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We consider topological and nontopological regular soliton solutions in the Einstein-Maxwell-Skyrme
theory. We analyze the properties of these solutions and determine their domains of existence. The
dependence of the solutions on the gauge coupling and on the strength of the effective gravitational
coupling are examined. Topologically trivial localized field configurations, pion stars, are shown to exist,
as nonlinear gravitational bound states of the Skyrme field. Both spherically symmetric and axially
symmetric pion stars are considered. We find that these solutions share many features with the usual
(mini)boson stars. In particular they also exhibit a spiraling behavior and do not possess a flat space limit.
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I. INTRODUCTION

The Skyrme model [1,2] is a modified version of the
nonlinear sigma model in 3þ 1 dimensional spacetime. It
serves as a simple prototype of a theory supporting topo-
logical solitons (for reviews, see, for example [3–6]).
Originally it was conjectured that baryons can be consid-
ered as topological solitons. Thus the baryon number was
identified with the topological degree of the field configu-
ration. In this approach pions correspond to the linearized
fluctuations of the Skyrme field. A quasiclassical quanti-
zation of the rotational and isorotational degrees of freedom
of Skyrmion solutions leads to predictions of the physical
properties of nuclei, that are in a reasonable agreement with
experimental data [4,5].
The Skyrme model has received much attention in a

variety of fields. One of these interesting developments is
related to the study of self-gravitating Skyrmions [7–11].
In such a context, the Einstein-Skyrme model can be

considered as a model of compact stars, exhibiting a
spiraling behavior as neutron stars or boson stars beyond
the maximum mass, indicating their expected collapse to a
black hole (see, e.g., [12]). Moreover, the Einstein-Skyrme
model provided an early counterexample to the no hair
conjecture [7,13] (see also [14–17] and reviews [18,19]).
Apart from topological solitons, a distinct class of

localized field configurations in flat space is given by
nontopological solitons or Q-balls [20–22]. Such solutions
may exist in models possessing an unbroken global
symmetry. Typical examples are the so-called Friedberg-
Lee-Sirlin two-component model with a symmetry break-
ing potential [21] and the model with a single complex
scalar field and a suitable self-interaction potential [22].
On the other hand, stable localized soliton-type con-

figurations, so called boson stars, may arise when the
complex scalar field is coupled to gravity [23–25]. Some
of these boson stars are linked to the corresponding flat
space nontopological solitons and Q-balls. Solutions of
another type, like the boson stars of Einstein-Klein-Gordon
theory, do not possess a flat space limit, however. Similar
topologically trivial solutions with harmonic time depend-
ence exist in the Einstein-Skyrme model [26] and in the
Oð3Þ-sigma model coupled to gravity [27–29].

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 109, 045002 (2024)

2470-0010=2024=109(4)=045002(14) 045002-1 Published by the American Physical Society

https://orcid.org/0000-0001-7990-8713
https://orcid.org/0000-0002-9740-7792
https://orcid.org/0000-0002-9159-2675
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.045002&domain=pdf&date_stamp=2024-02-02
https://doi.org/10.1103/PhysRevD.109.045002
https://doi.org/10.1103/PhysRevD.109.045002
https://doi.org/10.1103/PhysRevD.109.045002
https://doi.org/10.1103/PhysRevD.109.045002
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Several modifications of the Skyrme model have been
proposed throughout the last two decades with the aim to
improve phenomenological predictions of the theory. In
particular, in order to account for the explicit breaking of
isospin symmetry, it has been suggested to consider the
Uð1Þ gauged version of the Skyrme model [30–33]. On the
other hand, there are charged Q-balls and boson stars in
extended Einstein-Maxwell-scalar theories with local Uð1Þ
symmetry [34–40].
We here investigate the properties of the Uð1Þ gauged

regular self-gravitating solutions of the Einstein-Skyrme
model, focusing our study on the Skyrmions of topological
degree one, and on nontopological localized configura-
tions, which we will refer to as the pion stars, and
determine their domains of existence.
This paper is organized as follows. In Sec. II we

introduce the model. Here we discuss the gauge fixing,
the parametrization of the metric and the matter fields, the
physical quantities of interest and the boundary conditions
under which the field equations are solved numerically.
In Sec. III we present the results of our study of self-
gravitating gauged Skyrmions of topological degree one,
and the dependence of the solutions on the strength of
the effective gravitational coupling constant. Pion stars are
discussed in Sec. IV. We show that, besides axially
symmetric pion stars there are also spherically symmetric
pion stars. The pion stars represent topologically trivial
solutions which, similar to the (mini)boson stars, do not
possess a flat space limit. We conclude with a discussion
and final remarks in Sec. V.

II. THE MODEL

A. Action

We consider the Uð1Þ gauged Einstein-Skyrme model in
3þ 1 dimensional spacetime defined by the action

S ¼
Z

d4x
ffiffiffiffiffiffiffi
−g

p �
R

16πG
þ Lm

�
; ð1Þ

where the gravity part is the usual Einstein-Hilbert action,
g is the determinant of the metric, R is the curvature scalar
and G is Newton’s constant. The Lagrangian of the matter
fields Lm is given by the Uð1Þ gauged SUð2Þ-Skyrme-
Maxwell model [30–33,41]

Lm ¼ −
f2π
16

Tr
�
DμUDμU†�þ 1

32a20
Tr
��
DμUU†;DνUU†�2�

þm2
πf2π
8

TrðU − IÞ− 1

4
F μνF μν; ð2Þ

where fπ , a0 and mπ are parameters of the model with
dimensions ½fπ� ¼ L−1, ½a0� ¼ L0 and ½mπ� ¼ L−1, respec-
tively. The electromagnetic field-strength tensor is F μν ¼
∂μAν − ∂νAμ, the covariant derivative of the SUð2Þ-valued

Skyrme field U is defined as

DμU ¼ ∂μU þ ieAμ½Q;U�; ð3Þ

and the charge matrix is Q≡ 1
2
ð1
3
I þ τ3Þ ¼ diagð2

3
;− 1

3
Þ.

It is convenient to rescale the model by introducing
the dimensionless coordinate x ¼ ða0fπ=2Þr, where r is a
dimensionful radial coordinate, the dimensionless mass
parameter m ¼ 2mπ=ða0fπÞ and the dimensionless gauge
potential Aμ ¼ ð2=fπÞAμ. The dimensionless field strength
tensor Fμν is then constructed from the gauge potential Aμ

and the partial derivative with respect to the coordinate x,
while the covariant derivative contains the scaled gauge
coupling g ¼ e=a0. The effective gravitational coupling
constant1 is α2 ¼ 1

2
πGf2π .

In terms of these units the Skyrme-Maxwell Lagrangian
(2) becomes

Lm ¼ −
1

2
Tr
�
DμUDμU†�þ 1

16
Tr
��
DμUU†; DνUU†�2�

þm2TrðU − IÞ − 1

2
FμνFμν: ð4Þ

The requirement of finite energy leads to the restriction
that the matrix-valued field U approaches the vacuum at all
points at spatial infinity, U!⃗

r→∞
I, thus the Skyrme field

becomes a map U∶ S3 ↦ S3. In the ungauged limit, g ¼ 0,
the corresponding topological current Bμ is

Bμ ¼ 1ffiffiffiffiffiffiffi−gp 1

24π2
εμνρσTrðRνRρRσÞ; ð5Þ

where Rμ ¼ ð∂μUÞU† is the SUð2Þ-valued left-invariant
current. The corresponding charge B ¼ R

Σ d
3xB0 is inter-

preted as the baryon number.
The Uð1Þ gauge covariant generalization of the topo-

logical charge can be constructed by replacing ∂i → Di in
the expression (5), i.e.

Bg¼−
1

24π2

Z
d3xεijkTr

�
DiUU−1DjUU−1DkUU−1

�
: ð6Þ

However, the topological charge of the Skyrme-Maxwell
model differs from the gauge variant winding number (5)
by a total divergence [30,42,43]. In the Abelian Skyrme-
Maxwell model (4), with the usual restriction of finiteness
of the energy, the surface term is vanishing [30,32,42,43].
The Skyrme field U can be decomposed into the scalar

component ϕ0 and the pion isotriplet ϕk via

1Note that, because of a different choice of the parameters of
the Einstein-Skyrme model (1), our α2 differs by a factor of 2
from that defined in [26].
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U ¼ ϕ0I þ i
X3
n¼1

ϕnτn; ð7Þ

where τn are the usual Pauli matrices, and the field
components ϕa ¼ ðϕ0;ϕkÞ are subject to the sigma-model
constraint, ϕa · ϕa ¼ 1.
In this component notation the Lagrangian for the Uð1Þ

gauged Skyrme model (4) can be written as

Lm ¼ Dμϕ
aDμϕa −

1

2

�
Dμϕ

aDμϕa
�
2 þ 1

2

�
Dμϕ

aDνϕ
a
�

×
�
DμϕbDνϕb

�
− 2m2ð1 − ϕ0Þ −

1

2
FμνFμν; ð8Þ

where

Dμϕ
α ¼ ∂μϕ

α þ gAμεαβϕ
β; Dμϕ

A ¼ ∂μϕ
A;

α; β ¼ 1; 2; A ¼ 0; 3: ð9Þ

The two components of the energy-momentum tensor are

Tμν ¼ Tμν
ðMÞ þ Tμν

ðSÞ; ð10Þ

where the electromagnetic contribution of the Maxwell
term is

Tμν
ðMÞ ¼ FμσFν

σ −
gμν

4
FαβFαβ; ð11Þ

and the stress-energy tensor of the gauged Skyrmion is

Tμν
ðSÞ ¼ 2

�
DμϕaDνϕa−

�
D½μϕaDα�ϕb

��
D½νϕaDα�ϕb

��

−gμν
��

Dαϕa

�
2−

1

2

�
D½αϕaDβ�ϕb

�
2−2m2ð1−ϕ0Þ

�
:

ð12Þ

B. Gauge transformations

The gauged Skyrme model (8) is invariant with respect to
the local Uð1Þ gauge transformations

U → e−ig
ξ
2
τ3Ueig

ξ
2
τ3 ; or ϕ1 þ iϕ2 → eigξ

�
ϕ1 þ iϕ2

�
;

Aμ → Aμ þ ∂μξ; ð13Þ

where ξ is any real function of the coordinates.
The vacuum of (8) corresponds to U ¼ 1,Dμϕ

a ¼ 0 and
Fμν ¼ 0. In the stationary gauge, where no explicit time
dependence of the fields is present, one can consider the
vacuum boundary conditions [31]

Uð∞Þ ¼ I; A0ð∞Þ ¼ V; Aið∞Þ ¼ 0; ð14Þ

where V is a real constant. However, the asymptotic value
of the electric potential A0ð∞Þ can be adjusted via the
residual Uð1Þ degree of freedom. In particular, the trans-
formation (13) with ξ ¼ −Vt allows us to set A0ð∞Þ ¼ 0.
The components of the charged pion field then transform as
ϕα → e−iωtϕα, where ω ¼ gV, and thus the charged pion
fields obtain an explicit time dependence with frequency ω.
In other words, in the Skyrme-Maxwell model (2) isorota-
tions of the Skyrmion are associated with time-dependent
gauge transformations [31]. Note, that for both the Uð1Þ
gauged and isospinning Skyrmions [26,44,45], the pion
mass term is necessary to stabilize the configurations.
The asymptotic expansion of the fields around the

vacuum (14) yields in the stationary gauge

U ¼ I þ iϕkτk þOðϕ2
kÞ; Aμ ¼ aμ þ Vδ0μ þOða2μÞ;

ð15Þ
and the linearized equations for the pion fields in the
asymptotically flat region become

∂
2
rϕ1;2 þ

2∂rϕ1;2

r
−
�
m2 − g2V2

�
ϕ1;2 ¼ 0;

∂
2
rϕ3 þ

2∂rϕ3

r
−m2ϕ3 ¼ 0: ð16Þ

Thus, localized massive configurations with exponentially
decaying tail may exist if the effective mass squared is
positive

m2
eff ¼ m2 − g2V2 > 0: ð17Þ

In the critical case gV ¼ m the asymptotic expansion of
the charged fields ϕ1 � ϕ2 possesses a dipole term as the
leading contribution, similar to the neutral mode ϕ3 in
the massless limit, m ¼ 0. The bound (17) constrains the
domain of values of the parameters of the model. In
particular, setting V ¼ 0 excludes the electric field. In such
a case the gauge coupling g can be arbitrary large. More
generally, we refer to the case V ≪ g as the magnetic limit,
while the electric limit corresponds to the case g ≪ V [32].
Unlike the previous study of Uð1Þ gauged Skyrmions in

Minkowski spacetime [32], hereafter we make use of the
time dependent gauge setting A0ð∞Þ ¼ 0. This allows us
to directly compare the properties of gauged gravitating
Skyrmions and charged boson stars [34–40].

C. Axially symmetric ansatz and
boundary conditions

Both stationary isospinning and Uð1Þ gauged configu-
rations possess axial symmetry. Such configurations can be
parametrized by three real functions ψa [26,28,44]

ϕ1 ¼ ψ1ðr;θÞcosðnφ−ωtÞ; ϕ2 ¼ ψ1ðr;θÞ sinðnφ−ωtÞ;
ϕ3 ¼ ψ2ðr;θÞ; ϕ0 ¼ ψ3ðr;θÞ; ð18Þ
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where n is an integer, and ω can be considered as the
angular frequency of the charged scalar fields. As discussed
above, the gauge freedom can be exploited to eliminate the
time dependence of the charged scalar fields. Thus in the
stationary gauge and for solutions of topological degree
one the ansatz reduces to

ϕ1 ¼ ψ1ðr; θÞ cosφ; ϕ2 ¼ ψ1ðr; θÞ sinφ;
ϕ3 ¼ ψ2ðr; θÞ; ϕ0 ¼ ψ3ðr; θÞ: ð19Þ

The gauge field is parameterized by the electric and
magnetic potentials A0 and Aφ, respectively,

A≡ Aμdxμ ¼ A0ðr; θÞdtþ Aφðr; θÞdφ: ð20Þ

Notably gauged Skyrmions are not spherically symmetric
even in the sector of topological degree one [30,32]. Instead
the soliton is deformed by the toroidal magnetic flux in the
equatorial plane.

The metric can be written in isotropic coordinates in the
form

ds2 ¼ −F0dt2 þ F1

�
dr2 þ r2dθ2

�

þ F2r2 sin2 θ

�
dφ −

W
r
dt

�
2

; ð21Þ

where the four functions F0, F1, F2, and W depend on r
and θ, only.
Substitution of the ansatz (18), (20), and (21) yields a

set of 9 coupled elliptic partial differential equations with
mixed derivatives, to be solved numerically subject to
appropriate boundary conditions. These follow from the
conditions of asymptotic flatness, requirements of regular-
ity of the fields on the symmetry axis, as well as the
condition of finiteness of the metric and finiteness of the Tt

t
and Tt

ϕ-components of the energy-momentum tensor (10).
Explicitly, for the Skyrmion of topological degree one in

the time dependent gauge, we impose at the origin

ψ1jr¼0 ¼ 0; ψ2jr¼0 ¼ 0; ψ3jr¼0 ¼ −1; Aφjr¼0 ¼ 0; ∂rA0jr¼0 ¼ 0;

∂rF0jr¼0 ¼ 0; ∂rF1jr¼0 ¼ 0; ∂rF2jr¼0 ¼ 0; Wjr¼0 ¼ 0; ð22Þ

while the boundary conditions at spatial infinity are

ψ1jr¼∞ ¼ 0; ψ2jr¼∞ ¼ 0; ψ3jr¼∞ ¼ 1; A0jr¼∞ ¼ 0; Aφjr¼∞ ¼ 0;

F0jr¼∞ ¼ 1; F1jr¼∞ ¼ 1; F2jr¼∞ ¼ 1; Wjr¼∞ ¼ 0: ð23Þ

The condition ∂rA0ð0Þ ¼ 0 ensures the electric field to be absent at the center of the configuration.
Finally, to ensure the condition of regularity on the symmetry axis we impose the boundary conditions

ψ1jθ¼0;π ¼ 0; ∂θψ2jθ¼0;π ¼ 0; ∂θψ3jθ¼0;π ¼ 1; ∂θA0jθ¼0;π ¼ 0; Aφjθ¼0;π ¼ 0;

∂θF0jθ¼0;π ¼ 0; ∂θF1jθ¼0;π ¼ 0; ∂θF2jθ¼0;π ¼ 0; ∂θWjθ¼0;π ¼ 0: ð24Þ

In addition, requiring the absence of a conical singularity
on the symmetry axis demands that the deficit angle should
vanish, i.e., δ ¼ 2πð1 − limθ→0ðF2=F1Þ ¼ 0Þ. Hence any
physically consistent solution should satisfy the constraint
F1θ¼0 ¼ F2θ¼0. In our numerical scheme we explicitly
impose this condition on the symmetry axis.
We have solved the boundary value problem subject

to the boundary conditions above with a sixth-order finite
difference scheme, where the system of equations is
discretized on a grid with a typical size of 229 × 79 points.
The corresponding system of nonlinear algebraic equa-
tions has been solved using the Newton-Raphson
scheme. Calculations have been performed with the pack-
ages FIDISOL/CADSOL [46,47], with typical errors of
order of 10−4.

D. Truncation to Oð3Þ Faddeev-Skyrme model

Nontopological soliton solutions are found for a con-
sistent truncation of the Skyrme model to the Oð3Þ
Faddeev-Skyrme model [26,28,48] with [cf., (18)]

ϕ1 ¼ ψ1ðr; θÞ cosðnφ − ωtÞ;
ϕ2 ¼ ψ1ðr; θÞ sinðnφ − ωtÞ;
ϕ3 ¼ 0; ϕ0 ¼ ψ3ðr; θÞ ð25Þ

and the sigma-model constraint ψ2
1 þ ψ2

3 ¼ 1. Hence, it is
convenient to parametrize the fields as ψ1ðr; θÞ ¼ sinðhÞ;
ψ3ðr; θÞ ¼ cosðhÞ, where hðr; θÞ is the profile function.
Solutions for n ¼ 1 obey the same set of boundary
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conditions as imposed for the Skyrmion of topological
degree one above [26].
However, for n ¼ 0 the solutions possess spherical

symmetry. In this case we parametrize the metric in
Schwarzschild-like coordinates, for convenience,

ds2 ¼ −σ2ðrÞNðrÞdt2 þ 1

NðrÞ dr
2 þ r2dΩ2: ð26Þ

In terms of this parametrization, the Skyrme-Maxwell
Lagrangian (4) in the time dependent gauge becomes2

Lm ¼ ðA0
0Þ2
σ2

þ ðω − gA0Þ2 sin2 h
σ2N

− Nh02

þ ðω − gA0Þ2 sin2 hh02
σ2

−m2ð1 − cos hÞ; ð27Þ

and the reduced curvature scalar is

R ¼ −2σðN − 1þ rN0Þ; ð28Þ

where a prime denotes the radial derivative. Thus, the
frequency appears in the field equations only in the combi-
nation ωg ¼ ω − gA0. The effective mass squared is now
given by

m2
eff ¼m2 − ðω− gA0Þ2 with lim

r→∞
m2

eff ¼m2 −ω2; ð29Þ

and localized solutions exist only if m2 − ω2 > 0. Note
that, in the time dependent gauge, this bound exactly
matches the analogous upper mass threshold for asymp-
totically flat boson stars and Q-balls [50–52].
For the spherically symmetric solutions we employ the

following set of the boundary conditions

∂rσjr¼0 ¼ 0; Njr¼0 ¼ 1; ∂rhjr¼0 ¼ 0;

σjr¼∞ ¼ 1; Njr¼∞ ¼ 1; hjr¼∞ ¼ 0: ð30Þ

E. Physical properties

The ADM mass M of the solutions can be read off
from the asymptotic subleading behavior of the metric
function g00,

g00ðrÞ ¼ −1þ α2M
πr

þ…: ð31Þ

Similarly, the electric charge of the gauged Skyrmions can
be computed from the far field expansion of the electric
potential,

A0ðrÞ ¼
Q
r
þO

�
1

r2

�
: ð32Þ

The angular momentum J can be read off from the
asymptotic behavior of the metric function g0φ,

g0φ ¼ α2J
πr

sin2 θ þO
�
1

r2

�
: ð33Þ

The angular momentum J and the electric charge Q are
proportional, J ∝ nQ [32,53,54]. Both quantities can also
be computed as the integrals of the corresponding compo-
nents of the total stress-energy tensor Tμν, Eq. (10).
Finally, the magnetic dipole moment μm can be com-

puted from the far field expansion of the magnetic
potential,

Aφ ¼ μm
r
sin2 θ þO

�
1

r2

�
: ð34Þ

III. GRAVITATING GAUGED SKYRMIONS

The usual flat space B ¼ 1 Skyrmion solution is recov-
ered in the flat space limit α ¼ 0, when the electromagnetic
field is decoupled g ¼ 0. From this Skyrmion a branch of
gauged flat space Skyrmions arises, when the gauge cou-
pling is increased from zero. Since the field equations
impose the condition ω ¼ jgVj ≤ m, in order to obtain
localized Skyrmion solutions, the maximal value of the
coupling constant g is restricted by this condition [32]. In our
numerical simulations below we set m ¼ 1 and fix g ¼ 0.1.
This choice matches the related recent study of gauged
boson stars in the two-component scalar model [40].
Self-gravitating generalizations of the gauged Skyrmions

are found by increasing gradually the effective gravitational
coupling constant α for a given value of g. In the time
dependent gauge the angular frequency ω is an input
parameter. Setting ω ¼ 0 corresponds to the solutions with
zero electric charge. First, we observe that for all values of
the parameters, a branch of gravitating electrically charged
solutions emerges from the corresponding flat space
configuration, as the effective gravitational coupling α
increases from zero. All these solutions are coupled to a
local magnetic flux, which generates a nonvanishing
magnetic moment. Therefore the electromagnetic interac-
tion breaks spherical symmetry of the B ¼ 1 Skyrmion.
The dependence of the ungauged Skyrmions on gravity

has been studied before [8–11]. For any allowed value of
the effective gravitational coupling α2 ¼ 1

2
πGf2π there are

two branches of solutions which merge at a maximal value
of α, αcr. The branch of solutions lower in energy is linked
to the flat space Skyrmions in the limit α → 0, i.e., when
G → 0. At αcr it bifurcates with the second branch of
solutions, that is higher in energy. This second branch

2Coordinate transformations from the axially symmetric iso-
tropic metric (21) to the Schwarzschild-like line element (26) are
discussed, for example, in [49].
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extends backward toward a limiting strongly gravitating
solution. Here the limit α → 0 is approached as fπ → 0,
and corresponds to the absence of the quadratic term in the
Skyrme Lagrangian. As shown in [10], in this limit the
configuration approaches the lowest mass spherically sym-
metric Bartnik-McKinnon solution [55].
The contribution of the electromagnetic energy slightly

modifies this pattern. The spike of the uncharged case
transforms into a loop (see, e.g., [56]) and the value of αcr
increases as ω grows. This is illustrated in Fig. 1. The
breaking of spherical symmetry of the configurations on the

fundamental branch is maximal as ω approaches the mass
threshold and the gravitational coupling α remains rela-
tively small.
However, for the configurations on the second branch the

effect of the electromagnetic interaction becomes less and
less important as α is decreasing. One can understand the
reason of this when introducing the rescaled radial coor-
dinate r̃ ¼ r=α [10]. Then the covariant derivative of the
Skyrme field rescales as D̃μϕ

a ¼ αDμϕ
a with Ãμ ¼ αAμ.

Evidently, the contribution of the Maxwell field in the
limiting α → 0 configuration is vanishing.
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FIG. 1. Gravitating gauged Skyrmions: The mass M (upper left plot), the value of the metric function F0 at the origin (upper right
plot), the value of the gauge potential A0 at the origin (middle left plot), the chargeQ (middle right plot), and the magnetic moment μm of
the configurations (lower plot) are displayed as functions of the effective gravitational coupling α for g ¼ 0.1, m ¼ 1, and ω ¼ 0.1, 0.9.
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Considering the dependence of the solutions on the
frequency ω we observe monotonic increase of the ADM
mass and the charge with increasing ω and a corresponding
gain of electromagnetic energy for all regular self-
gravitating Skyrmions, as seen in Fig. 2.

IV. PION STARS

A. Uncharged pion stars (g= 0)

Pion stars are obtained in the truncated Skyrme model,
where ϕ3 ¼ 0 [see Eq. (25)]. Apart from the sigma-model
constraint these configurations are akin to Q-balls. They
exist for some limited range of values of parameters of
the model [26,28,48]. It has been shown that such axially-
symmetric spinning configurations, dubbed as pion clouds,
exist for n ¼ 1. However, the term pion stars seems
more appropriate because of their similarity to (rotating)
boson stars.
Surprisingly, for n ¼ 0 also spherically symmetric pion

stars appear to exist for sufficiently large values of the
frequency ω due to the force balance between the gravi-
tational and scalar interactions, both for electrically charged

configurations and in the absence of electrostatic repulsion.
In the Einstein-Skyrme model we identify these solutions
with pion stars [57].
The appearance of pion stars can be explained by a

certain balance condition that involves the repulsive force
from the kinetic term that is quadratic in derivatives in (8),
and the attractive interaction from the quartic Skyrme term
in the curved spacetime. Indeed, the effective gravitational
coupling in the Einstein-Skyrme model α2 ¼ 1

2
πGf2π

depends both on the Newton constant G and the pion
decay constant fπ . However, unlike the topologically
nontrivial Skyrmion solutions considered above, there is
no branch of pion star solutions linked to the flat space
limit. On the single branch in the ðα;MÞ diagram both
the mass and the charge of the solutions increase with
decreasing α. This pattern is similar to the case of the
evolution of the self-gravitating Skyrmions on the second,
higher energy branch, as illustrated in Fig. 3.
In the absence of the electromagnetic interaction (g ¼ 0)

the branch of n ¼ 0 pion star solutions extends all the way
down to the limiting solution at α → 0, as seen in Fig. 5,
where also the n ¼ 1 branch is shown [26]. In the limit
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α → 0 the Skyrme term dominates and the resulting
solution rapidly extends over the whole space, leading to
an infinite mass as indicated in Fig. 3 [26]. In the opposite
limiting case α → ∞, the quartic Skyrme term in the matter
field Lagrangian (4) becomes negligible and the system is
effectively reduced to the usual Einstein-Klein-Gordon
model supporting boson star solutions.
One notices that, similar to the Skyrmions, for a given α

the solutions exist for ω ≤ m. When ω is decreased from
the pion mass threshold, while keeping α and the other
parameters fixed, a branch of gravitating pion star solutions
emerges from the vacuum in the curved spacetime, as seen
in Fig. 4. We refer to this branch as the fundamental branch,
since—in analogy to boson stars—it should contain the set
of stable pion star solutions.
Considering the dependence of the pion stars on the

angular frequency we observe the pattern familiar from
the corresponding study of the boson stars [34–40]. As the
frequency is decreased below the mass threshold, both the
ADM mass M and the charge Q reach monotonically
a maximum value, as displayed in Fig. 4. Further decreas-
ing of ω leads to a minimal frequency ωcr below which
no pion stars are found. The lower energy branch of the
pion stars bifurcates at ωcr with a secondary branch of
solutions, where ω is increasing, see Fig. 4. We conjecture
that by analogy with the usual boson stars, both the ðω;MÞ
and ðω; QÞ curves follow a spiraling/oscillating pattern
toward a singular limiting solution, with successive
backbendings.
Note that the size of the spiral can be very small: a tiny

variation of the angular frequency can strongly affect the
fine force balance, as illustrated in Fig. 4. This observation
is related to the difference between the mechanisms of the
formation of a spiral or of damped oscillations, in the
dynamical evolution of boson and pion stars, respectively.
In the former case, the appearance of the frequency-mass
spiral is due to oscillations in the force balance between

the repulsive scalar interaction and the gravitational attrac-
tion [36]. For the pion stars, the spiraling/oscillating pattern
may be related to the competing roles of the terms in
Skyrme Lagrangian (8), which are quadratic and quartic in
derivatives of the scalar field, in the presence of a strong
gravitational attraction. Indeed, an increase of the effective
gravitational coupling α, that is related with a growing
contribution of the repulsive force mediated by the quad-
ratic term in (8), leads to a decrease of ωcr. At the same time
also the secondary branches become more extended, as
seen in Fig. 4.
The n ¼ 1 axially symmetric pion stars in the ungauged

limit were discussed in [26,48]. These spinning configu-
rations possess angular momentum J (33), which, analo-
gous to the usual boson stars, is proportional to the Noether
charge Q [53,54].
The mass of the n ¼ 1 axially symmetric pion stars is

higher than the mass of the corresponding n ¼ 0 solutions
for the same values of the parameters, see Figs. 5 and 6.
Also the minimal value of the frequency ωcr is smaller
than for the spherically symmetric pion stars, as shown in
Fig. 6. In Fig. 5 we exhibit the scaled massMα3 of the pion
stars as a function of α2 at ω ¼ 0.9 (cf. corresponding
plot 5 in [26]).

B. Gauged pion stars

To construct the Uð1Þ gauged pion stars we start with
the ungauged solutions with g ¼ 0 and A0 ¼ Aϕ ¼ 0,
described above, and smoothly turn on the gauge inter-
action by increasing the value of the gauge coupling g,
while keeping the other parameters fixed. The domain of
existence of gauged pion stars is scanned by varying the
frequency ω, and the effective gravitational coupling α. The
basic properties of the gravitating gauged pion stars can be
summarized as follows:
The electromagnetic interaction shifts the fine force

balance. For any nonzero value of the gauge coupling
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the branches of pion star solutions can possibly not be
extended to a limiting rescaled solution at α → 0, see
Figs. 3 and 5. The rescaled mass of both spherically
symmetric and axially symmetric pion stars diverges at
some critical value of the effective gravitational coupling

αcr below which no regular pion stars are found. For any
allowed value of ω a single branch of charged gravitating
pion stars leads to a singular strongly gravitating solution.
Given a value of α, the minimal value of the angular

frequency ωcr increases with g, see Fig. 6. For a given
values of ω, gauged pion stars appear to exist up to a
maximal value of the gauge coupling constant only.
Physically, this behavior is related with the electric charge
repulsion which becomes stronger as g increases. Further,
the frequency-mass spiral evolution for a given α becomes
more explicit with increasing g, see Fig. 6.
As seen in Figs. 4 and 6, for any g, the mass-frequency

dependence looks qualitatively similar to that found in the
ungauged case. The observed trend is that the maximal
value of the mass M increases with g. Note that a similar
behavior is found for the ðω; JÞ-dependence.
One may expect that, similar to the case of ungauged

pion stars, the solutions evolve toward a limiting singular
configuration. However, numerical construction of the
secondary branches becomes a very challenging numerical
task, which we do not attempt in this work. Moreover, a
different numerical approach may be necessary for the
systematic study of such a limit, see, e.g., [58].
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The n ¼ 1 axially symmetric pion stars are electrically
charged, they are also coupled to a toroidal magnetic flux
which induces a magnetic dipole moment of the configu-
ration. In Figs. 7 and 8 we display particular examples of
the illustrative n ¼ 1 solutions on the fundamental and on
the second forward branch for g ¼ 0.1, α ¼ 1, m ¼ 1 and
ω ¼ 0.72. For the sake of clarity, we have chosen to exhibit
these figures in polar coordinates ρ ¼ r sin θ, z ¼ r cos θ.
Clearly, the size of the configuration on the second branch
is decreasing, the minimum of the metric component F0 in
the equatorial plane becomes deeper and the minimal value
of the component of the scalar field ψ3 decreases.
In Fig. 9 we illustrate the dependence of the gauged pion

stars on the effective gravitational coupling α for a set of
values of the frequency ω. We observe, that the existence
region of the charged solutions is limited by some αmin > 0
from below, that depends on ω. When inspecting again
Fig. 4, where the ω dependence is illustrated for several
values of α, we see that the branches of solutions get shorter
with decreasing α. Clearly, for a given ω there will be some
αmin > 0, for which no longer solutions exist.
Since the numerical accuracy does not allow a more

detailed investigation, we now conjecture the further

pattern by concluding from Fig. 4. As α is decreased
toward this limiting value, there will be some value of α,
below which (at least) two solutions exist, since the pion
stars exhibit a spiraling behavior. (There may be even more
than two solutions, but the spirals are extremely tiny here.)
Finally, at αmin, the two solutions on the (outer) branches of
the spiral merge to the last possible solution for this value
of ω. The lower critical value αmin depends both on the
gauge coupling g and on the frequency ω, and decreases as
both quantities increase.
An increase of the frequency ω increases the electric

charge of the configuration and the electrostatic repulsion
becomes stronger, thus the attractive force must be stronger
to stabilize the pion star. When the coupling decreases
the mass and the charge of the solutions monotonically
increase, approaching maximal values at the minimal value
αmin, as seen in Fig. 9, lower left plot.
Generally, the n ¼ 1 α-branches of axially-symmetric

solutions are longer than the corresponding branches of the
n ¼ 0 pion stars. These charged configurations are coupled
to the local magnetic flux and possess a magnetic dipole
moment, see Fig. 9, bottom right plot.
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FIG. 7. Pion star solution (n ¼ 1) on the first branch: 3d plots of the scalar field function ψ3 (upper left plot), electric potential A0

(upper right plot), magnetic potential Aϕ (middle left plot), the metric functions F0 (middle right plot), F1 (bottom left plot) and W
(bottom right plot) versus the coordinates ρ ¼ r sin θ and z ¼ r cos θ for g ¼ 0.1 α ¼ 1, m ¼ 1 and ω ¼ 0.72.
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FIG. 8. Pion star solution (n ¼ 1) on the second branch: 3d plots of the scalar field function ψ3 (upper left plot), electric potential A0

(upper right plot), magnetic potential Aϕ (middle left plot), and the metric functions F0 (middle right plot), F1 (bottom left plot), andW
(bottom right plot) versus the coordinates ρ ¼ r sin θ and z ¼ r cos θ for g ¼ 0.1 α ¼ 1, m ¼ 1 and ω ¼ 0.72.
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V. CONCLUSION

In this work we have considered regular solutions of the
Einstein-Skyrme-Maxwell model, the Skyrmions of topo-
logical degree one, and nontopological configurations
localized by gravity, the pion stars. The effect of introduc-
ing the electromagnetic interaction can be summarized as
follows: the increase of the gauge coupling breaks the
spherical symmetry of the Skyrmion on the fundamental
branch of solutions. This effect is maximal for relatively
small values of the effective gravitational coupling α and
for large electric charge of the configuration. By analogy
with the case of ungauged Skyrmions, there are two
α-branches of solutions which bifurcate at some maximal
value αcr, which increases as the gauge coupling increases.
The second backward branch extends to the limit α → 0.
Along this branch the electromagnetic interaction becomes
less and less important and the limiting rescaled spherically
symmetric Bartnik-McKinnon solution corresponds to the

absence of both the Maxwell term and the quadratic kinetic
term in the original Lagrangian.
We also found topologically trivial regular solutions of the

Einstein-Skyrme model, whose properties are similar to those
of (mini)boson stars, or self-gravitating lumps in the non-
linear Oð3Þ sigma model. We constructed both spherically
symmetric pion stars and their rotating generalizations with
nonzero angular momentum and investigated their properties.
As a direction for future work, it would be interesting to

study gauged cloudy Skyrmions, multisolitons, Skyrmed
BHs with charged hair, and further configurations.
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