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We illustrate how the conformal Ward identities (CWI) and the gravitational chiral anomaly completely
determine the structure of the (TTJs) (graviton-graviton-chiral gauge current) correlator in momentum
space. This analysis extends our previous results on the anomaly vertices (AVV) and (AAA), as well as the
(TJJ) parity-odd conformal anomaly vertex in general CFTs. The (T7Js) plays a fundamental role in
the analysis of the conformal backreaction in early Universe cosmology, affecting the particle content and
the evolution of the primordial plasma. Our approach is nonperturbative and not Lagrangian based,
requiring the inclusion of a single anomaly pole in the solution of the anomaly constraint. The pole and its
residue, along with the CWIs, determine the entire correlator in all of its sectors (longitudinal/transverse),
all of which are proportional to the same anomaly coefficient. The method does not rely on a specific
expression of the CP-odd anomalous current, which in free field theory can be represented either by a
bilinear fermion current or by a gauge-dependent Chern-Simons current; it relies solely on the symmetry
constraints. We compute the correlator perturbatively at one loop in free field theory and verify its exact
agreement with the nonperturbative result. A comparison with the perturbative analysis confirms the
presence of a sum rule satisfied by the correlator, similar to the parity-even (7.JJ) and the chiral (AVV).
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I. INTRODUCTION

The original approach to identifying correlation func-
tions in conformal field theories (CFTs) has traditionally
been formulated using coordinate space methods, both for
scalar and tensor correlators. In the presence of anomalies,
the solutions of the corresponding conformal Ward iden-
tities (CWIs) have been obtained by partitioning the
domain of definition of each correlator into nonlocal and
contact contributions. The equations are initially solved for
the regions in which the external coordinate points of the
correlators are all noncoincident. Anomalous corrections,
which arise when all the points coincide, are manually
added by including additional local terms with support
defined by products of delta functions.

This methodology was pioneered in ground-breaking
works [1,2], and it was successfully applied to correlators
containing the stress-energy tensor (7)) and conserved
vector currents (J), specifically the (TTT) and the (TJJ)
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correlators, respectively. On the other hand, investigations
of the conformal constraints in momentum space, in the
presence of conformal anomalies, are more recent. This
approach has been explored in several works [3-8], using
a general formulation, and it has been further examined in
perturbation theory [9-11] for correlation functions such
as the (TJJ) and the (TTT), using free field theory
realizations. The analysis of 4-point functions in both
generic CFTs and in free-field realizations has been
discussed in [12,13]. These analyses have predominantly
focused on the parity-even sector, including the contri-
bution of the conformal anomaly. In contrast, investiga-
tions into anomaly-free correlators of odd parity have only
recently emerged [14-16]. Given the intricate nature of
chiral and conformal anomalies, which are related to
contact interactions, the coordinate approach becomes
unwieldy, and the hierarchical character of the CWIs
certainly becomes rather involved. Consequently, shifting
to momentum space offers advantages due to its con-
nection with ordinary off shell scattering amplitudes.

A. The (TTJs) from parity-odd CFT

Gravitational anomalies generated by spin 1/2 and spin
3/2 particles have been extensively studied in several works
since the 1970s, due to their connection with ordinary gauge
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theories [17,18], supergravity [19] and self-dual antisym-
metric fields in string theory [20], just to mention a few
(see also [21] for a recent study on the properties of chiral
anomalies in the context of black holes). The gravitational
anomaly RR can appear in different settings. The non-
perturbative approach developed in this paper is general
and adaptable to many contexts, yet the anomaly’s impact
can vary from benign to dangerous, based on the circum-
stances. Consider, for example, a scenario involving a
Dirac fermion interacting with gravity and a vector
potential V,. Kimura, Delbourgo, and Salam were the
first to compute the anomaly in this case, observed in the
divergence of J5 [17,18]. This specific anomaly poses no
threat and may be of interest in phenomenology. For
convenience, we can also introduce an axial-vector field
A,, which couples to Js, but only as an external source
since an anomalous gauge symmetry for A, would spoil
unitarity and renormalizability.

Another instance involves a chiral model incorporating a
Weyl fermion v r interacting with gravity and a gauge
field. In this case, the anomaly emerges in the divergence of
J1/r» potentially endangering unitarity and renormaliza-
tion, unless it is canceled [20]. See [22] for a detailed
account on the types of chiral anomalies and their relation
to diffeomorphism invariance.

In general, in perturbation theory, the evaluation of
a chiral trace of Dirac matrices hinges on the choice of a
specific regularization and the related treatment of the
antisymmetric ¢ tensor in the loop. In the case of the
Breitenlohner-Maison-"t Hooft-Veltman scheme [23], for
example, the anomaly of parity-odd correlators is present
only on the Ward identity of the chiral current, while the
energy-momentum tensor and the vector currents are
conserved. In other regularizations, one can potentially
find a violation of the latter as well.

The correlator under scrutiny in this work is the (T7J5),
reinvestigated using CFT in momentum space (see [24] for
areview). We will utilize a formalism developed for curved
spacetime, from which the flat spacetime CWIs will be
consistently derived in d = 4, as constraints from special
background metrics [25]. This correlator involves two
stress-energy tensors and one parity-odd current, denoted
as Js. A study of this correlator was previously discussed in
[26] using coordinate space methods. In the Standard
Model, when Js is the non-Abelian SU(2) gauge current
or the hypercharge gauge current, this anomaly cancels out
by summing over the chiral spectrum of each fermion
generation. This feature is usually interpreted as an indi-
cation of the compatibility of the Standard Model when
coupled to a gravitational background, providing an essen-
tial constraint on its possible extensions. The correlator
plays a crucial role in mediating anomalies of global
currents associated with baryon (B) and lepton (L) numbers
in the presence of gravity.

In condensed matter theory, correlators affected both by
chiral and conformal anomalies, as well as by discrete
anomalies, play an important role in the context of
topological materials [27-31]. In our analysis, we dem-
onstrate how investigating CFT in momentum space allows
us to independently reproduce previous results found in
coordinate space [26].

The solution is uniquely constructed by assuming the
exchange of a single anomaly pole in the longitudinal sector
of this correlator when we proceed with its sector decom-
position. We will show that the momentum space solution,
derived from the CFT constraints, is unique and depends on
a single constant; the anomaly coefficient at the pole.

This result appears to be a common feature in correla-
tion functions that are finite and affected by parity-odd
anomalies, complementing our previous analysis of similar
correlation functions such as the (JJJs) (or (AVV) chiral
anomaly vertex) and the parity-odd (TJJ).

However, there are also some differences between the
(AVV) and (TTJs) cases, which are affected by a chiral
anomaly, and the (TJJ) 44, when this correlator is assumed
to develop a parity-odd trace anomaly. In the (AVV) and
the (TTJs), both the longitudinal and transverse sectors are
nonzero and completely determined by the anomaly pole,
initially introduced in the longitudinal sector as a solution
of the anomaly constraint [32]. Instead, in the (TJJ)4q.
only the longitudinal sector survives after imposing the
conformal constraints together with the (chiral) trace
anomaly [33], while the remaining sectors vanish.

B. Fermionic and Chern-Simons currents

In free field theory, two realizations of currents have
been discussed for this correlator; the bilinear (axial-vector)
fermion current Js; and the bilinear gauge-dependent
Chern-Simons (CS) current (J5 = Jcg) [34,35]. We recall
that in previous analysis it has been shown that both
currents of the form

Ji, = wysy'w (1)
or of the Chern-Simons form
Jés = e’““’PV”()DVp, (2)

could be considered in a perturbative realization of the same
correlator and generate a gravitational anomaly. Notice that
this second version of the current can be incorporated into
an ordinary partition function—in an ordinary Lagrangian
realization by a path integral—only in the presence of a
coupling to an axial-vector gauge field (A4,) via an inter-
action of the form

SAVFE/d4x\/§A/1JéS' (3)
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The term, usually denoted as AV A Fy, is the Abelian
Chern-Simons form that allows to move the anomaly from
one vertex to another in the usual (AVV) diagram. Details
on these point can be found in [36,37]. Notice that both
currents satisfy the parity-odd constraint given in (14).

Jcs 1s responsible for mediating the gravitational chiral
anomaly with spin-1 virtual photons in the loops, resulting
in a difference between their two circular modes and
inducing an optical helicity. This interaction is relevant
in early Universe cosmology and has an impact on
the polarization of the cosmic microwave background
(CMB) [38].

In this case, the classical symmetry to be violated is
the discrete duality invariance (E — B, B — —E) of
the Maxwell equations in the vacuum (see [39,40]). The
(TTJs) correlator induces similar effects on gravitational
waves [41,42]. Spectral asymmetries induced by chiral
anomalies, particularly the ordinary chiral anomaly (the
FF ~ E - B term), have been investigated for their impact
on the evolution of the primordial plasma, affecting the
magnetohydrodynamical (MHD) equations and the gen-
eration of cosmological magnetic fields [43-45].

As previously mentioned, our method exclusively
exploits the correlator’s symmetries to identify its structure,
which remains identical for a generic parity-odd J5. In both
cases (Js; and Jcg), the solution is entirely centered around
the anomaly pole, serving as a pivot for the complete
reconstruction of the corresponding correlators.

Both realizations of the (T7Js) correlator—using a Jcg
current or a Js; current—have been shown in [34,35] to
reduce to the exchange of an anomaly pole for on shell
gluons and photons for the unique form factors present in
the diagrams.

In these works, the authors introduced a mass deforma-
tion of the propagators in the loops and showed the
emergence of the pole as the mass was sent to zero. The
method relies on the spectral density of the amplitude and it
has been used also more recently in [46,47], in studies of the
parity-even (T'JJ) and in supersymmetric variants.

We comment on this point in Sec. IX and illustrate, by a
simple computation, that the spectral densities of the only
surviving form factors in the on shell (T'TJs), with J5 = J5
and Js5 = Jcg, satisfy two (mass-independent) sum rules.

C. Organization of the work

The outline of the paper is as follows. In Sec. I we review
some of the feature of the perturbative approach. We
examine the link between anomalies and the presence of
poles in the expression of correlators in momentum space.
In Sec. III, we briefly comment on the methodology
followed in the solution of the 4d CWIs in two previous
analyses by us [32,33] involving anomalous parity-odd
correlators, which may help clarify some of the technical
points contained in this work. Then, in Sec. IV, we examine
the constraints following from diffeomorphism, gauge and

Weyl invariance. In particular, we express the conformal
constraints on the (T7J5) as 4d differential equations first in
coordinates and then in momentum space. The two follow-
ing sections then discuss the general decomposition of the
correlator, following the methods of [4], extended to the
parity-odd case, and the solution of the conformal con-
straints. We present the general expression of the conformal
(TTJs) correlator in momentum space. In Sec. VII we
perform a perturbative analysis of the correlator and in
Sec. VIII we verify that the conformal solution and the
perturbative one coincide.

Then, in Sec. IX we show that, similarly to previous
dispersive analysis of the anomalous form factors for the
(TJJ) and (AVV) diagrams, the spectral density of the
anomalous form factor of the (T'7Js) satisfies a sum rule.
We summarize our findings in Sec. X and discuss the
nonrenormalizability of the (AVV) and (TTJs) in Sec. XI.
We leave to the Appendixes A-D a discussion of some
technical points concerning 3K integrals, the use of the
Schouten relations, and the identities we have used to
identify the correlator by the perturbative and nonpertur-
bative methods.

It is worth noting that the analysis of the conformal
constraints and the reconstruction method of [4], here
implemented in the parity-odd case, allows us to express
the correlator in terms of a minimal number of form factors.
For example, in the case of the parity-even (TJJ), the
reduction in their numbers has been from thirteen down to
three [4,10] by the inclusion of the conformal constraints
and a special choice of the parametrization of the tensor
structures symmetric in the external momenta. A similar
analysis has been performed for 4-point functions in the
parity-even (TTJJ) [13] and (TOOO) [12], where O are
identical conformal primary scalars.

II. THE NONPERTURBATIVE APPROACH

We will investigate the structure of the full (uncontracted)
vertices, in contrast to the majority of previous literature that
has focused solely on computing the anomaly, namely the
Ward identity (WI).

As demonstrated in previous works through perturbative
analyses of correlators such as the (JJJs) and the parity-
even (TJJ) [46,48], or the superconformal anomaly multi-
plet [47], the anomaly in momentum space is associated
with the exchange of an anomaly pole [49]. While the
coordinate space approach is valuable, it has limitations in
revealing the underlying dynamical source of the anomaly.
This aspect becomes considerably clearer in momentum
space when conducting a dispersive analysis of the anomaly
form factor.

In the case of the (T'TJs), previous analyses, conducted
for Jcs, have identified the presence of such pole in the
correlator [34]. This analysis was based on perturbation
theory for on shell gravitons. We will provide further
comments on these previous findings in a following section.
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It has been established, in a somewhat general context,
that various types of anomalies (chiral, conformal, super-
symmetric, etc.) are invariably characterized by the pres-
ence of a form factor with a pole, which multiplies a tensor
structure responsible for generating the anomaly. The
nonlocality of the anomaly is, therefore, summarized, at
least in the context of flat spacetime, by an effective action
of the form [46,48],

SJJJS :/d4xd4ya'AD_1(x,y)Fvﬁv(y)+...’ (4)

for an anomalous (JsJJ) (axial-vector/vector/vector) ver-
tex, with A# denoting an external axial vector and V, a
vector gauge field. A similar nonlocal action,

Srus [ @t yRO T 3 FVFy ) + o (5)

can be written down for the parity-even (7JJ) vertex, with
one stress-energy tensor 7 and two conserved vector

currents J [46,50]. R is the linearized Ricci scalar.
The ellipsies in the expressions above indicate terms
which do not contribute to the anomaly, either chiral (4)
or conformal (5). If we identify the (AVV) vertex in
momentum space as

(I (p)I*(p2)J5 (p3))
- / d*x d*xyd* xye~iPrvi=ipyxa=ipsxs
X (00 )2 ()% (x3)) (6)

the contribution isolated in (4) is obtained from the
solution of the constraint,

P (S (p1)I*2 (p2)J5 (p3)) = —8ayie" 2% py, pys

= _Sall’gﬂlﬂzml’z’ (7)
in the form,
H3
(M1 (p) " (p2) IS (p3)) = —8a1il;—32€”'”2"11’2 +.... (8
3

with the ellipsis referring to to the transverse components.
The 1/p3 contribution is the anomaly pole.

In a similar fashion, in the (7'JJ), the momentum space
analysis reveals that the correlator is decomposed in the
form [46,48],

(T2 (p1)J*2(p2)J* (p3))
by

—3—])2(5’””‘17%—P71P7')“”2”3(P2,P3)7 9)
1

where b, is the anomalous coefficient in Eq. (12) and

W (py, p3) = (pa- p3)g™s — Py’ pst.  (10)

is given by the Fourier transform of the anomaly functional
(FF) differentiated with respect to the external gauge field

1 ) )
u”2”3(p2,p3) — —Z/d4x2/d4)C3€_lP2'XZ_Ip3'x3

F{Fy, Fy(0)}
(SV”2 ()Cz)(svﬂ3 (X3) ’

(11)

It is evident that, based on this information, one anticipates
that each anomalous vertex should exhibit a nonlocal
interaction in flat spacetime, mirroring the two aforemen-
tioned instances. What presents a greater challenge is the
determination of whether the inclusion of a pole as a
solution to the anomalous WI, in conjunction with the
conformal constraints, suffices to ascertain the complete
expression of the correlators. In other words, concerning
the parity-odd correlators (TJJ), (AVV), and (TTJs), it is
conceivable that the 3-point functions can be wholly
reconstructed from the residue at the pole, which is defined
by the anomaly coefficient.

It is worth noting that, within our methodology, the pole
is not directly associated with the current but with the entire
correlator itself. Hence, in the context of the (T7Js)
correlator under investigation in this study, the specific
form of the parity-odd operator current that satisfies the
anomaly constraint does not play an essential role.

III. PARITY-ODD TERMS

A common track of parity-odd correlation functions is
the presence of anomaly constraints, either in the form of
chiral trace anomalies, or just of chiral anomalies, inducing
CP violation. In the case of chirally-odd trace anomalies,
which have been at the center of several recent debates, the
anomaly functional, constraining the form of the correlator,
is related to CP violating terms beside the usual parity-even
ones in the form,

Gu(T") = b Ey + b,C"°C,p 0 + bsVIR + baF"
+ f1€””/"’RaﬁﬂuRaﬂpo + 28 FF e, (12)

where F,, can be either an axial or vector gauge field.
Parity-odd terms corresponding to the constant f; and f,
have been conjectured long ago by Capper and Duff [51,52]
on dimensional grounds and by requiring covariance. From
a cohomological point of view, such term are consistent
and cannot be discarded. In previous work we have shown
that the CWIs severely constrain the structure of parity-
odd correlators [33]. For example, a correlator such as the
(rank-4) (TJJ )44, if we resort to a longitudinal/transverse-
traceless/trace decomposition of its tensorial structure, is
constrained only to contain a nonvanishing trace sector, with
the remaining sectors being zero. We will illustrate a similar
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decomposition in the case of the (T7Js), that we are going
to investigate in the next sections.

A similar analysis has been performed in the case of the
(AVV) diagram [32], decomposed into a transverse and a
longitudinal sectors. We have shown that the entire chiral
anomaly vertex can be derived from CFT by solving the
anomaly constraints, with the anomaly attributed to the
axial-vector current

05 (J2) = @, F \,F . (13)

The reconstruction of the correlator is performed using as
a pivot the anomaly pole present in the decomposition of
this correlator in its anomaly sector. In the case of the
(JJJs) or of the (J5J5J5), we satisfy the anomaly con-
straint with one or three anomaly poles respectively, and
all the remaining sectors are fixed by this choice. The
general character of this reconstruction procedure, based
on the inclusion of the anomaly constraint, will be proven
also in the case of the (T7Js). In all these three cases, our
analysis shows that the anomaly phenomenon, at least in
the parity odd case, is entirely associated with the presence
of an anomaly pole. Once the coefficient in front of the
anomaly is determined, then the entire correlator is fixed,
if we impose the conformal symmetry. In the (TTJs), if we
include in the background both a gauge field and a general
metric background, the anomalous WI that we will be
using for the definition of the correlator in CFT is given by
the equation

V,(J4) = a\"°F,F ,, + aye"’° R R (14)

afipo>

that defines a boundary condition for the CWIs.
These results can also be extended to the non-Abelian
case. For a general chiral current J%, we can write

vﬂ <J/:> = alDi.jkgﬂypaFivF;jo' + a2DieﬂypﬂRaﬂnyaﬂ/)m (15)

where we have introduced the anomaly tensors

1
Dij = ETT[{Ti’ T;}T], D; =Tr[T;]. (16)

constructed with the non-Abelian generators of the theory.
In the case of the D;’s, for example, in the Standard Model,

from which we derive the correlator of interest

22

where the symmetry is SU(3) x SU(2) x U(1)y, only the
hypercharge [U(1)y] contribution (77Jy) is taken onto
account, since the SU(2) and SU(3) generators are trace-
less. Both the chiral (FF) and gravitational (RR) anomalies
cancel once we sum over each generation of chiral fermions
[53]. The cancellation of the gravitational anomaly in the
Standard Model can be interpreted in two possible ways.
On one hand, it shows the consistency of the coupling of
the Standard Model to gravity, since the gauge currents are
conserved in a gravitational background. On the other
hand, the stress-energy tensor is just another operator of the
Standard Model and the conservation of the currents is
required for the analysis of the mixing of such operator with
the gauge currents at perturbative level.

IV. WARD IDENTITIES

The correlator is constrained by diffeomorphism invari-
ance, gauge invariance and the CWIs, derived from Weyl
invariance. For this purpose, it is convenient to obtain the
identities directly from the functional integral, by requiring
the invariance of the effective action S in the Euclidean
space

e—Sll = / [dD)eSo[®d] (17)

under the corresponding symmetries. The integration runs
over all the matter/radiation fields, here denoted as ®. The
equations can also define the constraints for any non-
Lagrangian CFT.

We couple the external gauge field source A, to the
current Js. We define the quantum averages of the energy-
momentum tensor and of the current in terms of the
generating functional of the theory S

vy =205
(T (x)) Nare e
1 58S

(J5(x) =

B /—g(x) 64, (x) (18)

)
A=0

58

(T (o) T2 (x5) 5 (x3)) =

V=90x)\/=9(x2) /= 9(x3) 09y, (X1)8Gy,0, (%2)A,,, (x3)

(19)

g=0;
A=0;
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A. Diffeomorphism invariance

We start from diffeomorphism invariance. Under a
diffeomorphism the fields transform with a Lie derivative

5,9/4;, = vﬂéb + vbé}l’
8A, = EV,A, + V,&A,. (20)

The WIs follow from the requirement that the generating
functional S is invariant under these transformations:

1)

0Gyu

0= 558 = /ddx |:(v,4§y + vugﬂ)
13}

+ &V, A, +V,EA, —}5
EA+T,ER)

= [ R AT 0) + VA, )
V(A e1)
obtaining
VH(T,) = Fald) + ANV, 00 =0, (22)

In order to find a WI for the correlator (T7TJs) we need to

apply to this equation the functional derivatives 59%. Due to

the vanishing of all 1-point and 2-point functions in 4d in
|

p3ﬂ3<Tﬂll/| (pl)TﬂzDz(p2)J/5‘3(p3)> — 4ia2(p1 . p2){ |:8V1D217|I72 <gﬂ1ﬂ2

This constraint will be satisfied by the inclusion of an
anomaly pole in the correlator.

C. Weyl invariance

By requiring the invariance of the partition function
under the conformal transformations in flat space, we
identify five extra constraints, beside those related to
diffeomorphism invariance, corresponding to the special
conformal transformations and the dilatations. Taken
together, diffeomorphism plus Weyl invariance in curved
spacetime determine in any local free-falling frame asso-
ciated with the metric g,,, the symmetry constraints of the
conformal group on the correlator.

The derivation of these constraints, from a curved
spacetime perspective, requires a background metric that
allows conformal Killing vectors. This imposes a formal
restriction on the class of metric backgrounds with respect
to which the functional variations are performed. In other
words, this approach allows to patch together the con-
straints in each local frame. If the classical action is Weyl
invariant, a metric that allows conformal Killing vectors

the limit g,, — 6, and A, — 0, only the first term in the
Eq. (22) survives. Going to momentum space, this pro-
cedure generates the equation,

0= piu (T (p) T (p2)J5 (p3)).  i=1.2. (23)

B. Gauge invariance

We proceed in a similar manner for gauge invariance.
The action of a gauge transformation, with parameter a(x)
on the fields, gives the infinitesimal variations

09 =0, 0A, = 9. (24)
The requirement that the generating functional S is
invariant under these transformations leads to the conser-
vation of the current J¢. If we allow an anomaly from the
path integral measure we obtain the relation

va<"g> = algﬂyp(;Fny/m + a2eﬂypﬁRu/)’ﬂuRaﬂ/m' (25)

We now apply two functional derivatives with respect to the
metric to such equation, and perform the limit g,, — 6,
and A, — 0 as above. After going to the momentum space,
we derive the relation

Ha M

—%) + (i <_>V1):| + (12 e>vz)}- (26)

|
requires that o(x) is at most quadratic in the local
coordinates, and is expressed in terms of 15 parameters,
which are the parameter of the conformal group. We try to
clarify this point, that has been discussed in [25] in the case
of the (TTT) correlator, extending it to the (77Js), with its
specific expression of the anomaly.

The action of a Weyl transformation with a dilaton (x)
on the fields, acting as a parameter is

5g;w = 29/41/"?
54, = 0. (27)

If the metric is selected in such a way to allow conformal
Killing vectors, then the diffeomorphisms x* — x* = x# +
K*(x) induce a simple rescaling of the infinitesimal
distance, under a local rescaling with o(x)

(ds')? = e**™)(ds)?. (28)

This require that 6(x) and the same vectors are related

045004-6



PARITY-VIOLATING CFT AND THE GRAVITATIONAL ...

PHYS. REV. D 109, 045004 (2024)

1

V.K,+V,K, =266,, a:dV-K. (29)

At this stage, from the action we define the conformal
currents Jg, with their quantum averages given by

(k) = K(T") (30)
that differentiated give

vu<‘];;(> = (vﬂKU + vuKﬂ)<TﬂD> + vaﬂ<le>' (31)

| =

At this stage we can use both the property of the back-
ground metric (29) and resort to the definition of the stress
energy tensor to rewrite the equation into the form

’ o 1)
\/EVM <J}K> = O'g <S0> + 2K,_/vﬂ <@ S0>, (32)
where

S g0 (33)

o M 5g

The conservation of the conformal currents

VulJk) =0, (34)
requires that
0
—Sy =0, 35
28 (35)

plus the ordinary diffeomorphism invariance, that guaran-
tees the vanishing of the second addend in (32)

m<51%>_o. (36)

Guv

At quantum level (35) may be affected by a conformal
anomaly with

2 (S0) = VAT
= VoA, (37)

where A is the anomaly functional. The conservation of J
is violated in the case of such conformal anomaly.

The invariance of the generating functional S under the
transformations (27) leads to the tracelessness of the
energy-momentum tensor. However, in general we need
to consider anomalous terms coming from the path integral
measure

A= g;u/<TMD>
= b1E4 + bZC"”f’”Cﬂwm + b3V2R + b4F”wFﬂy
+ flgﬂypaRaﬂuyRaﬁpﬂ + f2£”yp6FﬂzzF/m" (38)

55
6g 0A

ing the limit g,, — J,, and A, — 0, the anomalous terms
do not survive. Going to momentum space, we obtain the
constraint

After applying the functional derivatives and perform-

G (T (P1) T2 (p2) IS (p3)) =0, i=1.2, (39)

which is a nonanomalous trace WI.
We now consider the conformal transformations. The
conformal Killing vectors for the dilatations are

0-KP) =4, (40)

while for the special conformal transformation they are given by

K©S*,(x) = 2x*x, — x?5°,

d- KO*(x) = (2d)x*,

k=1,..d. (41)

As discussed in [25], the derivation of the CWIs requires a rank-4 correlator and can be directly formulated in the local
frame. In this case, we focus on the 4-point function (TTTJs) and consider the divergence condition

0= [ dndf? I ) (7 )7 ) T2 1) 5 ()

Z/dX(aﬂKyXT””(X)T”'”‘ (x0) T2 (x2)J5* (x3)) + K, 0, (T () T"1*1 (0 ) T2 (x2) 5 (x3)) (42)

Recalling the conformal Killing vector equation (29), we can then derive the equation
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0= [ ax(Z Y (T () T 1) )+ K9P )T )P ) (4

On the right-hand side of the last equation we have the trace and the divergence of a 4-point correlator function. We can use
the anomalous trace equation and the conservation of the energy-momentum tensor in order to rewrite such terms. We will
show this in the following. We first focus on the dilatations. The Killing vectors in this case are given by (23). The
invariance under diffeomorphism of the partition function (22), differentiated and in the flat limit gives,

0 = 9, (T (x) T () T2 (x2) 57 (x3)) + [(98y, 18183 + (081x, )81 8" = (081, ) 0! 83 J(TH (x) T2 (x2) I (x3))
+ [(0481,)872877 + (080,828 = (0¥, )82 87 (T () T4 (1) IS (x3))
+ (0805, )3 + (08, )37 + 8 B, O (T (31 T2 (22) J5 (), (44)

AX3TH

where 8, is the dirac delta function §*(x — y) and all the derivatives are with respect to the x variable. Similarly, we
differentiate the anomalous trace equation (22) obtaining in the flat limit

8 (T () T (2 ) T2 (x2) 57 (x3)) = =2(us, + By ) (T (1) 722 (x2) TS (x3))- (45)

Inserting Egs. (23), (30), and (32) into (28) and integrating by parts we obtain the ordinary dilatation Ward identity
— (x:) _ UiV o Un H3
0= | o™ +3d = 1[(TH¥ () T4 (x,) J% (x3)). (46)

that in momentum space takes the form

3 2
(Z A—2d-) " pf %) (T4 (p)) T4 (py)J5 (p3)) = 0. (47)
i=1 i=1 i

If, instead, we consider the special conformal transformations, the Killing vectors are given in (24). Proceeding in a similar
manner we arrive at the expression,

0= 3 [ (4t ) =t ] (P T

+ 2[5y = SGXy (T (20 T2 (x2) 57 (x3)) + 2[00 = Gy (T (x) T¥22 (x2) S (x3))
+ 2[00 — G5y [ (T (1) T2 (12) 57 (x3)) + 2[6"2 X2 — Gy | (T4 (1) T2 (x2) J5° (x3))
+ 2[8% x50 — G5 [ (T (1) T2 (12) J5 (x3)), (48)

that in momentum space takes the form

0 = KT (p1)T**>(p2)J5* (p3

2 0
:E 2(A; —d —2p%
1<( ! )apjrc /

)

0 0

d
a + Pi K—a > THiY1 p THav2 p J/t3 p
P opjx (pj) 0p§ 0pja { (P1) (P2)J5 (P3))

d 0
+4 <5K(ﬂl 5, ~ % 5" op ) (T4 (p1) T (p2)J5 (p3))
P P

b0 )T (T () ) (49)

+4 <5K(M2

At this stage we are ready to proceed with the decomposition of the correlator into all of its sectors and derive the scalar
equations for its reconstruction [4]. We will first proceed with a parametrizaton of the form factors and tensors structures of

045004-8



PARITY-VIOLATING CFT AND THE GRAVITATIONAL ...

PHYS. REV. D 109, 045004 (2024)

the transverse-traceless sector. We introduce a form factor
in the longitudinal part, in the form of an anomaly pole, and
proceed with a complete determination of the entire
correlation function by solving the equations of all the
remaining sectors. We follow the steps introduced in [4],
extended to the parity-odd case, and split the equations into
primary and secondary CWIs. The solution, as we are going
to show, will coincide with the perturbative one and will
depend on a single constant, the coefficient of the anomaly.
The off shell parametrization of the vertex that results from
this construction is quite economical, and is expressed in
terms of only two form factors in the transverse traceless
sector, plus the anomaly form factor that takes the form of a
1/ p% anomaly pole. The anomaly, in this formulation, is the
residue at the pole.

where
i (p;) =Ty (pi) T (py).

J";i (pi) = ”ﬁi (Pi)f? (pi).

j};ioc(pi) - p<2

V. DECOMPOSITION OF THE CORRELATOR

In this section we find the most general expression of the
(TTJs) correlator, satisfying the anomalous conservation
W1 and trace WI. The analysis is performed by applying the
L/T decomposition to the correlator. We focus on a parity
odd four-dimensional correlator, therefore its tensorial
structure will involve the antisymmetric tensor /77,

We start by decomposing the energy-momentum tensor
T# and the current J% in terms of their transverse-traceless
part and longitudinal ones (also called “local”)

TH (p;) =t (p;) + fhee' (i) (50)
5 (pi) = 75 (P:) + Jsioe (P2 (51)

foe (Pi) = Tl (P)TP (p;),

Hi
D piai a;
= J5' (pi). (52)

1

having introduced the transverse-traceless (I1), transverse (x), and longitudinal (X) projectors, given respectively by

i
ﬂ;:l:(sg_pfa’ (53)
MY = & (bt + ) = —— 54
aﬂ*i( ally + ﬂﬂa)_mﬂ ap (54)
i Pip [y w)  Piag . pip! ¥ (p;)

S = 264, Py — <5’" i+ (d-2) + O, - (55)

o T T VAR R

Such decomposition allows to split our correlation function into the following terms
<Tu1vl T#2V2]IS‘3> — <t/41vltuzIsz/5‘3> + <Tulv] Tuzvzj/;i%oc> + <Tu|v|l{‘(30”2]l5‘3> + <t{‘OIC”1 Tﬂzl/zjls‘3>

= ("1 16 5ioe) = (fioe Tioe ™ I5") = {fige T"*** Sjoc) + (Hoc ' fice” Jioc) - (56)

Using the conservation and trace W1s derived in the previous section, it is then possible to completely fix all the longitudinal
parts, i.e., the terms containing at least one #. or j& . We start by considering the nonanomalous equations,

8w (T (p1)TH2 (p2)J5 (p3))
P (T (p1) T2 (p2)J5 (p3))

i ={1,2},

=0,
=0, i={12. (57)

Thanks to these Wls, we can eliminate most of terms on the right-hand side of Eq. (56), ending up only with two terms

(THvTrav Ji0) = (v prava Jl0) - (TR T 5 ) — (pvagiovs ) (g gova i ) (58)

The remaining local term is then fixed by the anomalous WI of J5. First, we construct the most general expression in terms

of tensorial structures and form factors,

(1 ) = DT (po )T

s

af

(po)enieriP2(F ghPz 4 szlfng])7 (59)
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where, due to the Bose symmetry, both F; and F, are symmetric under the exchange (p; <> p,). Then, recalling the
definition of j5,. and the anomalous WI

Ho M
. PP

P (T (p1) T2 (p2)J5 (p3)) = 4iax(py ‘Pz){ [fylyzp‘pz (9”1”2 ——pl ; ) + (1 < ’/1)] + (4 < ’/2)}, (60)

1° P2

we can write
pﬂ3 pﬂzpﬂl
(a2 g ) = 4iazp—32(P1 'Pz){ {8”‘”2””72 (9’””2 - Pi ;) + (1 < Vl)] + (12 < Vz)}- (61)
3

One can show that this formula coincides with Eq. (59) after contracting the projectors’ indices and fixing the form factors
in the following way:

16ia(p; - p2) 16ia
Fy=—221 R Fy=-—->. (62)
P3 p3

Therefore, all the local terms of the (7'7J5) are fixed. The only remaining term to be studied in order to reconstruct the entire
correlator is the transverse-traceless part (#1*11#2%2 &) Its explicit form is given by

(11 (p1) 12 (p2) 5 (p3)) = Wy (P )T (p2) s (p3) X Prealaes, (63)

where X®#1%/2% 5 a general rank five tensor built by products of metric tensors, momenta and the Levi-Civita symbol with
the appropriate choice of indices. Indeed, as a consequence of the projectors in (63), X®/1%/2% can not be constructed by
using g,.4,, nor by p;, with i = {1,2,3}. We also must keep in mind that, due to symmetries of the correlator, form factors
associated with structures linked by a (1 <> 2) transformation (the gravitons exchange) are dependent. Then, the transverse-
traceless part can be written as

(11 (p1) 1 (p2)J5' (p3)) = T (PTG (p2) 7 (p3)
B Y S
+ Apen @t ils — Ay (py <> py)er2nnn gl
+ A3€p1pza]a2pgl p/332p73 + A4€p1p2a,a25ﬁlﬁ2p73
+ Aser12ms phl pl ph 4+ As(py <> pa)el1 P2 phe pli pli
+ Age 0% pL P 4 Ag(py <> py)el1 P2 pst P

—|—A7€p‘p2a'”2pgl5ﬁ2a3 —A7(P1 PN pz)gﬂlﬂza]angzylm}’ (64)

where A3 and A, are antisymmetric under the exchange (p; <> p,) and we have made a choice on which independent
momenta to consider for each index

{al’ﬂl}ep% {a2’ﬁ2}(_>p37 {a3}<_>pl' (65)

Since we are working in d = 4 the form factors in Eq. (64) are not all independent and the decomposition is not minimal.
Indeed, one needs to consider the following class of tensor identities

0 = glripaar g% (66)
If we set a = f§; or a = f§, and apply the projectors, we have
L5 (PoTEE (pa) s (pa) e roneadmsh) TS (py )T (pa) () erovess pht -+ empsms ),

Mo (PTG (p2) s (p3) e Pere6P] =TI ()T (o) (ps)[er2 e php — eripacs5al], (67)

af ()
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according to which we can rewrite the tensorial structures multiplying A5 in terms of the others. If we instead contract the

identity (66) with p;, and p,,, we arrive to

I, 5 (pOIL2R (po)aes (ps)[eP P4 pe?] = T (p))TT,

wp \P ap \P ap, \P
I, (PTG 5 (p2) 7 (p3) [P P22 p3' ] =TI (po )T, 0

P2)7a
2)”’02 (P3

(li (p3)[81710‘1a2053 (pl ']72) — €P1P20102p73 — gpzalazazpﬂ’

)[8171(11"2(13]9% + el’ll’z(llflzp‘l"3 — ghina3 (pl . pz)}’

(68)

according to which we can rewrite the form factors As and Ag in terms of the first four. We conclude that the general

structure of the transverse-traceless part is given by

1) (p2)Js' (ps oy oy

(141 (p1) 2+ (p2) 5 (P3)) = Ty, (PTG (p
X [A1£P1a102f13pglp32
+ A el shih
+ A3€p1p2ala2pglp/3jzp(f3 + A4gl’ll’zalaz5ﬂ1ﬁzp‘1’3]

where we have redefined the form factors A, ..., A4. Once
again, A; and A, are antisymmetric under the exchange

(p1 < p2).

VI. THE CONFORMAL ANALYSIS OF THE (TTJs)

In the previous section we have seen that the conserva-
tion and trace WIs fix the longitudinal part of the correlator.
In this section we examine the conformal constraints on the
(TTJs), following closely the methodology adopted in [4].
We will see that the transverse-traceless part of the
correlator is completely determined by conformal invari-
ance together with the RR part of the boundary condition
coming from the anomaly relation (14), corresponding to
the anomalous coefficient a,.

A. Dilatation Ward identities

The invariance of the correlator under dilatation is
reflected in Eq. (47). Due to this constraint, the trans-
verse-traceless part of the correlator has to satisfy the
equation

(ZA -2d- sza >t”‘”‘ (P (p2)J5 (p3)) =0.

(70)
|

0 = K<(T"*1 (py) T2 (p2)J5 (p3))

B oCN RS
= 019 ’0p 0P i

JK

+4 <5K(M1 @

aPl

4<6K(ﬂ2 aa 1< 5 (2
opy’

Tvz (12
g aP 21

+

% ’1 d 1/1)

+(P) 5=

2)7a (P3)

_Al(pl <~ p2)€p2a1a203pg]p/3}2
_AZ(Pl <~ pz)gpzalazagéﬁlﬂz

(69)

|
By using the chain rule

()pj
71
Zap, i 0p; )

to express the derivatives respect to 4-vectors in term of the

invariants p; = |/p?|, we rewrite (70) as a constraint on
the form factors

2. 0A;

> b 3

i=1

(ZA —2d - N)A =0 (72

with N; the number of momenta that the form factors
multiply in the decomposition of Eq. (69)

N,=3, (73)

B. Special conformal Ward identities

The invariance of the correlator with respect to the special
conformal transformations is encoded in the following
equation:

d
TH% TH2v2 JHs
s ) (T ()2 52)

(T4 (p1) T (p2)J5(p3))

)T (p1)I5 (p3))- (74)
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The special conformal operator K* acts as an endomorphism on the transverse-traceless sector of the entire correlator.
Therefore we can perform a transverse-traceless projection on all the indices in order to identify a set of partial differential
equations

F(p3) KE((er 222 ) 4 (#1152 5o ), (75)

splitting the correlator into its transverse and longitudinal parts. The action of the special conformal operator K* on the
longitudinal part of the correlator is given by

T2} (p)TEES (o) (p3) RSP 222 g )] = TIZ) (p1)TEEES (p2) i (p3) | 2 89 pag (e jg ) |- (76)

(A3 = 1)

3

Using Eq. (60) together with the Schouten identities mentioned in the Appendix B, we can write

TG00 (pO)TR0 (pa) s (p3) [ (v 22 G )]

o o 16la (A — 1)
= I (pO)ITE0: (p2)md (Ps3) %
3

+ pég!’lﬂlﬂzﬂs (2P;1P§2 — (P% + P% — p%)é”lyz)(‘j’(ﬂl (_i_(p% + P% — p%)gl’ll’zﬂzmﬁvlvz — 2p%€l71ﬂ2ﬂ3b1p13’2
— (p% + P% — p%)gpzﬂzﬂzl/lp? + 25-171[72#2'/1p’1‘3p’§2)5'<l42(_(p% + p% — p%)g!’lpzﬂlmévﬂ/z + 2p%£l72/¢1/43'/2p’él
_|_ (p% + p% — p%)eplﬂ]ﬂ,?yzlj;l — 2£P1p2/41’/2p1f3p;1)]_ (77)

[pYertin (=2p5! ps* + (p1 + p3 — p3)8™?)

Using the Schouten identities reported in Appendix B, we can then decompose the action of the special conformal operator
on the entire correlator in the following minimal expression:

0 = Il (P)TEY (p2) s (p3) (KT (1) T2 (p2) 5 (p3)))
=I5 (pOTEEE (p2)mi (p3) [P (CrygPihitets pyl pi2 + Crpel2itals pyl pi?
+ CzeP ka3 v  C ePakirais ghva | C]58p1p2/4]/’2p;1p§2p/i£3 + C16£p1p2ﬂ1u25v1v2pﬂ1‘3)
+ pE(CZlgpl”l/‘Z”}p;lpgz + C228P2ﬂ1#2ﬂ3p‘2’1 p;z + CoreP ks §iva | CyyePak12ks G112
+ Cosel 2112 pl p32 P + Cogel PHI Y2 pIY) + %1 (Cy eP1H241 Pt o Capelatost pi

1% 14 v 14
+ C33€P|Fzﬂ21/|p/1‘3 Py + CayeP P22 512 4 5Kﬂ2(C418P1ﬂ1I43U2p21 + CypePHiis pit 4 C43£”"’2”'”2p’f3p2‘

+ C44€plp2ﬂ,ﬂ35vluz) + C51€Kﬂ|ﬂzﬂ35u1vz + CSZSKMIMZFSPZI p;z + C538p‘K”‘”2p’f35”'”2 + C548[72Kﬂ].u2pf1‘3511]l/2]7 (78)
|
where the coefficients C;; depend on the gravitational- 0=_Cj i={3,4,5}, j={1,..4}, (80)
anomalous coefficient a,, the form factors A; and their
derivatives with respect to the momenta. and they are differential equations of the first order.
Due to the independence of the tensorial structures listed
in the equation above, all the coefficients C;; need to C. Solving the conformal Ward Identities

vanish. In particular the primary equations are The most general solution of the CWIs of the (T7Js) can

be written in terms of integrals involving a product of three
Bessel functions, namely 3K integrals [4]. For a detailed

” i={1,2}, j={1...6}. (79) review on the properties of such integrals, see also [54]. We
recall the definition of the general 3K integral,

0=cC

3
They correspond to second-order differential equations. Ia{ﬁl.ﬁz,ﬁg}(Pl,Pz,m) = / dxxaHP?Kﬂj(P/x% (81)
The secondary equations are instead given by Jj=1
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where K, is a modified Bessel function of the second kind

_ fl—u(x) B Iu(x)

K z
(x) 2 sin(vr) vE
r\ ¥ 1 x\ 2k
Lx) = <§> ;F(k +D)(v+1+k) (5) (82)
with the property
K,(x)= lvimOK,He(x), nez. (83)

We will also use the reduced version of the 3K integral
defined as

INGiy = Licion{a, -4k}, (84)

where we introduced the condensed notation {k;} =
{ky, ky, k3 }. The 3K integrals satisfy an equation analogous
to the dilatation equation with scaling degree [4]

deg(JN{k_/_}) =A,+k —2d— N, (85)
where

k,:kl+k2+k3, A,:A1+A2+A3. (86)
From this analysis, it is simple to relate the form factors to
the 3K integrals. Indeed, the dilatation WI tells us that the
form factors A; can to be written as a combination of
integrals of the following type:

IN ke Lk do ks o (87)

where N; is the number of momenta that the form factors
multiplies in the decomposition (69). The special CWIs fix
the remaining indices k;, k,, and k5.

We start by considering the explicit form of the primary
equations (79) involving the form factor A,

K31A3 - O, K32A3 - O, (88)

where we have defined

_®  (d+1-2A) 9
op? pi op;’

K;

Recalling the following property of the 3K integrals

KumIniy = —2knInir(k-5,) + 2kmINi1ix,-5,) (90

we can write the most general solution of the primary
equations as

Az = C1J (5000 (91)

where  is an arbitrary constant. Note that this solution is
symmetric under the exchange of momenta p; <> p,.
Indeed, from the definition of the 3K integral, it follows
that for any permutation ¢ of the set {1,2,3} we have

IN (k) ko ko } (P15 P25 P3)
= IN{ky doks} (Po1(1) Pt (2)s P (3))- (92)
However, due to the Bose symmetry, the form factor A;

needs to be antisymmetric under the exchange of momenta
p1 <> p». This leads to

After setting A3 =0, the explicit form of the primary
equations involving the form factor A, can be written as

K31A4 — 0, K32A4 — O (94)
The solution is given by
Ay = 83J (30001 (95)

where {, is an arbitrary constant. Once again, due to the
Bose symmetry, A, needs to be antisymmetric under the
exchange of momenta p; <> p,. This leads to

{H=0= A, =0. (96)

After setting Ay, = 0, we can write the remaining primary
equations as'

2 0
0=K3A;, 0=KpA +— (Pla_m_4)Al(p1 < D2),

P1
0: K3]A2 +4A],

2 0
0=KnAr+— <Pla——4>A2(P1 < py)+4A,. (97)
P P1

These equations can also be reduced to a set of homog-
enous equations by repeatedly applying the operator K;;

0 - K31A1,
0= K31K31A2’

0= KnKpAj,
0= KnKnK3pA,. (98)

The most general solution of such homogenous equations
can be written in terms of the following 3K integrals:

'For simplicity, we are actually considering on the right side
two equations that are obtained by a combination of primary and
secondary equations; 0 = C,; — C33 and 0 = Cy3 — C34. The
contribution of the anomalous term coming from Eq. (77) does
not appear in such combinations of equations.
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A =mJ35000y + M2J400,1.0)5
Ay = 01J40120) + 02030020y + 03301100 T 04d200.1.0)
+ 05420100y +06J100.0) + 07731011} + 0820001}
(99)

where #; and 6; are arbitrary constants. The explicit form of
such 3K integrals can be determined by following the
procedure in [4,54,55]. Before moving on, we need to
examine the divergences in the 3K integrals. For a more
detailed review of the topic, see Appendix A and [4,5,54].
In general, it can be shown that a 3K integral /44 4, 5.}
diverges if

a+1+p £, £p3=-2k, k=0,1,2,.... (100)
If the above condition is satisfied, we need to regularize the
integral. Therefore, we shift its parameters by small
amounts proportional to a regulator ¢ according to the
formula

Ia{ﬁl B} T IUH‘MS{ﬂ] +vie.frtvire frtuzel,

JN{k] oy k3 } = JN+us{k| i€kt vae.kytuvze}l . (101)

0, =6 +0\c + 6
0, =06 +06\e+ 0 ¢
0, =6 16, 63=00 + 0.

The last step consists in analyzing all the conformal constraints on the numerical coefficients 17,(-j ) and Hl(.j )

0, = 6 + 6 + 6
05 =0 + 6 + 67 ¢

The arbitrary numbers u, v, v,, and v5 specify the direction
of the shift. In general the regulated integral exists, but
exhibits singularities when e is taken to zero. If a 3K integral
in our solution diverges, we can expand the coefficient in
front of such integral in the solution in powers of €

[Se]

j==

= i n'el,

J=—00

(102)

and then we can require that our entire solution is finite for
¢ — 0 by constraining the coefficients 7'/ and 8. Both of

1

the 3K integrals appearing in the Eq. (99) in the solution for
A, diverge like 1/e. Therefore, we require

0 0
m=n"+n,  p=n" 44 (103)

Higher-order terms do not contribute to the solution and
therefore they can be neglected. In the case of A,, since
some of the 3K integrals diverge like 1/¢?, we need to set

05 = 0 + 0 + 62
06 = 60 + 6 e + 617 ¢2
(104)

. In order to do that,

we insert our solution back into the primary nonhomogenous equations (97) and into the secondary equations. The explicit

form of the secondary equations is given by2

0 17)
0==2p;=—A, +2p,—A(p1 < p2).

api op;
0=—(pt = p3+ PAI + (=P + P31 + PDAI(p1 < p2) = 2P a—zlAz +2p, %Az(m < p2)
+2A; = 2A5(p1 < p2),
0= sz azzAl(Pl < pa) - 2<p%%%p%>1720;;2141 + (_2p_1;%+—p§ ~ Z% ~ Iﬁ)pl%Al

8 64lap2
——= A+ 54— 22,
P19py P1 P3

Not all of the secondary equations are independent from each other. Here we listed only the relevant ones.
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30

0=—<M>m 9 4 (P -2)(i+r-p
F

P} pip3

2 2 2
pit+py—p J
-2 53 5 3>P2—A1

P3

—Al(Pl <~ Pz) - < op,

op;

2 2 2 2 2 2
+ p5—=3p 0 pi+p5—2p
—<#>P2—A1(P1<—>P2>—2 l . 244

p3 ops

p}+p3 - pi
2

)A1(P1 < )
P

2, 2 2 S22 2
pP+pi-2p 2 0 8 32ia(ps + p5 — p3)
- 2(%)& +—=—As(p1 < p2) —5A(p1 < p2) - L =2 =23,
P3 P10p, Pi P3
2p; 0 <P%_P§> J 2py 2p, 0
0=—F—A +2 —A|(p1 o p)+—F5—A+——A(p1 < p2)
pop ! pipi Jop TP T prop, T prap, T
2 1 4 64ia
+4(—2+—2)A1(P1 < pa)+ A +—,
P1 P3 P3 P3
2p; 0 <p% —p%) 0 2p, 9 2py 0 8
0=-"5-—A+2(= S—Ay(p1 & o) T3 Ay =5 A (p1 < p2) = APy < pa)
piop, pipi Jopy T proap, T piop, T T gy
32 2 2 _ 2
n ia(py :zpz P3)‘ (105)
3

We can solve all these equations by performing the limit
p; — 0, as explained in the Appendix A 2. After some
lengthy computations, using all the properties of the 3K

integral listed in the Appendix A, we find that all the
nonvanishing coefficients 7 and 6 depend on the
anomaly coefficient a, of Eq. (14). In particular the final
solution can be written in the compact form

Ay = —4iazl7%15{2,1,1},

A, = —8ia2p%(p§14{2.1,0} - 1),
A3 - 0
Ay =0. (106)

VII. PERTURBATIVE REALIZATION

In this section we compute the (TTJs) correlator
perturbatevely at one-loop, working in the Breitenlohner-
Maison scheme. For this analysis we shift to the Minkowski
space where

$iSld] — / [dD]eSl®.a). (107)

We consider the following action with a fermionic field in a
gravitational and axial gauge-field background

e . . _
So= [ i ehlipr (D) = (DY wl (108)

where ¢ is the vielbein, e is its determinant and D, is the
covariant derivative defined as

. , 1
Dy = (V, +igrsA )y = (9;4 +igysA, + Q%abﬁ”b ) v,

] o . L\
D,ul// = (vﬂ - lgySAﬂ)W = (aﬂ - IQYSA;A - Ea);mhz b> Y.
(109)

>4 are the generators of the Lorentz group in the case of a
spin 1/2-field, while the spin connection is given by

Dy = elth (aﬂebb - Fﬁu@lb)' (110)
The Latin and Greek indices are related to the (locally) flat
basis and the curved background respectively. Using the
explicit expression of the generators of the Lorentz group
one can reexpress the action Sy as follows:

i_ i, 4
0= [ atxe| Swelr o) - SO iy

i

i (111)

- gA,ul/_/el:ly(IJ/SW + wﬂabegwyabcw

with
pobe = (590 Y. (112)

Taking a first variation of the action with respect to the
metric one can construct the energy momentum tensor as

i

5 [y VP = Vg y — ¢ (py*V,w

= Vary'y)] — g (¢ r* A, — YAV )y sy

™ =

(113)
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FIG. 1. Feynman diagrams of the three different topologies appearing in the perturbative computation.

The computation of the vertices can be done by taking functional derivatives of the action with respect to the metric and the
gauge field and Fourier transforming to momentum space. Their explicit expressions is reported in Appendix C.

A. Feynman diagrams

The (TTJs) correlator around flat space is extracted by taking three functional derivatives of the effective action with
respect to the metric and the gauge field, evaluated when the sources are turned off

38

(T ()17 (x) 5 (x3)) = 4 (114)
: s ’ 59/411/] (xl)(sguzz/Q (XZ)(SA;M( ) io
Having denoted with S, the conformal invariant classical action, recalling Eq. (17), we can write
0S5 68y 08 58y &S 58, 88,
(1 (1) T )2 (x) = 4] i G000y - (200 o) (B2 )
691 69 6A; 69169, 6A3 691643 69>
S, 88, 35S
it saiman) 9
692643 69, 6916926A5

where for the sake of simplicity we have used the notation g; = g,,,. (x;) and A; = A, (x;). The angle brackets denote the
vacuum expectation value and each of the terms correspond to a Feynman diagram of specific topology. In particular, the first
term has a triangle topology while the others are all bubble diagrams, except for the last one, which is a tadpole (see Fig. 1).
The contribution of the triangle diagrams is given by

Vﬂll/l/lzl/zﬂz _ —i3 / ddl tr[V;gt,;,I:,L l_ Pl, I ﬂl VZ:I/U/ l"’ ﬂz V’;;/’:;(l’ [+ pZ),] + exchange (116)
l (2x)? (1= p1)*(L+ )P
while the bubble diagrams are
s o [ A GV ([ o) Vg (L L+ o))
Vgl oy _ ;2 / (zﬂ)d 9 (l - p2)212 + exchange (117)
and
YHaiHtas _l.2 ddl tr[vggllyy/]y’/lzyz (plv P2, [ - P1— sz I ﬂl Vﬁ/n//l] (1 18)
: =

(Zﬂ)d (Il=p - 2) r

1V1H2V2 13

After performing the integration, one can verify that V% vanishes. Lastly, the tadpole diagram is given by
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d] tr Vﬂ]l’lﬂzl/Zﬂ’i
/(dl [ 99ApY (119)

Ykl
4 27)4 P

This last diagram vanishes since it contains the trace of two
y’s and a ys. The perturbative realization of the correlator
will be written down as the sum of the amplitudes, formally
given by the expression

(THn THv2 J/543 ) (120)

4
— M1V a3
=4> V! :
i=1

B. Reconstruction of the correlator

The perturbative realization of the (T7TJs) satisfies the
(anomalous) conservation and trace WIs. Therefore, the
correlator can be decomposed as described in Sec. V. In
particular, it is comprised of two terms
<Tﬂlvl Tﬂzvzjg‘3> —

<Z‘”‘V1 tﬂzl/zj/;3> + <t/4|u] tﬂzvzj’;foc>_ (121)

9p3
1

The anomalous pole is given by

gp
9672 p3

X { |: VivaP1P2 (gﬂlﬂz —

<t/411/1 tﬂ2y71510c> = (pl p2)

p’fp’é‘)
P11 D2

+ (1 < Vl)] + (2 < Vz)}, (122)
which corresponds to Eq. (61) with
ig
= 123
IR TYP (123)
The transverse-traceless part (#1*17#2%2j3)  can  be

expressed in terms of four form factors as described in
Eq. (69). The perturbative calculation in four dimensions
gives

2 2
pi
T 24220 {An + A4y, log (;%) + A log (p3) +A14C0(P1,P2,P3)}
2

2 2
gp>
A, =-IP2 Ja 1Al Al Ay Co( P2, P2,
2T R { 21 + A 0g< 2) + Az log <p3> + Ay Co(p?. P} P3)}
A3 = 0,
A, =0, (124)
where C, in Minkowski space is the master integral
Co(p}.p3.p3) = 1/ d’l ! (125)
i’ P(l-q)*(l+ p)*
and we have introduced the following quantities:
Ay = —A2p1° = pi(p3 + p3) — 2p5(5p% — 48p3p3 + 5p3) + 4pt(p3 + p3)(4p5 — 23p3p3 + 4p3)
—8pi(p3 — p3)*(p5 +4p3p3 + p3) + (p3 — p3)*(p3 + p3)),
A = +2p3[p3(p3 — p3)° + p1°(38p3 — 12p3) + p(18p5 + 41p3p3 — 121p3) — 4pS(3p§ + 46p3p3 — 38p3p3 — 26p5)
+ p1(p2 = p3)(p2 + p3) (3PS + 95pip3 + 215p3pd + 11p§) + 14pi p3(p3 — p3)*(P3 + P3) + 3p1%.
Az = +2p3[3p12 +2pi°(19p3 — 6p3) + pi(—121p3 + 41p3p3 + 18p3) + 4p$(26p$ + 38p3 p3 — 46p3pd — 3pf)
— 14p3pi(p3 — p3)* (P + P3) — P1(p2 — P3) (P2 + p3)(11pS + 215p3 p3 + 95p3pt + 3p8) + P3(P3 — P3)°].
Ay = =24p1p3p3[(pT — p3)*(2pt +3p3) = 3p3(pt + 4pip3 —4p3) — 3p3(pS — 6p1p3 +4pips + pf)
= 3p8p8(7p3 - 3p3)).

Ay = —A2pS(3pT + p3) +4pipi(3p3 - 2p3) + (p3

- p3)* +2p3(p

— p2)(p1 + p2)(pt + 8pip3 + p3) — P,
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Ay = =2p3p3[-17p} + p§(28p3 + 26p3) — 4p1(p3 + 15p3p3) + (p3 — p3)* — 2p1(p3 — P3)*(4p3 + 5p3)].
Axy = +2p32p1° — pi(p3 + 6p3) + P§(—10p3 + 46p3p3 + 6p3) — 2p3(4p3 + 5p3)(P3 — p2p3)* + P3(P3 — P3)*

+2p1(8p§ —21p3p3 — 18p3p3 — pY)l,

Ay = —12p1p3p3[pi(3p3 — 5p}) + (p1 — p3)° + P3(pt + 4pip3 — 5p3) +3p8].

with the Killen A-function given by

A=A(p1. P2 p3)
= (p1 = p2—p3)(p1 +P2—Pp3)(P1 — P2+ P3)

(p1+ P2+ p3). (127)

VIII. MATCHING THE PERTURBATIVE
SOLUTION

In this section, we verify the matching between the
perturbative form factors in Eq. (124) and the nonpertur-
bative ones in Eq. (106). First of all, one can immediately
see that A; and A4 vanish in both calculations. On the other
hand, in order to verify the matching between the first two
form factors, we will need to rewrite the 3K integrals in the
conformal solution in terms of the master integral C,.
For this purpose, we recall the reduction relations presented
in [54,55]

A
o=t | 2p 28 op (10
Lagppopy = (1)K [P1 Py "3 <p10p1

() G w0
X [ ——— e .
P20p> P30p3 {000}

Moreover, the integral 7;190y is related to the massless
scalar 1-loop 3-point momentum-space integral

(128)

Lijoooy = (27)*Ka 111

d*k 1
= (2”)2/ @r)f k= p (K + pa)?

|
=~ Co(p1. P3. P3),

i (129)

where

[ d%k 1
Kassss = | s @ P
(130)

Hence, it follows that the 3K integrals in our conformal
solutions (106) are finite and can be reduced to

(126)

Ispany =~ o). 2
SELy T PPaPs\ Pry 0p10p20p;
2

i 0
I —_—— __1 C 2’ 2’ 2
4{2,1,0} 4P1P2 (1910[)1 >6p16p2 o(P1:P3.P3)

(131)

Co(p3.p3.P3)

By using the relations of the derivative acting on the master
integral in Appendix D and setting the anomalous coef-
ficient as in Eq. (123), one can then verify the matching
between the perturbative and nonperturbative form factors.

IX. THE ANOMALY POLE
OF THE GRAVITATIONAL ANOMALY
AND THE SUM RULES

As we have already mentioned in the previous sections, it
is clear that our result does not depend on the specific
expression of the current J5 appearing in the correlator,
since we have been using only the general symmetry
properties of this 3-point function and its anomaly content
in order to solve the conformal constraints.

Being the result unique and expressed in terms of a
single constant, it shows that in a parity-odd CFT the
gravitational anomaly vertex is generated by the exchange
of an anomaly pole, with the entire correlator built around
such massless pole and the value of its residue. Since this
massless exchange was also present in the perturbative
analysis of [34], we are now going to elaborate on those
previous findings under the light of our current result.

A. Duality symmetry

The Maxwell equations in the absence of charges and
currents satisfy the duality symmetry (E — B and
B — —F). The symmetry can be viewed as a special case
of a continuous symmetry

SFY = pFY, (132)
where &f is an infinitesimal SO(2) rotation and F* =
e"PF ,,/2. Its finite form

EN cosf sinf E
<B>_<—sinﬁ COSﬂ)<B)

(133)
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is indeed a symmetry of the equations of motion, but not of
the Maxwell action. Notice that the action

S= / dXPYFy, (134)
is invariant under an infinitesmal transformation modulo a
total derivative. For = z/2, the discrete case, then the
action flips sign since (F% — —F%). In general, the
infinitesimal variation of the action takes the form

84S0 = —p / d*x0,(F}/'V,). (135)
Due to the equivalence (dual Bianchi identity)
0,Fyy =0 < &9, Fy ,, =0, (136)
we can introduce the dual gauge field V*
By = o'V — * V-, (137)
which is related to the original V, one by
oV = VH =0V, (138)

The current corresponding to the infinitesimal symmetry
(135) can be expressed in the form

=V, -FyV,, (139)

whose conserved charge is gauge invariant,
05 = /d3x(V-V>< V-V.VxV), (140)

after an integration by parts. Notice that the two terms on
the equation above count the linking number of magnetic
and electric lines respectively. In fluid mechanics, helicity
is the volume integral of the scalar product of the velocity
field with its curl given by

Hﬂuid = /dS.XE -V x 7 (141)
and one recognizes in (140) the expression
Qs = /d3x(B V—E-V) (142)

with B =V x V and E = —V x V, that coincides with the
optical helicity of the electromagnetic field [41].

As already mentioned, a perturbative analysis of
(TTJcs) has been presented long ago in [35]. The presence
of anomaly poles in this correlator can indeed be extracted
from [35], in agreement with our result. Indeed, for on shell

gravitons (g) and photons (y), the authors obtain, with the
inclusion of mass effects in the (AVV), (TTJ,), and
(TTJcs) the following expressions for the matrix elements:

q" -
(O5lrr) = £1(a) 7 Fvak 7, (143)
qﬂ DKApc
(07%199) = f2(q*) 7 Rypo R, (144)
qﬂ DKAPC
(017¢sl99) = f3(q?) = Rype R, (145)

where ¢ is the momentum of the chiral current. The
anomaly poles are extracted by including a mass m in
the propagators of the loop corrections, in the form of either
a fermion mass for the (AVV) and the (T7J ), or working
with a Proca spin-1 in the case of (TTJcs), and then taking
the limit for m — 0. A dispersive analysis gives for the
corresponding spectral densities [35]

d 14+
Ayvy(g? m)=1Imf (%) = /;Zvu —v?)log—.
drry 14+
Arrs, () = I (?) = (1= ) log
2 o dr1yes oy LY
Arry (g7 m) =Imf3(q )277) (1-v7) 10g1—v’
(146)

with v = /1 —4m*/q* and dyyy = —1/200y, drry, =
1/(192z), and drr;. = 1/(96x) being the corresponding
anomaly coefficients in the normalization of the currents
of [35], with a,,, the electromagnetic coupling.

Notice the different functional forms of Azy, f(qz,m)
and A7, (¢>, m) away from the conformal limit, when the
mass m is nonzero. One can easily check that in the
massless limit the branch cut present in the previous
spectral densities at g> = 4m? turns into a pole

limA(q%, m) « 8(q?%)

m—0

(147)

in all the three cases. Beside, one can easily show that the
same spectral densities satisfy three sum rules:

/  dsBayy (s, m) = 2dyy, (148)
4m?
0 2
dSATTJ[(s’ m) = 2 dr1s,s (149)
4m? ’ 3 ’
0 14
dSATTJCS(S’ m) = <A1 (150)
4m? 45
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indicating that for any deformation m from the conformal
limit, the integral under A(s,m) is mass independent.
Therefore, the numerical value of the area equals the value
of the anomaly coefficient in each case.

One can verify, from Eq. (106), by taking the on shell
photon/graviton limit, that the transverse sector of (TTJs),
corresponding to the form factors A; and A,, vanishes,
since these two form factors are zero, limiting each of
these matrix elements to only single form factors, as
indicated in (144) and (145). Then it is clear that, in
general, the structure of the anomaly action responsible
for the generation of the gravitational chiral anomaly can
be expressed in the form

1 -
Sunom ~ / dxd'yO,A = (6 V)RRO) + . (151)

where the ellipses stand for the transverse sector, and A, is
a spin-1 external source. For on shell gravitons, as
|

H3

<[l4|l/1 tﬂz”zjls‘?oc> — 4ia2p_32 (pl . pz){ |:€V|D2P1P2 (gﬂlﬂz
p

3

while the transverse-traceless part is

remarked above, this action summarizes the effect of
the entire chiral gravitational anomaly vertex, being
exactly given by the exchange of a single anomaly pole.

X. SUMMARY OF THE RESULTS

Before coming to our comments and conclusions, for the
reader’s convenience, we briefly summarize our findings.

We have shown that in a general CFT the (T7Js)
correlator can be written as a sum of two terms

<Tﬂ1”1 Tﬂz”z]’5‘3> — <tl41'/1 tﬂz”zj/543> + <tﬂll’l l‘llzl/zjg_£3 >’

loc (15 2)
the first term being the transverse component and the
second, the longitudinal one, expressed in terms of a single
anomaly form factor and tensor structure. This is charac-
terized by an interpolating anomaly pole.

The anomaly part is given by the expression

. 2 X1 0 X X1 O } }
(0991 (1) 12 (p2) j5* (p3)) = T (p1 )T (po) il (3 ) [A P99 ph phe — A (py <> py)eP2@iaas phi phe

+ A,ePr01®% §61P —A(p < p2)€P2a1a2a35/51/52]

with A; and A, given by Eq. (106).

The entire correlator is therefore determined only by the
anomalous coefficient a, in (153). We have also computed
the correlator perturbatively at one-loop in free-field theory
and verified the agreement of the expression with the
nonperturbative results obtained by imposing the con-
formal symmetry. The explicit expressions of the form
factors A; and A, have been given in (124).

The solutions of the conformal constraints, expressed in
terms of 3K integrals /5, ; 1) and 1445 1 oy, can be related to
the ordinary one-loop master integrals C, and B, by (131).
They can be reconstructed using recursively the relations
included in Appendix D.

XI. COMMENTS: NONRENORMALIZATION
OF THE (AVV) AND (TTJs) AND THE
SOFT-PHOTON/GRAVITON LIMITS

Before coming to our conclusions, we pause for few
comments on the results of our paper, in relation to our
previous study of the (AVV) chiral anomaly vertex, in a
general CP-violating CFT [32]. In the case of the (AVV)
vertex, the Adler-Bardeen theorem shows that the longi-
tudinal part of the interaction is not affected by

—%) + (uy <—>1/1)} +(M2<—>V2)} (153)
(154)

[

renormalization and therefore can be computed exactly just
from the one-loop triangle diagram, being protected from
perturbative corrections at higher orders. This is not true for
the transverse part of the same diagram, that satisfies an
ordinary WI. However, in [56] it was pointed out that, in the
kinematic limit where the momentum of one of the vector
currents is vanishingly small, another nonrenormalization
theorem is valid. Indeed, in that limit just two independent
form factors are needed to fully describe the (AVV)
correlator. One of these form factors is related to the axial
anomaly and, therefore, it is not renormalized. The other
form factor belongs to the transverse sector.

In [56] it was shown that, due to helicity conservation in
massless QCD, the two form factors are in fact proportional
to each other, and so the nonrenormalization of one of them
implies that of the other. If the anomalous behavior is
identified with the exchange of an anomaly pole, that result
relates the anomaly pole to the transverse part of the
diagram, when one of the photons becomes soft.

Perturbative analysis of the diagram—in the most gen-
eral kinematics—showed that at two loops the entire
diagram is indeed nonrenormalized [57], a feature that
disappears at higher perturbative orders. Indeed, the authors
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of [58] found nonvanishing corrections to the correlator at
O(a%). The nonrenormalization to all orders of a specific
combination of the transverse form factors of the (AVV)
was shown to hold in [59], in the chiral limit of QCD, since
it equals the longitudinal form factor. The latter is, obvi-
ously, nonrenormalized since the anomaly pole and its
residue are protected. Other combinations of purely trans-
verse form factors were also shown to be nonrenormalized.

In our anaysis [32] we have shown—just using the
conformal constraints—that such results indeed follow
from conformal symmetry, once these are solved either
in the most general kinematics or in the specific one
required by Vainshtein’s conjecture [56]. Therefore, the
breaking of the nonrenormalizaton theorem for the entire
vertex in QCD must originate from terms breaking con-
formal invariance and must be proportional to the QCD f
function.

In this paper we have verified that a similar connection
between the longitudinal and the transverse part is present
in the case of the (T'7TJs) correlator in the conformal limit,
being both sectors proportional to the a, anomalous
coefficient.

With these new indications, that follow quite closely the
(AVV) case previously discussed by us, it would be
interesting to test, at the perturbative level, if in the soft-
graviton limit a similar result holds for this correlator at all
orders in perturbative QCD. We do expect that the higher
order corrections will be proportional to the QCD p
function, therefore breaking the conformal symmetry.

XII. CONCLUSIONS

We have presented an analysis of the gravitational
anomaly vertex from the perspective of CFT in momentum
space. We have shown how the vertex can be completely
defined by the inclusion of a single anomaly pole together
with the CWIs. This explicit analysis shows that
reconstruction method formulated in the parity-even sector
in the case of conformal anomaly correlators can be
extended quite naturally to the parity-odd sector. This
provides a different and complementary perspective on
the origin of anomalies and their related effective actions,
which may account for such phenomena. This extension
highlights the intrinsic connection between these seemingly
distinct sectors and suggests a unified framework for
comprehending the origin of anomalies. It underscores
the notion that anomalies, whether chiral, conformal, or
supersymmetric, share a common underlying structure
characterized by the presence of a single (anomaly) form
factor, together with a specific tensor structure responsible
for generating the anomaly.

The approach does not rely on the explicit structure of
the parity-odd current appearing in the correlator but,
rather, on its symmetry properties. We have also shown
that, similarly to previous dispersive analysis of the
anomalous form factors for the (7JJ) and (AVV)

diagrams, the spectral density of the anomalous form factor
of the (TTJs) satisfies a sum rule. The numerical value of
the sum rule is fixed by the anomaly.
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APPENDIX A: 3K INTEGRALS

The most general solution of the CWIs for our corre-
lators can be written in terms of integrals involving a
product of three Bessel functions, namely 3K integrals. In
this appendix, we will illustrate such integrals and their
properties. For a detailed review on the topic, see [4,5,54].

1. Definition and properties

First, we recall the definition of the general 3K integral,

3
Laip,pops (P1- P2 P3) =/dxx“HPf’Kﬂ,(pjx), (A1)
=1

where K, is a modified Bessel function of the second kind

_ zl—y<x) B ID(X)

VA
2 sin(vx) vE

K,(x)

1x) = @ kf:r(k n I)FEI/ 148 @ L)

0

with the property

K,(x) =limK, . (x),

e—0

nez. (A3)
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The triple-K integral depends on four parameters; the
power a of the integration variable x, and the three
Bessel function indices f;. The arguments of the 3K
integral are magnitudes of momenta p; with j =1, 2, 3.
One can notice the integral is invariant under the
exchange (pj. ;) <> (pi. ).

We will also use the reduced version of the 3K integral
defined as

Ingky = T1in(a,—d1k) (A4)

where we introduced the condensed notation {k;} =
{ki,k,,k3}. The 3K integral satisfies an equation analo-
gous to the dilatation equation with scaling degree

0
EJN{kf} = =PI N+1{k;-5,,}+

deg(JN{kj}) = At + kt - Zd - N, (AS)

where

klzk] +k2+k3, AZIA1+A2+A3. (A6)
From this analysis, it is simple to relate the form factors to
the 3K integrals. Indeed, the dilatation WI of each from
factor tells us that this needs to be written as a combination
of integrals of the following type:

INk fhy o s} (A7)
where N is the number of momenta that the form factor
multiplies in the decomposition. Let us now list some
useful properties of 3K integrals:

d
TNtk +8,) = Padnik=s,) +2 (An —5 kn) IN-1{k;}>

0

Kn‘]N{k,-} = <

d
mfzv{k,} = Jniaqk;y —2 <An -5t k,
? (d+1-2A,) 0

o Pn opn
KumIngiy = (Ko = Ko)Inggy = =2knd N1 (x-6,) T 2k N1 (k=) -

1

- 5) IN+1{k;=5;,} >

)JN{k,} = Jnvaix;) — 2knd N1 {k-5,,)

(A8)

2. Zero-momentum limit

When solving the secondary CWIs, it may be useful to perform a zero-momentum limit. In this subsection, we review the
behavior of the 3K integrals in the limit p; — 0. In this limit, the momentum conservation gives

pi=-pb= pi=p=p.

Assuming that @ > ff, — 1 and f; > 0, we can write

Jim Loy (o popa) = PP gy
3—)

where

(A9)

(A10)

29731 (B3) F<a+ﬁt+l—ﬂ3>r(a_ﬁt+1+ﬁ1)l—'<a_ﬁ2t+1+ﬂ2>r<a_ﬁ2t+l>' (Al1)

f =
W) T Ta-py+1) \ 2

2

We can derive similar formulas for the case p; — 0 or p, — 0 by considering the fact that 3K integrals are invariant under

the exchange (p;.f;) < (pi.B:)-

3. Divergences and regularization

The 3K integral defined in (A1) converges when

3
a > Z 1Bl = 1;
=1

P1s P2 p3 > 0. (A12)
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If o does not satisfy this inequality, the integrals must be
defined by an analytic continuation. The quantity

(A13)

3
j=1

is the expected degree of divergence. However, when

a+1E£p £Btp=-2k k=0,12,..  (Al4)

for some non-negative integer k and any choice of the +
sign, the analytic continuation of the 3K integral generally
has poles in the regularization parameter. Therefore, if the
above condition is satisfied, we need to regularize the
integrals. This can be done by shifting the parameters of
the 3K integrals as

‘l{ﬂ BB}y I a(bibbsy = JN{kl ko kst

- JN+ue{k1+vle,k2+v2€,k3+vge}’ (AlS)
where
a=a+ ue, B =P + e,
P2 = P2 + ve. B3y = P3 + vse. (A16)
or equivalently by considering
d— d+2ue; A= A+ (u+ v)e. (A17)

In general, the regularisation parameters u and v; are
arbitrary. However, in certain cases, there may be some
constraints on them. For simplicity, in this paper we
consider the same v; = v for every i.

4. 3K integrals and Feynman integrals

3K integrals are related to Feynman integrals in momen-
tum space. The exact relations were first derived in [4,54].
Here we briefly show the results. Such expressions have
been recently used in order to show the connection between
the conformal analysis and the perturbative one for the
(AVV) correlator [32].

Let Kyi5,5,5,1 denote a massless scalar 1-loop 3-point
momentum space integral

dk 1
Kafs,8,0,) = (Zﬂ)d kzaglpl —k|252 P> —|—k|251 - (A1)

Any such integral can be expressed in terms of 3K integrals
and vice versa. For scalar integrals the relation reads

% 244 Iﬁ—l{ 446,-5,4+6,~8,4+8,-6,}
#0025} = (= )08, (05)

(A19)

where §, = d; + 0, + 0. Its inverse reads

el a+1+p
Ia{ﬂ1ﬂ2ﬂ3} =2%"z +1F< 2 ,>

ﬁ <a+1+2ﬁj ﬁ,)

x K 2420 (@t 1426 —B,) Sa+ 1425 —4,) Sa+14255-4,) } >
(A20)

where f, = 1 + p» + f3. All tensorial massless 1-loop
3-point momentum-space integrals can also be expressed in
terms of a number of 3K integrals when their tensorial
structure is resolved by standard methods (for the exact
expressions in this case see Appendix A 3 of [4]).

APPENDIX B: SCHOUTEN IDENTITIES

In this section we derive the following minimal decomposition used when analyzing the special conformal constraint on

the (TTJs) correlator

0 = T8 (po)TIEl2 (p2) 7 (p3) (KS(T41%1 (py ) T2 (pa) J% (p3)))
= HZ:EII (pl)l‘[;’;fzz(pz)ﬂm (pB)[p’f(Cllgplﬂlﬂz!¢3p’él pgz + Clzgpzlllﬂw}p’élpgz + CePHkats §hiva - C eP2k1kobs v

Vi b2 M3 V1V M3
+ CysePrpatiiz pit po pl + CgePrParrr2 g 2ph )

K 13 Y1 V2 vy V2 212 0%
+ pz(czlgpllll#zhpz D5 + szgpzlll/lz#}pz D3 + C23£P1#1H2#35 L C248Pzﬂ|ﬂz/435 12

Vi V2 o H3 VU Vy 4yH3
_|_C258P1172/41M2p2 27 + C268P|P2#1#25 1 2p1 )
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V2 v H3 V2
+ 5Kﬂl (( 31€p]ﬂ2/431’]p3 + ( 328[72,“2”31/1173 + ( 338171[72.“21/1]71 p3 + ( 348[71[72/42”351/11’2)
K Uy V] U U1 Uy M3 V1 21%
+ o2 (( g1 eP s pit o CypeP2k it pit 4 CyzeP 1Pt phis plt 4 Cy el 1Pakks 54 2)

Vi, 2 H3 H3
+ Csp stz gnva CSZgKﬂlllzﬂ}pz py + C538P1K/41M2p1 o2 4+ C545P2Kﬂ1142p1 51/1”2]_ (Bl)

In order to determine such decomposition, first we have to write all the possible tensor structures that can appear in the
equation. In particular the tensor related to the primary equations are

PV plz” p’gz p/l<, eP1HHaH3 p;‘ p’gz p’g, P2t 1t p;' p’gz p’f, P2t Hs p;‘ pgz ng

eP1HIH2H3 5V1V2p’f, gp]ﬂlﬂ2ﬂ35l’ll/2p§’ eP2H1H2H3 5”11/2p’l<, eP2H1H2H3 51/11/21;5,

Vi V2 M3 K Vi V2 M3 K 1) SUIV) M3 1K ViVy M3 K
gPleﬂlﬂzpz )20 2% gplpzlllﬂzpz P3P P5s eP1P2#1H2 GV 2py Py, eP1P2#1H2 SV 2py D5,

2 Vi sy H3 K Vi sy H3 K Y2 sy H3 oK
gpiPaik po S5 25 pl? pX, gpiP2#ik po S 25 pe ps. gpiP2#ike pl S5 1#3 pho ps., (Bz)

and similar ones for the secondary. However, not all of these tensors are independent. Some of these tensors can be rewritten
in terms of each others. We then need to find a set of tensors that form a minimal decomposition. We will illustrate a couple
of cases of Schouten identities needed for this purpose. For example we consider the equation,

0= E[plpzmuz(sgﬂ’ (B3)
which can be contracted with p{ and p, obtaining
T0) (p)TEL: (pa)mss (pa) [errr=ss i) = T (p1 )TGES: (pa)mis (p3) E erats (—pt — pl + p3)
_ gmpzumzp11‘3 _ 8P2ﬂ1ﬂ2ﬂ3p%:| ,
%, (PTG (p2) s (p3) P+ ph') = Tl (p)TLEE: (p)ai (ps) [pz PPt pif
- germn(-p} - 3+ )] (B4)
We then consider the identity
0 = elpipamm (B5)
which can be contracted with p{ and p§, obtaining
TG0 (pOTLEE (p2)mis (p3) [er1 P2 pi2] = TG0 (py)TES: (pa) i (p3) {—%8”‘”""‘2(—17? - pi+p3)
+ gP1Patis pk 4 eﬂzklllllzp%] ,
T2 (pOTLES (p2)fs (p3)er 7% ph') = Tl (p TS (po)ai (s) {—p% + eP1Pe ps
+ %8”2"”‘”2 (=pi-p3+ p%)] : (BO)

The analysis of the remaining contraints is rather involved, but follows the steps outlined above. In the end, after considering
all the possible Schouten identities, one finds a minimal set of independent structures as expressed in Eq. (B1).
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APPENDIX C: VERTICES

In this section we list the explicit expression of all the vertices needed for the perturbative analysis of the (T7Js)
correlator. The momenta of the gravitons and the axial boson are all incoming as well as the momentum indicated with k.

The momentum k, instead is outgoing. In order to simplify the notation, we introduce the tensor components:

1
Ao = g;wgoa _ 5 (gupguo + g;wgup)’
B;wpmz/} = g(l/ig/,wg/)o' _ gaﬁ (gﬂ/)gua + g;m'gup) ,
1 1
Corrl = 2 g (g0 + g0 P) + 3 g (P + g ).
1
Dyu/)mzﬂ = E ( gar; g/)'ﬂ gy/) + gap g/)'ﬂ gU(T + gao- g/)'zz QW) + gap g/ﬁ/ g;m)

1
"’Z(gaygﬁagyp+9a”9ﬁpgw+gabgﬂagﬂp“‘gaugﬁpg’m)a

GPr = yyPyr — yPyy? + vy — Py

The vertices can then be written as

127 N 1}
Auz VquZw - ng)/ 3,757
(4
ko ;
Gpin HiVL 7 ApIv1po
g D1 qud,w 4A (k1 + k2)p70 )
k1
¥
A/LS g}llul
p3 P1 .
pvips _ Y9 gpvipsp
k Voagy = ~34 Vo5
1 k’2
¥ v
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i Guavs
pivipzve _
999y
- % (Bmumguzaﬂ — CMvikzv2af DM1V1#2V2C¥5) Yo (k1 + kQ),g

(ga’”gﬁ 7gr 4 g2 gl ghar — oo gPraghap _ gaa gBi qrap > :

P P
0
(0
ky
D3 Vﬂll/ljtzl/zw —
k2 A, 99 APy
p1 P2 _ % <BM1V1M2V2,U3/\ — OHvip2v2psA DN1”1“2V2“3)‘> YAY5 -
g#llll
9/1,21/2

APPENDIX D: MASTER INTEGRALS

In this section we summarize some important relations regarding the master integrals B, and C,,. They are defined by the
following expressions in the Euclidean space3

Bo(p) = [au 1 1.y w 2 DI
o(Pi)=— W_;+ 8\~ ap? —r+ (D1)

and

1 1
Co(p}. p3. P3) E—/ddl
O s m* 12(1—1!’1)2(“'172)2

1 _ 2 2 2 gl 2 _ 52 2 g 2 2 52 g
lLi2<_ p1+p2+p3+\/_ 4 Liy _ M p2+P3+\/_ ~Li, pi+D5— D3 \/_

pr-p3-pi+Vi —pi+p3-pi+Va P+ pi-pi+Va

VA
2 2 _ 2 gl 2_ 2 2_ /2 2 2 2_ /2
+Li2<— P+ D3 P3+\/_>_Li2(171 P2+ D3 \/_>—Li2< pi+ p;+ p3 f)] (D2)

-p}—p3+pi+Va pi-p3+p3+Va P+ p3+pi+ VA

with 2 = A(py, p», p3) defined in (127). By acting with derivatives on such integrals one finds [9]

W By(p?) = 1; By(p?) (D3)

and

*In the Minkoski space, the prefactor of the integrals is 1/ (in?).
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+ [2p3(p3 — (d—4)p1) + (P} — P3)((d = 4)p} + (d —2)p3) + (d — 4)p3|Co(p?. P3. P3)}.

0 1
a—plCo = 5{2(0' =3)[(pT + p3 — P3)Bo(p3) + (PT — P3 + P3)Bo(p3) — 21 Bo(p?)]
+ [(d = 4)(p3 — p3)* = (d = 2)p} +2p1(p3 + p3)ICo(p1. P3. P3) }-
0 1
a—poo = E&(d =3)[(pT + p3 — P3)Bo(p1) + (P35 + P35 — P1)Bo(P3) — 23Bo(p3)]
a 1 2 2 2 2 2 2 2 2 2 2
0_p3CO = %{2(01 =3)[(p7 = p3 + p3)Bo(p7) + (P53 + P53 — P1)Bo(P3) — 2p3Bo(p3)]

+[(d=4)(pt = p3)* = (d = 2)p5 +2p3(pT + P3)]ICo(pi. P3. P3)}-
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