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Perturbative quantum field theory (QFT) calculations in de Sitter space are riddled with contributions
that diverge over time. These contributions often arise from loop integrals, which are notoriously hard to
compute in de Sitter. We discuss an approach to evaluate loop integrals that contribute to equal-time
correlators of a scalar field theory in a fixed de Sitter background. Our method is based on the Mellin-Barnes
representation of correlation functions, which allows us to regulate loop divergences by adjusting the masses
of the fields, or by gently deforming the underlying de Sitter spacetime. The resulting expressions have
a similar structure as a standard answer from dimensional regularization in flat space QFT. These features
of the regulator are illustrated with two examples, worked out in detail. Along the way, we illuminate
the physical origin of these divergences and their interpretation with the machinery of the dynamical
renormalization group. Our approach regulates the IR divergences of massless and massive particles in the
same way. For massless scalars, the loop corrections can be incorporated as systematic improvements to the
stochastic inflation framework, allowing for a more precise description of the IR dynamics of such fields
in de Sitter.
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I. INTRODUCTION

Inflationary theory [1–3] posits that the early Universe
underwent a period of approximately de Sitter (dS) expan-
sion. During this period, inflaton modes of large comoving
wavelength leave the horizon, only to reenter at a later time
and seed the structure we see in the night sky. Thus, the
quantum dynamics of these super-Hubble fluctuations
become ingrained in our cosmological observations. In
particular, the equal-time in-in correlation functions of light
scalar fields encode a great deal of information about the
inflationary era that could be revealed by measurements of
primordial non-Gaussianity [4]. However, not enough is
known about these correlators beyond tree level. This
situation becomes untenable as our measurements improve
in precision, especially in light of the fact that loop
calculations lead to infrared divergences and unbounded
time-dependent “secular” growth [5–21] (see Appendix).
Such secular terms appear at all orders of perturbation
theory and is our primary concern in this paper.
In this work, we develop a method to compute loop

diagrams that contribute to equal-time correlation function
of a scalar field theory on a fixed de Sitter background.
Even simple one-loop diagrams of this sort are difficult to

calculate [11,22]. The basic problem is the lack of time
translational invariance in dS, which means time appears
explicitly in the momentum integrals. Such integrals are
not scaleless, hampering our ability to compute them with
the usual bag of tricks we employ in flat space. A solution
to this problem was recently introduced in the form of soft
de Sitter effective theory (SdSET) [23,24] where, in the
long wavelength limit, the time integrals factorize and
separate from integrals over 3-momenta. This returns the
scalelessness of the momentum integrals, allowing us to
tame the divergences without violating the symmetries of
the underlying dS spacetime. However, we still need to
match the effective field theory (EFT) with the UV theory,
and it would be desirable to have a way of regulating loop
integrals on the UV side that shares all the nice properties
of the regulator we use in the EFT (dynamical dimensional
regularization). Such a procedure must also be general-
izable so that we do not have to invent a new way of doing
the integral for every diagram we encounter.
Our method starts with the following simple observa-

tion; dS spacetime has dilatation invariance in place of the
time-translation invariance of flat space. The latter allows
us to Fourier transform the time variable, which suggests
that the transform best suited for dS should have, as its
basis, the eigenfunctions of the dilatation generator. Mellin
transforms have exactly that property [25–27]. Once we
switch to Mellin space, the momentum and time integrals
decouple, and the divergences manifest as overlaps of
certain poles of the integrand. These overlaps may be
removed by introducing tiny shifts to these poles, in much
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the same way that loops in flat space quantum field theory
(QFT) are regulated by tweaking the number of dimen-
sions [28,29]. In fact, the connection was first made in
[30], and Mellin-Barnes (MB) integrals have been used
widely in evaluating sophisticated Feynman diagrams in
particle physics [31–34]. We employ some of the tools
developed in these papers in the present work, thereby
placing our method on a well-established foundation of
computational techniques.
The final expressions of our loop calculations bear a

strong resemblance to a standard dimensional regularization
(dimreg) answer, with the secular growth encoded in
diverging Γ functions. Once isolated, such divergences
can be interpreted with the machinery of the dynamical
renormalization group (DRG) [22,35–39]. This procedure
resums large secular logs in the same way regular RG
operates on UV logs in flat space. In the effective theory
language, the DRG evolution of composite operators of a
massless scalar naturally leads to the framework of stochas-
tic inflation, which describes the probability distribution of
the scalar field as a function of time [23,40–45]. Stochastic
inflation is the conceptual basis for slow-roll eternal
inflation, and even subtle changes to the time dependence
in this picture can have a profound impact on the phase
transition to eternal inflation. Loop effects introduce such
corrections to this framework at higher order, as demon-
strated with SdSET [24]. Our method allows us to draw the
same conclusion, by performing loop calculations in the full
theory itself.
The paper is structured as follows. In Sec. II we outline

the transition to Mellin space and explain how divergences
are encoded in this representation. Next, we review the MB
representation of a 4-point function in Sec. III, and use it
to compute the OðλÞ contribution to hϕ2ϕ2i and hϕ3ϕi in
Secs. IV and V. We explain the calculations in detail, to
be pedagogical, but most of the intermediate steps are
mechanical and can be automated [33,34]. We also identify
the issue of requiring more than one parameter to regulate
certain integrals and offer some suggestions to resolve this.
By way of a quantitative example, we have calculated the

anomalous dimension of the ϕ2 operator over a range of
masses and summarized them in Table I. We conclude in
Sec. VI by reviewing the lessons learned from our
calculations and contemplating future directions.

II. DE SITTER LOOPS IN MELLIN SPACE

Perturbative QFT calculations in dS are plagued by a
variety of divergences. One particular kind, the secular
growth terms, causes the naive perturbation expansion to
break down at late times. Such contributions are often
furnished by loop integrals, which are difficult to compute
in dS. The problem becomes more tractable if we represent
the correlation functions in Mellin space.

A. General structure

Consider a scalar field ϕ with mass m in a fixed dS
background with the metric ds2 ¼ aðτÞ2ð−dτ2 þ dx⃗2Þ,
where dx⃗ is a line element in D space dimensions, τ is
the conformal time and aðτÞ ¼ −1=Hτ. For a free scalar
field one expands the field in modes according to

ϕðx⃗; τÞ ¼
Z

dDk
ð2πÞD eik⃗·x⃗fvk⃗ðτÞak⃗ þ v�

k⃗
ðτÞa†

k⃗
g: ð2:1Þ

In the Bunch-Davies vacuum the modes are given by

vk⃗ðτÞ ¼ e−
iπ
4e−

πν
2

ffiffiffi
π

p
2

H
D−1
2 ð−τÞD2Hð1Þ

iν ð−kτÞ; ð2:2Þ

ν ¼def i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

4
−
m2

H2

r
: ð2:3Þ

where Hð1Þ
iν is the Hankel function of the first kind (we

follow the convention in [25]). We are interested in
calculating correlation functions of the field at a fixed
(late) time using the in-in/Schwinger-Keldysh formalism
(see Refs. [20,46] for a review). Such calculations involve
integrals of the schematic form,

hϕν
k⃗1
ðτ0Þ � � �ϕν

k⃗n
ðτ0Þiin−in

⊃
Y
i

Z
τ0
dτiaðτiÞDþ1

Y
j

Z
dDpj

ð2πÞD…

× Hiνðamðk⃗; p⃗ÞτiÞHiνðamþ1ðk⃗; p⃗Þτiþ1Þ…; ð2:4Þ

where amðk⃗; p⃗Þ are some linear combinations of the
3-momenta. The ⊃ symbol indicates that the correlator
is a sum of many terms like the one on the rhs. The
evaluation of this integral is made difficult by the fact that
the variables of integration, τi and p⃗j, are trapped as
arguments of Hankel functions. There are few special
values of ν for which Hiνð−kτÞ has a simpler functional
form, but even in those cases calculations involving loop

TABLE I. Anomalous dimensions of the ϕ2 operator, as
computed in Sec. IV.

jνj γϕ2=λ

1=3 0.00333
2=5 0.00483
1=2 1

16π2

2=3 0.00819
4=5 0.00967
1 1

8π2

6=5 0.01882
13=10 0.02612
7=5 0.04753
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integrals are cumbersome.1 To make progress, we rely on the following convenient MB representations [47],

iπe−
πν
2Hð1Þ

iν ðzÞ ¼
Z

cþi∞

c−i∞

ds
2πi

Γ
�
sþ iν

2

�
Γ
�
s −

iν
2

��
−
iz
2

�
−2s

;

−iπeπν
2Hð2Þ

iν ðzÞ ¼
Z

cþi∞

c−i∞

ds
2πi

Γ
�
sþ iν

2

�
Γ
�
s −

iν
2

��
iz
2

�
−2s

; ð2:5Þ

where c > jνj=2. These representations have been used to study late-time tree level correlation functions in [25,26].
Building on that work, we explore whether the same approach is fruitful in analyzing loop integrals in dS. To outline the
procedure we begin by substituting (2.5) into (2.4) and changing the order of integration,

D
ϕν
k⃗1
ðτ0Þ � � �ϕν

k⃗n
ðτ0Þ

E
in−in

⊃
Y
l

Z
dslΓ

�
sl þ

iν
2

�
Γ
�
sl −

iν
2

�Y
i

Z
τ0
dτiaðτiÞDþ1ð−τiÞ−2sl

×
Y
j

Z
dDpj

ð2πÞD…amðk⃗; p⃗Þ−2slamþ1ðk⃗; p⃗Þ−2sl0…: ð2:6Þ

We have “released” the variables τi and p⃗j, at the cost of introducing an MB integral for each Hankel function. The Mellin
variables sl label the eigenstates of the dilatation generator [27]. In the late-time limit, τ0 → 0, the time integrals reduce to
s-conserving delta functions at each vertex [25,26]; dilatation invariance of de Sitter space leads to conservation of s the
same way that translation invariance implies conservation of 3-momenta k⃗. We are then left with

D
ϕν
k⃗1
ðτ0Þ � � �ϕν

k⃗n
ðτ0Þ

E
in−in

⊃
Y
l

Z
dslΓ

�
sl þ

iν
2

�
Γ
�
sl −

iν
2

�
QðsÞδðsl þ…Þδðsl00 þ…Þ…

×
Y
j

Z
dDpj

ð2πÞD …amðk⃗; p⃗Þ−2slamþ1ðk⃗; p⃗Þ−2sl0…; ð2:7Þ

whereQðsÞ≡Qðs1;…; sl;…Þ is some ratio of polynomials of the Mellin variables. The form of the rhs reflects the fact that
dilatation and translation do not commute. The momentum integrals are now manifestly scaleless. Evaluating these
introduces new sl-dependent Γ functions,

D
ϕν
k⃗1
ðτ0Þ � � �ϕν

k⃗n
ðτ0Þ

E
in−in

⊃
Y
l

0 Z
dslΓ

�
sl þ

iν
2

�
Γ
�
sl −

iν
2

�
QðsÞΓðD − sl0 −…Þ…

Γðsl −…Þ… blðk⃗Þsl ; ð2:8Þ

where blðk⃗Þ are ratios involving the external momenta, and the prime on
Q0

j indicates that we have applied the delta
functions in s. All that remains is the evaluation of a multidimensional MB integral (2.8). Integrals of this form have been
studied extensively as a tool to simplify certain Feynman diagrams in particle physics [31–34,48]. Drawing on that
literature, we turn our attention to extracting and understanding the divergences contained in (2.8).

B. Divergences in MB integrals

Consider the simple case of an MB integral

KðxÞ ¼
Z þi∞

−i∞

ds
2πi

Γðs − aÞΓð−sÞx−s: ð2:9Þ

The poles of the integrand are the poles of the Γ functions. These are at s⋆ ¼ a; a − 1; a − 2; a − 3;… which are the “left”
poles and at s⋆ ¼ 0; 1; 2; 3;… which are the “right” poles. The contour is a straight line that runs parallel to the ℑðsÞ axis
and it must separate all left poles from all right poles. This is the Mellin contour prescription. We may then close the contour
on either the left or right-half plane, picking up the residues at the poles.

1For instance, the two-point function of a conformal mass scalar has the form hϕϕi ∼ eikðτ−τ0Þ=k, where the exponential makes it
difficult to evaluate the loop integral with techniques we use in flat-space calculations (see Ref. [22] for more details). Life can be made
simpler by imposing a hard cutoff, but this could generate unphysical logs.
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Now consider the case where a ¼ 0. This leads to
an overlap of the zeroth left and right poles as shown in
Fig. 1(a). In this situation no choice of contour can separate
all left poles from the right ones. Instead, if we set a ¼ −ϵ,
where ϵ is a vanishingly small positive number, we have the
situation shown in Fig. 1(b). The overlap is removed and a
contour C can be driven between the left and right poles.
As ϵ approaches zero the contour is said to be “pinched”.
The value of the integral at ϵ ¼ 0 is defined by analytic
continuation of the integral at ϵ > 0.
If we close C on the right hand plane we pick up the

residues at the right poles. However, notice that the residue
at the zeroth right pole s⋆ ¼ 0 is

Res½Γðsþ ϵÞΓð−sÞx−s; s ¼ 0� ¼ −ΓðϵÞ; ð2:10Þ

which blows up as ϵ → 0. In other words, an overlap of left/
right poles signals divergences in the MB integral. Also
note how the divergence appears as a ΓðϵÞ, in the same way
it does for a flat space loop integral computed with dimreg.2

What happens if the contour does not separate the left
and right poles? Suppose we chose to integrate over a

contour C0 that intersects ℜðsÞ to the left of the pole at
s⋆ ¼ −ϵ, as in Fig. 2. Then, this pole must be included in
the sum of residues. But that means K0ðxÞ ¼ Res½s ¼
−ϵ� þ Res½s ¼ 0� þ… ¼ ΓðϵÞ − ΓðϵÞ þ � � �. That is, there
is no divergence, even in the limit ϵ → 0 when the zeroth
poles overlap. The situations in Figs. 1(b) and 2 differ only
by the placement of the pole at s⋆ ¼ −ϵ. Therefore, we
can write

Z
C

ds
2πi

Γðsþ ϵÞΓð−sÞx−s ¼ þRes½s ¼ −ϵ�

þ
Z
C0

ds
2πi

Γðsþ ϵÞΓð−sÞx−s:

ð2:11Þ

The integral over C0 is finite and the divergence manifests
in the residue at −ϵ. Incidentally, this also suggests an
algorithm to identify and separate the divergence from any
Mellin integral. If we keep the contour fixed in Fig. 1(b)
and decrease ϵ, the zeroth left pole will cross over to the
right at some point. We then end up in the same situation as
Fig. 2, except that the contour is still C. To recover the
original integral we need to add the residue at s⋆ ¼ −ϵ,
just as we did in (2.11), thereby isolating the divergence as
a separate term. This is the basis of the procedure, first
introduced in [32], to extract divergences from Mellin
integrals over several variables.

C. N-dimensional MB integrals

By iterating the same basic steps discussed above, we
can identify and separate divergences in an N-dimensional
MB integral of the general form [cf. (2.8)]

Kðx1; x2;…; xNÞ ¼
Z

i∞

−i∞

ds1
2πi

…

Z
i∞

−i∞

dsN
2πi

Q
iΓðUiðsÞÞQ
jΓðVjðsÞÞ

× x−s11 � � � x−sNN ; ð2:12Þ

where xn are the ratios of kinematic variables, s ¼
ðs1;…; sNÞ, and the arguments of the Γ functions in the
MB integrand are

FIG. 2. A contour that does not separate left/right poles.

FIG. 1. Regulating divergences in MB integrals. The overlap of
the zeroth left and right poles in (a) makes (2.9) undefined
because no contour can separate all the left poles from the right
ones. In (b) we have shifted the left poles to the left by ϵ, allowing
us to drive a contour between the two kinds of poles. In the limit
ϵ → 0 we approach the situation in (a), known as contour
pinching, which results in a divergence ΓðϵÞ. This is simply
the residue at s⋆ ¼ 0, as we close the contour on the right hand
plane. The residues at the other poles are finite in the same limit.
(a) Poles of ΓðsÞΓð−sÞ. (b) Poles of Γðsþ ϵÞΓð−sÞ.

2In fact, the Mellin approach produces the same answer in flat
space, that we obtain by the conventional methods. See Chapter 4
of [48] for an instructive example that uses the MB representation
of Feynman propagators to compute the one-loop self-energy
graph in quantum electrodynamics.
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UiðsÞ ¼def ai þ
X
l

bilsl;

VjðsÞ ¼def a0i þ
X
l

b0ilsl; ð2:13Þ

where the constants ai; bil etc. are reals. The integral in
(2.12) is just an extension of (2.9) to N Mellin variables.
The poles of this integral are the poles of the Γ functions in
the numerator, that is, those s where

UiðsÞ ¼ −n; n∈Z0: ð2:14Þ

As before, an MB integral is well-defined if the contours
separate the left and right poles. For a multidimensional
MB integral like (2.12) this condition is equivalent to the
requirement

UiðCÞ > 0; ∀ i; ð2:15Þ

where UiðCÞ is the real part of Ui evaluated on the contour
C. For example, consider the situation in Fig. 3. If
U1ðsÞ ¼ aþ s, then U1ðCÞ ¼ aþ sC > 0 if we choose a
contour which intersects the ℜðsÞ axis at sC > −a.
Similarly, if U2ðsÞ ¼ b − s then U2ðCÞ ¼ b − sC > 0 ⇒
sC < b. Taken together, an integral with both these Γ
functions requires −a < sC < b, which is exactly the con-
dition that the contour must separate the left/right poles.
Generalizing this further, the condition for the nth pole

of ΓðUiÞ to be on the “correct” side is UiðCÞ þ n > 0. That
is, an nth right pole will be on the right side of the contour
and an nth left pole will be on the left if this inequality is
satisfied. Otherwise it means that the pole has crossed the
contour. Thus, we have the following pole crossing con-
dition for the nth pole:

UiðCÞ þ n < 0: ð2:16Þ

The inequalities (2.15) and (2.16) allow us determine where
a pole is, even in the N-dimensional case when it becomes
difficult to visualize the location of the poles and contours.

D. Analytic continuation

The MB integral in (2.12) has divergences if the
integrand has overlapping left/right poles. This makes it
impossible to choose a set of straight-line contours that
satisfy (2.15) for allUi [Fig. 4(a)]. We circumvent this issue
by introducing parameters ϵk into our integral that shifts the
poles around until we can meet the conditions (2.15). That
is, we change (2.13) to

UiðsÞ → ai þ
X
l

bilsl þ
X
k

cikϵk;

VjðsÞ → a0i þ
X
l

b0ilsl þ
X
k

c0ikϵk; ð2:17Þ

FIG. 3. Pole structure of an MB integral
R
C

ds
2πiΓðaþ sÞ×

Γðb − sÞx−s. The contour satisfies a < sC < b, which is equiv-
alent to the condition that the arguments of the Γ functions in the
integrand are positive when evaluated on the contour [cf. (2.15)].

FIG. 4. An MB integral is defined by shifting its poles around
till the left/right poles are separated by a straight-line contour.
Analytic continuation involves reverting these shifts and
allowing the poles to cross back to their original position. As
a pole crosses the contour, we isolate the contribution at that pole
[cf. (2.11)]. Some of the left/right poles (encircled) nearly
overlap, resulting in divergences. For an N-fold MB integral
all this happens across N complex sl-planes simultaneously.
Note: The poles in these figures have been staggered vertically
for clarity; they are all real-valued in our examples. See Sec. II D
for further explanation. (a) The original integrand, with all
ϵk ¼ 0, has overlapping poles. (b) The poles are separated
initially by setting ϵk ¼ ϵk

ð0Þ. (c) Some poles end up on the
wrong side of the contour and nearly overlap when ϵk ∼ 0.
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and choose the initial values ϵk ¼ ϵð0Þk to make the left/right
poles separable with straight line contours [Fig. 4(b)]. The
original integral, for which ϵk ¼ 0, is defined by analytic
continuation of the integral with the modified arguments
(2.17). As we take ϵk → 0, some of the poles will cross over
to the “wrong” side of the contours [Fig. 4(c)], and we
separate the residues at those poles as in (2.11). Around
ϵk ∼ 0 some left/right poles nearly overlap, with the small
nonzero values of ϵk keeping them from complete coales-
cence. The residues at these poles isolate the divergences in
the original integral. We can understand these ideas with a
rudimentary example. Consider the double integral

K ¼
Z
Cz

dz
2πi

Z
Cw

dw
2πi

Γ1ðz; w; ϵÞΓ2ðz; w; ϵÞ…Γmðz; w; ϵÞ;

ð2:18Þ

where Γiðz; w; ϵÞ≡ ΓðUiðz; w; ϵÞÞ are gamma functions
with arguments of the form (2.17), and Cz and Cw are
straight line contours which we close in the right-half plane.
These contours separate the left/right poles of the integrand
at ϵ ¼ ϵ0. Suppose that, as we decrease ϵ → 0, the first left
pole z⋆ of Γ1 has crossed to the right of Cz at ϵ ¼ ϵ1.
Following the discussion around (2.11), we may write,

K ¼ Res½Γ1; z⋆�
Z
Cw

dw
2πi

Γ2ðz⋆; w; ϵ1Þ…

þ
Z
Cz

dz
2πi

Z
Cw

dw
2πi

Γ�
1ðz; w; ϵ1ÞΓ2ðz; w; ϵ1Þ…

¼def K1 þ K�: ð2:19Þ

The asterisk on Γ�
1 indicates that the n ¼ 0 pole of that

function is on the “wrong” side. Therefore, the double
integral K⋆ includes a contribution −Res½Γ1; z⋆� (the minus
sign is due to the clockwise direction of the contour), which
needs to be compensated with a þRes½Γ1; z⋆� to recover
the original integral K. This is exactly the term K1, which
is the residue of K at the first pole of Γ1. If z⋆ was a right
pole that crossed to the left we would have writtenR
Cz

dz
2πiΓ1ðz;w;ϵ1Þ¼−Res½Γ1;z⋆�þ

R
Cz

dz
2πiΓ

�
1ðz;w;ϵ1Þ. Next,

we concentrate on the K1 term.3 As we continue decreasing
ϵ, suppose a pole w⋆ of Γ2 has crossed over at ϵ ¼ ϵ2. Then,

K1 ¼ Res½Γ1; z⋆�Res½Γ2ðz⋆Þ…Γmðz⋆Þ;w⋆�

þ Res½Γ1; z⋆�
Z
Cw

dw
2πi

Γ⋆
2 ðz⋆; w; ϵ2Þ…

¼defK12 þ K�
1: ð2:20Þ

Similarly, if a pole of Γ2 crosses over inK⋆ as we decrease ϵ
from ϵ1, we write K� ¼ K�

2 þ K��. We assume that no more
poles cross over as we continue down to ϵ ∼ 0. Therefore,
we can expand the integrals in K�

1; K
�
2, and K�� as a Taylor

series in ϵ. It is clear from context which poles are on the
wrong side, so we drop the asterisks on the K’s henceforth.4

Collecting everything together, we obtain

K → K12 þ K1 þ K2 þ K: ð2:21Þ

This is just a twofold version of (2.11). The breakup of K
depends on the choice of contours, but the final answer is
the same when everything is added up. Some of the terms in
(2.21) contain ΓðϵÞ’s, from taking residues at nearly over-
lapping poles [see Fig. 4(c)]. These are the divergences we
are looking for. Since (2.18) is a twofold integral there can
be a maximum of two simultaneous pinches, and the leading
behavior around ϵ ∼ 0 is at most

K ∼
const
ϵ2

þ const0

ϵ
þOðϵ0Þ: ð2:22Þ

The extension to the N-dimensional integral (2.12) is
straightforward. The procedure described above has been
developed into an algorithm in [31,33,34]. We illustrate the
steps in the examples below.

III. THE TREE-LEVEL 4-POINT FUNCTION

The calculations in this paper begin with the contraction
of the tree-level 4-point function of scalar fields shown in
Fig. 5 (we are working with a λϕ4 interaction). The MB
representation of such functions is detailed in [25]. We
summarize just the basic elements required to set up our
loop integrals, using the same conventions as that paper.
First, the Mellin-Barnes representation for the dS bulk-to-
boundary propagator is

FðνÞ
�;k⃗

ðτ; τ0Þ ¼ ð−τÞD2−iνN νðτ0Þ
Z

i∞

−i∞

ds
2πi

eδ
�
ν ðsÞΓ

�
sþ iν

2

�
Γ

×

�
s −

iν
2

��
−
τk
2

�
−2sþiν

; ð3:1Þ

where τ is a point in the bulk and the late time τ0 → 0. The
contour is a vertical line that intersects the real axis to the
right of the pole at s⋆ ¼ − iν

2
. The other symbols are

δ�ν ðsÞ ¼def ∓iπ

�
sþ iν

2

�
; ð3:2Þ

3Note that Γ2ðz⋆; w; ϵ1Þ can have a different w dependence
than Γ2ðz; w; ϵ1Þ. 4The naming convention for the rhs of (2.21) is from [32].
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N νðτ0Þ ¼def ð−τ0ÞD2þiν Γð−iνÞHD−1

4π
: ð3:3Þ

The þð−Þ subindices indicate the contributions from the
(anti)time-ordered branches of the in-in contour. The four
point correlator of Fig. 5 is given by

D
ϕðν1Þ
k⃗1

ϕðν2Þ
k⃗2

ϕðν3Þ
k⃗3

ϕðν4Þ
k⃗4

E0
�
¼�i

Z
τ0

−∞

dτ
ð−HτÞDþ1

Y4
j¼1

F
ðνjÞ
k⃗j;�

ðτ;τ0Þ:

ð3:4Þ

Substituting (3.1) into this equation gives

D
ϕðν1Þ
k⃗1

ϕðν2Þ
k⃗2

ϕðν3Þ
k⃗3

ϕðν4Þ
k⃗4

E0
�
¼�iH−D−1N 4ðτ0;kiÞ

×
Z

½ds�4ρðs;νÞ
Y4
j¼1

eδ
�
νj
ðsjÞ
�
kj
2

�
−2sj

×
Z

τ0

−∞
dτð−τÞD−1−2ðs1þs2þs3þs4Þ;

ð3:5Þ

where ½ds�N ¼def QN
j¼1

R dsj
2πi and

ρðs; νÞ ¼def
Y4
j¼1

Γ
�
sj þ

iνj
2

�
Γ
�
sj −

iνj
2

�
; ð3:6Þ

N 4ðτ0; kiÞ ¼def
Y4
j¼1

�
kj
2

�
iνj
N νjðτ0Þ: ð3:7Þ

The momentum and time arguments which were previously trapped inside the arguments of Hankel functions are now out in
the open. We can do the time integral right away,

Z
τ0

−∞
dτð−τÞD−1−2ðs1þs2þs3þs4Þ ¼ −ð−τ0ÞD−2ðs1þs2þs3þs4Þ

D − 2ðs1 þ s2 þ s3 þ s4Þ
¼τ0→0

iπδ

�
D
2
− ðs1 þ s2 þ s3 þ s4Þ

�
ð3:8Þ

which converges5 for ℜðD
2
− ðs1 þ s2 þ s3 þ s4ÞÞ < 0. Applying the delta-function constraint and reorganizing a bit allows

us to write (3.5) as

D
ϕðν1Þ
k⃗1

ϕðν2Þ
k⃗2

ϕðν3Þ
k⃗3

ϕðν4Þ
k⃗4

E0
�
¼ �i

H−D−1

2
e∓iπ

2
ðDþiðν1þν2þν3þν4ÞÞN 4ðτ0; kiÞIðk; νÞ; ð3:9Þ

Iðk; νÞ ¼def
Z

½ds�42πiδ
�
D
2
− ðs1 þ s2 þ s3 þ s4Þ

�
ρðs; νÞ2D

Y4
j¼1

k
−2sj
j : ð3:10Þ

The full 4-point function is the sum of the contributions from the forward and return legs of the in-in contour,

D
ϕðν1Þ
k⃗1

ϕðν2Þ
k⃗2

ϕðν3Þ
k⃗3

ϕðν4Þ
k⃗4

E0 ¼ H−D−1 sin

�
π

2
ðDþ iðν1 þ ν2 þ ν3 þ ν4ÞÞ

�
N 4ðτ0; kiÞIðk; νÞ: ð3:11Þ

FIG. 5. The 4-point correlation function at tree level.
FIG. 6. hϕ2ϕ2i at tree level.

5Usually the in-in contours are deformed slightly, such that the lower limit of the forward and return legs are −∞ð1 ∓ iϵÞ, to kill the
contribution from very early times. The same thing is accomplished here by constraining the real part of the Mellin variables.
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IV. THE ANOMALOUS DIMENSION OF ϕ2

As our first example, we compute the anomalous dimension of the ϕ2 operator at one loop, γϕ2 . This quantity was
computed for the conformal mass case in [22]. We set up the problem for a scalar field with general mass m and plug in a
specific value for m later. We start with the tree-level expression for hϕ2ϕ2i (see Fig. 6),

hϕ2ϕ2i0tree ¼ 2

Z
dDp
ð2πÞD GðνÞ

k⃗þp⃗
ðτ0ÞGðνÞ

p⃗ ðτ0Þ; ð4:1Þ

where GðνÞ is the late time 2-point function

GðνÞ
k⃗
ðτ0Þ ¼ lim

τ0→0

D
ϕðνÞ
k⃗
ðτ0ÞϕðνÞ

k⃗0
ðτ0Þ

E0 ¼ HD−1

4π
Γð−iνÞ2ð−τ0ÞDþ2iν

�
k
2

�
2iν
: ð4:2Þ

We could, for instance, arrive at this expression by taking the limit τ → τ0 ∼ 0 in (3.1) in which case the integral is
dominated by the pole at6 s⋆ ¼ − iν

2
. The momentum integral in (4.1) can be computed using the convolution theorem

[cf. (4.8)]. The result is

hϕ2ϕ2i0tree ¼
2

ð4πÞD2þ2

Γ
�
− D

2
− 2iν

�
Γ
�
D
2
þ iν

�
2
Γð−iνÞ2

ΓðDþ 2iνÞ H2D−2ð−τ0Þ2Dþ4iνkDþ4iν: ð4:3Þ

Next, we calculate the first-order correction hϕ2ϕ2iλ which is obtained by contracting the legs of the 4-point correlation
function (3.11) as shown in Fig. 7. This corresponds to setting k⃗1 ¼ k⃗þ p⃗1; k⃗2 ¼ p⃗1; k⃗3 ¼ k⃗þ p⃗2 and k⃗4 ¼ p⃗2 in (3.11)
and integrating over p⃗1 and p⃗2,

D
ϕ2ϕ2

E0
λ
¼
Z

dDp1

ð2πÞD
dDp2

ð2πÞD
D
ϕðν1Þ
k⃗þp⃗1

ϕðν2Þ
p⃗1

ϕðν3Þ
k⃗þp⃗2

ϕðν4Þ
p⃗2

E0
¼ C

Z
½ds�42πiδ

�
D
2
− ðs1 þ s2 þ s3 þ s4Þ

�
ρðs; νÞ2DIspecðk; s; νÞ: ð4:4Þ

Here, Ispec is the momentum integral and we have collected the prefactors into the constant C,

Ispecðk; s; νÞ ¼
Z

dDp1

ð2πÞD
dDp2

ð2πÞD
1

jk⃗þ p⃗1j2s1−iν1
1

p2s2−iν2
1

1

jk⃗þ p⃗2j2s3−iν3
1

p2s4−iν4
2

ð4:5Þ

C ¼ H−D−1 sin

�
π

2
ðDþ iðν1 þ ν2 þ ν3 þ ν4ÞÞ

� Y4
j¼1

1

2iνj
N νjðτ0Þ

!
: ð4:6Þ

FIG. 7. The first-order correction to hϕ2ϕ2i.

6The integrand in (3.1) also has poles s⋆ ¼ iν
2
þ n but these produce analytic terms in k which do not give rise to long-distance

correlations. See Ref. [25].
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We keep the masses distinct for now, leaving open the
possibility of using the νj’s to regulate the divergences in
(4.4). The momentum integral (4.5) clearly factorizes into
two integrals of the form

Imomða; bÞ ¼
Z

dDp
ð2πÞD

1

jk⃗þ p⃗ja
1

pb : ð4:7Þ

This presents us with the opportunity to introduce an
analytic continuation parameter. To see how, we first note
that Imom is just the convolution of the function f̃nðp⃗Þ ¼
1=pn with itself,

Imomða; bÞ ¼
Z

dDp
ð2πÞD f̃aðk⃗þ p⃗Þf̃bðp⃗Þ

¼
Z

dDye−ik⃗·y⃗faðy⃗Þfbðy⃗Þ; ð4:8Þ

where fnðy⃗Þ is given by the radial Fourier transform

fnðy⃗Þ ¼
Z

dDp
ð2πÞD

eip⃗·y⃗

pn ¼ 1

2nπD=2

Γ
�
D−n
2

�
Γ
�
n
2

� yn−D: ð4:9Þ

Before substituting this into (4.8) we change the integral
measure dDy → dD̄y with the promise that we take D̄ → D
at the end. We also introduce a factor of ð−τ0ÞD−D̄ in front

to preserve the overall dimensions and to ensure that the momenta k⃗ appears as the product −kτ0 in the final answer. This
way it remains invariant under the rescaling k → ρ−1k and aðτÞ → ρ−1aðτÞ [22]. With these changes

Īmomða;bÞ¼
1

2aþbπD

Γ
�
D−a
2

�
Γ
�
D−b
2

�
Γ
�
a
2

�
Γ
�
b
2

� ð−τ0ÞD−D̄
Z

dD̄y
e−ik⃗·y⃗

y2D−a−b

¼ð4.9Þ 1

ð4πÞ2D−D̄
2

Γ
�
D−a
2

�
Γ
�
D−b
2

�
Γ
�
a
2

�
Γ
�
b
2

� Γ
�
aþb
2
− 2D−D̄

2

�
Γ
�
D−aþb

2

� kD−a−bð−kτ0ÞD−D̄; ð4:10Þ

where we have introduced a bar above Īmom to indicate that we have tampered with the dimensionD at an intermediate step.
The difference D − D̄ can be used as an analytic continuation parameter. We introduce this parameter into one of the
momentum integrals in (4.5) by writing

Ispec ¼ Īmomð2s1 − iν1; 2s2 − iν2Þ × Imomð2s3 − iν3; 2s4 − iν4Þ ð4:11Þ

with the other momentum integral obtained by settingD ¼ D̄ in (4.10). We may now substitute this into (4.4) and integrate
over s4 to apply the delta function. The result is

hϕ2ϕ2i0λ ¼ C
2D

ð4πÞ3D−D̄
2

ð−kτ0ÞD−D̄kDþi
P

j
νj

Z
½ds�3Γ

�
D
2
− s1 − s2 − s3 þ

iν4
2

�

× Γ
�
s1 þ s2 þ s3 þ

iν4
2

�Y3
j¼1

Γ
�
sj þ

iνj
2

�
Γ
�
D
2
− sj þ

iνj
2

�

×
Γ
�
D̄
2
−Dþ s1 þ s2 −

iν1
2
− iν2

2

�
Γ
�
D − s1 − s2 þ iν1

2
þ iν2

2

� Γ
�
−s1 − s2 −

iν3
2
− iν4

2

�
Γ
�
D
2
þ s1 þ s2 þ iν3

2
þ iν4

2

� : ð4:12Þ

The divergences are completely encoded in the threefold MB integral. To proceed we need to plug in values for D and νj.

A. The conformal mass case

We first compute γϕ2 for a scalar field with conformal mass m2 ¼ 2H2 in D ¼ 3 dimensions. This corresponds to ν ¼ i
2
.

Substituting these numbers into (4.3) we obtain the tree-level contribution
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hϕ2ϕ2i0tree ¼ −
1

8π2
ð−Hτ0Þ4k: ð4:13Þ

The first-order correction follows from setting

ν2 →
i
2
− i2α;

νj →
i
2
; j ≠ 2;

D̄ → 3þ 2δ; ð4:14Þ
in (4.12). We have introduced the parameters α and δ to
make the MB integral well-defined, that is, to remove any
overlaps of left/right poles as required by the Mellin
contour prescription.7 These are the parameters denoted
by ϵk in (2.17). The actual integral, with α ¼ 0 ¼ δ, is
defined by analytically continuing in these parameters.
With these substitutions,

hϕ2ϕ2i0λ ¼ C
8

ð4πÞ3−δ k
1þ2αð−kτ0Þ−2δ

×
Z

½ds�3
Γ1Γ2Γ3Γ4Γ5Γ6Γ7Γ8Γ9Γ10

Γ11Γ12

; ð4:15Þ

where we have labeled the Γ functions,

Γ1 ¼ Γ
�
−
1

4
þ s1

�
;

Γ2 ¼ Γ
�
5

4
− s1

�
;

Γ3 ¼ Γ
�
−
1

4
þ s2 þ α

�
;

Γ4 ¼ Γ
�
5

4
− s2 þ α

�
;

Γ5 ¼ Γ
�
−
1

4
þ s3

�
;

Γ6 ¼ Γ
�
5

4
− s3

�
;

Γ7 ¼ Γ
�
−
1

4
þ s1 þ s2 þ s3

�
;

Γ8 ¼ Γ
�
5

4
− s1 − s2 − s3

�
;

Γ9 ¼ Γ
�
1

2
− s1 − s2

�
;

Γ10 ¼ Γð−1þ s1 þ s2 − αþ δÞ;
Γ11 ¼ Γð1þ s1 þ s2Þ;

Γ12 ¼ Γ
�
5

2
− s1 − s2 þ α

�
: ð4:16Þ

The evaluation of this integral is discussed in detail below.
However, most parts of the calculation can be done using
the MB Mathematica package by Czakon [34].

1. Choosing the contours

We focus on the MB integral

K ¼
Z

½ds�3
Γ1Γ2Γ3Γ4Γ5Γ6Γ7Γ8Γ9Γ10

Γ11Γ12

: ð4:17Þ

We integrate this over straight-line contours. The integral is
well-defined if we can choose contours such that (2.15) is
satisfied. This gives the following inequalities:

U1;2ðCÞ > 0 ⇒
1

4
< sC1 <

5

4
;

U3;4ðCÞ > 0 ⇒
1

4
− α < sC2 <

5

4
þ α;

U5;6ðCÞ > 0 ⇒
1

4
< sC3 <

5

4
;

U7;8ðCÞ > 0 ⇒
1

4
< sC1 þ sC2 þ sC3 <

5

4
;

U9ðCÞ > 0 ⇒ sC1 þ sC2 <
1

2
;

U10ðCÞ > 0 ⇒ sC1 þ sC2 > 1þ α − δ: ð4:18Þ

These inequalities can be combined to give the condition

max

�
1

4
;
3

4
− α;

5

4
þ α − δ

�
< sC1 þ sC2 þ sC3

< min

�
5

4
;
7

4
;
15

4
þ α

�
: ð4:19Þ

The contours sC1 and sC2 have another constraint which
follows from U1;3;9ðCÞ > 0,

1

2
− α < sC1 þ sC2 <

1

2
: ð4:20Þ

This condition can only be satisfied if α > 0. This means
that for sufficiently small α and δ, (4.19) becomes

5

4
þ α − δ < sC1 þ sC2 þ sC3 <

5

4
; ð4:21Þ

which requires δ > α. The inequalities (4.20) and (4.21)
indicate that the contours are pinched, with α and δ − α
being the width of the pinches (cf. Fig. 3). We see shortly
how these pinches manifest as the divergences of (4.17).
The conditions (4.18) can be satisfied by choosing

α ¼ 0.1; δ ¼ 0.7; sC1 ¼ sC3 ¼ 0.3, and sC2 ¼ 0.17. This
choice is by no means unique.

7It is possible to remove all pole overlaps in this case with just
one parameter, as discussed in Sec. IVA 3. We chose to use two
here to illustrate some aspects of using multiple parameters.
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2. Analytic continuation

With the contours fixed we start at α ¼ 0.1, δ ¼ 0.7 and
analytically continue to the region around α, δ ∼ 0. As we
decrease α and δ we keep track of the poles that cross the
straight-line contours and add the residues at those poles to
the integral in (4.17), now evaluated at a smaller value of
the parameters α and δ. These residue terms may have poles
in the remaining variables which can cross other contours
as the parameters are decreased further. Iterating this
process we end up with a collection of residue terms, plus
the original fourfold integral. Some of the residue terms
contain factors that diverge as α, δ → 0. All remaining
integrals can simply be expanded in α, δ under the integral
sign since there are no further pole crossings.
The present example is simple enough that we end up

with only four residue terms. Decreasing to α ¼ 0.08 and
δ ¼ 0.56, the first poles to cross the contours are at s2 ¼
1
4
− α and s2 ¼ 1 − s1 þ α − δ which are the zeroth poles

of Γ3 and Γ10. Following the pattern in (2.11) and (2.21),
we can write

K → K3 þ K10 þ K; ð4:22Þ

where the K on the rhs is evaluated at the new values of α
and δ, and

K3 ¼
Z

ds1
2πi

ds3
2πi

Γ1Γ2Γ4Γ5Γ6Γ7Γ8Γ9Γ10

Γ11Γ12

����
s2¼1

4
−α
; ð4:23Þ

K10 ¼
Z

ds1
2πi

ds3
2πi

Γ1Γ2Γ3Γ4Γ5Γ6Γ7Γ8Γ9

Γ11Γ12

����
s2¼1−s1þα−δ

:

ð4:24Þ

The Γ functions of K3 and K10 will have a different
dependence on α and δ once s2 is eliminated. Reducing
the parameters further we find that the zeroth pole of Γ9,
at s1 ¼ 1

4
þ α, crosses over in K3 prompting us to write

K3 → K39 þ K3. At the same time the pole s3 ¼ 1
4
− αþ δ

of Γ8 crosses over in K10 leading to the split K10 →
K10;8 þ K10. There are no further pole crossings as α,
δ → 0. All in all, we end up with

K → K39 þ K10;8 þ K3 þ K10 þ K: ð4:25Þ

The term K39 is

2ΓðαÞΓð1 − αÞΓð2αþ 1ÞΓ
�
− 1

2
− αþ δ

�
ffiffiffi
π

p
Γðαþ 2Þ

Z
0.3þi∞

0.3−i∞

ds3
2πi

Γ
�
3

4
− s3

�
Γ
�
5

4
− s3

�
Γ
�
−
1

4
þ s3

�
Γ
�
1

4
þ s3

�
: ð4:26Þ

The left/right poles in the s3 integral are separated by the contour. Therefore, we can evaluate this integral using Barnes’s first
lemma8 to obtain

K39 ¼ −2πΓðαÞ þOð1Þ: ð4:28Þ

Next, the integral K10;8 is

K10;8 ¼
Γðδ − αÞΓð1þ α − δÞΓð− 1

2
− αþ δÞ

Γð3
2
þ δÞΓð2þ α − δÞ

×
Z

0.3þi∞

0.3−i∞

ds1
2πi

Γ
�
5

4
− s1

�
Γ
�
−
1

4
þ s1

�
Γ
�
1

4
þ s1 þ δ

�
Γ
�
3

4
− s1 þ 2α − δ

�
: ð4:29Þ

The poles of the of the s1 integral are well-separated by the straight-line contour around α, δ ∼ 0. Therefore, we can once
again use (4.27) to obtain

K10;8 ¼ −2πΓðδ − αÞ þOð1Þ: ð4:30Þ

The remaining terms K3, K10, and K in (4.25) are at most9 Oð1Þ and can be ignored. Putting the pieces together we have

8Barnes’s first lemma states

Z þi∞

−i∞

dz
2πi

Γðλ1 þ zÞΓðλ2 þ zÞΓðλ3 − zÞΓðλ4 − zÞ ¼ Γðλ1 þ λ3ÞΓðλ1 þ λ4ÞΓðλ2 þ λ3ÞΓðλ2 þ λ4Þ
Γðλ1 þ λ2 þ λ3 þ λ4Þ

; ð4:27Þ

where the contour is a vertical line that separates the left/right poles of the Γ functions in the integrand.
9Oð1Þ terms are those which do not blow up as the analytic continuation parameters approach 0.
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K ¼ −2π½ΓðαÞ þ Γðδ − αÞ� þOð1Þ; ð4:31Þ

which completes the evaluation of (4.17). Substituting the
above result into (4.15),

hϕ2ϕ2i0λ ¼ lim
α;δ→0

C
8

ð4πÞ3−δ k
1þ2αð−kτ0Þ−2δ

× −2π½ΓðαÞ þ Γðδ − αÞ�: ð4:32Þ

We evaluate the prefactorC defined in (4.6) with the νj from
(4.14) and10 D ¼ 3,

C ¼ H4

26þ2απ5=2
cosðπαÞΓ

�
1

2
− 2α

�
ð−τ0Þ4þ2α

∼
H4

64π2
ð−τ0Þ4þ2α: ð4:33Þ

Then, at leading order in α and δ we have

hϕ2ϕ2i0λ ¼
ð−Hτ0Þ4
512π5

k × −2π
�
1

α
þ 1

δ − α
− 2γE þ � � �

	
ð−kτ0Þ2α−2δ: ð4:34Þ

As expected the divergences are directly related to the width
of the pinches. However, we do not know the exact
relationship between α and δ except that they are both
infinitesimal and δ > α (this condition, which follows from
(4.21), fixes the sign of the 1

δ−α divergence and we must
adhere to it throughout the analytic continuation process). It
is “reasonable” to make the width of the pinches equal by
setting δ − α ¼ α. Then,

hϕ2ϕ2i0λ ¼ −
ð−Hτ0Þ4
128π4

k

�
1

α
− 2 logð−kτ0Þ þ � � �

	
: ð4:35Þ

3. An alternate parametrization

It is possible to define (4.17) with a single parameter
instead of the α and δ we introduced in (4.14). This time we
set all νj →

i
2
and D̄ ¼ D ¼ 3 but modify the time integral

(3.8) to

ð−τ0Þ−2ϵ
Z

τ0

−∞
dτð−τÞD−1−2ðs1þs2þs3þs4Þþ2ϵ ¼τ0→0ð−τ0Þ−2ϵ

× iπδ

�
D
2
− ðs1 þ s2 þ s3 þ s4Þ þ ϵ

�
; ð4:36Þ

where ϵ is the new parameter in which we analytically
continue. We have used a factor of ð−τ0Þ−2ϵ to keep the
dimensions correct, just as we did in (4.10). Introducing

these changes into (4.12) and repeating the calculation
we get

hϕ2ϕ2i0λ ¼ −
ð−Hτ0Þ4
128π4

k

�
1

ϵ
− 2 logð−kτ0Þ þ � � �

	
; ð4:37Þ

in agreement with (4.35). Physically, this regulator deforms
the background by a small amount, and one might worry
that it breaks the underlying dS symmetries. However, the
degree of this breaking is controlled by the small number ϵ,
as evidenced by the slight nonconservation of s in (4.35). If
we remove the 1=ϵ piece with a counterterm, we are left
with an answer that is independent of ϵ and is valid in the
fully symmetric ϵ → 0 limit.
Furthermore, there is no ambiguity about the relationship

between analytic continuation parameters here since there
is only one of them. We also see that it was correct to
require the width of the pinches match, for, any other choice
would have led to a different answer. This piece of insight is
useful in the next example where it is impossible to make
the MB integral well-defined with just one parameter.

4. Dynamical renormalization

The expression (4.35), with its 1=α pole and the
associated log, resembles a standard one-loop result in flat
space, computed by continuing the number of spacetime
dimensions.11 The term logð−kτ0Þ≡ logðk=ðaHÞÞ blows
up at late times, τ0 → 0, jeopardizing the validity of the
perturbation series. This indicates that our series expansion
was too simple minded to begin with, and more careful
treatment is required to handle these secular growth terms.
The DRG [35,36] provides the required fix. To review
quickly, we start by combining (4.13) and (4.35),

hϕ2ϕ2i0 ¼ hϕ2ϕ2i0tree − λhϕ2ϕ2i0λ þOðλ2Þ

¼ −
1

8π2
ð−Hτ0Þ4k

�
1 −

λ

16π2

×

�
1

α
− 2 logð−kτ0Þ þ � � �

�
þOðλ2Þ

	
: ð4:38Þ

We now remove the divergence with a counterterm, which
also introduces a new ratio of scales k⋆=ðaHÞ⋆ (see
Refs. [22,35] for more details). Noticing that the correlation
function must be independent of this ratio, we obtain a
differential equation for hϕ2ϕ2i, the solution of which
resums the secular logs to

10The number of space dimensions in (4.6) is D ¼ 3 and not
the D̄ ¼ 3þ 2δ introduced in (4.10).

11We can push the analogy further, to see that resumming the
logs at all orders simply change the scaling dimension of the ϕ2

operator [cf. (4.39)]. The parallel between DRG and RG is
explored in greater detail in [22].
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hϕ2ϕ2i0 ¼−
1

8π2
ð−Hτ0Þ4kexp

�
λ

8π2
logð−kτ0Þþ…

�
× ð1þ…Þ

¼−
1

8π2
ð−Hτ0Þ4kð−kτ0Þ2γϕ2 ð1þOðλ2ÞÞ

¼−
1

8π2
H−2γϕ2

aðτ0Þ2Δϕ2þ2γϕ2
k1þ2γϕ2 ð1þOðλ2ÞÞ: ð4:39Þ

Thus, treating the secular dependencewith DRG induces an
anomalous dimension for the ϕ2 operator, namely

γϕ2 ¼ λ

16π2
: ð4:40Þ

This anomalous scaling is a product of subhorizon effects,
as we demonstrate in Sec. VA 1. For now, we note that the
treatment of secular growth in dS closely resembles the
handling of UV divergences in flat space. This connection
holds for all scalar fields of general mass, except when the
field is massless; massless scalars in dS have no flat space
analog.

B. γϕ2 for other masses

The calculation above was repeated for a few other light
scalars with masses in the range 0 < m2 < ðD

2
Þ2H2. The

results are summarized in Table I, and plotted in Fig. 8. An
interesting feature of this graph is the sharp rise in the value
of γϕ2 as we approach the massless limit, ν → i3=2. This
indicates another divergence creeping in as we decrease the
mass to zero.
If we set all νj ¼ i3=2 − i2α and D ¼ 3 in (4.12), and

examine the Γ functions, we find four pairs of nearly
overlapping zeroth poles which can lead to a maximum of

three simultaneous contour pinches.12 That means hϕ2ϕ2iλ
diverges as ∼α−3 where 2α is the width of each pinch. Of
these, one factor of α−1 is already present at the tree level
[cf. (4.3) and [49] ] and another factor of α−1 comes from
the loop integral, just like in (4.35). The remaining α−1 is
roughly due to the time evolution of the long wavelength
modes; this intuition is made precise by the effective field
theory treatment of such modes in [23,24]. Such divergen-
ces are a well-known feature of massless fields in dS and
their careful resummation leads to Starobinsky’s stochastic
inflation framework [42,43].
It was realized in a followup work13 that the present

method can give closed form expressions for the anomalous
dimensions by analytic continuation of ν. The details of this
method will appear in a future paper, but we quote the result
here,

γϕ2 ¼−
coshð2πνÞΓ

�
3
2
þ iν

�
2
Γ
�
3
2
þ2iν

�
Γð−iνÞ2λ

16π7=2Γð3þ2iνÞ : ð4:41Þ

V. MIXING OF ϕ3 AND ϕ

As our second example, we compute the order λ con-
tribution to hϕ3ϕi. The dynamics of a massless scalar, as
described by stochastic inflation, receives a next-to-next-to
leading order correction from this term [24]. It is easiest to
see this in the SdSET, wherein stochastic inflation is a direct
consequence of EFT power counting (see Sec. 5.2 of [23]).
The calculation below produces the same divergence
structure for hϕ3ϕiλ in the full theory as that computed
in the SdSET, verifying the correctness of the effective
theory approach.
We start with (3.11) and contract three of the legs

together resulting in the two-loop diagram of Fig. 9,

D
ϕ3ϕ

E0
λ
¼
Z

dDp1

ð2πÞD
dDp2

ð2πÞD
D
ϕðν1Þ
p⃗1

ϕðν2Þ
p⃗2

ϕðν3Þ
k⃗−p⃗1−p⃗2

ϕðν4Þ
k⃗

E0
¼ C

Z
½ds�42πiδ

�
D
2
− ðs1 þ s2 þ s3 þ s4Þ

�
× ρðs; νÞ2DIsunðk; s; νÞ; ð5:1Þ

where C is the prefactor defined in (4.6) and Isun is the
momentum integral

Isunðk;s;νÞ¼
Z

dDp1

ð2πÞ3
dDp2

ð2πÞ3
1

pa
1p

b
2ðk⃗− p⃗1− p⃗2Þckd

; ð5:2Þ

FIG. 8. Anomalous dimension of ϕ2 for different masses.
Larger values of jνj correspond to smaller masses [see Eq. (2.2)].
The solid black line is from the closed form expression (4.41).
The encircled points are the values from Table I.

12A very similar phenomenon happens with the massless two-
loop calculation in Sec. VA. The divergence structure of the MB
integral is explained in greater detail there.

13This insight is due to Manuel Loparco.
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with a ¼ 2s1 − iν1; b ¼ 2s2 − iν2; c ¼ 2s3 − iν3 and d ¼ 2s4 − iν4. Once again, this integral can be evaluated by noting
that it is a convolution in momentum space [cf. (4.8)]. We also take this opportunity to introduce an analytic continuation
parameter D − D̄, just as we did in (4.10). The result is

Isunðk; s; νÞ ¼
1

ð4πÞ3D−D̄
2

ð−kτ0ÞD−D̄

k
P

3

j¼1
ð2sj−iνjÞ−2D

Y3
j¼1

Γ
�
D
2
− sj þ iνj

2

�
Γ
�
sj −

iνj
2

� Γ
�
s1 þ s2 þ s3 − iðν1 þ ν2 þ ν3Þ=2 − 3D−D̄

2

�
Γ
�
3D
2
− s1 − s2 − s3 þ iðν1 þ ν2 þ ν3Þ=2

� : ð5:3Þ

We can substitute this into (5.1) and apply the delta
function. In order to proceed we must plug in some actual
numbers for the masses and dimension.

A. The massless case

We now restrict our attention to the case of massless
scalar fields. It is not possible to make (5.1) well-defined
with a single parameter. So we do the calculation in two
different parametrizations, first by floating the masses and
then by tweaking the time integral and number of dimen-
sions, and compare the results. We set

νj ¼ i
3

2
− i2α; j ¼ 1; 2; 3;

ν4 ¼ i
3

2
− i2α4;

D ¼ 3;

D̄ ¼ 3þ 2δ; ð5:4Þ

where we have introduced three parameters to satisfy
(2.15). We could have chosen a different αj for each νj,
to get νj ¼ i 3

2
− i2αj. However, these parameters will

always show up together as the sum α1 þ α2 þ α3, which
makes sense since the sj variables associated with the legs
carrying loop momenta are interchangeable. So α1 þ α2 þ
α3 is really just one parameter which we have identified as
3α and distributed equally between ν1, ν2, and ν3. The
fourth leg, which does not participate in the loop integral, is
given its own α4. We end up with

hϕ3ϕi0λ¼C
8

ð4πÞ3−δ
ð−kτ0Þ−2δ
k3−6α−2α4

Z
½ds�3

Γ1Γ2Γ3Γ4Γ5Γ6Γ7Γ8Γ9

Γ10

;

ð5:5Þ

where

Γ1 ¼ Γ
�
9

4
− s1 − s2 − s3 − α4

�
;

Γ2 ¼ Γ
�
3

4
− s1 − s2 − s3 þ α4

�
;

Γ3 ¼ Γ
�
−
3

4
þ s1 þ s2 þ s3 − 3αþ δ

�
;

Γ4 ¼ Γ
�
3

4
− s1 þ α

�
;

Γ5 ¼ Γ
�
−
3

4
þ s1 þ α

�
;

Γ6 ¼ Γ
�
3

4
− s2 þ α

�
;

Γ7 ¼ Γ
�
−
3

4
þ s2 þ α

�
;

Γ8 ¼ Γ
�
3

4
− s3 þ α

�
;

Γ9 ¼ Γ
�
−
3

4
þ s3 þ α

�
;

Γ10 ¼ Γ
�
9

4
− s1 − s2 − s3 þ 3α

�
: ð5:6Þ

We now focus on evaluating the MB integral in (5.5),

K ¼
Z

½ds�3
Γ1Γ2Γ3Γ4Γ5Γ6Γ7Γ8Γ9

Γ10

: ð5:7Þ

FIG. 9. The leading contribution to hϕ3ϕi.
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1. Anticipating the answer

At a glance (5.7) looks very similar to (4.17) but it is in
fact hiding a much more intricate divergence structure. This
is already apparent if we examine the arguments of the Γ
functions above. For instance, the zeroth left pole of Γ4 is at
a distance 2α from the zeroth right pole of Γ5. As we take
α → 0 these poles pinch the contour and generate a 1=2α
divergence. There are four such pairs of Γ functions in the
list which together can generate up to a cubic order
divergence. Thus, without actually evaluating (5.7), we
may deduce the following form of the answer:

K ∼
c3
α3

þ c2
α2

þ c1
α
þOðα0Þ; ð5:8Þ

where α denotes some linear combination of the parameters
α; α4, and δ, all of which are nearly zero, and ci collects
together the remaining factors. Also note that, for a massive
scalar (jνj < 3=2) there would be fewer simultaneous
contour pinches, and the leading small α behavior would
be less singular than (5.8). This is another example of our
observation from Fig. 8; scalars in dS are saddled with more
IR divergences than their massive counterparts.
The Mellin variables sj carry physical meaning, as

eigenvalues of the dilatation operator. Therefore, it is worth
understanding which poles contribute to the terms in (5.8).
To do so we consider a simpler twofold toy integral, with
the same features as (5.7)

Ktoy ¼
Z

½ds�2Γ
�
3

4
− s1 − s2 þ α

�
Γ
�
−
3

4
þ s1 þ s2 þ α

�

×
Y2
j¼1

Γ
�
3

4
− sj þ α

�
Γ
�
−
3

4
þ sj þ α

�
: ð5:9Þ

As α → 0 this integrand generates three contour pinches, of
which at most two manifest simultaneously. Thus, the
answer has the form

Ktoy ∼
c̄2
α2

þ c̄1
α
þOðα0Þ: ð5:10Þ

We can examine the singular structure of Ktoy on a
ℜðs1Þ −ℜðs2Þ plane (Fig. 10). The poles of our integrand
are real and these are represented by straight lines in
Figs. 10(a) and 10(b). These lines are the graphs UiðsÞ ¼
−n [cf. (2.14)]. For example, the red lines represent the
poles of Γð3=4 − sj þ αÞ, which are at sj⋆ ¼ 3=4þ αþ n
with n∈Z0 and j ¼ 1, 2. Similarly, we map,

FIG. 10. The poles of the integrand are represented by straight
lines on a ℜðs1Þ −ℜðs2Þ plane. Residues are computed at the
intersections of these lines. The × symbol in (a) represents
the real part of the s1 and s2 contours. Poles that cross over to the
other side are represented by dashed lines in (b). The residues at
the red dots contain a ΓðαÞ2 divergence whereas those at purple
dots give a ΓðαÞ. The latter encode subhorizon physics, as
explained in Sec. VA 1. (a) Prior to analytic continuation, when
the left/right poles are separated [cf. Fig. 4(b)]. (b) At the end
of continuation, with the dashed lines indicating crossed poles
[cf. Fig. 4(c)].
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3

4
− sj þ α ¼ −n ðred linesÞ;

−
3

4
þ sj þ α ¼ −n ðblue linesÞ;

3

4
− s1 − s2 þ α ¼ −n ðorange linesÞ;

−
3

4
þ s1 þ s2 þ α ¼ −n ðgreen linesÞ:

In applying Cauchy’s theorem we compute residues at the
intersections of these lines and add them up in specific
ways [50]. The real parts of the straight line contours are
represented by a point C in these plots.
We define the integral by choosing a value of α such that

the left/right poles are well-separated by contours, as shown
in Fig. 10(a) [see also Fig. 4(b)]. As we decrease α → 0
some of the n ¼ 0 poles (blue and orange) cross over to the
other side, and come within 2α distance of n ¼ 0 poles of
the opposite nature (red and green lines). The crossed poles
are indicated by dashed lines in Fig. 10(b), and the
intersections at which we take residues are marked with
dots. Due to their proximity to other poles, the residues
along each dashed line contains a factor of Γð2αÞ
[cf. (2.10)]; residues computed at intersections of two
dashed lines generate Γð2αÞ2. Residues computed at all
other intersections, which do not involve any dashed lines,
contribute to the Oðα0Þ term in (5.10).
It is clear from Fig. 10 that only a small subset of all

possible poles contribute divergences to the answer. This is
just a two-dimensional generalization of what we observed
in (2.11). However, there is something else going on; only a
finite number of intersections produce an α−2 term, whereas
an infinity of them diverge as α−1. The poles that generate
the α−2 capture the leading behavior of the mode functions
in the long-wavelength limit [see discussion under (4.2)].
In fact, the EFT description of such soft modes reproduces
this divergence exactly, without any UV matching [24].
On the other hand, an infinite number of residues have to be
summed over to fully account for the α−1 term, indicating
that it is tracking much more than just k ≪ ðaHÞ effects. In
other words, this term encodes subhorizon physics. A
similar analysis on the example from Sec. IVAwould show
that the α−1 term there is also derived from summing over an
infinite number of intersections [this is apparent from (4.26)
and (4.29)], which means the anomalous scaling we found
there was truly a UV effect.
Diagrams like Fig. 10 have special significance in the

evaluation of multidimensional MB integrals by the method
of residues [51]. The straight lines we studied above become
hypersurfaces for an N-fold MB integral, and we take
residues over the polyhedra formed by these surfaces. For a
field theory calculation, this leads to a multiple series in
powers and logarithms of the kinematic parameters. The
convergence of such a series has a geometrical connection to
the aforementioned polyhedra [50,52]. While we focus only

on the divergent contributions in this work, it would be
worth investigating whether the ideas in these references can
be used to understand the properties of dS loops in various
kinematic limits.

2. Choosing the contours

We now return to the task of computing (5.7). The intial
values of the parameters α; α4, and δ are chosen to satisfy
(2.15), by the same process as in Sec. IVA 1. One possible
choice is δ ¼ 0.06; α ¼ 0.26; α4 ¼ 0.76 with contours
sC1 ¼ sC2 ¼ sC3 ¼ 0.495. We have placed the contours at
the same position in the s1, s2, and s3 planes to leverage the
symmetry of the integral under the exchange of these
variables. In practice, this choice leads to simultaneous
pole crossings, which requires special care [33]. A simple
solution that works for the present calculation is to stagger
the contours by a little bit, by choosing say sC1 ¼ 0.5;
sC2 ¼ 0.495, and sC3 ¼ 0.492.
The conditions U4;5ðCÞ > 0, U6;7ðCÞ > 0, U8;9ðCÞ > 0,

U2;3ðCÞ > 0, and U1;5;7;9ðCÞ > 0 produce pinches similar
to (4.20) and (4.21),

3

4
− α < sCj <

3

4
þ α; j ¼ 1; 2; 3;

3

4
þ 3α − δ < sC1 þ sC2 þ sC3 <

3

4
þ α4;

9

4
− 3α < sC1 þ sC2 þ sC3 <

9

4
− α4; ð5:11Þ

from which we infer that α > 0, 3α − δ < α4, and 3α > α4.
We should honor these relationships throughout, lest we
end up with incorrect signs for the divergences. It should be
noted that the last pinch above does not give a divergence,
because the poles of Γ1 are very nearly the same as those of
the Γ10 in the denominator, and they cancel. In other words,
it does not correspond to an overlap of poles in the
unregulated integral, for which α; α4, and δ are zero.

3. Analytic continuation

We now begin our journey to α; α4; δ ∼ 0 to determine
(5.7) for a massless theory. The first poles to cross at those
of Γ5, Γ7, and Γ9. We separate the residues at those poles
and write

K→K5þK7þK9þK57þK59þK79þK579þK: ð5:12Þ

Γ5, Γ7, and Γ9 are the same up to an exchange of sj, and so
are the terms K5, K7, and K9 as well as K57, K59, and K79.
Therefore, the above breakup is really K → 3K5 þ 3K57þ
K579 þ K. We focus now on each of these terms. First, K579

is the residue of K at the three poles sj ¼ 3
4
− α and it

involves no integrals. Next, K57 is a single integral which
further breaks up, in stages, into K57 → K572 þ K5720 þ K57

as the parameters are taken to zero. The prime in K5720
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indicates that the residue is taken at n ¼ 1 pole of Γ2 [cf. (2.16)]. At the same time, the double integral K5 further breaks up
into K5 → K5270 þ K52 þ K5. Finally, the K in the rhs of (5.12) is a triple integral which separates as K → K2 þ K. The
analytic continuation is now complete, with

K ¼ 3ðK5270 þ K52 þ K5Þ þ 3ðK572 þ K5720 þ K57Þ þ K579 þ K2 þ K: ð5:13Þ

4. Evaluation of the terms

We evaluate a few of the terms in (5.13) to demonstrate the steps involved. The easiest ones are those involving residues
in all three variables. For e.g.,

K579 ¼
Γ1Γ2Γ3Γ4Γ6Γ8

Γ10

����
sj¼3

4
−α

¼
Γð2αÞ3Γð3α − α4ÞΓ

�
− 3

2
þ 3αþ α4

�
Γ
�
3
2
− 6αþ δ

�
Γð6αÞ : ð5:14Þ

There are also terms with a single integral, like

K52 ¼
Z
C3

ds3
2πi

Γ1Γ3Γ4Γ6Γ��
7 Γ8Γ�

9

Γ10

����
s1¼3

4
−α;s2¼−s3þαþα4

¼ Γð2αÞΓð−3αþ α4 þ δÞ Γð3
2
− 2α4Þ

Γ
�
3
2
þ 3α − α4

�Z
C3

ds3
2πi

Γ
�
3

4
þ s3 − α4

�
Γ�
�
−
3

4
þ s3 þ α

�
Γ
�
3

4
− s3 þ α

�

× Γ��
�
−
3

4
− s3 þ 2αþ α4

�
: ð5:15Þ

The symbol Γ� indicates that the first pole of that Γ function has crossed over. Γ�� means the first two poles have crossed,
and so on (see Sec. II D). The s3 integral by itself does not produce any new divergence since the overlapping poles are on
the other side of the contour (see Fig. 2). Since the prefactor is alreadyOðα−2Þ as α → 0, we need to retain the α dependence
inside the s3 integral to compute the Oðα−1Þ contribution to K. We can Taylor expand the integrand to linear order in α and
α4 and write,

Z
C3

ds3
2πi

Γ
�
3

4
þ s3

�
Γ�
�
−
3

4
þ s3

�
Γ
�
3

4
− s3

�
Γ��
�
−
3

4
− s3

�

×

�
1þ αψ

�
−
3

4
þ s3

�
þ αψ

�
3

4
− s3

�
þ ð2αþ α4Þψ

�
−
3

4
− s3

�
− α4ψ

�
3

4
þ s3

��
; ð5:16Þ

where ψðxÞ≡ Γ0ðxÞ
ΓðxÞ is the digamma function. This integral can be computed using corollaries of Barnes’s first lemma (4.27),

like those given in Appendix D of [48]. The answer is

K52 ¼ Γð2αÞΓð−3αþ α4 þ δÞ Γð3
2
− 2α4Þ

Γð3
2
þ 3α − α4Þ

�
−2π þ 4π

3

�
γE þ ψ

�
3

2

�	

− α
2π

3

��
2γ2E þ π2 þ 9ψ

�
−
1

2

�
− 3ψ

�
1

2

�
− 6ψ

�
−
3

2

�
ψ

�
3

2

�
þ γE

�
−6 − 6ψ

�
−
3

2

�
þ 2ψ

�
3

2

��	

− α4
2

3
π

�
−8þ π2 − 2γEψ

�
−
3

2

�
þ 3ψ

�
−
1

2

�
− 3ψ

�
1

2

�
þ 2γEψ

�
3

2

�
− 2ψ

�
−
3

2

�
ψ

�
3

2

�
þ 2ψ

�
3

2

�
2
	�

: ð5:17Þ

Next, there are terms in (5.13) which involve double integrals. For instance,

K5 ¼
Z
C2

ds2
2πi

Z
C3

ds3
2πi

Γ1Γ�
2Γ3Γ4Γ6Γ�

7Γ8Γ�
9

Γ10

����
s1¼3

4
−α

¼ Γð2αÞ
Z
C2

ds2
2πi

Γ
�
3

4
− s2

�
Γ�
�
−
3

4
þ s2

�Z
C3

ds3
2πi

Γ
�
3

4
− s3

�
Γ�
�
−
3

4
þ s3

�
Γ�ð−s23ÞΓðs23Þ; ð5:18Þ
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where s23 ¼def s2 þ s3. We have retained only the leading-
order contribution from the double integral since the
prefactor is at mostOðα−1Þ. Once again these are evaluated
using corollaries to (4.27), and we get

K5 ¼ Γð2αÞ 2π
3

�
3γ2E þ π2 þ 6γEψ

�
3

2

�
þ 3ψ

�
3

2

�
2

− 12

	
:

ð5:19Þ

Finally, theK in the rhs of (5.7) is what is left of the original
K after all the divergent residues have been extracted. It
produces at most anOð1Þ contribution and may be ignored.
All other terms in (5.13) can be evaluated in the manner
shown above.

5. The problem of too many parameters

It is clear from (5.14), (5.17), and (5.19) that K will have
the structure we anticipated in (5.8). However, the answer
involves three parameters α; α4, and δ, and we need to
establish a relationship between these to extract a mean-
ingful result from (5.13). So far, all we have are the
inequalities α > 0; 3α − δ < α4 and 3α > α4 [cf. (5.11)].
We encountered a similar problem in (4.34) and resolved it
by insisting that all pinches have the same width. Said
differently, all divergent Γ functions in K must have the
same argument. In the present case, such a requirement
furnishes the condition [cf. (5.17)]

−3αþ α4 þ δ ¼ 2α: ð5:20Þ

Next, we see that (5.14) has a Γð3α − α4Þ in the numerator
but, as noted under (5.11), this does not lead to a divergence
due to the Γð6αÞ in the denominator. So it makes little sense
to equate 3α − α4 with the pinch width 2α. Thus, we are
still one constraint shy of being able to express δ and α4 in
terms of α. To proceed we make yet another “reasonable”
assumption: we choose α4 ¼ −3α to make Γð3α − α4Þ
cancel Γð6αÞ exactly. Then,

hϕ3ϕi0λ ≈
H4

512π5
ð−kτ0Þ−16α

k3

�
π

3α3
−
8πðγE − 2þ logð4ÞÞ

3α2

þ 4πð3π2 − 32þ 8ðγE − 2þ logð4ÞÞ2Þ
3α

þOðα0Þ
	
;

ð5:21Þ

where we have used (5.20) to eliminate δ.

6. An alternate parametrization

We now redo the calculation using a different para-
metrization and compare with the above result. This will
help us justify our choice of α4 at the end of the previous
section.
It is possible to make (5.7) well-defined with just two

parameters instead of three. The first of these parameters, ϵ,
is introduced by modifying the time integral as in (4.36).
The second parameter κ is a shift in the number of space
dimensions, D ¼ 3þ 2κ. Finally, we set all νj → i 3

2
, and

D̄ ¼ 3 in (5.3). Applying the conditions (2.15) on this new
integral we identify the pinches

3

4
< sCj <

3

4
þ κ; j ¼ 1; 2; 3;

3

4
þ 2κ < sC1 þ sC2 þ sC3 <

3

4
þ κ þ ϵ;

9

4
< sC1 þ sC2 þ sC3 <

9

4
þ κ þ ϵ: ð5:22Þ

Comparing this with (5.11) we see that the width of the first
three pinches is now κ instead of 2α, the second pinch is
−κ þ ϵ wide, and the parameters must satisfy ϵ > κ > 0.
The last inequality in (5.22) does not represent a true pinch
because the divergence associated with it is canceled by the
Γ10 in the denominator, exactly as in the previous para-
metrization. However, the important difference is that
equating the pinch widths establishes an unambiguous
relationship, ϵ ¼ 2κ, between all two parameters. This also
sets Γ1=Γ10 → 1, which is exactly what the choice α4 ¼
−3α accomplished in the last calculation. Proceeding with
the analytic continutation, and setting ϵ ¼ 2κ, we arrive at

hϕ3ϕi0λ ≈
H4ð−Hτ0Þ4κ

512π5
ð−kτ0Þ−2κ
k3þ2κ

�
8π

3κ3
−
16πð2γE − 5þ 2 logð4ÞÞ

3κ2

þ 4πð40þ 3π2 − 16ðγE − 2þ logð4ÞÞ þ 16ðγE − 2þ logð4ÞÞ2Þ
3κ

þOðκ0Þ
	
: ð5:23Þ

The leading coefficient of logð−kτ0Þ is the same in both (5.21) and (5.23), up to a renaming of α → κ,

−
H4

96π4k3α2
: ð5:24Þ
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A more careful renormalization is required to make the
subleading terms match. The important takeaway is that the
divergence structure of hϕ3ϕi0λ in the full theory matches
what we calculated in the SdSET [24], with a regulator that
also characterizes divergences with 1=α poles. Thus, the
calculation in this section confirms that the SdSET cor-
rectly reproduces the IR divergences of the full theory.
In closing, we note that the sample calculations in this

paper were “simple”, in that we went no further than OðλÞ,
and the MB integrands did not contain terms of the form
p
sj
i , where pi denotes a momentum variable. While it is

certainly worth pushing the method to do higher loops, we
believe the two examples considered above sufficiently
illustrate the usefulness of the method both as a computa-
tional tool and as a way to glean qualitative insights about
the IR behavior of fields in dS.

VI. CONCLUSIONS

In this paper, we advanced a method to identify and
extract divergences in dS loop calculations. Motivated by
the dilatation invariance of dS, we worked with the Mellin-
Barnes representation of dS correlation functions [25,26].
This allowed us to import the techniques developed in
[30–34], for flat space Feynman diagrams, to the calcu-
lation of loop integrals in dS. The resulting expressions
have the familiar structure of a dimreg answer [cf. (4.35)
and (5.21)], and we can resum the divergences with
dynamical RG by way of extracting meaningful physics.
While the examples we considered in this work were
simple, they illustrate a few important aspects of loop
calculations in dS that are worth highlighting once again:
(1) The divergences in dS correlation functions manifest

as pole overlaps in the Mellin space; the problem of
isolating divergences becomes a matter of locating
these pole overlaps in a hyperspace spanned by the
complex Mellin variables fslg.

(2) Our method works for loop integrals involving
scalar fields of any mass. In particular, the calcu-
lations of Sec. IV reveal that all massive scalars are
afflicted with secular growth, with additional diver-
gences introduced as we approach the massless limit
(see Fig. 8). Stochastic Inflation provides a non-
perturbative resolution of these IR issues for mass-
less scalars. The technique developed in this paper
allows us to compute higher order corrections to the
stochastic description, directly from the full theory.

(3) Dynamical RG resums the secular logs from dS loop
integrals, just as regular RG treats UV logs in flat
space. However, it is not clear whether DRG resums
logarithmic corrections at all orders, as regular RG
does. The bulk of the difficulty in addressing this
problem lies in the evaluation of higher loop
integrals. However, if we can extract the general
properties of such loops, without doing the calcu-
lations explicitly [see for e.g., (5.8)], perhaps we

could improve the underpinnings of DRG itself.
Alternatively, the fact that the SdSET correctly
reproduces IR divergences of the full theory can
be taken as evidence that the DRG works. From that
perspective, investigating higher loops in dS could
further strengthen the validity of SdSET.

(4) When Mellin representations are used to simplify
Feynman integrals in flat space, the variables fslg
serve as little more than auxiliary parameters to be
integrated over. But in dS, these variables carry
physical meaning, as the eigenvalues of the dilatation
generator. Furthermore, as we noted in Sec. VA 1,
multidimensional MB integrals can be computed
with the method of residues using a geometrical
procedure on the hyperplanes UiðsÞ ¼ −n. We used
these facts to identify that certain secular behaviors
originate from subhorizon dynamics. We are left with
the distinct impression that there may be deeper
physical insights hidden away in the geometry of the
aforementioned planes.

Mellin space is fertile ground for the study of correlation
function in dS, as many authors have noted before. It is our
hope that the observations in this work reinforce that view,
and encourage further investigation of these tools.
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APPENDIX: ANOMALOUS DIMENSIONS - A
GEOMETRIC ANALOGY

We use the terms “IR divergence” and “secular growth”
in the context of loop integrals throughout the main text.
We treat these artifacts with dynamical RG, whereas regular
RG in flat space is prescribed for UV divergences. The
relationship between these ideas can be understood intui-
tively by a simple analogy. Consider the dS metric

ds2 ¼ −dt2 þ aðtÞ2dx⃗2; aðtÞ ¼ eHt; ðA1Þ

where H is the Hubble parameter. This metric defines an
expanding spacetime, which we may visualize as shown in
Fig. 11. Imagine now, some arbitrary shape in space, which
also expands with the scale factor aðtÞ. We can define the
dimension of this object by counting the minimum number
of H−3 sized balls required to cover it. We assume that this
number, N, is related to H as

N ∝ HΔ ðA2Þ
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where Δ is the dimension of the shape. For instance, if the
shape were a straight line of length aðtÞjx⃗j, we could cover
it with Nline ¼ ðaðtÞjx⃗jH−1 Þ1 balls. Therefore, the dimension of a
straight line isΔline ¼ 1, which makes sense. Let us take the
shape in Fig. 11 to be a line, but we imbue it with the
property that as it expands it reveals more structure. This is
depicted in Fig. 12. How does this behavior affect the
dimension of the line?
Once again we cover the line with balls of size H−3 and

add up their number. Due to its newly revealed structure,
we require more balls to cover the line than if it were a
perfectly straight line. If we still assume that N scales with
H as in (A2), we can get the new number of balls required
by modifying the value of Δline → 1þ γ,

Nline ¼
�
aðtÞjx⃗j
H−1

�
1þγ

: ðA3Þ

The number γ is called the anomalous dimension of the
expanding line, and it is smaller than 1. This captures the
intuition that the jagged line is not a one-dimensional object
anymore, but it is not quite a two-dimensional object either.
Similar considerations apply to other shapes as well.
We can use this picture to understand anomalous

dimensions of quantum fields in a dS background.
Microscopic quantum fluctuations, which get stretched
out by dS expansion, continually source “structure” to
the field operators. This is reflected in the anomalous
dimension of the operator, like the ones we compute in this
paper. Furthermore, we may use the fact that γ < 1 to
expand (A3) to

Nline ¼
�
aðtÞjx⃗j
H−1

�
1

ð1þ γ logðaHjx⃗jÞ þ � � �Þ: ðA4Þ

That is, if we were doing perturbative calculations in some
parameter of size OðγÞ, the appearance of logðaHjx⃗jÞ
indicates anomalous scaling.
The analogy helps us clarify some of the terminology in

the paper. First, logðaHjx⃗jÞ (or logðjk⃗j=aHÞ) blows up as
aHjx⃗j → ∞ (or jk⃗j=aH → 0). This is the sense in which we
refer to correlators containing these terms as IR divergent.
Second, these terms arise from the time evolution of
subhorizon modes to superhorizon scales, which is why
we also call them secular growth terms.14 Third, it is really
the UV details that contribute to the anomalous scaling at
late time. In a flat-space loop calculation the appearance of
a logðμjx⃗jÞ, where μ is some renormalization scale, signals
exactly the same thing; the UV structure of the theory
affects the scaling of the operators at long wavelength. The
parallel between dynamical RG and regular RG should now
be apparent.

FIG. 11. A cartoon of de Sitter spacetime. Three dimensional
space is visualized as a plane that expands over time. Also shown
is a path covered with balls of fixed size H−3, the characteristic
length scale of a fixed dS manifold.

FIG. 12. A line in dS that reveals more structure as it expands, a
consequence of which is a change in its dimensions.

14This is not the only source of secular growth; it can also arise
from the classical evolution of the superhorizon modes. See, for
example, (3.9) from [24].
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