ðx3Þi ¼ 4

�
−i


δS0
δg1

δS0
δg2

δS0
δA3

�
−



δ2S0
δg1δg2

δS0
δA3

�
−



δ2S0
δg1δA3

δS0
δg2

�

−



δ2S0
δg2δA3

δS0
δg1

�
þ i



δ3S0

δg1δg2δA3

�	
; ð115Þ

where for the sake of simplicity we have used the notation gi ¼ gμiνiðxiÞ and Ai ¼ AμiðxiÞ. The angle brackets denote the
vacuum expectation value and each of the terms correspond to a Feynman diagram of specific topology. In particular, the first
term has a triangle topology while the others are all bubble diagrams, except for the last one, which is a tadpole (see Fig. 1).
The contribution of the triangle diagrams is given by

Vμ1ν1μ2ν2μ3
1 ¼ −i3

Z
ddl
ð2πÞd

tr½Vμ1ν1
gψ̄ψ ðl − p1; lÞð=l − =p1ÞVμ3

Aψ̄ψð=lþ =p2ÞVμ2ν2
gψ̄ψ ðl; lþ p2Þ=l�

ðl − p1Þ2ðlþ p2Þ2l2
þ exchange ð116Þ

while the bubble diagrams are

Vμ1ν1μ2ν2μ3
2 ¼ −i2

Z
ddl
ð2πÞd

tr½Vμ1ν1μ3
gAψ̄ψ ð=lþ =p2ÞVμ2ν2

gψ̄ψ ðl; lþ p2Þ=l�
ðlþ p2Þ2l2

þ exchange ð117Þ

and

Vμ1ν1μ2ν2μ3
3 ¼ −i2

Z
ddl
ð2πÞd

tr½Vμ1ν1μ2ν2
ggψ̄ψ ðp1; p2; l − p1 − p2; lÞð=l − =p1 − =p2ÞVμ3

Aψ̄ψ=l �
ðl − p1 − p2Þ2l2

: ð118Þ

After performing the integration, one can verify that Vμ1ν1μ2ν2μ3
2 vanishes. Lastly, the tadpole diagram is given by

FIG. 1. Feynman diagrams of the three different topologies appearing in the perturbative computation.
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Vμ1ν1μ2ν2μ3
4 ¼ −i

Z
ddl
ð2πÞd

tr½Vμ1ν1μ2ν2μ3
ggAψ̄ψ =l�
l2

: ð119Þ

This last diagram vanishes since it contains the trace of two
γ’s and a γ5. The perturbative realization of the correlator
will be written down as the sum of the amplitudes, formally
given by the expression

hTμ1ν1Tμ2ν2Jμ35 i ¼ 4
X4
i¼1

Vμ1ν1μ2ν2μ3
i : ð120Þ

B. Reconstruction of the correlator

The perturbative realization of the hTTJ5i satisfies the
(anomalous) conservation and trace WIs. Therefore, the
correlator can be decomposed as described in Sec. V. In
particular, it is comprised of two terms

hTμ1ν1Tμ2ν2Jμ35 i ¼ htμ1ν1tμ2ν2jμ35 i þ htμ1ν1tμ2ν2jμ35loci: ð121Þ

The anomalous pole is given by

htμ1ν1tμ2ν2jμ35loci ¼
g

96π2
pμ3
3

p2
3

ðp1 · p2Þ

×

��
εν1ν2p1p2

�
gμ1μ2 −

pμ2
1 p

μ1
2

p1 · p2

�

þ ðμ1 ↔ ν1Þ
�
þ ðμ2 ↔ ν2Þ

	
; ð122Þ

which corresponds to Eq. (61) with

a2 ¼ −
ig

384π2
: ð123Þ

The transverse-traceless part htμ1ν1tμ2ν2jμ35 i can be
expressed in terms of four form factors as described in
Eq. (69). The perturbative calculation in four dimensions
gives

A1 ¼
gp2

2

24π2λ4

�
A11 þ A12 log

�
p2
1

p2
2

�
þ A13 log

�
p2
1

p2
3

�
þ A14C0ðp2

1; p
2
2; p

2
3Þ
	
;

A2 ¼
gp2

2

48π2λ3

�
A21 þ A22 log

�
p2
1

p2
2

�
þ A23 log

�
p2
1

p2
3

�
þ A24C0ðp2

1; p
2
2; p

2
3Þ
	
;

A3 ¼ 0;

A4 ¼ 0; ð124Þ

where C0 in Minkowski space is the master integral

C0ðp2
1; p

2
2; p

2
3Þ≡ 1

iπ2

Z
ddl

1

l2ðl − qÞ2ðlþ pÞ2 ð125Þ

and we have introduced the following quantities:

A11 ¼ −λ½2p10
1 − p8

1ðp2
2 þ p2

3Þ − 2p6
1ð5p4

2 − 48p2
2p

2
3 þ 5p4

3Þ þ 4p4
1ðp2

2 þ p2
3Þð4p4

2 − 23p2
2p

2
3 þ 4p4

3Þ
− 8p2

1ðp2
2 − p2

3Þ2ðp4
2 þ 4p2

2p
2
3 þ p4

3Þ þ ðp2
2 − p2

3Þ4ðp2
2 þ p2

3Þ�;
A12 ¼ þ2p2

2½p2
3ðp2

3 − p2
2Þ5 þ p10

1 ð38p2
3 − 12p2

2Þ þ p8
1ð18p4

2 þ 41p2
2p

2
3 − 121p4

3Þ − 4p6
1ð3p6

2 þ 46p4
2p

2
3 − 38p2

2p
4
3 − 26p6

3Þ
þ p4

1ðp2 − p3Þðp2 þ p3Þð3p6
2 þ 95p4

2p
2
3 þ 215p2

2p
4
3 þ 11p6

3Þ þ 14p2
1p

2
3ðp2

2 − p2
3Þ3ðp2

2 þ p2
3Þ þ 3p12

1 �;
A13 ¼ þ2p2

3½3p12
1 þ 2p10

1 ð19p2
2 − 6p2

3Þ þ p8
1ð−121p4

2 þ 41p2
2p

2
3 þ 18p4

3Þ þ 4p6
1ð26p6

2 þ 38p4
2p

2
3 − 46p2

2p
4
3 − 3p6

3Þ
− 14p2

1p
2
2ðp2

2 − p2
3Þ3ðp2

2 þ p2
3Þ − p4

1ðp2 − p3Þðp2 þ p3Þð11p6
2 þ 215p4

2p
2
3 þ 95p2

2p
4
3 þ 3p6

3Þ þ p2
2ðp2

2 − p2
3Þ5�;

A14 ¼ −24p4
1p

2
2p

2
3½ðp2

1 − p2
2Þ3ð2p2

1 þ 3p2
2Þ − 3p4

3ðp4
1 þ 4p2

1p
2
2 − 4p4

2Þ − 3p2
3ðp6

1 − 6p4
1p

2
2 þ 4p2

1p
4
2 þ p6

2Þ
− 3p8

3p
6
3ð7p2

1 − 3p2
2Þ�;

A21 ¼ −λ½2p6
3ð3p2

1 þ p2
2Þ þ 4p2

1p
4
3ð3p2

2 − 2p2
1Þ þ ðp2

1 − p2
2Þ4 þ 2p2

3ðp1 − p2Þðp1 þ p2Þðp4
1 þ 8p2

1p
2
2 þ p4

2Þ − p8
3�;
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A22 ¼ −2p2
2p

2
3½−17p8

1 þ p6
1ð28p2

2 þ 26p2
3Þ − 4p4

1ðp4
2 þ 15p2

2p
2
3Þ þ ðp2

2 − p2
3Þ4 − 2p2

1ðp2
2 − p2

3Þ2ð4p2
2 þ 5p2

3Þ�;
A23 ¼ þ2p2

3½2p10
1 − p8

1ðp2
2 þ 6p2

3Þ þ p6
1ð−10p4

2 þ 46p2
2p

2
3 þ 6p4

3Þ − 2p2
1ð4p2

2 þ 5p2
3Þðp3

2 − p2p2
3Þ2 þ p2

2ðp2
2 − p2

3Þ4
þ 2p4

1ð8p6
2 − 21p4

2p
2
3 − 18p2

2p
4
3 − p6

3Þ�;
A24 ¼ −12p4

1p
2
2p

2
3½p4

3ð3p2
2 − 5p2

1Þ þ ðp2
1 − p2

2Þ3 þ p2
3ðp4

1 þ 4p2
1p

2
2 − 5p4

2Þ þ 3p6
3�; ð126Þ

with the Källen λ-function given by

λ≡ λðp1; p2; p3Þ
¼ ðp1 − p2 − p3Þðp1 þ p2 − p3Þðp1 − p2 þ p3Þ
:ðp1 þ p2 þ p3Þ: ð127Þ

VIII. MATCHING THE PERTURBATIVE
SOLUTION

In this section, we verify the matching between the
perturbative form factors in Eq. (124) and the nonpertur-
bative ones in Eq. (106). First of all, one can immediately
see that A3 and A4 vanish in both calculations. On the other
hand, in order to verify the matching between the first two
form factors, we will need to rewrite the 3K integrals in the
conformal solution in terms of the master integral C0.
For this purpose, we recall the reduction relations presented
in [54,55]

Iαfβ1β2β3g ¼ ð−1ÞβtKjn0j−1
j;βj

�
p2β1
1 p2β2

2 p2β3
3

�
1

p1

∂

∂p1

�
β1

×

�
1

p2

∂

∂p2

�
β2
�
1

p3

∂

∂p3

�
β3
I1f000g

�
: ð128Þ

Moreover, the integral I1f0;0;0g is related to the massless
scalar 1-loop 3-point momentum-space integral

I1f0;0;0g ¼ ð2πÞ2K4;f1;1;1g

¼ ð2πÞ2
Z

d4k
ð2πÞ4

1

k2ðk − p1Þ2ðkþ p2Þ2

¼ 1

4
C0ðp2

1; p
2
2; p

2
3Þ; ð129Þ

where

Kdfδ1δ2δ3g ≡
Z

ddk
ð2πÞd

1

ðk2Þδ3ððk − p1Þ2Þδ2ððkþ p2Þ2Þδ1
:

ð130Þ

Hence, it follows that the 3K integrals in our conformal
solutions (106) are finite and can be reduced to

I5f2;1;1g ¼
i
4
p1p2p3

�
p1

∂

∂p1

−1

�
∂
3

∂p1∂p2∂p3

C0ðp2
1;p

2
2;p

2
3Þ

I4f2;1;0g ¼−
i
4
p1p2

�
p1

∂

∂p1

−1

�
∂
2

∂p1∂p2

C0ðp2
1;p

2
2;p

2
3Þ

ð131Þ

By using the relations of the derivative acting on the master
integral in Appendix D and setting the anomalous coef-
ficient as in Eq. (123), one can then verify the matching
between the perturbative and nonperturbative form factors.

IX. THE ANOMALY POLE
OF THE GRAVITATIONAL ANOMALY

AND THE SUM RULES

As we have already mentioned in the previous sections, it
is clear that our result does not depend on the specific
expression of the current J5 appearing in the correlator,
since we have been using only the general symmetry
properties of this 3-point function and its anomaly content
in order to solve the conformal constraints.
Being the result unique and expressed in terms of a

single constant, it shows that in a parity-odd CFT the
gravitational anomaly vertex is generated by the exchange
of an anomaly pole, with the entire correlator built around
such massless pole and the value of its residue. Since this
massless exchange was also present in the perturbative
analysis of [34], we are now going to elaborate on those
previous findings under the light of our current result.

A. Duality symmetry

The Maxwell equations in the absence of charges and
currents satisfy the duality symmetry (E → B and
B → −E). The symmetry can be viewed as a special case
of a continuous symmetry

δFμν
V ¼ βF̃μν

V ; ð132Þ

where δβ is an infinitesimal SOð2Þ rotation and F̃μν ¼
ϵμνρσFρσ=2. Its finite form

�
E

B

�
¼
�

cos β sin β

− sin β cos β

��
E

B

�
ð133Þ
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is indeed a symmetry of the equations of motion, but not of
the Maxwell action. Notice that the action

S ¼
Z

d4xFμν
V FV μν ð134Þ

is invariant under an infinitesmal transformation modulo a
total derivative. For β ¼ π=2, the discrete case, then the
action flips sign since ðF2

V → −F̃2
VÞ. In general, the

infinitesimal variation of the action takes the form

δβS0 ¼ −β
Z

d4x∂μðF̃μν
V VνÞ: ð135Þ

Due to the equivalence (dual Bianchi identity)

∂νF
μν
V ¼ 0 ↔ ϵμνρσ∂νF̃V ρσ ¼ 0; ð136Þ

we can introduce the dual gauge field Ṽμ

F̃μν
V ¼ ∂

μṼν − ∂
νṼμ; ð137Þ

which is related to the original Vμ one by

∂
μṼν − ∂

νṼμ ¼ ϵμνρσ∂ρVσ: ð138Þ

The current corresponding to the infinitesimal symmetry
(135) can be expressed in the form

Jμ ¼ F̃μν
V Vν − Fμν

V Ṽν; ð139Þ

whose conserved charge is gauge invariant,

Q5 ¼
Z

d3xðV ·∇ × V − Ṽ ·∇ × ṼÞ; ð140Þ

after an integration by parts. Notice that the two terms on
the equation above count the linking number of magnetic
and electric lines respectively. In fluid mechanics, helicity
is the volume integral of the scalar product of the velocity
field with its curl given by

Hfluid ¼
Z

d3xv⃗ ·∇ × v⃗ ð141Þ

and one recognizes in (140) the expression

Q5 ¼
Z

d3xðB · V − E · ṼÞ ð142Þ

with B ¼ ∇ × V and E ¼ −∇ × Ṽ, that coincides with the
optical helicity of the electromagnetic field [41].
As already mentioned, a perturbative analysis of

hTTJCSi has been presented long ago in [35]. The presence
of anomaly poles in this correlator can indeed be extracted
from [35], in agreement with our result. Indeed, for on shell

gravitons (g) and photons (γ), the authors obtain, with the
inclusion of mass effects in the hAVVi, hTTJfi, and
hTTJCSi the following expressions for the matrix elements:

h0jJμfjγγi ¼ f1ðq2Þ
qμ

q2
FVκλF̃κλ

V ; ð143Þ

h0jJμfjggi ¼ f2ðq2Þ
qμ

q2
RκλρσR̃κλρσ; ð144Þ

h0jJμCSjggi ¼ f3ðq2Þ
qμ

q2
RκλρσR̃κλρσ; ð145Þ

where q is the momentum of the chiral current. The
anomaly poles are extracted by including a mass m in
the propagators of the loop corrections, in the form of either
a fermion mass for the hAVVi and the hTTJfi, or working
with a Proca spin-1 in the case of hTTJCSi, and then taking
the limit for m → 0. A dispersive analysis gives for the
corresponding spectral densities [35]

ΔAVVðq2;mÞ≡ Imf1ðq2Þ ¼
dAVV
q2

ð1− v2Þ log1þ v
1− v

;

ΔTTJfðq2;mÞ≡ Imf2ðq2Þ ¼
dTTJf
q2

ð1− v2Þ2 log1þ v
1− v

;

ΔTTJCSðq2;mÞ≡ Imf3ðq2Þ ¼
dTTJCS
q2

v2ð1− v2Þ2 log1þ v
1− v

;

ð146Þ

with v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2=q2

p
and dAVV ¼ −1=2αem, dTTJf ¼

1=ð192πÞ, and dTTJCS ¼ 1=ð96πÞ being the corresponding
anomaly coefficients in the normalization of the currents
of [35], with αem the electromagnetic coupling.
Notice the different functional forms of ΔTTJfðq2; mÞ

andΔTTJCSðq2; mÞ away from the conformal limit, when the
mass m is nonzero. One can easily check that in the
massless limit the branch cut present in the previous
spectral densities at q2 ¼ 4m2 turns into a pole

lim
m→0

Δðq2; mÞ ∝ δðq2Þ ð147Þ

in all the three cases. Beside, one can easily show that the
same spectral densities satisfy three sum rules:

Z
∞

4m2

dsΔAVVðs;mÞ ¼ 2dAVV; ð148Þ

Z
∞

4m2

dsΔTTJfðs;mÞ ¼ 2

3
dTTJf ; ð149Þ

Z
∞

4m2

dsΔTTJCSðs;mÞ ¼ 14

45
dTTJCS ; ð150Þ
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indicating that for any deformation m from the conformal
limit, the integral under Δðs;mÞ is mass independent.
Therefore, the numerical value of the area equals the value
of the anomaly coefficient in each case.
One can verify, from Eq. (106), by taking the on shell

photon/graviton limit, that the transverse sector of hTTJ5i,
corresponding to the form factors A1 and A2, vanishes,
since these two form factors are zero, limiting each of
these matrix elements to only single form factors, as
indicated in (144) and (145). Then it is clear that, in
general, the structure of the anomaly action responsible
for the generation of the gravitational chiral anomaly can
be expressed in the form

Sanom ∼
Z

d4xd4y∂λAλ 1

□
ðx; yÞRR̃ðyÞ þ…; ð151Þ

where the ellipses stand for the transverse sector, and Aλ is
a spin-1 external source. For on shell gravitons, as

remarked above, this action summarizes the effect of
the entire chiral gravitational anomaly vertex, being
exactly given by the exchange of a single anomaly pole.

X. SUMMARY OF THE RESULTS

Before coming to our comments and conclusions, for the
reader’s convenience, we briefly summarize our findings.
We have shown that in a general CFT the hTTJ5i

correlator can be written as a sum of two terms

hTμ1ν1Tμ2ν2Jμ35 i ¼ htμ1ν1tμ2ν2jμ35 i þ htμ1ν1tμ2ν2jμ35loci; ð152Þ

the first term being the transverse component and the
second, the longitudinal one, expressed in terms of a single
anomaly form factor and tensor structure. This is charac-
terized by an interpolating anomaly pole.
The anomaly part is given by the expression

htμ1ν1tμ2ν2jμ35loci ¼ 4ia2
pμ3
3

p2
3

ðp1 · p2Þ
��

εν1ν2p1p2

�
gμ1μ2 −

pμ2
1 p

μ1
2

p1 · p2

�
þ ðμ1 ↔ ν1Þ

�
þ ðμ2 ↔ ν2Þ

	
ð153Þ

while the transverse-traceless part is

htμ1ν1ðp1Þtμ2ν2ðp2Þjμ35 ðp3Þi ¼ Πμ1ν1
α1β1

ðp1ÞΠμ2ν2
α2β2

ðp2Þπμ3α3ðp3Þ½A1ε
p1α1α2α3pβ1

2 p
β2
3 − A1ðp1 ↔ p2Þεp2α1α2α3pβ1

2 p
β2
3

þ A2ε
p1α1α2α3δβ1β2 − A2ðp1 ↔ p2Þεp2α1α2α3δβ1β2 � ð154Þ

with A1 and A2 given by Eq. (106).
The entire correlator is therefore determined only by the

anomalous coefficient a2 in (153). We have also computed
the correlator perturbatively at one-loop in free-field theory
and verified the agreement of the expression with the
nonperturbative results obtained by imposing the con-
formal symmetry. The explicit expressions of the form
factors A1 and A2 have been given in (124).
The solutions of the conformal constraints, expressed in

terms of 3K integrals I5f2;1;1g and I4f2;1;0g, can be related to
the ordinary one-loop master integrals C0 and B0 by (131).
They can be reconstructed using recursively the relations
included in Appendix D.

XI. COMMENTS: NONRENORMALIZATION
OF THE hAVVi AND hTTJ5i AND THE
SOFT-PHOTON/GRAVITON LIMITS

Before coming to our conclusions, we pause for few
comments on the results of our paper, in relation to our
previous study of the hAVVi chiral anomaly vertex, in a
general CP-violating CFT [32]. In the case of the hAVVi
vertex, the Adler-Bardeen theorem shows that the longi-
tudinal part of the interaction is not affected by

renormalization and therefore can be computed exactly just
from the one-loop triangle diagram, being protected from
perturbative corrections at higher orders. This is not true for
the transverse part of the same diagram, that satisfies an
ordinary WI. However, in [56] it was pointed out that, in the
kinematic limit where the momentum of one of the vector
currents is vanishingly small, another nonrenormalization
theorem is valid. Indeed, in that limit just two independent
form factors are needed to fully describe the hAVVi
correlator. One of these form factors is related to the axial
anomaly and, therefore, it is not renormalized. The other
form factor belongs to the transverse sector.
In [56] it was shown that, due to helicity conservation in

massless QCD, the two form factors are in fact proportional
to each other, and so the nonrenormalization of one of them
implies that of the other. If the anomalous behavior is
identified with the exchange of an anomaly pole, that result
relates the anomaly pole to the transverse part of the
diagram, when one of the photons becomes soft.
Perturbative analysis of the diagram—in the most gen-

eral kinematics—showed that at two loops the entire
diagram is indeed nonrenormalized [57], a feature that
disappears at higher perturbative orders. Indeed, the authors
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of [58] found nonvanishing corrections to the correlator at
Oðα2SÞ. The nonrenormalization to all orders of a specific
combination of the transverse form factors of the hAVVi
was shown to hold in [59], in the chiral limit of QCD, since
it equals the longitudinal form factor. The latter is, obvi-
ously, nonrenormalized since the anomaly pole and its
residue are protected. Other combinations of purely trans-
verse form factors were also shown to be nonrenormalized.
In our anaysis [32] we have shown—just using the

conformal constraints—that such results indeed follow
from conformal symmetry, once these are solved either
in the most general kinematics or in the specific one
required by Vainshtein’s conjecture [56]. Therefore, the
breaking of the nonrenormalizaton theorem for the entire
vertex in QCD must originate from terms breaking con-
formal invariance and must be proportional to the QCD β
function.
In this paper we have verified that a similar connection

between the longitudinal and the transverse part is present
in the case of the hTTJ5i correlator in the conformal limit,
being both sectors proportional to the a2 anomalous
coefficient.
With these new indications, that follow quite closely the

hAVVi case previously discussed by us, it would be
interesting to test, at the perturbative level, if in the soft-
graviton limit a similar result holds for this correlator at all
orders in perturbative QCD. We do expect that the higher
order corrections will be proportional to the QCD β
function, therefore breaking the conformal symmetry.

XII. CONCLUSIONS

We have presented an analysis of the gravitational
anomaly vertex from the perspective of CFT in momentum
space. We have shown how the vertex can be completely
defined by the inclusion of a single anomaly pole together
with the CWIs. This explicit analysis shows that
reconstruction method formulated in the parity-even sector
in the case of conformal anomaly correlators can be
extended quite naturally to the parity-odd sector. This
provides a different and complementary perspective on
the origin of anomalies and their related effective actions,
which may account for such phenomena. This extension
highlights the intrinsic connection between these seemingly
distinct sectors and suggests a unified framework for
comprehending the origin of anomalies. It underscores
the notion that anomalies, whether chiral, conformal, or
supersymmetric, share a common underlying structure
characterized by the presence of a single (anomaly) form
factor, together with a specific tensor structure responsible
for generating the anomaly.
The approach does not rely on the explicit structure of

the parity-odd current appearing in the correlator but,
rather, on its symmetry properties. We have also shown
that, similarly to previous dispersive analysis of the
anomalous form factors for the hTJJi and hAVVi

diagrams, the spectral density of the anomalous form factor
of the hTTJ5i satisfies a sum rule. The numerical value of
the sum rule is fixed by the anomaly.
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APPENDIX A: 3K INTEGRALS

The most general solution of the CWIs for our corre-
lators can be written in terms of integrals involving a
product of three Bessel functions, namely 3K integrals. In
this appendix, we will illustrate such integrals and their
properties. For a detailed review on the topic, see [4,5,54].

1. Definition and properties

First, we recall the definition of the general 3K integral,

Iαfβ1β2β3gðp1; p2; p3Þ ¼
Z

dxxα
Y3
j¼1

p
βj
j KβjðpjxÞ; ðA1Þ

where Kν is a modified Bessel function of the second kind

KνðxÞ ¼
π

2

I−νðxÞ − IνðxÞ
sinðνπÞ ; ν ∉ Z

IνðxÞ ¼
�
x
2

�
νX∞
k¼0

1

Γðkþ 1ÞΓðνþ 1þ kÞ
�
x
2

�
2k
; ðA2Þ

with the property

KnðxÞ ¼ lim
ϵ→0

KnþϵðxÞ; n∈Z: ðA3Þ
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The triple-K integral depends on four parameters; the
power α of the integration variable x, and the three
Bessel function indices βj. The arguments of the 3K
integral are magnitudes of momenta pj with j ¼ 1, 2, 3.
One can notice the integral is invariant under the
exchange ðpj; βjÞ ↔ ðpi; βiÞ.
We will also use the reduced version of the 3K integral

defined as

JNfkjg ¼ Id
2
−1þNfΔj−d

2
þkjg; ðA4Þ

where we introduced the condensed notation fkjg ¼
fk1; k2; k3g. The 3K integral satisfies an equation analo-
gous to the dilatation equation with scaling degree

degðJNfkjgÞ ¼ Δt þ kt − 2d − N; ðA5Þ

where

kt ¼ k1 þ k2 þ k3; Δt ¼ Δ1 þ Δ2 þ Δ3: ðA6Þ

From this analysis, it is simple to relate the form factors to
the 3K integrals. Indeed, the dilatation WI of each from
factor tells us that this needs to be written as a combination
of integrals of the following type:

JNþkt;fk1;k2;k3g; ðA7Þ

where N is the number of momenta that the form factor
multiplies in the decomposition. Let us now list some
useful properties of 3K integrals:

∂

∂pn
JNfkjg ¼ −pnJNþ1fkj−δjng;

JNfkjþδjng ¼ p2
nJNfkj−δjng þ 2

�
Δn −

d
2
þ kn

�
JN−1fkjg;

∂
2

∂p2
n
JNfkjg ¼ JNþ2fkjg − 2

�
Δn −

d
2
þ kn −

1

2

�
JNþ1fkj−δjng;

KnJNfkjg ≡
�

∂
2

∂p2
n
þ ðdþ 1 − 2ΔnÞ

pn

∂

∂pn

�
JNfkjg ¼ JNþ2fkjg − 2knJNþ1fkj−δjng;

KnmJNfkjg ≡ ðKn − KmÞJNfkjg ¼ −2knJNþ1fkj−δjng þ 2kmJNþ1fkj−δjmg: ðA8Þ

2. Zero-momentum limit

When solving the secondary CWIs, it may be useful to perform a zero-momentum limit. In this subsection, we review the
behavior of the 3K integrals in the limit p3 → 0. In this limit, the momentum conservation gives

pμ
1 ¼ −pμ

2 ⇒ p1 ¼ p2 ≡ p: ðA9Þ

Assuming that α > βt − 1 and β3 > 0, we can write

lim
p3→0

Iαfβjgðp; p; p3Þ ¼ pβt−α−1lαfβjg; ðA10Þ

where

lαfβjg ¼
2α−3Γðβ3Þ

Γðα − β3 þ 1ÞΓ
�
αþ βt þ 1

2
− β3

�
Γ
�
α − βt þ 1

2
þ β1

�
Γ
�
α − βt þ 1

2
þ β2

�
Γ
�
α − βt þ 1

2

�
: ðA11Þ

We can derive similar formulas for the case p1 → 0 or p2 → 0 by considering the fact that 3K integrals are invariant under
the exchange ðpj; βjÞ ↔ ðpi; βiÞ.

3. Divergences and regularization

The 3K integral defined in (A1) converges when

α >
X3
i¼1

jβij − 1; p1; p2; p3 > 0: ðA12Þ
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If α does not satisfy this inequality, the integrals must be
defined by an analytic continuation. The quantity

δ≡X3
j¼1

jβjj − 1 − α ðA13Þ

is the expected degree of divergence. However, when

αþ 1� β1 � β2 � β3 ¼ −2k; k ¼ 0; 1; 2;…; ðA14Þ

for some non-negative integer k and any choice of the �
sign, the analytic continuation of the 3K integral generally
has poles in the regularization parameter. Therefore, if the
above condition is satisfied, we need to regularize the
integrals. This can be done by shifting the parameters of
the 3K integrals as

Iαfβ1;β2;β3g → Iα̃fβ̃1;β̃2;β̃3g ⇒ JNfk1;k2;k3g

→ JNþuϵfk1þv1ϵ;k2þv2ϵ;k3þv3ϵg; ðA15Þ

where

α̃ ¼ αþ uϵ; β̃1 ¼ β1 þ v1ϵ;

β̃2 ¼ β2 þ v2ϵ; β̃3 ¼ β3 þ v3ϵ; ðA16Þ

or equivalently by considering

d → dþ 2uϵ; Δ → Δi þ ðuþ viÞϵ: ðA17Þ

In general, the regularisation parameters u and vi are
arbitrary. However, in certain cases, there may be some
constraints on them. For simplicity, in this paper we
consider the same vi ¼ v for every i.

4. 3K integrals and Feynman integrals

3K integrals are related to Feynman integrals in momen-
tum space. The exact relations were first derived in [4,54].
Here we briefly show the results. Such expressions have
been recently used in order to show the connection between
the conformal analysis and the perturbative one for the
hAVVi correlator [32].
Let Kdfδ1δ2δ3g denote a massless scalar 1-loop 3-point

momentum space integral

Kdfδ1δ2δ3g ¼
Z

ddk
ð2πÞd

1

k2δ3 jp1 − kj2δ2 jp2 þ kj2δ1 : ðA18Þ

Any such integral can be expressed in terms of 3K integrals
and vice versa. For scalar integrals the relation reads

Kdfδ1δ2δ3g ¼
24−

3d
2

π
d
2

Id
2
−1fd

2
þδ1−δt;d2þδ2−δt;d2þδ3−δtg

Γðd − δtÞΓðδ1ÞΓðδ2ÞΓðδ3Þ
; ðA19Þ

where δt ¼ δ1 þ δ2 þ δ3. Its inverse reads

Iαfβ1β2β3g ¼ 23α−1παþ1Γ
�
αþ 1þ βt

2

�

×
Y3
j¼1

Γ
�
αþ 1þ 2βj − βt

2

�

× K2þ2α;f1
2
ðαþ1þ2β1−βtÞ;12ðαþ1þ2β2−βtÞ;12ðαþ1þ2β3−βtÞg;

ðA20Þ

where βt ¼ β1 þ β2 þ β3. All tensorial massless 1-loop
3-point momentum-space integrals can also be expressed in
terms of a number of 3K integrals when their tensorial
structure is resolved by standard methods (for the exact
expressions in this case see Appendix A 3 of [4]).

APPENDIX B: SCHOUTEN IDENTITIES

In this section we derive the following minimal decomposition used when analyzing the special conformal constraint on
the hTTJ5i correlator

0 ¼ Πα1β1
μ1ν1 ðp1ÞΠα2β2

μ2ν2 ðp2Þπα3μ3ðp3ÞðKκhTμ1ν1ðp1ÞTμ2ν2ðp2ÞJμ35 ðp3ÞiÞ
¼ Πα1β1

μ1ν1 ðp1ÞΠα2β2
μ2ν2 ðp2Þπα3μ3ðp3Þ½pκ

1ðC11ε
p1μ1μ2μ3pν1

2 p
ν2
3 þ C12ε

p2μ1μ2μ3pν1
2 p

ν2
3 þ C13ε

p1μ1μ2μ3δν1ν2 þ C14ε
p2μ1μ2μ3δν1ν2

þ C15ε
p1p2μ1μ2pν1

2 p
ν2
3 p

μ3
1 þ C16ε

p1p2μ1μ2δν1ν2pμ3
1 Þ

þ pκ
2ðC21ε

p1μ1μ2μ3pν1
2 p

ν2
3 þ C22ε

p2μ1μ2μ3pν1
2 p

ν2
3 þ C23ε

p1μ1μ2μ3δν1ν2 þ C24ε
p2μ1μ2μ3δν1ν2

þ C25ε
p1p2μ1μ2pν1

2 p
ν2
3 p

μ3
1 þ C26ε

p1p2μ1μ2δν1ν2pμ3
1 Þ
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þ δκμ1ðC31ε
p1μ2μ3ν1pν2

3 þ C32ε
p2μ2μ3ν1pν2

3 þ C33ε
p1p2μ2ν1pμ3

1 p
ν2
3 þ C34ε

p1p2μ2μ3δν1ν2Þ
þ δκμ2ðC41ε

p1μ1μ3ν2pν1
2 þ C42ε

p2μ1μ3ν2pν1
2 þ C43ε

p1p2μ1ν2pμ3
1 p

ν1
2 þ C44ε

p1p2μ1μ3δν1ν2Þ
þ C51ε

κμ1μ2μ3δν1ν2 þ C52ε
κμ1μ2μ3pν1

2 p
ν2
3 þ C53ε

p1κμ1μ2pμ3
1 δ

ν1ν2 þ C54ε
p2κμ1μ2pμ3

1 δ
ν1ν2 �: ðB1Þ

In order to determine such decomposition, first we have to write all the possible tensor structures that can appear in the
equation. In particular the tensor related to the primary equations are

εp1μ1μ2μ3pν1
2 p

ν2
3 p

κ
1; εp1μ1μ2μ3pν1

2 p
ν2
3 p

κ
2; εp2μ1μ2μ3pν1

2 p
ν2
3 p

κ
1; εp2μ1μ2μ3pν1

2 p
ν2
3 p

κ
2;

εp1μ1μ2μ3δν1ν2pκ
1; εp1μ1μ2μ3δν1ν2pκ

2; εp2μ1μ2μ3δν1ν2pκ
1; εp2μ1μ2μ3δν1ν2pκ

2;

εp1p2μ1μ2pν1
2 p

ν2
3 p

μ3
1 p

κ
1; εp1p2μ1μ2pν1

2 p
ν2
3 p

μ3
1 pκ

2; εp1p2μ1μ2δν1ν2pμ3
1 p

κ
1; εp1p2μ1μ2δν1ν2pμ3

1 p
κ
2;

εp1p2μ1μ2pν1
2 δ

ν2μ3pμ3
1 p

κ
1; εp1p2μ1μ2pν1

2 δ
ν2μ3pμ3

1 pκ
2; εp1p2μ1μ2pν2

1 δ
ν1μ3pμ3

1 p
κ
2; ðB2Þ

and similar ones for the secondary. However, not all of these tensors are independent. Some of these tensors can be rewritten
in terms of each others. We then need to find a set of tensors that form a minimal decomposition. We will illustrate a couple
of cases of Schouten identities needed for this purpose. For example we consider the equation,

0 ¼ ε½p1p2μ1μ2δμ3�α ; ðB3Þ

which can be contracted with pα
1 and pα

2 , obtaining

Πα1β1
μ1ν1 ðp1ÞΠα2β2

μ2ν2 ðp2Þπα3μ3ðp3Þ½εp1p2μ1μ3pμ2
3 � ¼ Πα1β1

μ1ν1 ðp1ÞΠα2β2
μ2ν2 ðp2Þπα3μ3ðp3Þ

�
1

2
εp1μ1μ2μ3ð−p2

1 − p2
2 þ p2

3Þ

− εp1p2μ1μ2pμ3
1 − εp2μ1μ2μ3p2

1

�
;

Πα1β1
μ1ν1 ðp1ÞΠα2β2

μ2ν2 ðp2Þπα3μ3ðp3Þ½εp1p2μ2μ3pμ1
2 � ¼ Πα1β1

μ1ν1 ðp1ÞΠα2β2
μ2ν2 ðp2Þπα3μ3ðp3Þ

�
εp1μ1μ2μ3p2

2 þ εp1p2μ1μ2pμ3
1

−
1

2
εp2μ1μ2μ3ð−p2

1 − p2
2 þ p2

3Þ
�
: ðB4Þ

We then consider the identity

0 ¼ ε½p1p2μ1μ2δκ�α ðB5Þ

which can be contracted with pα
1 and pα

2 , obtaining

Πα1β1
μ1ν1 ðp1ÞΠα2β2

μ2ν2 ðp2Þπα3μ3ðp3Þ½εp1p2κμ1pμ2
3 � ¼ Πα1β1

μ1ν1 ðp1ÞΠα2β2
μ2ν2 ðp2Þπα3μ3ðp3Þ

�
−
1

2
εp1κμ1μ2ð−p2

1 − p2
2 þ p2

3Þ

þ εp1p2μ1μ2pκ
1 þ εp2κμ1μ2p2

1

�
;

Πα1β1
μ1ν1 ðp1ÞΠα2β2

μ2ν2 ðp2Þπα3μ3ðp3Þ½εp1p2κμ2pμ1
2 � ¼ Πα1β1

μ1ν1 ðp1ÞΠα2β2
μ2ν2 ðp2Þπα3μ3ðp3Þ

�
−εp1κμ1μ2p2

2 þ εp1p2μ1μ2pκ
2

þ 1

2
εp2κμ1μ2ð−p2

1 − p2
2 þ p2

3Þ
�
: ðB6Þ

The analysis of the remaining contraints is rather involved, but follows the steps outlined above. In the end, after considering
all the possible Schouten identities, one finds a minimal set of independent structures as expressed in Eq. (B1).

CORIANÒ, LIONETTI, and MAGLIO PHYS. REV. D 109, 045004 (2024)

045004-24



APPENDIX C: VERTICES

In this section we list the explicit expression of all the vertices needed for the perturbative analysis of the hTTJ5i
correlator. The momenta of the gravitons and the axial boson are all incoming as well as the momentum indicated with k1.
The momentum k2 instead is outgoing. In order to simplify the notation, we introduce the tensor components:

Aμνρσ ≡ gμνgρσ −
1

2
ðgμρgνσ þ gμσgνρÞ;

Bμνρσαβ ≡ gαβgμνgρσ − gαβðgμρgνσ þ gμσgνρÞ;

Cμνρσαβ ≡ 1

2
gμνðgαρgβσ þ gασgβρÞ þ 1

2
gρσðgαμgβν þ gανgβμÞ;

Dμνρσαβ ≡ 1

2
ðgασgβμgνρ þ gαρgβμgνσ þ gασgβνgμρ þ gαρgβνgμσÞ

þ 1

4
ðgαμgβσgνρ þ gαμgβρgνσ þ gανgβσgμρ þ gανgβρgμσÞ;

Gαβγ ≡ γαγβγγ − γβγαγγ þ γγγαγβ − γγγβγα: ðC1Þ

The vertices can then be written as
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APPENDIX D: MASTER INTEGRALS

In this section we summarize some important relations regarding the master integrals B0 and C0. They are defined by the
following expressions in the Euclidean space3

B0ðp2
i Þ≡ 1

π2

Z
ddl

1

l2ðl − piÞ2
¼ 1

ε
þ log

�
−

μ2

πp2
i

�
− γ þ 2 ðD1Þ

and

C0ðp2
1; p

2
2; p

2
3Þ≡ 1

π2

Z
ddl

1

l2ðl − p1Þ2ðlþ p2Þ2

¼ 1ffiffiffi
λ

p
"
Li2

 
−
−p2

1 þ p2
2 þ p2

3 þ
ffiffiffi
λ

p

p2
1 − p2

2 − p2
3 þ

ffiffiffi
λ

p
!

þ Li2

 
−

p2
1 − p2

2 þ p2
3 þ

ffiffiffi
λ

p

−p2
1 þ p2

2 − p2
3 þ

ffiffiffi
λ

p
!
− Li2

 
p2
1 þ p2

2 − p2
3 −

ffiffiffi
λ

p

p2
1 þ p2

2 − p2
3 þ

ffiffiffi
λ

p
!

þ Li2

 
−

p2
1 þ p2

2 − p2
3 þ

ffiffiffi
λ

p

−p2
1 − p2

2 þ p2
3 þ

ffiffiffi
λ

p
!
− Li2

 
p2
1 − p2

2 þ p2
3 −

ffiffiffi
λ

p

p2
1 − p2

2 þ p2
3 þ

ffiffiffi
λ

p
!

− Li2

 
−p2

1 þ p2
2 þ p2

3 −
ffiffiffi
λ

p

−p2
1 þ p2

2 þ p2
3 þ

ffiffiffi
λ

p
!#

ðD2Þ

with λ≡ λðp1; p2; p3Þ defined in (127). By acting with derivatives on such integrals one finds [9]

∂

∂pi
B0ðp2

i Þ ¼
ðd − 4Þ

pi
B0ðp2

i Þ ðD3Þ

and

3In the Minkoski space, the prefactor of the integrals is 1=ðiπ2Þ.
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∂

∂p1

C0 ¼
1

λp1

f2ðd − 3Þ½ðp2
1 þ p2

2 − p2
3ÞB0ðp2

2Þ þ ðp2
1 − p2

2 þ p2
3ÞB0ðp2

3Þ − 2p2
1B0ðp2

1Þ�

þ ½ðd − 4Þðp2
2 − p2

3Þ2 − ðd − 2Þp4
1 þ 2p2

1ðp2
2 þ p2

3Þ�C0ðp2
1; p

2
2; p

2
3Þg;

∂

∂p2

C0 ¼
1

λp2

f2ðd − 3Þ½ðp2
1 þ p2

2 − p2
3ÞB0ðp2

1Þ þ ðp2
2 þ p2

3 − p2
1ÞB0ðp2

3Þ − 2p2
2B0ðp2

2Þ�

þ ½2p2
3ðp2

2 − ðd − 4Þp2
1Þ þ ðp2

1 − p2
2Þððd − 4Þp2

1 þ ðd − 2Þp2
2Þ þ ðd − 4Þp4

3�C0ðp2
1; p

2
2; p

2
3Þg;

∂

∂p3

C0 ¼
1

λp3

f2ðd − 3Þ½ðp2
1 − p2

2 þ p2
3ÞB0ðp2

1Þ þ ðp2
2 þ p2

3 − p2
1ÞB0ðp2

2Þ − 2p2
3B0ðp2

3Þ�

þ ½ðd − 4Þðp2
1 − p2

2Þ2 − ðd − 2Þp4
3 þ 2p2

3ðp2
1 þ p2

2Þ�C0ðp2
1; p

2
2; p

2
3Þg: ðD4Þ
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