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Generic models in Galileons or Horndeski theory do not have cosmological solutions that are free of
instabilities and singularities in the entire time of evolution. We extend this no-go theorem to a spacetime
with torsion. On this more general geometry the no-go argument now holds provided the additional
hypothesis that the graviton is also subluminal throughout the entire evolution. Thus, critically different for
Galileons’ stability on a torsionful spacetime, an arguably unphysical although arbitrarily short (deep UV)
phase occurring at an arbitrary time, when the speed of gravity ðcgÞ is slightly higher than luminal (c), and

by at least an amount cg ≥
ffiffiffi
2

p
c, can lead to an all-time linearly stable and nonsingular cosmology. As a

proof of principle we build a stable model for a cosmological bounce that is almost always subluminal,
where the short-lived superluminal phase occurs before the bounce, and that transits to general relativity in
the asymptotic past and future.

DOI: 10.1103/PhysRevD.109.044073

Galileons is a well motivated modification of general
relativity (GR) by a scalar, with higher derivatives in the
action but with second order equations of motion [1]. The
generalization is equivalent to Horndeski theory [2–4], and
it has nonsingular solutions that generally suffer of gradient
instabilities at some time in the entire evolution, up to some
special cases [5–13]. Although these pathologies can
happen away from the physically relevant phase, a con-
clusive resolution to this issue at all times in generic models
seems unlikely because the no-go argument for stability
also holds with very general extra matter [8,10,11]. We
extend this no-go theorem to a spacetime with torsion in
Sec. I and show that a torsionful geometry may support
stable solutions in Galileons if there exists a superluminal
phase. It can formally happen as a deep UV inconsistency at
an arbitrary time; namely, it can be arbitrarily short and
unrelated to the much longer physically relevant length
scales, e.g., width of a bounce, but it casts doubt on Lorentz
invariant UV completions [14–16]. In Sec. II we build a toy
model for a bounce that is always stable.

I. EXTENSION OF THE NO-GO THEOREM TO
GALILEONS ON A SPACETIME WITH TORSION

We consider up to quartic generalized Galileons in the
notation of [4], and we assume a spacetime with torsion:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðG2 −G3∇̃μ∇̃μϕþG4R̃

þ G4;Xðð∇̃μ∇̃μϕÞ2 − ð∇̃μ∇̃νϕÞ∇̃ν∇̃μϕÞÞ; ð1Þ
where G2, G3, G4 are arbitrary functions of ϕ and
X ¼ − 1

2
gμν∂μϕ∂νϕ, g is the determinant of the metric with

mostly þ signature, G4;X ¼ ∂G4=∂X, and R̃ and ∇̃ denote
the Ricci scalar and covariant derivative computed with a
torsionful connection. The G3 term is the simplest one to
“feel” the torsion on the spacetime. For G4 let us stress the
specific order of contraction of Lorentz indices in the last
term in (1). Indeed, second covariant derivatives with
torsion do not commute on a scalar, and it was found in
[17] that this choice is the only one that leads to a scalar
with a wavelike dispersion relation, as in torsionless
Galileons. Hence, (1) is the relevant choice for the question
of how a different geometry can help the stability of the
usual Galileon degrees of freedom.

A. Quadratic action for Galileons on a torsionful
vs torsionless spacetime

We analyze the stability of the Friedmann-Lemaître-
Robertson-Walker (FLRW) background against linearized
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perturbations. A straightforward computation shows that all
independent components of torsion in (1) are nondynamical
(See Appendix A 1 for a detailed derivation). The important
aspect is that we can cast the quadratic action of Galileons
with torsion in a form reminiscent of the usual Galileons
without torsion [4]. Namely, from (1)

Sτ ¼
Z

dη d3xa4
�
1

2a2
ðGτðḣijÞ2 − F τð∂khijÞ2Þ

�
ð2Þ

is the action for the graviton hij with speed c2g ¼ F τ=Gτ,
where η is conformal time. The vector sector is nondynam-
ical. The scalar sector reads in the unitary gauge

Ss ¼
Z

dη d3xa4
�
−3

Gτ

a2
ψ̇2 þ F τ

a2
ð∂iψÞ2 þ 6

Θ
a
αψ̇

þ 2
T
a2

∂iα∂iψ þ 2
∂i∂iB
a2

ðaΘα − Gτψ̇Þ þ Σα2
�
; ð3Þ

where ψ , α, and B are scalar perturbations and

Gτ ¼ 2
G2

4

G4þ2XG4;X
; F τ ¼ 2G4; T¼F τðc2g −2Þ; ð4Þ

Θ ¼ 4G2
τθ

aF 4
τ
; Σ ¼ 2G3

τσ

aF 6
τ
; ð5Þ

θ and σ (shown in the Appendix A 3) depend on two
background fields: the scale factor of the FLRW metric
aðηÞ and the Galileon/Horndeski scalar, which in the context
of linearized expressionswe also denote asϕðηÞ andX ¼ ϕ̇2

2a2.
Let us also note that there is a nontrivial torsion background
xðηÞ expressed by the background equations in terms of
aðηÞ;ϕðηÞ. We show these details in Appendix A 1 for
completeness.
Let us notice that despite the similarities between the

quadratic actions in torsionless and torsionful Galileons, there
is a crucial difference in (3) that helps the stability of the theory
with torsion: namely, Gτ ≠ T. This difference stems from the
constraint equations imposed by the torsion perturbations.
Finally, let us bring (3) to a more useful form by using

the equation for the Lagrange multiplier B (α ¼ 1
a
Gτ
Θ ψ̇) in

Ss. Thus, we obtain a single scalar mode,

Ss ¼
Z

dη d3xa4
�
1

a2
GSψ̇

2 −
1

a2
FSð∂iψÞ2

�
; ð6Þ

where

GS ¼ 3Gτ þ
G2
τΣ
Θ2

; FS ¼ 1

a2
d
dη

�
aGτT
Θ

�
− F τ: ð7Þ

The no-go theorem follows a similar reasoning as in [5]
in relation to wormholes, or as initially proved for a
subclass of generalized Galileons in [6] and then extended
to the full Horndeski action in [7]:

a. No-go for nonsingular, all-time stable and subluminal
solutions: For Galileons on a spacetime with torsion (1) the
following assumptions for a first order perturbative expan-
sion about FLRW are mutually inconsistent:

(I) Nonsingular cosmology: namely, there is a lower
bound on the scale factor aðηÞ > b1 > 0.

(II) The graviton and the scalar mode are not ghosts,
and they suffer no gradient instabilities: Gτ > 0;
F τ > 0;FS > 0;GS > 0.

(III) The graviton is always sub/luminal: ðcgÞ2 ≤ 1.
(IV) There is a lower bound F τðηÞ > b2 > 0 as η → �∞

(No “strong gravity” at linear order [7,18]).
(V) Θ vanishes at most a finite number of times (to

cover generic theories not defined by the equation
Θ≡ 0 [12]).

The argument: It is key to notice that (I)–(III) imply

N≕
aGτF τðc2g − 2Þ

Θ
≠ 0; ð8Þ

because by (I–II) Θ is a regular (finite) function of H; ϕ.
Let us integrate the third inequality in (II). Using (7),

ΔN ¼ Nf − Ni > Iðηi; ηfÞ;

Iðηi; ηfÞ ¼
Z

ηf

ηi

dη a2F τ; ð9Þ

where Nf and Ni are the values of N at some (conformal)
times ηf and ηi respectively. Now, by (I), (II), and (IV)
(A) dN

dη > a2F τ > b21b2 > 0,
(a) defining IðηiÞ≔Iðηi;ηfÞjηf and IðηfÞ≔Iðηi;ηfÞjηi

we notice that they are positive and growing
functions of ηi and ηf, for ηf and ηi fixed,
respectively. IðηiÞ and IðηfÞ are differentiable
andhence continuousbecausea2F τ is continuous,

(b) N is monotonous increasing and hence, denoting
with ηz any zero ofΘ, thenNðηÞ → ∞ as η → η−z
(η approaches ηz by the left) and NðηÞ → −∞
as η → ηþz ,

(B) ΔN > 0,
(C) IðηiÞ and IðηfÞ are not convergent as ηi → −∞,

ηf → ∞, respectively.
Now, by (V) N is finite almost everywhere; thus let us take
a fixed value −∞ < Ni < 0 at some fixed time ηi. By (8) it
follows that NfðηfÞ < 0 [Without lost of generality we can
safely assume that there is no ηz (a zero of Θ) such that
ηi < ηz < ηf

1]. Then ΔN is also bounded by above as

1Indeed, if Θ has one zero ηz such that ηi < ηz < ηf , then by
(A) N must be positive arbitrarily close by the left of ηz. But our
fixed value NiðηiÞ < 0 means that NðηÞ must have already
vanished at some time η, with ηi < η < ηz < ηf [because NðηÞ
is continuous for ηi < η < ηz], thus already violating (8). This
clearly extends to any number of zeros. Thus, provided our
starting point −∞ < NiðηiÞ < 0, we can exclude the case of any
ηz in the time interval ðηi; ηfÞ.
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jNij > ΔN ¼ jNij − jNfj > 0. Now, by (A), (C) IðηfÞ not
only grows with ηf but is also unbounded from above;
then there exists late enough in the evolution a critical
time ηc such that if ηf > ηc, IðηfÞ > jNij > ΔN for every
fixed value Ni. This violates (9), and so we must have
NðηÞ > 0. However, by a similar argument, fixing a value
∞ > Nf > 0 at some ηf, necessarily NiðηiÞ > 0,2 then
Nf > ΔN ¼ Nf − Ni > 0, and by (A), (C) IðηiÞ is
unbounded from above and there exists ηc early enough,
such that if ηi < ηc, IðηiÞ > Nf > ΔN. Thus, eventually in
the evolution (9) does not hold.
In fact, (III) can be relaxed to c2g < 2, and the argument

still holds. But, an almost everywhere subluminal graviton
turning to c2g ≥ 2 during an arbitrarily short interval is
enough to avoid this no-go argument, as we show below.
Clearly, a minimal example needs G4;X ≠ 0.

II. EVERYWHERE STABLE BOUNCING
COSMOLOGY IN GALILEONS

WITH TORSION

A sufficient assumption to bypass the no-go theorem and
obtain all-time stable solutions is, for instance, a period of
nonzero width of superluminality of the graviton at some
point in the evolution and by at least an amount cg ≥

ffiffiffi
2

p
c

(c ¼ 1 in our units). Thus, in principle, the width τs of an
arguably unphysical superluminal phase centered at a time
ηs can be arbitrarily short and unrelated to the width τb and
time of occurrence of the physically relevant bounce phase
centered at a time ηb.
As a proof of principle let us show with a toy model that

one can achieve stability of the FLRW bouncing back-
ground against linear order perturbations even when there
is no relation between the timescales associated with the
superluminal phase, necessary to avoid the no-go theorem,
and the bounce phase. We assume that ηs, ηb are finite and
without loss of generality ηs < ηb ¼ 0. Furthermore, we
demand for our model that the solution reduces in the
asymptotic past and future to a solution that one could also
obtain from conventional Einstein’s gravity with a luminal
graviton, minimally coupled to a massless scalar, and such
that the torsion background is asymptotically vanishing.
More precisely, we consider that aðηÞ is positive and
bounded from below, the bounce happening at the mini-
mum aðηbÞ, and for the latter asymptotics we require that
the leading terms of the Lagrangian functions in (1) and the
torsion background behave as follows as η → �∞∶

G2ðϕ; XÞ →
1

2a2
ξ̇2; G4ðϕ; XÞ →

1

2
;

G3ðϕ; XÞ → 0; xðηÞ → 0; ð10Þ

where ξ is some invertible function of the Horndeski scalar
ϕ, and we choose M2

pl=8π ¼ 1.

A. Construction of the model

a. Procedure: The following Ansatz for the Lagrangian
functions has enough structure such that we can satisfy the
asymptotic conditions (10), besides demanding the stability
at all times (II), while simultaneously solving all the
equations of motion:

G2ðϕ; XÞ ¼ g20ðϕÞ þ g21ðϕÞX þ g22ðϕÞX2; ð11Þ

G3ðϕ; XÞ ¼ g30ðϕÞ þ g31ðϕÞX; ð12Þ

G4ðϕ; XÞ ¼
1

2
þ g40ðϕÞ þ g41ðϕÞX: ð13Þ

We reconstruct the seven unknown Lagrangian functions
in (11)–(13), namely, g20, g21, g22, g30, g31, g40, and g41
stating first some solutions satisfying our requirements for
aðηÞ and the asymptotics (10), and then we work backward
to find the Lagrangian functions whose dynamics corre-
spond to the latter. We proceed as follows: without loss of
generality we choose a model with a solution for the
Hubble parameter, shown in Fig. 1, and the background of
the Horndeski scalar field as

a¼ðτ2bþη2Þ14; H¼ ȧ
a2

¼ η

2ðτ2bþη2Þ54 ; ϕ¼ η; ð14Þ

such that our definition of bounce is satisfied. τb > 0 fixes
the maximum ofH and the width of the bounce phase as the

FIG. 1. Hubble parameter for a bounce at ηb ¼ 0 with τb ¼ 10.
Speed of sound for the scalar mode c2s . Speed of the graviton c2g
with short superluminality phase (τs ≪ τb) happening at
ηs ¼ −10 before the bounce (For convenience displaying the
graphs we choose here τb ¼ 10τs). The graviton quickly becomes
subluminal around ηs and approaches luminality from below in
the past, and during the bounce phase and future. Torsion
background xðηÞ is exponentially vanishing in the asymptotic
past and future.

2By a similar argument as in footnote 1, provided our starting
point ∞ > Nf > 0 we can exclude without lost of generality any
ηz in the time interval ðηi; ηfÞ.
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length of the domain where ḢðηÞ > 0 around ηb. With this
solution X ¼ 1=ð2ðτ2b þ η2Þ12Þ. Now we solve the unknown
Lagrangian functions in (11)–(13).
b. Solving for g40 and g41 provided Gτ > 0, F τ > 0 for

all time, T vanishing at least once at some critical time, and
G4 asymptotics (10): Gτ, F τ and the critical function T (4)
depend only on G4. Hence, we can solve for g40 and g41
from two algebraic equations in these variables:

F τðg40; g41Þ ¼ 1; ð15Þ

Tðg40; g41Þ ¼ −1 − 5

4
Sech

�
η − ηs
τs

�
þ 3Sech

�
η − ηs
τs

�
2

ð16Þ

Equation (15) is a simple choice to realize the desired
asymptotics of G4 (16) and to obviously satisfy F τ > 0.
Equation (16) is an explicit choice to violate the subluminal
graviton assumption at least during a short time τs ≪ τb,
which allows one to bypass the no-go theorem, as shown in
Fig. 2. The solutions for g40 and g41 from the system of
equations (15) and (16) are straightforward and everywhere
nonsingular. Their graphs are shown in Fig. 4(b) in
Appendix A 2. It can be readily verified that these solutions
also imply Gτ > 0. They can be written at leading order as
η → �∞ in the form

g40 ¼ −g41X ¼ 5

8
e∓

ðη−ηsÞ
τs : ð17Þ

c. Solving for g30 and g31 provided FS > 0, torsionless
and G3 asymptotics (10): FS and the torsion background
(x) depend on G4, which is now fully fixed, and on G3.

Hence, we can solve for g30 and g31 from two equations that
are algebraic in these functions:

G3ðg30; g31Þ ¼ Sech

�
η

τb

�
; Θðg30; g31Þ ¼ −Hs; ð18Þ

where

Hs ¼
η − ηsS

2ðτ2bð1 − SÞ þ τ2sSþ ðη − ηsSÞ2Þ54
; ð19Þ

and S is a step function which we specify below.
The choice of G3 centered at the bounce ηb ¼ 0 (18)

vanishes exponentially fast in the asymptotic past and
future, which satisfies (10). On the other hand, we choose
an equation for Θ because it is the only free function in FS.
It has to satisfy the two remaining conditions: (i) it must be
in accordance to the required asymptotics (10) and (ii) it
must render FS positive everywhere. For (i) a close
inspection of Θ in terms of the Ansatz (11)–(13) reveals
that in order to recover a standard scalar minimally coupled

to Einstein’s gravity (10), then one needs Θ ⟶
η→�∞

−H.3

Hence, in Eq. (18) the first requirement for the step
function S is that it suppresses the factors τs and ηs in
Hs fast enough such that in the asymptotic past and future
we recover asymptotics of our Hubble parameter (14) at the
necessary order in η4 that satisfies the asymptotics (10). On
the other hand, (ii) can be easily satisfied with a step S that
is nearly 1 in a domain of finite length ðηs − δ; ηb þ δÞ
where ∞ > δ > 0, for a large enough δ depending on the
parameters τb, τs, ηb, ηs. As a proof of principle we choose

S ¼ Sech

�
τs
τb

ðη − ηsÞ
ηs

�
; ð20Þ

which satisfies (i) and FS > 0 everywhere. Suffice it to say
for this toy model that this choice meets the requirements,
as shown in Fig. 2, for instance for the parameters of the
bounce ηb ¼ 0, τb ¼ 10 and of the earlier and shorter
superluminal phase ηs ¼ −10; τs ¼ τb=10.
The solutions for g30 and g31 obtained from (18) are

everywhere regular, and their graphs are shown in Fig. 4(a).
They can bewritten at leading order as η → �∞ in the form

g30 ¼ −g31X ¼ 3

2

ηs
η2

e∓
τs
τb

ðη−ηsÞ
jηs j ; ð21Þ

FIG. 2. Bypassing the no-go theorem. This choice for T (16)
does not satisfy the all-time negativity condition, which critically
means that the graviton is superluminal during a brief stage of
evolution, around ηs ¼ −10 as shown in Fig. 1, and that the
function N in Eq. (8) vanishes. Hence, the no-go theorem does
not hold, and we can build all-time stable solutions ðτb ¼ 10;
τs ¼ 1; ηb ¼ 0; ηs ¼ −10Þ.

3Similar to the torsionless case, this choice introduces a well-
known removable singularity in the unitary gauge known as γ
crossing that can be seen to be harmless for the regularity of
perturbations as in [19].

4In particular, it is not a trivial fact that one must choose the
step function S such that the limitΘ ¼ −Hs → −H as η → �∞ is
satisfied at more than leading order in η, in order to meet the
required asymptotics of the Lagrangian functions (10) only at the
leading order.
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where we used ηs < 0, and the torsion background can be
written at leading order as η → �∞, as

x ¼∓ ηe∓
η
τb : ð22Þ

d. Solving for g20, g21, and g22 provided Gs > 0, always
sub/luminal scalar, and the E-L equations for the back-
ground fields: Gs and the Euler-Lagrange equations for the
background fields Eg00 ¼ 0, Egij ¼ 0 depend on G3, G4,
which are fully fixed, and on G2. Hence, we can solve for
the Lagrangian functions g20ðϕÞ; g21ðϕÞ, and g22ðϕÞ from
the following system of three equations, which again, is
algebraic and linear in these functions:

GS ¼FS; Eg00 ¼ 0; Eg11 ¼ Eg22 ¼ Eg33 ¼ 0: ð23Þ

Because the Lagrangian functions g30ðϕÞ and g31ðϕÞ are
such thatFS > 0, the choice of Eq. (23) is one possibility to
simultaneously satisfy a nonghost scalar GS > 0 and lumi-
nality for the scalar mode c2s ¼ FS=GS ¼ 1. We choose
luminality for no other reason than simplicity, although a
subluminal choice is safer and better suited in many other
cases. The unique solutions for g20ðϕÞ; g21ðϕÞ, and g22ðϕÞ
obtained from (23) are nonsingular everywhere, and their
graphs are shown in Fig. 3. They can be written at leading
order as η → �∞ as

g20 ¼ −
τ2b
2
ð�ηÞ−5; g21X ¼ 3

4
ð�ηÞ−3; ð24Þ

g22X2 ¼ ∓ 3

4
ð�ηÞ−3 τs

τb
e∓

τs
τb

ðη−ηsÞ
jηs j : ð25Þ

Let us note that because G2, G3, G4 are such that the E-L
equations (23) and their derivatives are satisfied, then
the bouncing solution (14) is the correct one for the model
with the Lagrangian functions that we just solved.
Furthermore, the remaining E-L equation for the back-
ground scalar ðEϕ ¼ 0Þ is implied by the others because of

gauge invariance, as can be readily verified, which certifies
that the solution ϕ ¼ η in (14) is also the correct one for the
model with the Lagrangian functions just built.

B. Asymptotic Lagrangian: Recovering GR

The leading order expressions of the Lagrangian func-
tions as η → �∞ (17), (21), (24), and (25) in the Ansatz
(11)–(13) tell that to the leading order the only nonvanishing
Lagrangian functions are G4 ¼ 1

2
and G2. Hence, with

the solution ϕ ¼ η and the leading order expression
X ¼ 1=ð2ηÞ, considering only the leading contributions to
G2, namely g21X, we can identify at leading order the
corresponding action to (1) in the asymptotic past and future

S∞ ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − ∂μξ∂
μξÞ ð26Þ

for a massless scalar field ξ ¼
ffiffi
3
2

q
lnðϕÞminimally coupled

to Einstein’s gravity and with vanishing torsion background
(22). Indeed, one can check that the field and Friedmann
equations derived from (26) are satisfied by the leading
order contributions as η → �∞ of the solutions that we
started with in (14): namely, a ¼ η

1
2, H ¼ 1

2
η−

3
2, ϕ ¼ η,

ξ ¼
ffiffi
3
2

q
lnðηÞ solve

̈ξþ 2aHξ̇ ¼ 0; ξ̇2 − 6a2H2 ¼ 0: ð27Þ

III. CONCLUSION

We first extended the no-go argument of [6,7] to
Galileons on a spacetime with torsion (Horndeski-
Cartan) (1). We showed that in generic models it is not
possible to obtain a nonsingular FLRW cosmology that is
always free of gradient instabilities against the scalar
perturbation and an eternally sub/luminal graviton.
Then, we highlighted that unlike in the torsionless theory,

where instabilities happen with certainty at some time in the
entire evolution [6,7], a spacetime with torsion can support
all-time linearly stable nonsingular solutions in Galileons if
there exists at an arbitrary time a superluminal phase for the
graviton and by at least an amount cg ≥

ffiffiffi
2

p
c. This unphys-

ical phase could formally happen as a deepUVinconsistency,
namely, arbitrarily short and unrelated to the physically
relevant length scales that are pertinent to these models, such
as time and much longer width of a bounce. Besides, this
pathology in the classical solutions may still be informative
raising the question about the possibility of Lorentz invariant
UV completions [14,16] and whether causal paradoxes arise
[1,13,15]. Finally, we showed a bouncing cosmology that is
always stable, where a short superluminal phase happens
before the bounce, and that transits to Einstein’s gravity
coupled to amassless scalar andwith vanishing torsion in the
asymptotic past and future.

FIG. 3. Everywhere regular Lagrangian functions g20, g21,
and g22.

STABILITY OF NONSINGULAR COSMOLOGIES IN GALILEON … PHYS. REV. D 109, 044073 (2024)

044073-5



At least in what concerns the stability and speed of
solutions, this shows that the Horndeski-Cartan theory is
fundamentally different from Horndeski on a torsionless
geometry, in contrast to, e.g., the equivalence of Einstein-
Cartan and GR.
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APPENDIX

1. Derivation of the quadratic action

To derive expressions (2) and (3) we follow the notation
and detailed procedure in [17]. Briefly, we consider
the perturbed metric ds2 ¼ ðημν þ δgμνÞdxμdxν where
ημνdxμdxν ¼ a2ðηÞð−dη2 þ δijdxidxjÞ is a spatially flat
FLRW background metric, η is conformal time, and we
denote spatial indices with Latin letters such as i ¼ 1, 2, 3
and spacetime indices with greek letters, such as μ ¼ 0, 1,
2, 3. The metric perturbation is written as

δgμνdxμdxν ¼ a2ðηÞð−2αdη2 þ 2ð∂iBþ SiÞdηdxi
þ ð−2ψδij þ 2∂i∂jEþ ∂iFj

þ ∂jFi þ 2hijÞdxidxjÞ; ðA1Þ

with α, B, ψ , E scalar perturbations, Si, Fi transverse vector
perturbations, and hij, a symmetric, traceless, and trans-
verse tensor perturbation.
On the other hand we consider the perturbed Galileon

field ðϕðxÞÞ as ϕðηÞ þ Πðη; x⃗Þ in the linearized expressions,
where in this context ϕðηÞ is the background field.
To write explicit torsion in (1), we denote a torsionful

and metric compatible covariant derivative on any vector
Vμ as ∇̃μVν ¼ ∂μVν þ Γ̃ν

μλV
λ, where the nonsymmetric

torsionful connection can be expressed in terms of the
usual GR Christoffel connection Γρ

μν ¼ 1
2
gρσð∂μgνσ þ

∂νgμσ − ∂σgμνÞ, as Γ̃ρ
μν ¼ Γρ

μν − Kρ
μν (Namely, we introduce

torsion in the second order formalism.). Kρ
μν is named

contortion tensor, and with our convention of torsionful
covariant derivatives it is antisymmetric in the first and
third indices, Kμνσ ¼ −Kσνμ, such that it has 24 indepen-
dent components.
The perturbed contortion tensor Kμνσ ¼ 0KμνσðηÞ þ

δKμνσðη; x⃗Þ has only two nonvanishing background con-
tributions on an isotropic and homogeneous spacetime,
namely, 0K0jk ¼ xðηÞδjk, and 0Kijk ¼ yðηÞϵijk. For the
spacetime dependent perturbation δKμνσðη; x⃗Þ the 24 inde-
pendent components can be written in terms of irreducible

components under small rotation group as eight scalars
denoted as CðnÞ with n ¼ 1;…; 8, six (two-component)
transverse vectors and two (two-component) traceless,

symmetric, transverse tensors Tð1Þ
ij ; T

ð2Þ
ij . An explicit decom-

position is given, for instance, in section II:B in [17].
The four background fields ϕ; a; x; y obey five equations

of which only four are independent (due to gauge redun-
dancy), which we denote as Ef ¼ ∂L=∂f ¼ 0 for f one of
the following: ϕ; g00; gij; 0K0jk; 0Kijk. In particular, E 0Kijk

¼
−2εijkG4y=a6 ¼ 0 implies that yðηÞ≡ 0 and E0K0ij

¼ 0

solves xðηÞ in terms of a;ϕ

xðηÞ ¼ −
a3Gτð8HXG4;X þ aϕ̇ðG3 − 2G4;ϕÞÞ

8G2
4

: ðA2Þ

The quadratic action for the three tensor perturbations

hij; T
ð1Þ
ij ; T

ð2Þ
ij is obtained as usual and implies Tð2Þ

ij ≡ 0 and

Tð1Þ
ij ¼ 2a2XG4;X

G4 þ 2XG4;X
ḣij − 2xhij: ðA3Þ

Using these equations back in the quadratic action gives
(2). Notice the difference in Gτ between the graviton hij in
Galileons in a torsionful and a torsionless spacetime due to

the nontrivial Tð1Þ
ij .

Similarly, the part of the quadratic action relevant to the
thirteen scalar perturbations Π; α; B;ψ ; E; CðnÞ (with
n ¼ 1;…; 8) is written as (3) after integrating out all of
the eight nondynamical torsion perturbations CðnÞ. This is
simpler in the unitary gauge, where Π ¼ 0 and E ¼ 0,
because one can recognize (See [17] for the theory with
c ¼ 0.) that there are five Lagrange multipliers Cð1Þ;
Cð5Þ; Cð7Þ; Cð2Þ; B. The constraint equations imposed by
the first three Lagrange multipliers imply the vanishing of
Cð6Þ; Cð4Þ; Cð8Þ respectively, and with the equation for Cð2Þ
one can express the only nontrivial torsion scalar as

Cð3Þ ¼ −
2a2XG4;X

G4 þ 2XG4;X
ψ̇ þ 2xψ

−
a3ð2G4H þ ΘÞ þ a2ϕ̇G4;ϕ

2G4

α: ðA4Þ

Using (A4) in the quadratic action gives (3), where
critically Gτ ≠ T as opposed to Galileons without torsion.

2. Lagrangian functions

The Lagrangian functions g20, g21, g22, g30, g31, g40, and
g41 have an exact solution. We show below the graphs of
these functions around the bounce at ηb ¼ 0 with width
τb ¼ 10 and at the short superluminality phase at ηs ¼ −10
with width τs ≪ τb (we choose here τb ¼ 10τs for con-
venience displaying the graphs).
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3. Coefficients in the final action for the scalar perturbations

The coefficients θ and σ for the quadratic action (3) are

θ ¼ −2aG4HðG4
2 þ 4ð2G4;X

2 −G4;XXG4ÞX2Þ − ðG4;ϕðG4
2 þ 4G4;X

2X2 − 2G4XðG4;X þ 2G4;XXXÞÞ
þG4Xð−ðG3;X − 2G4;ϕXÞðG4 þ 2G4;XXÞ þ G3ð3G4;X þ 2G4;XXXÞÞÞϕ̇; ðA5Þ

σ ¼ að−24H2ðG4
4 þ 16G4;X

4X4 þ 8G4;X
2G4X3ðG4;X − 2G4;XXXÞ þ 2G4

2X2ð15G4;X
2 þ 8G4;XX

2X2

þ 4G4;XXðG4;XX −G4;XXXXÞÞ −G4
3XðG4;X þ 4Xð4G4;XX þ G4;XXXXÞÞÞ

þ Xð−3G3
2ðG4

2 þ 2X2ð5G4;X
2 þ 8G4;XX

2X2 þ 4G4;XXðG4;XX −G4;XXXXÞÞ −G4Xð11G4;X þ 4Xð5G4;XX

þ G4;XXXXÞÞÞ þ 6G3ð−XðG4 þ 2G4;XXÞð2ðG3;XX − 2G4;ϕXXÞXðG4 þ 2G4;XXÞ
þ G3;Xð5G4 − 2XðG4;X þ 4G4;XXXÞÞ þ 2G4;ϕXð−5G4 þ 2XðG4;X þ 4G4;XXXÞÞÞ
þ 2G4;ϕðG4

2 þ 2X2ð5G4;X
2 þ 8G4;XX

2X2 þ 4G4;XXðG4;XX −G4;XXXXÞÞ
− G4Xð11G4;X þ 4Xð5G4;XX þ G4;XXXXÞÞÞÞ þ 4ððG4 þ 2G4;XXÞ2ðG2;XðG4 þ 2G4;XXÞ
− 2G3;ϕðG4 þ 2G4;XXÞ þ Xð−3ðG3;X − 2G4;ϕXÞ2X þ 2ðG2;XX −G3;ϕXÞðG4 þ 2G4;XXÞÞÞ
þ 3G4;ϕXðG4 þ 2G4;XXÞð2ðG3;XX − 2G4;ϕXXÞXðG4 þ 2G4;XXÞ þ G3;Xð5G4 − 2XðG4;X þ 4G4;XXXÞÞ
þ 2G4;ϕXð−5G4 þ 2XðG4;X þ 4G4;XXXÞÞÞ − 3G4;ϕ

2ðG4
2 þ 2X2ð5G4;X

2 þ 8G4;XX
2X2

þ 4G4;XXðG4;XX −G4;XXXXÞÞ −G4Xð11G4;X þ 4Xð5G4;XX þG4;XXXXÞÞÞÞÞÞ
þ 24HðXððG4 þ 2G4;XXÞðð2G3;X − 5G4;ϕXÞG4

2 þ G4ð−ðG3;X þ 2G4;ϕXÞG4;X þ ðG3;XX − 2G4;ϕXXÞG4ÞX
þ 2ððG3;X − 4G4;ϕXÞG4;X

2 þ ððG3;XX − 2G4;ϕXXÞG4;X − 2ðG3;X − 2G4;ϕXÞG4;XXÞG4ÞX2Þ
þ G3ð−6G4;XG4

2 þ 3G4ðG4;X
2 − 3G4;XXG4ÞX − 2ð3G4;X

3 − 2G4;XG4;XXG4 þ G4;XXXG4
2ÞX2

− 4ðG4;X
2G4;XX − 2G4;XX

2G4 þG4;XG4;XXXG4ÞX3ÞÞ þG4;ϕð−G4
3 þ 4G4;X

2X3ðG4;X þ 2G4;XXXÞ
− 2G4X2ð9G4;X

2 þ 8G4;XX
2X2 þ 4G4;XXðG4;XX −G4;XXXXÞÞ þ 2G4

2Xð3G4;X

þ Xð9G4;XX þ 2G4;XXXXÞÞÞÞϕ̇: ðA6Þ

FIG. 4. Everywhere regular Lagrangian functions. (a) g30 and g31. (b) g40 and g41.
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