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Twist operators implement symmetries in bounded regions of the space. Standard twists are a special
class of twists constructed using modular tools. The twists corresponding to translations have interesting
special properties. They can move continuously an operator from a region to a disjoint one without ever
passing through the gap separating the two. In addition, they have generators satisfying the spectrum
condition. We compute explicitly these twists for the two-dimensional chiral fermion field. The twist
generator gives place to a new type of energy inequality where the smeared energy density is bounded
below by an operator.
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I. INTRODUCTION

A twist is an operator that implements a symmetry in a
region of space but does nothing outside. Twists imple-
menting any symmetry, be it internal or spacetime sym-
metry, can always be constructed in a standard way using
modular tools [1–4]. It is simple to construct a twist in a
spatial region A for a Noether symmetry with Noether
current jμ. This is done by exponentiating the local charge

τA ¼ eiλ
R

dd−1xfðxÞj0ðxÞ; ð1Þ

where fðxÞ ¼ 1 inside A and fðxÞ smoothly go to zero
outside A ∪ Z, where Z is a small buffer zone surrounding
A. This is necessary to have a nonsingular operator. We are
also omitting a small smearing in the time direction. Using
modular theory it is possible to construct twists implement-
ing locally also discrete symmetries without Noether
currents. While the strong form of the Noether theorem
(existence of currents for continuous symmetries) is still
incomplete [5,6], this gives a weak form of the Noether
theorem that is also valid for discrete symmetries [4].
Using a translation current jμ ¼ aνTμν, with Tμν the

stress tensor, (1) will implement locally translations in the
aν direction. Suppose now we have two identical but
disjoint balls A1 and A2 in space and want a unitary
operator that implements the translation from A1 to A2 on
all operators localized on A1, but does nothing outside of

ðA1 ∪ Z1Þ ∪ ðA2 ∪ Z2Þ, for two arbitrarily small buffer
zones Z1, Z2 surrounding the balls. That is, we want a
translation operator capable of leaping from one region to
the other. Is this possible?
By integrating the charge density over the two balls, we

will never be able to translate operators from A1 to A2.
Operators from A1 will get crushed into the buffer zone Z1

of A1 for large translations and never reach A2. This
Noether twist is a product of two operators localized in
A1 ∪ Z1 and A2 ∪ Z2, which makes such a translation
impossible. However, it is the result of a paper by Buchholz
et al. [4] that such a translation operator generically exists
in quantum field theory (QFT). The generator of this
translation from A1 to A2 should contain something similar
to the Noether charge in A1 ∪ A2, such as to implement
infinitesimal translations, but something more, connecting
the two regions, is needed in the buffer zone around the two
balls. This is precisely what the standard twist mentioned
above achieves.
This twist is abstractly constructed using modular theory,

and as such it is generally difficult to grasp what it is “made
of.” One of the objectives of this paper is to explicitly
construct a translation twist in a simple model, the chiral
d ¼ 2 fermion, where the necessary modular tools are
sufficiently known.1
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1For d ¼ 2 twists act on a spatial interval. If this interval is
semi-infinite, the twist is determined by one end point (neglecting
the smearing). For twists of an internal symmetry, if we restrict
attention to the algebra of neutral operators under this symmetry
(also called the orbifold), these twists act as field operators at a
point. This is because they commute with other neutral, spatially
separated operators. This is the sense that is given to the term
twist in much of the literature on d ¼ 2 CFTs. That is, a twist on
an interval in the sense of this paper corresponds (up to some
regularization) to a twist field operator and the corresponding
antitwist field operator on the two end points of the interval.
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Another interest is that standard twists are constructed by
unitary transformations of the global symmetry operator by
a universal localizing map. Therefore, the twist and its
charge generator have the same spectrum as the global ones
[4]. This implies that standard translation local charges
satisfy the spectrum condition of the global momentum
operator. Understanding these local charges as a contribu-
tion proportional to the stress tensor and additional oper-
ators will lead us to operator-bounded energy inequalities,
where the suitably smeared energy density in some region
of the space is bounded below by an operator localized in
the boundary. This differs from the usual energy bounds
where the energy density is bounded by a number. We find
these bounds explicitly for the chiral fermion and compare
them with the Fewster-Hollands energy density bounds for
a conformal field theory (CFT) [7]. We find that none of the
bounds are generally stronger than the other and compare
the conditions for saturation.
The paper is organized as follows. In Sec. II we review

the construction of standard twists using modular theory. In
Sec. III we describe the modular data for the chiral fermion.
In Sec. IV we display how standard translation twists act in
the model, and in particular the twists that jump from one
interval to another. In Sec. V we show the explicit form of
the standard twist charges for this model and study the
operator-bounded energy conditions. Finally, we present
the conclusions.

II. STANDARD TWISTS

Given two separated regions A and B in QFT and the
corresponding operator algebrasA and B, the split property
asserts the existence of type I factors N , N 0, such that
A ⊂ N , B ⊂ N 0. Here the prime indicates the commutant
of an algebra. A factor of type I is the algebra of all
bounded operators acting in some Hilbert space H. An
equivalent description of the split property is that the
factors N and N 0 are the algebras acting on two Hilbert
spaces HN , HN 0 such that the global Hilbert space writes

H ¼ HN ⊗ HN 0 : ð2Þ

Therefore, the algebra A acts on the first Hilbert space
factor and B in the second. The split property has been
proved to hold in QFT under very general conditions [8,9].
The factor N in the split property is highly nonunique.

However, a standard construction follows from modular
theory that gives this split from the vacuum state jΩi and
the two algebras [2]. The essential tool is modular con-
jugation which is defined as follows. Given an algebra A
and a (cyclic separating2) vector jΩi, the modular con-
jugation J is defined through

SajΩi ¼ a†jΩi; a∈A; ð3Þ

S ¼ JΔ1=2: ð4Þ

The last equation is the polar decomposition of S into a
positive operator Δ ¼ e−K and an antiunitary J, with
JΔ ¼ Δ−1J. K is known as the modular Hamiltonian.
The modular conjugation J maps the algebra into its
commutant JAJ ¼ A0 and satisfies J2 ¼ 1, J ¼ J†. See
Ref. [10] for details on modular operators.
In the present case, the vacuum is cyclic and separating

for the algebra AB≡A∨B, that is, the algebra generated
by the two. Then, it induces the modular conjugation JAB
corresponding to this algebra. JAB maps the algebra of the
two regions into its commutant. The standard split factors
are constructed as [2]

N ¼ A∨ðJABAJABÞ; N 0 ¼ B∨ðJABBJABÞ: ð5Þ

These factors obey JABN JAB ¼ N , JABN 0JAB ¼ N 0 and
are defined by this property. Notice the type I factor N is
generated by the mutually commuting algebras A and
JABAJAB.
For the applications we have in mind, A is a causal region

and both these algebras are type III1 factors, but together
they generate N . The commuting algebras JABAJAB and
JABBJAB are composed of operators localized in the buffer
zone Z that is the complement of the union of A and B.
Consider the vacuum state acting onA. There is a unique

purification of this state on A considered inside the Hilbert
space HN , where this purified state is invariant under JAB.
Call this state jΩiN . In an analogous way jΩiN 0 is defined
as the unique vector that purifies the vacuum acting on B
inside HN 0 and that is invariant under JAB. The vector
jηi ¼ jΩiN ⊗ jΩiN 0 acts as the vacuum on A or B but
erases correlations between the algebras. The vectors jΩiN
and jΩiN 0 are cyclic inside the corresponding factors N
andN 0. Consequently, jηi is cyclic in the full Hilbert space.
The unitary localization map W∶ H → H ⊗ H is

defined such that for any a∈A y b∈B,

W abjηi ¼ ajΩi ⊗ bjΩi: ð6Þ

This completely defines the map because the action of A
and B together is cyclic on both sides. It can be shown that
W is an isomorphism. W† maps the factors in the tensor
product H ⊗ H into the factors defined by the product
HN ⊗ HN 0 . This is why it can be used to localize in N
operators defined globally, which can be thought to act on
the first factor inH ⊗ H. It follows from this definition that

WaW†¼ a⊗ 1; WbW†¼ 1⊗b; a∈A;b∈B; ð7Þ

and

2Cyclic means the algebra acting on the vector generates a
dense set of vectors in the Hilbert space. Separating means that no
nontrivial element of the algebra can annihilate the state.
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WJABW† ¼ JA ⊗ JB: ð8Þ

A standard twist can be readily constructed with these
ingredients. Given a global unitary U acting on H the
localization map provides a local unitary τ acting non-
trivially only on the first split factor N and leaving
invariant N 0,

τ ¼ W†ðU ⊗ 1ÞW: ð9Þ

If U is a global symmetry τ will be a twist operator for this
symmetry. In fact, let a∈A, b∈B and assume UaU† ∈A.
Using (7) it follows that

τaτ† ¼ UaU†; ð10Þ

τbτ† ¼ b: ð11Þ

In this way, ifU is a translation, and the translation keeps
an operator a in the algebra A, the action of τ will be
exactly as a translation. This includes the case where
the region A is formed by more than one connected
component and the translation carries an operator from
one component to the other. In addition, τ will do nothing to
operators localized in B, no matter the size of the applied
translation.
To understand these twists more explicitly it is conven-

ient to describe the operator content of the theory by local
field operators ψðxÞ. In general, we know the action of the
symmetry U on the field operators. This will carry field
operators into field operators. It remains to have an
understanding of the action of the localization map W
on them. We already know how ðψðxÞ ⊗ 1Þ transforms for
x∈A, Eq. (7). To understand the transformation of
ðψðxÞ ⊗ 1Þ for x∈A0 we can first write this operator as
an operator JAϕJA, for some ϕ inside A in the first factor,
by acting with the modular conjugation of A. Call A0 to the
complementary spacelike separated region to A, such that
operators localized in A0 commute with A. We get for
x∈A0,

W†ðψðxÞ⊗ 1ÞW ¼W†ðJAϕJA ⊗ 1ÞW
¼W†ðJA ⊗ JBÞðϕ⊗ 1ÞðJA ⊗ JBÞW
¼W†ðJA ⊗ JBÞWW†ðϕ⊗ 1Þ
×WW†ðJA ⊗ JBÞW

¼ JABϕJAB ¼ JABJAψðxÞJAJAB: ð12Þ

An analogous calculation gives the transformation for a
field on B0 in the second factor. So we have that

W†ðψðxÞ ⊗ 1ÞW ¼ ψðxÞ; x∈A; ð13Þ

W†ð1 ⊗ ψðxÞÞW ¼ ψðxÞ; x∈B; ð14Þ

W†ðψðxÞ ⊗ 1ÞW ¼ JABJAψðxÞJAJAB; x∈A0; ð15Þ

W†ð1 ⊗ ψðxÞÞW ¼ JABJBψðxÞJBJAB; x∈B0: ð16Þ

For Noether symmetries, these rules already give a more
explicit form for the twist. Equation (9) gives the twist
generator or local charge QA as the mapping of the global
symmetry charge operator Q acting on the first factor.
Written in terms of the transformed charge density, it is

QA ¼W†ðQ⊗ 1ÞW¼
Z

dd−1xW†ðj0ðxÞ⊗ 1ÞW

¼
Z
A
dd−1xj0ðxÞþ

Z
A0
dd−1xJABJAj0ðxÞJAJAB: ð17Þ

The first termgives the sharp twist inAwhile the second term
gives a smearing term in the buffer zone Z ¼ ðA ∪ BÞ0.3
To understand the action of the twist, suppose UðaÞ is a

translation by a vector a in spacetime. We want to follow
the action of the translation twists τðaÞ on field operators
ψðxÞ, x∈A, for increasing values of the translation
parameter a. Equations (10) and (11) allow us to understand
the action of the twist on the field whenever x∈A and
xþ a∈A,

τðaÞ†ψðxÞτðaÞ ¼ ψðxþ aÞ; x∈A; xþ a∈A: ð18Þ

In such case, it is just the ordinary translation operation and
this holds even if x and xþ a belong to disjoint connected
components of A. When, on the contrary, xþ a∈A0, we
have, using (9), (7), and (15),

τðaÞ†ψðxÞτðaÞ ¼ JABJAψðxþ aÞJAJAB;

x∈A; xþ a∈A0: ð19Þ

This indicates that if the global translation takes the field to
the complementary spatial region A0, then the twist takes
the operator to JABAJAB ⊂ N . This never leaves N but
is localized in the algebra corresponding to the “buffer
zone” Z ¼ ðA ∪ BÞ0 outside both A and B.4

These equations show that to compute a standard twist
explicitly we need to understand the action of the modular
conjugations JA; JB; JAB. In general, it is difficult to
understand these operators explicitly, especially in the case
of JAB which corresponds to regions with more than one
connected component. Up to the present day, these types of

3We will discuss in Sec. V nontrivial contributions that may
come from the boundary x∈ ∂A.

4For a more general case where xþ a is not in the causal
region corresponding to A nor in A0, we have first to decompose
ψðxþ aÞ into fields in A and A0 using the equations of motion.
We will not need this decomposition in this paper because we
focus on a chiral field on the line.
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operators are known explicitly only for the chiral fermion.
We now turn to this case.

III. MODULAR CONJUGATION FOR THE
FREE CHIRAL FERMION

For fermions there is a slight modification to be made to
the modular operators. If A is the algebra of a region
containing the fermion field ψðxÞ, A0 will not contain the
fermion field in the complementary region because fer-
mions anticommute. This can be corrected in a standard
way by a unitary transformation [11]. Define the operator
fermionic sign Γ by

Γ2 ¼ 1; Γ† ¼ Γ; ΓψðxÞΓ ¼ −ψðxÞ ð20Þ

and from it the unitary Z,

Z ¼ 1 − iΓ
1 − i

: ð21Þ

We have

ZZ† ¼ 1; ZψðxÞZ† ¼ −iΓψðxÞ;
ZψðxÞψðyÞZ† ¼ ψðxÞψðyÞ: ð22Þ

For an even fermion state, ΓjΩi ¼ ZjΩi ¼ jΩi, we also
have

ΓJΓ ¼ J; JZ ¼ Z†J: ð23Þ

Defining the twisted modular reflection

J̃ ¼ ZJ; ð24Þ

this operator maps the fermion algebra A into the twisted
commutant Ã containing all even operators that commute
with A and all odd operators that commute with the even
part of A and anticommute with the odd part of A. As a
result, understanding commutation as graded commutativ-
ity and commutants as twisted ones, the twisted modular
reflection plays the role of the ordinary Tomita-Takesaki
modular reflection in fermionic theories. However, in the
construction of twists of the preceding section, this modi-
fication plays no role since the symmetries are represented
by even operators with even charge densities, where the
actions of J and J̃ coincide. In other terms, in formulas like
(19), where two modular reflections are applied to a
fermion operator, the use of J or J̃ is indifferent.
Nevertheless, to study the action of the modular reflection
on a fermion field it will be convenient to use J̃.
We will focus on the chiral Majorana fermion model.

This is a field ψðxÞ ¼ ψðxÞ†, x∈R, with anticommutation
relation

fψðxÞ;ψðyÞg ¼ δðx − yÞ; ð25Þ

and Hamiltonian

H ¼ i=2
Z

dx∶ψðxÞ∂xψðxÞ∶: ð26Þ

The vacuum is Gaussian with two-point function

hΩjψðxÞψðyÞjΩi ¼ ð2πiÞ−1ðx − y − iϵÞ−1: ð27Þ

The coordinate x can be thought of as a null coordinate in
two dimensions. The Hamiltonian is positive definite and
translates fields in x.
The modular operators for the chiral fermion are known.

For a Gaussian state, the modular Hamiltonian is quadratic
on the fields. The corresponding kernel was diagonalized
in [12], obtaining the modular flow. This was analyzed in
detail [13–20] and generalized in several works [21–23].
The modular conjugation was computed in [24] (see also
[17,25,26]). We define a conjugated fermion field as

ψ̃ðxÞ ¼ J̃ψðxÞJ̃: ð28Þ

Since the theory is Gaussian the action of J̃ transforms
linearly the field to the adjoint field (the modular flow also
acts linearly for these Gaussian fields). For the convenience
of the reader, we rederive this linear action of J̃ from the
knowledge of modular flow in Appendix A, in a slightly
different setup as in [24].
To express the result consider a region A formed by n

disjoint intervals A ¼ ða1; b1Þ ∪ ða2; b2Þ ∪ � � � ∪ ðan; bnÞ,
where the intervals are ordered from left to right. The
complementary region A0 ¼ ðb1; a2Þ ∪ ðb2; a3Þ ∪ � � � ∪
ðbn;∞Þ ∪ ð−∞; a1Þ can also be thought to be formed by
n intervals in the compactified line, where ðbn; a1Þ≡
ðbn;∞Þ ∪ ð−∞; a1Þ. Define the functions

ΠaðxÞ ¼ ΠN
i¼1ðx − aiÞ; ΠbðxÞ ¼ ΠN

i¼1ðx − biÞ;

fðxÞ ¼ −
ΠaðxÞ
ΠbðxÞ

: ð29Þ

fðxÞ is always increasing. It is positive in A and increases
from 0 to ∞ in each interval. On the other hand, in the
complement A0, fðxÞ is negative and increases from −∞
to 0 in each interval. Then, the equation

fðxÞ ¼ −fðyÞ ð30Þ

gives, for each y∈A, n different real solutions for x,

xj ¼ sjðyÞ; j ¼ 1;…; n: ð31Þ

Each of the solutions sjðyÞ belongs to a different interval in
the complement A0 of A. The functions sjðyÞ are decreasing
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with y∈A, i.e., s0jðyÞ < 0. Note the same functions sj solve
Eq. (30) for the complementary region A0.
Using these functions, the modular conjugation ψ̃ðyÞ ¼

J̃ψðyÞJ̃ (we have J̃† ¼ J̃) is expressed as [24]

ψ̃ðyÞ ¼
XN
j¼1

ajðyÞψðsjðyÞÞ; ð32Þ

where

ajðyÞ¼
2fðsjðyÞÞ

f0ðsjðyÞÞðy− sjðyÞÞ

¼ 2

ðy− sjðyÞÞ
�Xn

i¼1

1

sjðyÞ−ai
−

1

sjðyÞ−bi

�−1
: ð33Þ

This is valid for any y, not necessarily in A. The modular
conjugation is the same for the algebras A and A0. This is
reflected here in that the functions sjðyÞ are the same for A
and A0 and f is transformed into −1=f for A0. This leaves
(33) unchanged.
Equation (32) has to be understood as an equation for

distributions in the variable y. It gives the modular trans-
formed field operator as a discrete sum of field operators.
Each of the n operators in this sum is localized in one
interval of the complementary region A0. How we can
understand the relative weight of each of these n compo-
nents? To answer this question, recall that as J̃ is an
antiunitary operator,

fψ̃ðxÞ; ψ̃ðyÞg ¼ J̃fψðxÞ;ψðyÞgJ̃ ¼ δðx − yÞ: ð34Þ
On the other hand, we have from (32)

fψ̃ðxÞ; ψ̃ðyÞg¼
XN
j;i¼1

aiðxÞajðyÞδðsiðxÞ− sjðyÞÞ

¼
�XN

i¼1

aiðxÞ2
js0iðxÞj

�
δðx−yÞ

þ
XN

j;i¼1;i≠j
aiðxÞajðyÞδðsiðxÞ− sjðyÞÞ: ð35Þ

Comparing (34) and (35) we arrive at

XN
i¼1

aiðxÞ2
js0iðxÞj

¼ 1;

XN
j;i¼1;i≠j

aiðxÞajðyÞδðsiðxÞ − sjðyÞÞ ¼ 0: ð36Þ

From (32) and (36) we interpret

PiðxÞ ¼
aiðxÞ2
js0iðxÞj

ð37Þ

as the proportion of the field at the point siðxÞ in the
decomposition of ψ̃ðxÞ in local operators. In fact,
aiðxÞ=js0iðxÞj1=2 can be thought of as the true amplitude
of the different components when the fields are normalized
to have a unit anticommutator. The second relation in (36)
implies algebraic relations satisfied by the coefficients of
the different components of the conjugated field.
The formulas (32) and (33) give the modular conjuga-

tion. To make these formulas more explicit we only need
the roots sjðyÞ of Eq. (30). These are polynomial equations
of order n. For one interval A ¼ ða; bÞwe have a single root

sðyÞ ¼ ab − ðaþbÞ
2

y
ðaþbÞ

2
− y

: ð38Þ

This is a conformal reflection mapping the interior of the
interval into the exterior. The conjugation of the field gives

ψ̃ðyÞ ¼ b − a
aþ b − 2y

ψðsðyÞÞ: ð39Þ

For two symmetric intervals A ¼ ð−b;−aÞ ∪ ða; bÞ the two
solutions, that we can call s�, are

s�ðyÞ ¼
−ða − bÞ2y�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða − bÞ4y2 þ 4abðy2 − abÞ2

p
2ðab − y2Þ :

ð40Þ
A. Fermions on the circle

It is also useful to consider the compact picture of the
line by conformally mapping the line to the circle of the
unit modulus complex numbers jzj ¼ 1. This picture allows
us to obtain simpler expressions for some specific sym-
metric regions. See Refs. [13,16]. The mapping is given by
Cayley transform

z ¼ CaðxÞ ¼ 1þ ix
1 − ix

: ð41Þ

Under the Cayley transformation, the real fermion field
transforms as

ψ̌ðzÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−iCa0ðxÞp ψðxÞ ¼ iðiþ xÞffiffiffi

2
p ψðxÞ; ð42Þ

where z ¼ CaðxÞ. Then one has the conjugate field

ψ̌†ðzÞ ¼ zψ̌ðzÞ: ð43Þ
These fields have the anticommutation rule

fψ̌ðzÞ; ψ̌†ðwÞg ¼ 1

jCa0ðxÞj δðx − yÞ ≔ δ̌ðz − wÞ: ð44Þ

To construct symmetric regions let I ¼ ðU;VÞ be an arc
of S1. Call

ffiffi
In

p ¼∪n
j¼1 ðuj; vjÞ the set of n symmetrical arcs

distributed on S1 that arises from applying the n-root to the
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points of I. If we applied to these arcs the inverse Cayley
transform we obtain a distribution of intervals on the real
axis A ¼ Ca−1ð ffiffi

In
p Þ ¼∪n

j¼1 ðaj; bjÞ.
Now if we want to study the modular conjugation in this

distribution of intervals A we have to use the function
defined on (29) and the condition (30). It can be shown that

fðxÞ ¼
Yn
j¼1

x− aj
x− bj

¼ cons
Yn
j¼1

z− uj
z− vj

¼ cons
zn −U
zn − V

¼ f̌ðzÞ;

ð45Þ

where we used z ¼ 1þix
1−ix, uj ¼

1þiaj
1−iaj

, vj ¼ 1þibj
1−ibj

, U ¼ unj ,

V ¼ vnj . The condition fðxÞ þ fðyÞ ¼ 0 is equivalent to

f̌ðzÞ þ f̌ðwÞ ¼ 0, with z; w∈ S1. This writes

wn ¼
UþV
2

zn −UV

zn − UþV
2

: ð46Þ

Taking the n-roots of wn we obtain the n solutions šjðzÞ that
we want. It will be useful to rename the solution for one
interval as

s0ðzÞ ¼
UþV
2

z −UV

z − UþV
2

: ð47Þ

The solutions sjðzÞ for n intervals then obey

sjðzÞn ¼ s0ðznÞ: ð48Þ

Now we want to study the modular conjugation on these
fields. We define

ˇ̃ψðzÞ ¼ J̃ψ̌†ðzÞJ̃: ð49Þ

Using (32) and (33) we can show that

ˇ̃ψðzÞ ¼
Xn
j¼1

djðzÞψ̌ðšjðzÞÞ; ð50Þ

where

djðzÞ ¼
f̌ðšjðzÞÞ
f̌0ðšjðzÞÞ

2

z − šjðzÞ
: ð51Þ

We can see that djðzÞ conserves the same expression that
had ajðxÞ. Using (45) and (48) we find, more explicitly,

djðzÞ¼
2

nðU−VÞ
ðs0ðznÞ−UÞðs0ðznÞ−VÞ

s0ðznÞ
sjðzÞ

z−sjðzÞ
; ð52Þ

where s0ðzÞ was defined in (47).

To compute the weights P̌jðzÞ of each component we
follow the same procedure as above. First, we check the
anticommutation relation of ˇ̃ψðzÞ,

f ˇ̃ψðzÞ; ˇ̃ψ†ðwÞg ¼ J̃fψ̌†ðzÞ; ψ̌ðwÞgJ̃ ¼ δ̌ðz − wÞ

¼
Xn
i¼1

jdiðzÞj2
jš0iðzÞj

δ̌ðz − wÞ

þ
Xn

j;i¼1;i≠j
diðzÞðdjðwÞÞ�δ̌ðšiðzÞ − šjðwÞÞ:

ð53Þ

The second term of this last expression vanishes. Then the
weights are

P̌jðzÞ ¼
jdjðzÞj2
jš0jðzÞj

¼ jajðxÞj2
js0jðxÞj

¼ PjðxÞ: ð54Þ

It is interesting to emphasize that the weights PiðxÞ do not
transform under the Cayley transformation, as expected.
Using the identity

šjðzÞn ¼ s0ðznÞ ⇒ š0jðzÞ ¼
s00ðznÞ
šjðzÞn−1

zn−1; ð55Þ

we can calculate the weights P̌jðzÞ as

P̌jðzÞ ¼
jdjðzÞj2
jš0jðzÞj

¼ 4

n2

���� ðs0ðznÞ − UÞ2ðs0ðznÞ − VÞ2
s00ðznÞðU − VÞ2

����
���� 1

ðz − šjðzÞÞ2
����:
ð56Þ

We can see that, for the chosen special configuration of
regions, both djðzÞ and P̌jðzÞ have a factor that does not
depend on the solution šjðzÞ, times a simple term that
depends on the particular solution.

IV. STANDARD TRANSLATION TWISTS

In this section we give examples of standard twists for
one and two intervals, computing the action of the one-
parameter groups of translations on the field operators. For
one interval, we compare with twists formed by smearing
the Noether charge. For two intervals, we display how the
standard twists make the fields jump from one interval to
the other, without disturbing the outside region.

A. Standard twist vs Noether twist for one interval

Let us take the interval A ¼ ð−a; aÞ and the smearing
zones Z− ¼ ð−ϵ − a;−aÞ and Zþ ¼ ða; aþ ϵÞ which
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together form Z ¼ Z− ∪ Zþ. Hence, the complementary
region is B ¼ ð−∞;−a − ϵÞ ∪ ðaþ ϵ;∞Þ (see Fig. 1).
Let us first construct a twist by smearing the Noether

charge. The local charge has the generic form

Hα ¼
i
2

Z
dx αðxÞ∶ψðxÞ∂xψðxÞ∶; ð57Þ

where αðxÞ is a smooth function such that αðxÞ ¼ 1 for
x∈A and αðxÞ ¼ 0 for x∈B. The twist translation group is
given by

ταðtÞ ¼ e−iHαt: ð58Þ

Writing the transformed field as

ψ̂ðx; tÞ ¼ ταðtÞ†ψðxÞταðtÞ; ð59Þ

we obtain, deriving with respect to the time parameter,

dψ̂ðx; tÞ
dt

¼ i½Hα; ψ̂ðx; tÞ�

¼ αðxÞ∂xψ̂ðx; tÞ þ
1

2
∂xαðxÞψ̂ðx; tÞ: ð60Þ

Assuming αðxÞ > 0 for x∈A ∪ Z for simplicity, the
solution of this differential equation with the initial con-
dition ψ̂ðx; 0Þ ¼ ψðxÞ, x∈A, is

ψ̂ðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðg−1ðtþ gðxÞÞÞ

αðxÞ

s
ψðg−1ðtþ gðxÞÞÞ;

gðuÞ ¼
Z

u

x0

1

αðsÞ ds: ð61Þ

x0 is an arbitrary point inside A. The formula for ψ̂ðx; tÞ is
in fact independent of x0. As g and its inverse function g−1

are increasing, the action of the twist for positive parameter
t always moves the field to the right. In addition, the field
gets multiplied by a normalizing factor that is necessary to
keep invariant anticommutators. Hence, while initially, for
small enough t, the twist just translates inside A, for larger
positive t, it squeezes all operators to the right interval
ða; aþ ϵÞ of the buffer zone and toward the point aþ ϵ in
the limit t → ∞. For negative values of t the fields are
moved in the opposite direction and end up squeezed on the
left buffer zone for large negative t.
Now we describe the action of the standard translation

twists. Let us start with a point x∈A and apply a twist τAðtÞ
of translations of parameter t. Equations (18) and (19) give

τAðtÞ†ψðxÞτAðtÞ ¼
�
ψðxþ tÞ; xþ t∈A

JABJAψðxþ tÞJAJAB; xþ t ∉ A
:

ð62Þ

The composition of the two modular conjugations is
computed with the formulas of Sec. III. JA corresponds
to a single interval and is associated with the mapping
x → sðxÞ, where sðxÞ follows form (38) by replacing
a → −a; b → a,

sðxÞ ¼ a2

x
; J̃AψðxÞJ̃A ¼ a

x
ψða2=xÞ: ð63Þ

This point transformation is composed with the one
effected by JAB that takes a point and sends it to two
possible locations according to the functions s� of (40),
where we have to take b ¼ aþ ϵ. As a result, the
composition JABJA maps a field at a point x to two
possible positions given by

q�ðxÞ¼s�ðsðxÞÞ

¼
x

�
−a2ϵ2�x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3
�
4ðaþϵÞ

�
−a3

x2þaþϵ
�
2þaϵ4

x2

�r �
2ax2ðaþϵÞ−2a4

:

ð64Þ

This is shown in Fig. 2. When xþ t∈A, the twist just
performs the translation by t. For xþ t∈A0 the action of
the twist is nonlocal, and the field is split into two
components at the points q�ðxþ tÞ ¼ s�ðsðxþ tÞÞ, each

FIG. 1. Distribution of intervals on the line.

FIG. 2. The twists moves the field as an ordinary translation if
xþ t∈A (green dashed line). Afterward, for xþ t∈A0, it splits it
into two fields at the positions of qþðxþ tÞ and q−ðxþ tÞ inside
the buffer zone. This is shown here by the blue and red curves,
where we have taken a ¼ 1 and ϵ ¼ 1.
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one in one of the intervals ð−ϵ − a;−aÞ; ða; aþ ϵÞ of the
buffer zone Z. It never leaves the buffer zone in this case. In
the limit t → �∞, the position of the two fields gets frozen
at q� ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aðaþ ϵÞp
.

More precisely, the transformation is

τAðtÞ†ψðxÞτAðtÞ ¼ cþðxþ tÞψðqþðxþ tÞÞ
þ c−ðxþ tÞψðq−ðxþ tÞÞ; xþ t∈A0;

ð65Þ

where

c�ðxÞ¼
a
x

1

q�ðxÞ− a2
x

� ðaþ ϵÞ
ðaþ ϵÞ2−q�ðxÞ2

þ a
q�ðxÞ2−a2

�
−1
:

ð66Þ

The coefficients c� were obtained from the use of (33)
for JA and next for JAB and finally replacing a1 ¼
−ðaþ ϵÞ; b1 ¼ −a; a2 ¼ a; b2 ¼ aþ ϵ.
The probabilities associated with the two components are

p�ðxþtÞ¼ c�ðxþtÞ2
jq0�ðxþtÞj; pþðxþtÞþp−ðxþtÞ¼1: ð67Þ

They are plotted in Fig. 3. When xþ t → a, we have
qþðaÞ ¼ a and q−ðaÞ ¼ −ðaþ ϵÞ. At that point, pþðaÞ ¼ 1
and p−ðaÞ ¼ 0, giving the continuity of the operator as it
crosses from A to the buffer zone, and it is split in two for
larger t. In the same way, for xþ t ¼ −a, q−ð−aÞ ¼ −a,
qþð−aÞ ¼ aþ ϵ, and pþð−aÞ ¼ 0, p−ð−aÞ ¼ 1.

For large jxþ tj → ∞, the limit positions q�ð�∞Þ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aðaþ ϵÞp
on the two buffer intervals get equal prob-

abilities p�ð�∞Þ ¼ 1=2 is this symmetric case. This is in
contrast with the Noether twist where the fields get
squeezed to �ðaþ ϵÞ for xþ t → �∞. However, if we
choose the two buffer zones of different sizes, say ϵ1 and ϵ2
for the left and right intervals, and take a limit of ϵ1 ≪ ϵ2; a,
we get a vanishing probability for the left component in the
large t limit,

lim
t→∞

p−ðxþ tÞ ∼ 8ðaþ ϵ2Þ2ð2aþ ϵ2Þ
aϵ2ð4aþ 3ϵ2Þ2

ϵ1 þOðϵ21Þ: ð68Þ

It is interesting to remark that the action of the twist is
continuous but not infinitely differentiable, in the sense, for
example, of its action on the correlation function

hΩjτAðtÞ†ψðxÞτAðtÞψðyÞjΩi: ð69Þ

This function has discontinuous first derivatives as a
function of t or x when xþ t hits the buffer zone. This
is analogous to the discontinuity of the second derivative in
the density of the type I factorN found in [17]. In contrast,
we can make the action of the Noether twist (61) infinitely
differentiable just by choosing α to be so.
We will study the generator of the one interval standard

twist in Sec. V. This generator is positive definite, in
contrast to the generator (57) of the Noether twist.

B. Jumping twists

If the region A has n intervals, with n > 1, the translation
twist has an interesting effect. Because Eq. (62) is always
valid for any A, B, if we start with the field ψðxÞ for x∈A1

in one of the intervals A1 of A, and apply a twist of
parameter t0 such that xþ t0 ∈A2, for A2 another interval
of A, the twist will make the field “jump” between different
intervals. This cannot be done by twists constructed
smearing the Noether charge. It is interesting to understand
how this jump is realized if we continuously change the
twist parameter from t ¼ 0 to t ¼ t0. As the twist belongs
to the algebra of A ∪ Z, the transformed field can never
have support on the region B complementary to A ∪ Z.
What actually happens is that the field is moved inside A1

until it reaches the buffer zone Z. Then it is split into
different fields living in the components of the buffer zone
Z, which consists of 2n intervals separating the n intervals
of A and the n intervals of B. If we continue the twist
translation, at some point all the components of the split
field will tend to have zero weight, except one that will tend
to have weight 1. When this happens, this component enters
the interval A2 as a single field. The field is thus
reconstituted from the buffer zone, having never passed
through the intervals of B that separate the different
intervals of A.

FIG. 3. The weights of both components of the modular
conjugated field are shown here by the red and blue curves.
The geometry is the same as in Fig. 2, and the colors of the curves
here correspond to the trajectories displayed there.
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All this readily follows from the expressions for the twist
action of the previous sections. However, in general, these
expressions involve the roots of a polynomial in 2n
variables and are either cumbersome for n ¼ 2 or have
to be dealt with numerically for n > 2. For this reason, we
are presenting here the case of symmetric intervals on the
circle, as described in Sec. III A. This is the same effect
though, as we are using ordinary translations in the circle,
this corresponds to a particular one-parameter group of
conformal transformation on the line and not to translations
on the line.
We take the simplest case of n ¼ 2 and the maximally

symmetric case where we start with the interval IA∪B ¼
ð−i; iÞ that generates ffiffiffiffiffiffiffiffiffi

IA∪B4
p ¼ A ∪ B. This is shown in the

Fig. 4. Explicitly, A ¼ A1 ∪ A2 ¼ ðei3π8 ; ei5π8 Þ ∪ ðei11π8 ; ei13π8 Þ
and B ¼ B1 ∪ B2 ¼ ðei7π8 ; ei9π8 Þ ∪ ðei−π8 ; eiπ8Þ. Also, we have
IA ¼ ðei3π4 ; ei5π4 Þ that generates A ¼ ffiffiffiffiffi

IA
p

. Considering a
fermion placed in eiϕ ∈A, then the twist that we will apply
corresponds to a rotation of angle θ. We have

τAðθÞ†ψ̌ðeiϕÞτAðθÞ

¼
�
ψ̌ðeiðϕþθÞÞ; eiðϕþθÞ ∈A

JABJAψ̌ðeiðϕþθÞÞJAJAB; eiðϕþθÞ ∉ A
: ð70Þ

Using the formulas developed in Sec. III A, we arrive at

JABJAψ̌ðzÞJAJAB

¼
X4
k¼1

½dkðǧA1 ðzÞÞc1ðzÞ�þdkðǧA2 ðzÞÞc2ðzÞ��ψ̌ðs̃kðzÞÞ; ð71Þ

where

ǧAj ðzÞ ¼ ið−1Þj−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ ffiffiffi

2
pffiffiffi

2
p

z2 þ 1

2

s
; ð72Þ

s̃kðzÞ ¼ šABk ðǧAj ðzÞÞ ¼ ei
π
4
ð2kþ1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
z2 þ 1

z2 þ ffiffiffi
2

p
s

; ð73Þ

where j ¼ 1, 2, k ¼ 1, 2, 3, 4 and the principal branch is
selected by the roots. The ǧAj ðzÞ and cjðzÞ are the solutions
for the positions and amplitudes of the fermions that appear
when we apply JA, and šABk ðzÞ and dkðzÞ are the ones that
appear when we apply JAB. They are constructed using
formulas (48) and (51) using the respective U and V for A
and A ∪ B. We remark that s̃kðzÞ does not depend on j; this
is because when we evaluate šABk ðǧAj ðzÞÞ we have to remind
the form of the solution (48). Therefore, when we perform
ǧAj ðzÞ4. the dependence on j is eliminated. In Fig. 5 we can
see the paths that the four branches follow in the case
where eiðϕþθÞ ∉ A.
We can calculate the probabilities following the same

procedure as in (53) and obtain

PkðzÞ ¼
jdABk ðǧA1 ðzÞÞcA1 ðzÞ� þ dABk ðǧA2 ðzÞÞcA2 ðzÞ�j2

js̃0kðzÞj
: ð74Þ

Is interesting to note that the probabilities are not the
product of the probabilities that appear by acting with JA
and JAB separately. It is because the high symmetry of this
problem removes the dependencies of j at the fermions
positions (73). In Fig. 6 we plot the probabilities in the
interval A1 ∪ Z1 ∪ B1 ∪ Z2 ∪ A2, corresponding to the
same range in Fig. 5.
From these graphs, we can observe the following

behavior. Let us assume that initially our fermion is located
in A1 ¼ ðei3π8 ; ei5π8 Þ ⊂ A. If we apply the twist τAðθÞ to this
fermion, where the parameter θ is small enough to keep it
within A, then the twist only translates it and its movement
will correspond to the black dashed line marked on the

FIG. 4. Distribution of intervals on the circle.

FIG. 5. Plot of the argument of s̃kðeiðϕþθÞÞ as a function of
ϕþ θ in the intervals A1 ∪ Z1 ∪ B1 ∪ Z2 ∪ A2, which are
marked with colors in the horizontal axis. The horizontal strips
mark the positions of the different intervals on the vertical axis.
The black dotted line represents the case where the fermion is in
eiðϕþθÞ ∈A, where it is only translated by the twist. The fermion is
split into four branches as it leaves A1. When it enters A2, all
branches disappear except one that reaches probability 1.
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graph. However, if the parameter is large enough to take it
out of region A, the twist will transform the fermion into
four fermions located at positions s̃kðeiðϕþθÞÞ in the four
intervals Zk of the buffer zone. As the parameter θ
increases, the positions of the fermions will vary as seen
in the graph, until the parameter becomes large enough for
eiðϕþθÞ ∈A2 ¼ ðei11π8 ; ei13π8 Þ ⊂ A, and thus we return to the
solution represented by the black dashed line in the graph.
Analyzing how the probabilities behave along this trajec-
tory, using Fig. 6, we can see that as the fermion starts to
leave the interval A1, the largest probability is P1, which
corresponds to the fermion located at s̃1ðzÞ∈Z1. Then the
probabilities of the other fermions increase, indicating a
mixture among them. As we increase the parameter θ and
eiðϕþθÞ approaches to A2, we observe that the probability P1

starts to decrease while the probability P2, the probability
corresponding to the fermion located at s̃2ðzÞ∈Z2,
increases reaching 1 upon entering A2.
To summarize, when the twist takes the fermion out of

region A, it produces a mixture of operators in the buffer
zone, each with its corresponding probability Pk. However,
as we approach another interval of the region A again, the
mixture begins to unravel, and we regain a single operator
located in A. Therefore, the twist operator has successfully
transported a fermion operator from the interval A1 to A2

without ever being within region B1 that separates the
intervals of A. In other words, it has enabled the fermion to
jump from one interval to another without ever passing
through the separating spaces B between the different
intervals of A.
It is interesting to note that for translations on a circle an

analogous effect of field regeneration also happens for the

case where A and B are single intervals. In that case, the
field that starts in A is ordinarily translated until it hits the
buffer zone on the right side of the interval, where it is
converted into a nonlocal operator in the buffer zone. After
some more translation, the local field is regenerated and
reappears on the left side of the interval A.

V. TWIST GENERATOR AND OPERATOR-
BOUNDED ENERGY INEQUALITIES

In the previous sections we have computed how the
standard translation twist acts on field operators. Now we
are going to give a closed expression for the twist itself. Since
twists form a continuous group, a compact way towrite these
twists is to display its generator H̃. This is defined by

τðxÞ ¼ e−ixH̃; ð75Þ
where x is the translation parameter. From Eq. (9),

τðxÞ ¼ W†ðUðxÞ ⊗ 1ÞW; ð76Þ
it follows that the generator is given by

H̃ ¼ W†ðH ⊗ 1ÞW; ð77Þ

where H is the full Hamiltonian of the theory acting on
the first Hilbert space copy. For simplicity, we will consider
the specific case of the twist for a single interval treated in
Sec. IVA. The region where the twist acts as translations is
A ¼ ð−a; aÞ, the region where it does not act is B ¼
ð−∞;−bÞ ∪ ðb;∞Þ with a < b, and the smearing zones
are Zþ ¼ ða; bÞ and Z− ¼ ð−b;−aÞ.
For the chiral fermion the Hamiltonian writes

H ¼
Z
R
dx∶TðxÞ∶ ð78Þ

with

TðxÞ ¼ i
2
ψðxÞ∂xψðxÞ: ð79Þ

The normal ordering for singular products of operators can
be written using a point-splitting regularization as

∶ψðxÞ∂ψðxÞ∶¼ lim
y→x

ðψðxÞ∂ψðyÞ−hΩjψðxÞ∂ψðyÞjΩiÞ: ð80Þ

To use a more compact notation, in what follows we define

T̃ðx; yÞ ¼ i
2
ψðxÞ∂yψðyÞ: ð81Þ

Then, the normal ordering of the stress tensor is given by

∶TðxÞ∶ ¼ lim
y→x

T̃ðx; yÞ − hΩjT̃ðx; yÞjΩi; ð82Þ

FIG. 6. Plot of the probabilities PkðeiðϕþθÞÞ as a function of
ϕþ θ in the interval A1 ∪ Z1 ∪ B1 ∪ Z2 ∪ A2, which are marked
with colors in the horizontal axis. The probability PkðzÞ is the one
corresponding to the fermion located at s̃kðzÞ. The black dotted
line represents the case where the fermion is in eiðϕþθÞ ∈A, where
it is not split.
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and using Eq. (27) we have

hΩjT̃ðx; yÞjΩi ¼ 1

4πðx − yÞ2 : ð83Þ

The generator of the twist (77) writes

H̃ ¼
Z
R
dxW†ð∶TðxÞ∶ ⊗ 1ÞW: ð84Þ

Using (82) we get

H̃¼
Z
R
dx lim

y→x
W†		T̃ðx;yÞ− hΩjT̃ðx;yÞjΩi
⊗ 1



W

¼
Z
R
dx lim

y→x
W†	T̃ðx;yÞ⊗ 1



W− hΩjT̃ðx;yÞjΩi: ð85Þ

From this last expression we can see that there are several
cases to consider. When x; y∈A, the operator T̃ðx; yÞ is in
the algebra AðAÞ. Then W transforms it trivially to the
same operator in the global Hilbert space, see Ref. (13).
Therefore, we have

W†	T̃ðx; yÞ ⊗ 1


W ¼ T̃ðx; yÞ; x; y∈A: ð86Þ

When x; y ∉ A we use property (15),

W†	T̃ðx; yÞ⊗ 1


W ¼ JABJAT̃ðx; yÞJAJAB; x; y ∉ A:

ð87Þ

The last case is when x∈A but y ∉ A or vice versa. In this
case, we have to express T̃ðx; yÞ in terms of the fermionic
operators. For example, suppose x∈A, y ∉ A,

W†ðψðxÞ∂ψðyÞ ⊗ 1ÞW ¼ W†ψðxÞ ⊗ 1WW†
∂ψðyÞ ⊗ 1W

¼ ψðxÞJABJA∂ψðyÞJAJAB: ð88Þ

When x ∉ A but y∈A we have a similar expression where
JABJA now act on ψðxÞ. We will write

W†	T̃ðx;yÞ⊗ 1


W¼ T̃1;Jðx;yÞ; x∈A and y∉A; ð89Þ

where T̃1;Jðx; yÞ indicates that only the fermion evaluated at
y transforms with JABJA.
Hence, to evaluate the integral (85) we have to take into

account the three cases. It might seem that the third case,
when one of the variables is inside A and the other outside,
is marginal and will not give contributions because ulti-
mately we are going to set y → x. However, we will see this
part of the integral provides an important numerical
contribution to the twist Hamiltonian. Of course, this
constant is irrelevant when computing twist transforma-
tions of operators.
To get a more symmetric expression let us rename the

variables as x → x − h=2 and y → xþ h=2. The point-
splitting limit is h → 0. Separating the integral in the
different cases, we have

H̃ ¼ lim
h→0

Z
a−h

2

−aþh
2

�
T̃

�
x −

h
2
; xþ h

2

�
− hΩjT̃

�
x −

h
2
; xþ h

2

�
jΩi

�
dx

þ
Z

∞

aþh
2

�
JABJAT̃

�
x −

h
2
; xþ h

2

�
JAJAB − hΩjT̃

�
x −

h
2
; xþ h

2

�
jΩi

�
dx

þ
Z

−a−h
2

−∞

�
JABJAT̃

�
x −

h
2
; xþ h

2

�
JAJAB − hΩjT̃

�
x −

h
2
; xþ h

2

�
jΩi

�
dx

þ
Z

aþh
2

a−h
2

�
T̃1;J

�
x −

h
2
; xþ h

2

�
− hΩjT̃

�
x −

h
2
; xþ h

2

�
jΩi

�
dx

þ
Z

−aþh
2

−a−h
2

�
T̃J;1

�
x −

h
2
; xþ h

2

�
− hΩjT̃

�
x −

h
2
; xþ h

2

�
jΩi

�
dx: ð90Þ

The limit of the first term is simply

lim
h→0

Z
a−h

2

−aþh
2

�
T̃

�
x−

h
2
;xþh

2

�
− hΩjT̃

�
x−

h
2
;xþh

2

�
jΩi

�
dx

¼
Z
A
∶ TðxÞ∶dx: ð91Þ

In the second and third terms we find the transformations of

the full operator, but since JAB and JA leave the vacuum
invariant, we get

hΩjT̃
�
x −

h
2
; xþ h

2

�
jΩi ¼ hΩjJABJAT̃

�
x −

h
2
; xþ h

2

�
× JAJABjΩi: ð92Þ

Therefore, the second term gives
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lim
h→0

�Z
∞

aþh
2

�
JABJAT̃

�
x −

h
2
; xþ h

2

�
JAJAB − hΩjT̃

�
x −

h
2
; xþ h

2

�
jΩi

�
dx

þ
Z

−a−h
2

−∞

�
JABJAT̃

�
x −

h
2
; xþ h

2

�
JAJAB − hΩjT̃

�
x −

h
2
; xþ h

2

�
jΩi

�
dx

�

¼
Z
A0
∶ JABJATðxÞJAJAB∶dx: ð93Þ

Then we can take normal ordering after computing the transformation of TðxÞ. Recalling (65), we have

JABJAψðxÞJAJAB ¼ cþðxÞψðqþðxÞÞ þ c−ðxÞψðq−ðxÞÞ; ð94Þ

q�ðxÞ ¼
x

�
−a2ðb − aÞ2 � x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ab

�
ab − a4

x2

�
2 þ ðb − aÞ4 a4

x2

r �
2ðabx2 − a4Þ ; ð95Þ

c�ðxÞ ¼
a
x

1

q�ðxÞ − a2
x

�
b

b2 − q�ðxÞ2
þ a
q�ðxÞ2 − a2

�
−1
: ð96Þ

We recall that q� maps the complement A0 of A to the intervals Z�. The functions c� have domain A0 and jc�j ≤ 1. From
here, using (81), we arrive at

∶J̃ABJ̃ATðxÞJ̃AJ̃AB∶ ¼
X

i¼fþ;−g
ciðxÞ2q0iðxÞ∶TðqiðxÞÞ∶þ

i
2

X
i;j∈ fþ;−g;i≠j

∶ciðxÞψðqiðxÞÞðcjðxÞψðqjðxÞÞÞ0∶ : ð97Þ

The full derivation of this equation can be consulted in
Appendix B 1. The first term is again proportional to the
stress tensor, while the second one is a nonlocal product of
two fermion fields. We now make more explicit the
expressions of these terms.
If x ∉ A then q�ðxÞ∈Z�. Hence the support of the terms

linear in the stress tensor includes A, Eq. (91), and the
smearing zones. This is made more explicit by the change
of variables q ¼ qiðxÞ in the first term of (97),

X
i∈ fþ;−g

Z
A0
dx c2i ðxÞq0iðxÞ∶TðqiðxÞÞ∶

¼
X

i∈ fþ;−g

Z
Zi

dq c2i ðq−1i ðqÞÞ∶TðqÞ∶; ð98Þ

where q−1i is the inverse function of qi. Adding this term
with (91) we get the local part of the twist generator,

H̃loc ¼
Z
A∪Z

αðxÞ∶TðxÞ∶dx; ð99Þ

where

αðxÞ ¼
�
1 x∈A

g�ðxÞ2 x∈Z�
; ð100Þ

and

g�ðxÞ ¼ c�ðq−1� ðxÞÞ ¼ 2a2b2 − ða2 þ b2Þx2 � x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb − aÞ4x2 þ 4abðx2 − abÞ2

p
2aðb − aÞðabþ x2Þ : ð101Þ
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Then αðxÞ ¼ αð−xÞ is even and g−ðxÞ ¼ gþð−xÞ. An
example of the function αðxÞ is shown in Fig. 7. Remark-
ably, this smearing function has discontinuous first
derivatives at the end points �a of the interval A. The
standard twist then differs from the twists (99) formed by
simply smearing T with smooth functions by this feature,

on top of having additional nonlocal terms in the buffer
zone.
Then, for simplifying the nonlocal term [the last term in

(97)], we can integrate by parts one of the terms of the sum,
anticommute thefermions togetauniqueterm,andthenchange
variables to obtain an integral over the buffer zone. We get

H̃nonloc ¼
i
2

X
i;j∈ fþ;−g;i≠j

Z
A0
dx∶ciðxÞψðqiðxÞÞðcjðxÞψðqjðxÞÞÞ0∶

¼ i
2

Z
A0
dx∶c−ðxÞψðq−ðxÞÞðcþðxÞψðqþðxÞÞÞ0 þ cþðxÞψðqþðxÞÞðc−ðxÞψðq−ðxÞÞÞ0∶

¼ i
Z
A0
dx∶c−ðxÞψðq−ðxÞÞðcþðxÞψðqþðxÞÞÞ0∶

¼ i
Z
Zþ

dx∶c−ðq−1þ ðxÞÞψðq−ðq−1þ ðxÞÞÞðcþðq−1þ ðxÞÞψðxÞÞ0∶

¼ i
Z
Zþ

dx∶g−ðx̃Þψðx̃ÞðgþðxÞψðxÞÞ0∶ ¼ −i
Z
Z−

dx∶ðg−ðxÞψðxÞÞ0gþðx̃Þψðx̃Þ∶: ð102Þ

In the last equation we have written

x̃¼ q−ðq−1þ ðxÞÞ¼−ab=x¼ qþðq−1− ðxÞÞ; ˜̃x¼ x: ð103Þ

Thefunction x̃mapsZþ ↔ Z−.Thenonlocal termconsistsofa
bilinear of the fermion fields with one field in each of the
intervals Zþ; Z−.
It rests to evaluate the last two terms in (90), which are

localized in the boundary of the interval. Let us look how
T̃ðx; yÞ transforms in this case. Let us first see what happens
for the term localized near the first boundary in x ¼ −a.
We have

T̃J;1

�
x −

h
2
; xþ h

2

�

¼
X

i∈ fþ;−g
ci

�
x −

h
2

�
T̃

�
qi

�
x −

h
2

�
; xþ h

2

�
: ð104Þ

The integral givesZ
−aþh

2

−a−h
2

� X
i∈ fþ;−g

ci

�
x −

h
2

�
T̃

�
qi

�
x −

h
2

�
; xþ h

2

�

− hΩjT̃
�
x −

h
2
; xþ h

2

�
jΩi

�
dx: ð105Þ

We have to analyze this integral with some care. Even if the
size of the interval vanishes with h → 0, it turns out there
are divergent contributions of the integrand in this limit,
giving place to a nontrivial constant contribution. We
normal order the operator extracting its expectation value,
using Eq. (83) we have

hΩjT̃J;1

�
x −

h
2
; xþ h

2

�
jΩi

¼
X

i∈ fþ;−g

ci
�
x − h

2

�
4π

�
qi
�
x − h

2

�
−
�
xþ h

2

��
2
: ð106Þ

Adding and subtracting this term gives an integral of a
normal order operator in a vanishing small interval, plus a
constant. Taking the limit h → 0 eliminates the operator
and leaves the contribution

FIG. 7. Function αðxÞ in Eq. (100) giving the smearing factor of
the energy density in the local term of the twist generator. Here
we have chosen the intervals as A ¼ ð−1; 1Þ, Z− ¼ ð−2;−1Þ,
Zþ ¼ ð1; 2Þ, B ¼ ð−∞;−2Þ ∪ ð2;∞Þ.
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lim
h→0

Z
−aþh

2

−a−h
2

0
B@−

1

4πh2
þ

X
i∈ fþ;−g

ci
�
x − h

2

�
4π

�
qi
�
x − h

2

�
−
�
xþ h

2

��
2

1
CAdx: ð107Þ

Here we have used hΩjTðx − h
2
; xþ h

2
ÞjΩi ¼ 1

4πh2.
The next simplification is that the term with qþðxÞ does

not have divergences for h → 0 and hence does not
contribute when the integration interval collapses to a
point. This is because the image of this function belongs
to Zþ, and the denominator is bounded above some
constant value. We write

f−ðx;hÞ¼
−1
4πh2

þ
c−

�
x− h

2

�
4π

��
q−

�
x− h

2

�
−
�
xþ h

2

���
2
; ð108Þ

and

Z
−aþh

2

−a−h
2

f−ðx; hÞdx ¼
Z h

2

−h
2

f−ð−aþ u; hÞdu: ð109Þ

Expanding for small values of u we have

Z h
2

−h
2

f−ð−aþu;hÞdu

¼
Z h

2

−h
2

�
f−ð−a;hÞþf0−ð−a;hÞuþf00−ð−a;hÞ

u2

2!
þOðu3Þ

�
du

¼f−ð−a;hÞhþf00−ð−a;hÞ
h3

24
þ���: ð110Þ

To evaluate these terms we use that

q�ð�aÞ ¼ �a; q0�ð�aÞ ¼ 1; c�ð�aÞ ¼ 1;

c∓ð�aÞ ¼ 0; c0�ð�aÞ ¼ q00�ð�aÞ
2

: ð111Þ

It is only necessary to compute the first two terms in the
expansion. It can be shown that the terms of larger order
vanish in the limit (see Appendix B 2). We have

lim
h→0

f−ð−a; hÞh ¼ 0;

lim
h→0

f00−ð−a; hÞ
h3

24
¼ q00−ð−aÞ

48π
¼ b

6πðb2 − a2Þ : ð112Þ

It then follows that

lim
h→0

Z
−aþh

2

−a−h
2

f−ðx; hÞdx ¼ b
6πðb2 − a2Þ : ð113Þ

Now we have to do a similar calculation for the integral
near the boundary x ¼ a. In this case, the field that falls out
of the region A is a field derivative and taking into account

that only the term with qþðxÞ in the denominator has a
divergence, we get the integrand

fþðx; hÞ ¼ −
1

4πh2
þ

c0þ
�
xþ h

2

�
4π

�
x − h

2
− qþ

�
xþ h

2

��

þ
cþ

�
xþ h

2

�
q0þ

�
xþ h

2

�
4π

�
x − h

2
− qþ

�
xþ h

2

��
2
: ð114Þ

Following the same ideas as above, the expansion gives

lim
h→0

fþða; hÞh ¼ 0;

lim
h→0

f00þða; hÞ
h3

24
¼ −

q00þðaÞ
48π

¼ b
6πðb2 − a2Þ : ð115Þ

As a result, the integral is

lim
h→0

Z
aþh

2

a−h
2

fþðx; hÞdx ¼ b
6πðb2 − a2Þ : ð116Þ

Then the contribution of the two boundaries is the same and
the full constant term is twice this value.
Summarizing, the expression of the twist generator is

H̃ ¼ 1

3π

b
b2 − a2

þ
Z
A∪Z

dx αðxÞ∶TðxÞ∶

þ i
Z
Zþ

dx ∶g−ðx̃Þψðx̃ÞðgþðxÞψðxÞÞ0∶; ð117Þ

where αðxÞ and g�ðxÞ are given in (100) and (101).
This twist generator has an interesting property [4]. As it

results from a unitary transformation from the ordinary
Hamiltonian H which is positive definite, it is also positive
definite. In fact, it has the same spectrum as the original
Hamiltonian even if it has support in a finite interval.5 In
particular, the vacuum expectation value must be positive,
which is immediate from the normal ordering of the
operators in (117). We have

hΩjH̃jΩi ¼ 1

3π

b
b2 − a2

: ð118Þ

5In this case the spectrum is Rþ. Interestingly, the analogous
single interval twist generator inside the circle must have discrete
spectrum Zþ const, as the corresponding circle Hamiltonian.

HORACIO CASINI and LEANDRO MARTINEK PHYS. REV. D 109, 045001 (2024)

045001-14



It is interesting to note that using (100)–(112) and (115) it
follows that this constant value can also be written in terms
of the change of the slope of the smearing function of the
local term on the points where it becomes nondifferentiable,

hΩjH̃jΩi ¼ α0−ð−aÞ − α0þðaÞ
48π

; ð119Þ

where α0þ means the limit on the right of the derivative of the
smearing function αðxÞ and α0− the limit on the left.

A. Energy inequality and comparison
with Fewster-Hollands bound

It is known that, for any QFT, smearing the energy
density with a positive function of compact support such asZ

dx αðxÞT00ðxÞ ð120Þ

produces an operator that cannot be positive. In other words,
there are always states such that this localized energy turns
out to be negative. The reason is quite simple. If this operator
were positive definite, since its vacuum expectation value
vanishes, it would be the case that the operator annihilates
the vacuum. But it is not possible to annihilate the vacuum
for a localized operator because of the Reeh-Schlieder
theorem (for a simple account see Ref. [27]).
It has been of interest to understand how much localized

negative energy a state can have. This quest gave place to
the quantum energy inequalities that generically give a
(negative) lower bound on the localized energy in terms of
the smearing function α (for a review see Ref. [28]). The
most general and sharpest of such bounds was obtained by
Fewster and Hollands (FH bound) for CFTs in two
dimensions [7]. It reads

Z
dxαðxÞhΦjTðxÞjΦi≥−

c
12π

Z
dx

�
d

ffiffiffiffiffiffiffiffiffi
αðxÞp
dx

�2

; ð121Þ

for any vector state jΦi, and where c is the central charge.
For the free Majorana fermion c ¼ 1

2
. The bound follows

from the positivity of the Hamiltonian unitarily transformed
by a general conformal transformation (diffeomorphism of
the line). The term on the right-hand side is produced by the
anomaly. The bound is sharp because it is saturated for the
corresponding unitary transformation of the vacuum state.
Different types of bounds on the energy density, involv-

ing entropy quantities, have also been explored. For impure
global states, sharper bounds containing an entropy term
have been derived [29]. Another type of bound is the
quantum null energy condition, which bounds the energy
density at a point in terms of a second derivative of an
entanglement entropy [30].
From the standard translation twists follows different

types of energy bounds that we can call operator-bounded

energy inequalities. These involve the energy density in a
bounded region of space and some specific operator, that is
not given in terms of the energy density, at the boundary of
this region or, more precisely, in the smearing zone. The
derivation of the bound follows a similar idea as in the FH
bound. It starts from the positivity of the Hamiltonian and a
unitary transformation that preserves the spectrum. In this
case, however, the transformation is the localization trans-
formation W. This maps the Hamiltonian on one copy of a
duplicated Hilbert space to a twist. This twist essentially
contains the energy density in the localization region plus
some new elements at the boundary.
For the free chiral fermion, we can be more specific.

Given the positivity of the twist generator spectrum, for any
state jΦi we have, using the single interval twist of the
previous section,Z

A∪Z
dx αðxÞhΦj∶TðxÞ∶jΦi

≥ −
1

3π

b
b2 − a2

− i
Z
Zþ

dx hΦj∶g−ðx̃Þψðx̃ÞðgþðxÞψðxÞÞ0∶jΦi; ð122Þ

where αðxÞ∈ ½0; 1� is given by Eq. (100), and g�ðxÞ, with
jg�ðxÞj ≤ 1, is given in Eq. (101).
This bound is also sharp because it follows from a

unitary transformation of the Hamiltonian (in a duplicated
Hilbert space). Indeed, it will be saturated by any state that
is the unitary transformation of the vacuum state in the first
Hilbert space. This is any state of the form

W†ðjΩi ⊗ jΨiÞ ¼ jΩiN ⊗ jΨiN 0 ; ð123Þ
for any jΨi. These types of states have the special feature
that they are unentangled between the algebras of
AðAÞ ⊂ N and AðBÞ ⊂ N 0. More precisely, these states
do not have any connected correlation between A and B.
In this sense, this bound and the FH bound, when applied

to the same smearing function α of Eq. (100), are not
comparable. For an unentangled state of the form (123), the
bound (122) saturates while the FH bound does not.
Conversely, for a limit of states obtained from conformal
transformations of the vacuum such that the FH bound
saturates, the bound (122) does not.
For our present smearing function α, the constant on the

left-hand side of the FH bound is finite and can be
computed exactly, though we refrain from writing this
long expression here.6 To compare with the constant term

6When α ¼ 0 the integrand in the FH bound has to be taken
zero. See Ref. [7] for mathematical details. In particular, in that
paper, αðxÞ is assumed to be a smooth function of fast decrease.
Our smearing function is not smooth, but we have taken the view
that the FH bound holds as a limit whenever the right-hand side
remains bounded.
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on the left-hand side of (122) we can express both constant
terms in dimensionless form writing a ¼ kb, 0 < k < 1.
Then we express

1

24π

Z
dx

�
d

ffiffiffiffiffiffiffiffiffi
αðxÞp
dx

�2

¼ b−1fFHðkÞ; ð124Þ

and analogously for the constant term in our inequality

hΩjH̃jΩi ¼ b−1fðkÞ; fðkÞ ¼ 1

3π

1

1 − k2
: ð125Þ

Figure 8 shows the two functions. In the limit of a short
buffer zone, k → 1, both functions diverge in the same way,
while the difference converges to a constant,

fFHðkÞ ∼ ð6πÞ−1ð1 − kÞ−1 þ ð8πÞ−1 − 1=48; ð126Þ

fðkÞ ∼ ð6πÞ−1ð1 − kÞ−1 þ ð12πÞ−1; ð127Þ

such that f − fFH → 0.00757 � � �. In the opposite limit,
k → 0, the function fFH ∼ ð24 ffiffiffi

k
p Þ−1 diverges, while f ∼

1=ð3πÞ remains bounded.
It is interesting to note that these operator bounds can be

greatly generalized by combining the transformations. First
one makes a conformal transformation of the Hamiltonian
in the first factor Hilbert space and then applies the
localization map. The result is a positive operator that
has support in A ∪ Z and has a quite arbitrary smearing
function for the energy density inside A. It also contains a
bilinear of the fermion fields in the buffer zone. Another
possibility is to use the localization map, repeatedly
transforming positive operators into positive operators.
Wewill not pursue these constructions more explicitly here.

VI. CONCLUSIONS

We have computed explicitly the standard translation
twists for the chiral fermion theory. They are constructed
using modular tools, as prescribed by the general theory in
[4]. These twists have interesting properties that are not
shared by twists constructed by simply smearing the stress
tensor. For example, using a group of twists corresponding
to multi-interval regions one can continuously translate an
operator from an interval, arriving finally to a disjoint one,
without ever having passed through a gap between them.
They also have a positive generator. This can be thought as
a local Hamiltonian with some specific “boundary con-
ditions” determined by the model itself. We have computed
this generator explicitly for one interval. It consists of a
local piece, constructed by a smearing of the stress tensor, a
constant term, and a nonlocal term containing products of
fermion fields at two different points of the smearing region
of the twist. The expression for the twist generator can be
used to write inequalities for the energy contained in a
region where the bound is given by an operator. These
inequalities are neither weaker nor stronger than other well-
known energy bounds for CFTs.
To generalize this construction to other theories it is

necessary to know the action of the modular conjugation
for more than one interval. The explicit form of the modular
Hamiltonian for two intervals is known for the chiral scalar
too [14], and it would not be difficult to understand the
action of the modular conjugation in this case. Because the
chiral scalar is a Gaussian model, this action of the modular
conjugation will also be linear in the fields. As a result, the
twist generator will be quadratic in the fields as is the case
for the chiral fermion. However, as happens with the
modular Hamiltonian, it is expected that this action and
the resulting twist generators would be completely nonlocal
in the buffer zone. To be more clear, we expect the kernel of
the quadratic expression for the twist generator to contain a
nonzero continuous function on the two coordinates, and
not just a sum of δ function terms as in the fermion case.
The chiral scalar algebras are subalgebras of the Dirac

(complex) chiral fermion theory due to bosonization. That is,
we have the identification ∂ϕ ¼ j between the chiral deriva-
tive of the freemassless scalarϕ and theDirac current j. This
raises an interesting question. Twists for the scalar are
operators in the fermionic theory. They will translate cor-
rectly the current operator and the stress tensor, which are
shared by the fermion model. It is interesting to understand
what would be the action of the scalar twist on the fermions
fields. What is clear is that at least these twists for the scalar
will be unable to move fermions between two disjoint
intervals.7 This is because the operator content of the twists
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FIG. 8. Functions fFHðkÞ (red) and fðkÞ (blue). The difference
between the functions changes sign around k ∼ 0.47. In the limit
k → 1 both functions have the same pole divergence but differ by
a constant.

7That is, the twist formed by a split between the additive
algebra for the intervals and its commutant algebra separated by a
buffer zone.
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belongs to the algebras generated by the two intervals and
their buffer zones and cannot contain a fermion operator in
one interval and an antifermion one in the other. However,
this is necessary for translating the fermion operator between
intervals. More generally, a twist that produces jumps
between two disjoint regions always has to contain all types
of charge-anticharge pairs for the charges that are able to
transport. Consequently, the scalar twists will translate the
fermions to the buffer zone of the interval in which it is
initially located, but will be unable to produce the jump
between intervals. In this way it acts as a filter of the charged
part of an arbitrary operator, separating it from its neutral part.
It would be interesting to explore this more explicitly.
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APPENDIX A: MODULAR CONJUGATION
FROM MODULAR FLOW

Let us write

ψ̃ðyÞ ¼ J̃ψðyÞJ̃ ¼
Z

dxKðx; yÞψðxÞ: ðA1Þ

The anticommutator selects the kernel K,

fψðxÞ; ψ̃ðyÞg ¼ Kðx; yÞ: ðA2Þ
Using that fψðxÞ; ψ̃ðyÞg ¼ hΩjfψðxÞ; ψ̃ðyÞgjΩi, we get

hΩjfψðxÞ; ψ̃ðyÞgjΩi ¼ hΩjψðxÞJ̃ψðyÞJ̃jΩi
þ hΩjJ̃ψðyÞJ̃ψðxÞjΩi: ðA3Þ

Using that J̃ is antiunitary and that J̃jΩi ¼ jΩi, we have

fψðxÞ; ψ̃ðyÞg ¼ hΩjψðxÞJ̃ψðyÞjΩi þ hΩjψðyÞJ̃ψðxÞjΩi�:
ðA4Þ

From this we get

hΩjψðxÞJ̃ψðyÞjΩi ¼ hΩjψðxÞZJψðyÞjΩi ¼ hΩjψðxÞJZ†ψðyÞjΩi ¼ hΩjψðxÞJZ†ψðyÞZZ†jΩi ¼ hΩjψðxÞJiΓψðyÞjΩi
¼ hΩjψðxÞJiΓψðyÞΓΓjΩi ¼ hΩjψðxÞJð−iÞψðyÞjΩi ¼ ihΩjψðxÞJψðyÞjΩi; ðA5Þ

hΩjψðyÞJ̃ψðxÞjΩi� ¼ hΩjψðyÞJZ†ψðxÞjΩi� ¼ hΩjψðyÞZJψðxÞjΩi� ¼ hΩjZZ†ψðyÞZJψðxÞjΩi� ¼ hΩjiΓψðyÞJψðxÞjΩi�
¼ ð−iÞhΩjψðyÞJψðxÞjΩi� ¼ ð−iÞhΩjψðxÞJψðyÞjΩi�: ðA6Þ

From this we obtain

fψðxÞ; ψ̃ðyÞg ¼ i½hΩjψðxÞJψðyÞjΩi − hΩjψðxÞJψðyÞjΩi�� ¼ −2ImðhΩjψðxÞJψðyÞjΩiÞ
¼ −2Im

�
hΩjψðxÞΔ1

2ψðyÞjΩi
�
: ðA7Þ

At this point we find it useful to recall the formula for the modular evolved correlator found in [16],

hΩjψðxÞΔitψðyÞjΩi ¼ 1

2πiðx − yÞ
ΠbðxÞΠaðyÞ − ΠbðyÞΠaðxÞ

eπtΠbðxÞΠaðyÞ − e−πtΠbðyÞΠaðxÞ
; ðA8Þ

where the polynomials ΠaðxÞ;ΠbðxÞ are defined in (29). For x and y in complementary regions this expression extends
analytically for − 1

2
< ImðtÞ < 1

2
. We need to take the limit to the boundary of the analyticity domain t → − i

2
where the

function will be singular for x, y such that ΠbðxÞΠaðyÞ þ ΠbðyÞΠaðxÞ ¼ 0. Using that

lim
y→0þ

1

x − iy
¼ 1

x
þ iπδðxÞ; ðA9Þ

we arrive at

lim
t→−i

2

hΩjψðxÞΔitψðyÞjΩi ¼ −1
2ðx − yÞ

�
1

π
Gðx; yÞ−1 þ iδðGðx; yÞÞ

�
; ðA10Þ

with

Gðx; yÞ ¼ ΠbðxÞΠaðyÞ þ ΠbðyÞΠaðxÞ
ΠbðxÞΠaðyÞ − ΠbðyÞΠaðxÞ

: ðA11Þ

Then, the explicit expression of the anticommutator is
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fψðxÞ; ψ̃ðyÞg ¼ 1

ðx − yÞ δðGðx; yÞÞ: ðA12Þ

Using (A1) and (A2) we get the formula (32) for modular
reflected field ψ̃ quoted in the main text.

APPENDIX B: TWIST GENERATOR

In this appendix we present some calculations that were
not detailed in the main text of Sec. V to allow for more
clarity of the exposition.

1. Calculation of ∶JABJATðxÞJAJAB∶
Here we compute ∶JABJATðxÞJAJAB∶. We find it

convenient to use a more symmetric form of TðxÞ,

TðxÞ ¼ i
4
½ψðxÞ∂xψðxÞ − ∂xψðxÞψðxÞ�: ðB1Þ

We recall the transformation of the fermion field under the
action of JAJAB,

JABJAψðxÞJAJAB ¼
X

j¼fþ;−g
cjðxÞψðqjðxÞÞ: ðB2Þ

The action of J ¼ JABJA over ψðxÞ∂xψðxÞ is

JψðxÞ∂xψðxÞJ† ¼ JψðxÞJ†∂xðJψðxÞJ†Þ
¼

X
j;i∈ fþ;−g

cjðxÞψðqjðxÞÞðciðxÞψðqiðxÞÞÞ0:

ðB3Þ

Then,

JTðxÞJ† ¼ i
4

X
j;i∈ fþ;−g

½cjðxÞψðqjðxÞÞðciðxÞψðqiðxÞÞÞ0 − ðciðxÞψðqiðxÞÞÞ0cjðxÞψðqjðxÞÞ�

¼
X

i∈ fþ;−g
ciðxÞ2q0iðxÞ

i
4
½ψðqiðxÞÞ∂ψðqiðxÞÞ − ∂ψðqiðxÞÞψðqiðxÞÞ�

þ i
4

X
j;i∈ fþ;−g;j≠i

½cjðxÞψðqjðxÞÞðciðxÞψðqiðxÞÞÞ0 − ðciðxÞψðqiðxÞÞÞ0cjðxÞψðqjðxÞÞ�

¼
X

i∈ fþ;−g
ciðxÞ2q0iðxÞTðqiðxÞÞ þ

i
2

X
j;i∈ fþ;−g;j≠i

cjðxÞψðqjðxÞÞðciðxÞψðqiðxÞÞÞ0: ðB4Þ

In the last equation we used that q�ðxÞ∈Z�, and qþðxÞ ≠ q−ðxÞ ∀ x∈R. Therefore, ψðqþðxÞÞψðq−ðxÞÞ ¼
−ψðq−ðxÞÞψðqþðxÞÞ. Summarizing, we have

∶JABJATðxÞJAJAB∶ ¼
X

i∈ fþ;−g
ciðxÞ2q0iðxÞ∶TðqiðxÞÞ∶þ

i
2

X
i;j∈ fþ;−g;i≠j

∶ciðxÞψðqiðxÞÞðcjðxÞψðqjðxÞÞÞ0∶: ðB5Þ

2. The limit limh→0 f n�h
n+ 1

In Eq. (112) we neglected terms in the Taylor expansion
of order greater than the second. We show here that these
terms vanish in the h → 0 limit. The functions have the
following structure:

fðx; hÞ ¼ 1

gðx; hÞ2 ; gða; hÞ ∝ h; g0ða; hÞ ∝ h;

gðnÞða; 0Þ ≠ 0 if n ≥ 2; ðB6Þ
where we suppose that the divergence is in the point x ¼ a.
Then, if we derive with respect to x, in all the terms of
fðnÞða; hÞ we get a factor with the form

g0ða;hÞk−m
gða;hÞ2þk ∝

1

h2þm with 0≤k;0≤m≤k;kþm≤n; ðB7Þ

where k and m are natural numbers that are given by the
numbers of derivatives of the numerator and denominator,
respectively. There is a term for each possible combination
of k and m that respects the constraints. For n even, that is
the case of the terms arising from Eq. (110), we can show
that mmax ¼ n

2
is the greatest possible value of m. To see

this, we take any pair ðk;mÞ such that kþm ¼ n and
necessarily m ≤ k. Then, if m ≠ k, we can get a new pair
with largerm by increasing the value ofm and reducing k to
the same amount, such as to keep kþm ¼ n constant.
We can do this again k−m

2
times, until reaching m ¼ k. This

implies that mmax ¼ n
2
. Therefore,

fnða; hÞhnþ1 ∝ hn−1−mmax ¼ h
n−2
2 : ðB8Þ

Consequently, if n > 2 all limits h → 0 vanish.
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