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We present a novel approach, metric perturbations with spectral methods (METRICS), to calculate
the gravitational metric perturbations and the quasinormal-mode frequencies of rotating black holes of any
spin without decoupling the linearized field equations. We demonstrate the method by applying it to
perturbations of Kerr black holes of any spin, simultaneously solving all ten linearized Einstein equations in
the Regge-Wheeler gauge through purely algebraic methods and computing the fundamental (corotating)
quadrupole mode frequency at various spins. We moreover show that the METRICS approach is accurate
and precise, yielding (i) quasinormal mode frequencies that agree with Leaver’s, continuous-fraction
solution with a relative fractional error smaller than 10~ for all dimensionless spins below up to 0.95, and
(i1) metric perturbations that lead to Teukolsky functions that also agree with Leaver’s solution with
mismatches below 1% for all spins below 0.9. By not requiring the decoupling or the angular separation of
the linearized field equations, the METRICS approach has the potential to be straightforwardly adapted for
the computation of the quasinormal-mode frequencies of rotating black holes of any spin beyond general

relativity or in the presence of matter.
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I. INTRODUCTION

Gravitational waves (GWs) are unique probes of funda-
mental physics because they are generated by the most
energetic and extreme events in the Universe, such as the
collision of black holes (BHs) and neutron stars [1-13].
Unlike electromagnetic waves, GWs can propagate through
most of the Universe unaffected by intervening matter,
except when being lensed (see, e.g., [14]). GW detection,
therefore, grants us unobscured access to physics in the
highly-dynamical, and non-linear regime of gravity. In
particular, this unobscured access to gravity can be used to
test the validity of general relativity (GR) and to probe
fundamental physics in extreme conditions [7,11,15-17].

Even though Einstein’s theory represents our best under-
standing of gravity and it has withstood all observational
and experimental tests (see, e.g., [17-24]), GR still needs to
be probed further. This is because over the past 50 years,
theoretical and observational “anomalies” have somewhat
challenged GR’s validity. On the theory front, GR predicts
the existence of spacelike and timelike singularities, where
the spacetime curvature diverges and GR’s predicability is
lost. Such singularities are presumably resolved through
quantum effects [25-30], but, in spite of almost a century of
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theoretical efforts, Einstein’s theory remains incompatible
with quantum mechanics. Observationally, GR may
require additional parity-violating physics (to satisfy the
Sakharov conditions [31]) to explain the matter-antimatter
asymmetry of the early universe [32-34], a fine-tuned
cosmological constant [35,36] to explain the late-time
acceleration of the Universe [37,38], and dark matter
to explain galaxy rotation curves [39,40]. These issues
have prompted some to amend GR, inspiring a variety
of modified gravity theories, such as dynamical Chern-
Simon gravity [41-43] and Einstein-dilaton-Gauss-
Bonnet gravity [44-47], to name a few. To avoid
repetition, we refer the reader to [48] and references
therein for a more comprehensive review of the motivation
of modifying GR in the context of GW physics.

A better understanding of the aspects of GR that may
require modification can be gained through GW tests of
GR, which can yield new constraints on GR deviations,
and maybe the detection of new anomalies. The approx-
imately 100 GW signals detected by the advanced Laser
Interferometric Gravitational-wave Observatory (LIGO)
and Virgo detectors were mostly emitted by the coalescence
of binary BHs [1-13]. Of these events, ~22 contain clear
“ringdown” signals, emitted after the BHs have collided
and begun to settle down to their final stationary state
through GW emission [49]. At late times, the ringdown can
be described through quasinormal modes (QNMs), whose
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frequencies in GR are completely determined by the
remnant’s mass and spin (for astrophysical BHs).
Modified gravity theories, however, also permit, in principle,
BH solutions that are different from those in GR, and thus,
may need additional parameters or “hair” (e.g., functions of
the coupling constants of the modified theory) to fully
describe them (see, e.g., [50,51]). Moreover, the field
equations in modified gravity are not Einstein’s, and thus,
the equations governing BH perturbations are also generi-
cally modified. These two facts lead to QNM spectra that can
be very different from that of Kerr BHs in GR, and thus, their
detection allows for new tests of Einstein’s theory.

Unfortunately, computing the gravitational QNM
frequencies of rotating BHs in modified gravity is
extremely challenging. This is because one needs to solve
the non-Einsteinian field equations, linearized about a BH
background that lacks the simplifying symmetries of the
Kerr metric, typically leading to a very complicated set of
coupled partial differential equations. Broadly speaking,
the challenging task of computing QNM frequencies in
modified gravity has so far been approached through two
different perturbative techniques.' The first approach works
directly with metric perturbations, i.e., linear deviations in
the metric tensor with respect to the BH metric background.
Using this ansatz in the field equations and linearizing
about the BH background, one finds a complicated set
of coupled, partial differential equations that one attempts
to decouple into “master equations” for certain “master
functions,” such as those found by Regge and Wheeler [56]
and by Zerilli and Moncrief [57,58] for perturbations of
nonrotating BHs in GR. This metric perturbation approach
has been successfully applied to nonrotating and to slowly
rotating BHs in both GR and in modified gravity [58—68].
However, when studying perturbations of rotating BH
spacetimes, the linearized field equations are too intricate,
preventing the decoupling into master equations.

The second approach works with curvature perturbations
instead of metric ones, relying on the Newman-Penrose
(NP) formalism [69]. In this approach, one first formulates
the full Einstein equations and the Bianchi identities in
terms of NP quantities, including spinor coefficients, Weyl
scalars, and differential operators. With that at hand, one
then linearizes these equations about the curvature of a BH
background, using the symmetries of the latter (which
forces certain spin coefficients to vanish) to simplify the
resulting expressions. The simplified, linearized-curvature,
Einstein and Bianchi equations can now be decoupled
when the background is Petrov-type D (which is consistent
with the symmetries of a Kerr BH metric), leading to the

'In principle, one can also numerically simulate the ringdown
phase of a BH formed by binary BH coalescence in modified
gravity (see, e.g., [52]). However, numerical relativity in modified
gravity is currently in its infancy, and more work is needed to
ensure secular errors (due to the use of approximation methods)
can be controlled in a gauge-independent way [53-55].

Teukolsky master equation [70] for a certain Teukolsky
master function. The Teukolsky equation is a separable
wave equation for the perturbed Weyl scalars ¥, and ¥,
which represent ingoing and outgoing GW degrees of
freedom [70-73].

This curvature perturbation approach has been (very
recently) extended to incorporate modified gravity theories
(with leading-order deviations from GR) in [74,75]. This
extension, the so-called modified Teukolsky formalism, has
been applied to rotating BHs in higher derivative gravity
[67,76-78] and dynamical Chern-Simons gravity [79].
Nonetheless, the modified Teukolsky formalism is com-
plicated by the need to solve the Teukoslky equation twice:
once in GR and a second time for the GR deviation of ¥ 4
with a very complicated source. The latter, in particular,
requires metric perturbation reconstruction in GR [74],
which can, in principle, be achieved through the use of the
Hertz potential in the so-called Chrzanowski-Kogen-
Kegeles (CKK) approach [80-85]. The need to solve a
sourced Teukolsky equation, where the source depends on
the reconstructed metric perturbation, can introduce
numerical difficulties. Moreover, the perturbative extension
of the Teukolsky approach assuming small deviations from
GR can, in principle, be susceptible to secular errors that
must be controlled.

These difficulties motivate us to develop a method that
can calculate the metric perturbations of a general BH,
regardless of its spin and Petrov-type, based on spectral
expansions. Henceforth, we shall refer to this as the metric
perturbations with spectral methods (METRICS) approach.
Given the tremendous difficulty of this problem in modified
gravity, a sensible first step is to map the path forward
by developing this approach within Einstein’s general
theory. Building on other related work on spectral methods
[84-99], we did precisely this in [48] by focusing on
perturbations of a nonrotating (Schwarzschild) BH in GR.
The goal of this paper is to generalize [48] to perturbations
of rotating (Kerr) BHs in GR, allowing the BH background
to have arbitrary spin. As we will see, the generalization to
BHs with arbitrary spins in GR will require us to improve
the METRICS approach of [48] in various ways, which will
be crucial when, in the future, this approach is applied to
BHs perturbations in modified gravity.

We extend the METRICS approach to Kerr BHs in GR
as follows. We begin by deriving the linearized Einstein
field equations that govern the metric perturbations of a
Kerr BH in the Regge-Wheeler gauge (Sec. II), a com-
monly adopted gauge to study gravitational BH perturba-
tions. We then construct an ansatz for the metric
perturbations that asymptotes to the desired boundary
conditions at spatial infinity (outgoing) and at the horizon
(ingoing) in outgoing and ingoing Kerr null coordinates
(Sec. IID). This ansatz, of course, does not solve the
linearized Einstein equations, so we multiply it with
unknown, finite functions, which we then spectrally expand
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into products of Chebyshev polynomials (of a compactified
Boyer-Lindquist radial coordinate) and associated
Legendre polynomials (of the Boyer-Lindquist polar
angular coordinate). The spectral product decomposition
transforms the linearized Einstein field equations into a
system of homogeneous, linear and algebraic equations
(Sec. IIIB). The quadratic eigenvalues of the linear
algebraic equations correspond to the QNM frequencies
of the Kerr BH. The eigenvector of the QNM frequencies
can be used to reconstruct metric perturbations swiftly.

The general extension described above 1is the
obvious way to extend the METRICS approach from a
Schwarzschild to a Kerr background, but further refine-
ments are needed to obtain sufficiently accurate and precise
QNM frequencies. The first refinement is intended to
achieve numerically stability in the QNM frequency
calculation. In the nonrotating case, we converted six
(out of the ten) linearized FEinstein equations into a
quadratic eigenvalue problem via spectral expansions,
and then, we transformed the quadratic eigenvalue problem
into a linear generalized eigenvalue problem. For a Kerr BH
background, however, this is insufficient to obtain accurate
QNM frequencies because the solution we converge to
need not satisfy the remaining four linearized equations.
Transforming the quadratic eigenvalue problem into a
linear generalized eigenvalue problem also introduces
significant numerical instability, which undermines the
accuracy of the QNM frequency calculation. We therefore
refine the METRICS approach by developing a Newton-
Raphson algorithm to simultaneously solve all the linear,
homogenous algebraic equations that result from the ten,
linearized Einstein equations (Sec. IVA).

To initiate the Newton-Raphson iterations, we need an
initial guess, which we here choose as the first two
significant digits of the QNM frequencies of a Kerr BH,
and zero for the remaining, initial spectral coefﬁcientsz; we
also explored other, more general choices for the initial
guess of the QNM frequencies to find that the Newton-
Raphson method still finds the correct solution, although
it takes more iterations. The Newton-Raphson method
requires the inversion of a coefficient matrix that is
rectangular (not square), because the linearized Einstein
equations are ten, while the metric perturbations are
characterized by six functions in the Regge-Wheeler gauge.
The rectangular coefficient matrix cannot be inverted as
done usually for a square matrix, a problem we circumvent
through the use of the Moore-Penrose inverse, a generali-
zation of the square-matrix inverse to a rectangular matrix.

’In modified gravity, this choice of initial guess would not be
possible since the QNM frequencies is precisely what one wishes
to calculate in the first place. However, for modifications to GR
that are small deformations, one can still initialize the Newton-
Raphson algorithm at the GR values of the QNM frequencies, and
then allow the algorithm to explore deviations, a generalization
we leave to future work.

We apply this generalized and refined METRICS
approach to accurately compute the QNM frequencies
and subdominant modes of Kerr BHs with dimensionless
spins up to 0.95, as we will show in Sec. V. In particular, we
show that we can calculate the QNM frequencies of the
fundamental corotating quadrupole mode (the so-called
022 mode) of the Kerr BH of dimensionless spin < 0.95
with a relative fractional error in the real and imaginary
parts that is less than 1073, This relative fractional error is
significantly smaller than the current measurement uncer-
tainty of the relative fractional departure of the 022-mode
frequency from its GR prediction [of O(1072)], obtained by
combining all the astrophysical ringdown signals detected
by the advanced LIGO and Virgo detectors [15], as well as
the projected measurement uncertainty obtained by com-
bining the detections made by next-generation detectors [of
O(107)]1[100]. Thus, the QNM frequency computed using
the METRICS approach is both precise and accurate
enough to be applied in the analysis of ringdown signals
detected by existing and future ground-based detectors.

Another important benefit of the METRICS approach is
its ability to solve for the metric perturbations directly.
This allows us to validate the METRICS approach by using
these metric perturbations to compute the perturbed Weyl
scalars W, and W, and then verify that they satisfy the
Teukolsky equation. Indeed, in Sec. VII A, we find that the
perturbed Weyl scalar obtained from the metric perturbations
solved with the METRICS approach has a “mismatch” with
respect to that obtained from Leaver’s, continuous fraction
method on the equatorial plan that is below ~1072. Leaver’s
continuous fraction perturbed Weyl scalar also allows us to
validate our metric ansatz by reconstructing the metric
perturbation through the CKK approach. We implement
this reconstruction and find that, overall, our ansatz is
consistent with the metric reconstruction. Through these
validations, we ensure that the generalization and refinement
of the METRICS approach developed in this paper are ready
for deployment in modified gravity theories, a task that is left
to future work.

The computational resources required to apply the
METRICS approach to accurately compute the metric
perturbations of a Kerr black hole are also reasonable.
Using a symbolic computational package, such as
Mathematica, and a single central processing unit on a
standard laptop computer, the Newton-Raphson algorithm
takes about ~1200 seconds (approximately 20 minutes) to
compute the 022-mode frequency with 30 Chebyshev
and associated Legendre polynomials. The computational
time can be significantly reduced if one optimizes the
calculation, using, for example, other computational lan-
guages (such as C/C++), parallel computations, or graphical
processing units for execution. We estimate that these
enhancements can easily accelerate the METRICS calcu-
lations to under a second, but we leave such optimizations
for future explorations.
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The remainder of this paper deals with the computational
details that lead to the results described above and it is
organized as follows. In Sec. II, we review the Kerr metric,
the Regge-Wheeler gauge conditions, the asymptotic
behavior of metric perturbations at the event horizon and
future null infinity, and we spectrally expand the metric
perturbations. In Sec. III, we discuss the mathematical
structure of the linearized Einstein equations and convert
them into a system of linear homogenous algebraic
equations. In Sec. IV, we describe the details of the refined
procedures to extend the METRICS approach to the Kerr
BH, including the Newton-Raphson algorithm. In Sec. V,
we calculated the QNM frequencies of the Kerr BH
extracted with the METRICS approach. The robustness
of the QNM frequencies obtained using the METRICS
approach is studied in Sec. VI. We show that METRICS
can correctly reconstruct metric perturbations around the
Kerr BH in Sec. VII. Finally, we conclude the paper in
Sec. VIII by exploring possible future applications of the
METRICS approach to study the gravitational QNMs of
different BHs and theories of gravity.

Henceforth, we assume the following conventions:
o= (x% x', x%,x%) = (t,r,y,¢), where y = cos@ and 0
is the polar angle; the signature of the metric tensor is
(=, +,+, +); gravitational QNMs are labeled by nlm or
(n,1,m), where n is the 3principal mode number, / is the
azimuthal mode number’ and m is the magnetic mode
number of the QNM; the QNM frequencies computed
using the METRICS approach are referred to as
“METRICS QNM frequencies”; greek letters in index lists
stand for spacetime coordinates; for the convenience of the
reader, we have presented a list of all definitions and
symbols in the Appendix.

II. METRIC PERTURBATIONS
IN A KERR BH BACKGROUND

In this section, we discuss our representation of the
background Kerr spacetime, derive the asymptotic behavior
of the metric perturbations at the event horizon and spatial
infinity, and then conclude with a quick description of the
spectral expansion of the metric perturbations.

A. Background spacetime

The solution to the vacuum Einstein equation G,, =0

that represents a stationary, rotating and uncharged BH is
the Kerr metric denoted by gfg) . The line element associated
with this metric can be written in Boyer-Lindquist coor-

dinate as [101]

Note that [ is, in general, different from #, the degree of the
associated Legendre polynomials in the product decomposition
of the metric perturbation functions. Although these numbers are
the same for a Schwarzschild BH background, this is not so for a
Kerr BH background.

ds? = g,g?,) dx*dx?,

oM AM>
:_<1 —;> e — Z‘”(l —1?)dgdt

z z
—dr? dy?
+A r+]_)(2)(

M3a?r

+ {r2+M2a2+2 (1 —)(2)} (1=x*d¢?. (1)

where recall that y = cos @ and we have defined

Y = r2 +M2a2)(2,
A=(r—ry)(r—r_),
ro = M(1£b),

b=V1-ad, (2)

where r, are the locations of the inner and outer event
horizons, M is the Kerr BH mass, which is taken to be one
throughout this paper, and 0 < a < 1 is the dimensionless
spin. Let us also define here two variables associated with
the Kerr spacetime that will be frequently used in the
subsequent calculations. The first is the angular velocity of
the outer event horizon,

a
Qy=—. 3
=3 ()

The second is the tortoise coordinate of the Kerr BH,
defined as [70,71,73]

dr, r*+ M?*a?
& A )

Explicit integration then yields

1+0b r—ry
= M 1
r,=r-+ {b 0g< 2M>
1-b
——1

oe("2E)]. (5)

B. Metric decomposition and linearized
Einstein equations

We now consider linear perturbations of the metric
tensor, such that

Guv = g/(l(l)/) + ehyw (6)

where g,(g) is the background metric of Eq. (1), &, is the
metric perturbations, and € is a bookkeeping parameter
for the perturbations. The metric perturbations £, can be
decomposed into axial and polar parts [58—60,102],
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B (800, @) = hg (6,7, 0, ) + By (8,7, 1, ), (7)
where
0 0 —im(1=x*)""hs(r.x) (1=x%)0,hs(r,x)
o —im(1 = )V he(r, 1—x%)0, he(r,
hzgd(t, rx. Q) = eimg—iot im(1 =) he(roz) (1= d 6(r.) (8a)
* ok 0
* * *
and
(rx) ha(r.x) 0 0
o * hs(r, %) 0 0
hezen(t’ L ¢) — _elm(/)—zwt . (8b)
! * (1 =23 hy(r.x) 0
* * (1= x*)hy(r, %)

and where we have made use of the Regge-Wheeler gauge
[59,102] for the Kerr BH. The quantities /; with k € (1,6)
are, so far, unknown functions of r and y. Note that we have
assumed that the parity sectors of the metric perturbations
that are purely ingoing at the horizon and outgoing at future
null infinity depend on the same QNM frequency, because
of isospectrality in GR. This assumption would obviously
have to be relaxed if working in modified gravity, where
isospectrality breaks [61-65,103]. Note also that we have
chosen a specific ansatz for the polar and axial metric
perturbations, guided by the Regge-Wheeler gauge and the
angular structure of the ansatz for metric perturbations
around slowly rotating BHs.

C. Asymptotic behavior of the metric perturbations

According to the methodology presented in [48], we
should first substitute Eq. (6) into the Einstein equations and
linearize in € to obtain the linearized Einstein equations for
h,,. We would then solve the linearized Einstein equations
asymptotically at spatial infinity and at the event horizon
(i.e., at the bifurcation two-sphere). Unfortunately, for the
Kerr BH background case, the resulting linearized field
equations are too complicated to be diagonalized using the
methods presented in [94], because the Kerr spacetime is just
too complicated. Instead, we proceed by studying the null
coordinates defined by the principal null geodesics of the
background spacetime, and the virtue of the METRICS
approach that the computed QNM frequencies do not
sensitively depend on the choice of radial scaling we choose
in the ansatz for the radial function [i.e., the accuracy of the

METRICS approach does not sensitively depend on the

chosen p%‘> and pg), which will, respectively, be first defined

by Egs. (11) and (13), see also Sec. VIB of [48] ].
We first study the asymptotic behavior at the event
horizon, where metric perturbations are purely ingoing, and

thus their wavefronts should follow the principal null
geodesics that are ingoing at the horizon [95,104]. The
geodesics are more suitably described in ingoing Kerr null
coordinates (v, r, 0, ¢), where [105]

v=1"1t+4r,,
p=¢+7 ©)
and where 7 is defined by
di M?a _ Ma r—r,
dr A == ZbIg(r—r_>' (10)

As metric perturbations should be regular in these coor-
dinates, the asymptotic behavior of h; near the event
horizon, for a fixed y, must be

lim Ay (r, y) « lim e~i@vtime
ror, ror,
® [So]
i(w—mQ ﬂ—/)
~(r—ry)” i) b,(r—ry)?
p=0

(11)
where b, are constants and pg‘) is an k-dependent param-
eter controlling the divergent behavior of /i at r = r [48].

We now study the asymptotic behavior at spatial infinity,
where metric perturbations should be purely outgoing, and
thus, their wavefronts should follow the principal null
geodesics that are outgoing. These geodesics are more
suitably described by outgoing Kerr null coordinates
(u,r,0,¢), where

U==1-—r,,

p=¢-T (12)
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As metric perturbations should also be regular in these
coordinates, the asymptotic behavior of /; near spatial
infinity, at a fixed y, is

lim 7 (r,y) « lim e~i@utime
r—-+oo r—-+oo

B o=a
~ eimrr2iM(u+pw E _P’ (13)
rp
p=0

where a, are constants and pf,];) is another k-dependent
parameter controlling the divergent behavior of 4, at spatial
infinity. The above is also the asymptotic behavior at spatial
infinity of metric perturbations around the Schwarzschild
BH [48]. This is reasonable because, at spatial infinity, the
background spacetime of both the Schwarzschild and Kerr
BHs reduces to the Minkowski spacetime.

Although the arguments presented above are only valid
for vacuum rotating BHs in GR, we expect a similar
argument to hold in more general situations. In modified
gravity, the asymptotic behavior of the metric perturba-
tions cannot necessarily be obtained by studying the first-
order form of the (null) geodesic equations. Such a first
order form may not exist if the background spacetime is
of Petrov type I and does not possess a Killing tensor or a
Carter-like constant. Instead, one would have to deter-
mine the principal null directions of the spacetime by
looking at the independent roots of the Weyl tensor
contracted onto a certain antisymmetric, exterior product
of four copies of the null tangent vector, which defines
the Petrov class, as done, e.g., in [106] for dynamical
Chern-Simons gravity.

D. Ansatz for the metric perturbations

The results above motivate us to resum and peel off the
asymptotic behaviors of & (r,y) through the following
product decomposition

hi(r ) = Ae(r)ui(r. x), (14)
where u,(r, ) are correction functions that are finite for
all refr,,+o]. In Eq. (14), Ai(r) is the “asymptotic
controlling factor” of h(r,y), which we define as

(15)

— —iM(w0—mQ, )ﬂ—/)(k)
Ak(r) — eiwrrZiMerpf,:) <I" r+> H7o " PH

r

This function has the property that it approaches Eq. (11)
near the horizon, while it approaches Eq. (13) near spatial
infinity. In Eq. (14), u;(r, x) is then a correction factor that
is not only bounded, but also has trivial boundary con-
ditions, approaching a finite function of y both at the event
horizon and at spatial infinity.

The parameters p%‘) and p(o]f,) in Eq. (15) control the

divergence of the metric function at the event horizon and at

spatial infinity, and thus, these constants should depend on
the index k and the dimensionless spin a. For the time

being, we will assume that pg) and pgy are the same pg{)

and p© of the Schwarzschild BH,*

2, fork=3
P =1, fork=2or6,
0, otherwise

1, fork=4

The numerical results presented in Sec. V show that the

Schwarzschild values for p%‘) and p&? indeed allow for

accurate and robust computations of the Kerr QNM
frequencies. In Sec. VI, we will study different choices
of pg{) and pgg) to address the possibility that p%{) and pg;)
vary with a.

Since the correction function u(r,y) is bounded, we
can spectrally expand it, but, before doing so, we must
transform its independent variable to a compactified coor-
dinate. Following [48], we define a compactified radial
coordinate, z, via [86,94]

() =", (17)

so that u; is a bounded function in the finite domain

€ [—1,+1]. With this in hand, the correction factor can
now be spectrally expanded into a basis function, which we
here choose to be the product of Chebyshev and associated
Legendre polynomials, such that

up(z, %) i i": U"fT

n=0 £=|m|

9P (r).  (18)

where sz are constant coefficients. As in [48], we could

have chosen a different basis function for the spectral
expansion, as long as it is complete and orthogonal. As we
will see, the product of Chebyshev and associated Legendre
polynomials is sufficient for our purposes, and other
choices can be studied elsewhere.

We can now put all of these results together to write a
final expression for the spectrally decomposed metric
perturbation /;(z, ), namely

O3S TP ). (19)

n=0 £=|m|

hk(Z,)() =A

*Note that these pg) and pg.f) are different from those given

in [48] because in the latter we chose a different normalization
convention for &, 34 [see Eq. (5b) of [48]].
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Although Eq. (19) gives the full spectral expansion of the
metric perturbation along the angular coordinate y and
the compactified spatial coordinate z, it is in practice
impossible to include an infinite number of terms in the
sums. Instead, we must truncate the expansion at some
N for the Chebyshev sum and some N, for the
associated Legendre sum,

N. N, +|m|

he(r) = A0S " T (PN (2). (20)

n=0 ¢=|m|

In what follows, we will use this truncated spectral expan-
sion to compute the QNM frequencies of the Kerr BH.
We will keep N, and NV, independent for now, but when
evaluating QNM frequencies, we will go “along the diago-
nal” of this sum by setting N', = N, = N.

III. LINEARIZED EINSTEIN EQUATIONS ABOUT
A KERR BH BACKGROUND AS AN ALGEBRAIC
PROBLEM IN THE METRICS APPROACH

In this section, we will derive the linearized Einstein
equations that must be satisfied by the finite correction
functions u;, which we will later reduce to an algebraic
system of equations for the sz coefficients and the QNM
frequencies.

A. Linearized Einstein equations

With the decomposition [Eq. (8)] defined, we can now
find the system of equations that the metric perturbations
hi(r, ) must satisfy. Following [48], we do not treat the
odd and even perturbations separately.

We derive the linearized Einstein equations of A (7, y) by
substituting Eq. (8) [in the form of Eq. (20)] into the trace-
reversed Einstein equation

v v 1 v
R, —8zz<T,, -5 T), (21)

where R,)” = ¢"*R,,, and T = gaﬂTaﬁ is the trace of the
energy-momentum tensor. We linearize this form of the
Einstein equation because the resulting equations are sig-
nificantly shorter than those derived from G,, = 8zT,. In
this paper, we are concerned only with vacuum perturba-
tions, and thus 7, = 0. Linearizing Eq. (21), one finds a
system of ten coupled, partial differential equations for the
six unknown functions A (r, ).

We now massage the linearized Einstein equations to
cast them in a form that is more amenable to a spectral
expansion. We note that the components of the background
metric tensor g,(f,],) in Boyer-Lindquist coordinates, whose
line element is in Eq. (1), are rational functions of r and y.
Therefore, the coefficient functions multiplying the metric
perturbations 4, in the linearized Einstein equations must

also be rational functions of r and y, since they can only
depend on background quantities and their derivatives.
With this understanding, we can always express the kth
linearized field equation, after appropriate factorization and
multiplication through common denominators, as

<3 2 dr d}(
G 7.5.0. ﬂ,ja)yré)(ga?f);/;hj =0, (22)

,,,,,,

a+

=

j=1 a,

=

=0 y=0 6=0 0=0

where ZZ;’; §03 is a summation starting from a =0 and

S =0 up to a+ f = 3 for all non-negative o and S, while
Gkys0ap; 1S @ complex function of M, m, and a only.
The constants d, and d, are the degree of r and y of the
coefficient of a given term in the linearized FEinstein
equations respectively, which depend on the specific
equation we are looking at and can thus be thought of
to be dependent on the summation indices (a,p,k, j).
When factorizing each of the linearized Einstein equations
to obtain the common denominator, there can be prefactors,
such as powers of 1 — ;(2, A, and X, that contain no metric
perturbation functions and are nonzero except at r = r
and y = =£1. Since these common factors are never zero in
the computational domain (except at the boundaries), we
will divide by them to simplify the equations and improve
the numerical stability of the linearized Einstein equations.

Equation (22) represents a system of coupled, two-
dimensional, third-order partial differential equations.
Note that the perturbed field equations for the even
perturbations are at most second order, whereas for odd
perturbations the system of equations is at most third order,
because of the d, i terms (with /i, € {hs, he}) in the metric
decomposition of Eq. (8a). Each of the partial differential
equations of Eq. (22) consists of at least several thousand of
terms. Moreover, the largest modulus of the numerical
coefficients in Gy, 5,4, Of different equations can differ
by ~10 orders of magnitude, and the modulus of the
coefficient of different terms of the same equation can also
vary across ~20 orders of magnitude. To prevent overflow,
we normalize every partial differential equation such that
the largest modulus of the coefficient of each equation is
one, which again, is allowed because of the homogeneous
nature of the linearized Einstein equations.

Let us now derive the partial differential equations that
uy(r, y) satisfy by substituting Eq. (14) into Eq. (22). Since
the radial derivatives of the asymptotic factor can always be
expressed as

le
dar®

A(r) = rational function x A(r), (23)

after substituting Eq. (14) into Eq. (22), we can factorize
out the A(r), along with other common factors like A or
the common denominator, for each equation. Since A(r)
and the other common factors are nonzero within the
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computational domain, we similarly remove them, leaving
us with the following partial differential equations of

u(r.x),
d, d,

6 2
Z Z gk,y.é,a.aﬁﬁ.ja)yréxﬁagaﬁuj =0. (24)

j=1 a,p=0 y=0 6=0 0=0

a+p<3

Here, Qk%&w,ﬁ. j» 18 another complex function that depends

on M, m, and a butnoton ror y. d, and Zix are, respectively,
the degree of r and y of the coefficient of a given term in the
equations of u;(r,y), which depend (a, B, k, j).

We can now substitute the truncated spectral expansion
of the metric perturbation functions [Eq. (19)] into Eq. (24)
to transform the latter into a system of linear algebraic
equations. Since r is a rational function of z [see Eq. (17)],
and by the chain rule of differentiation,

o (1+z)Po0

or 2r, o0z’

(25)

the coefficient functions of the linearized equations of u;
must also be a rational function of z. Therefore, when we
substitute Eq. (14) into Eq. (22), we can factorize the kth
partial differential equation as

>y S

J=1 ap=0 7=0

4y

d,
Z Kk,y,éﬁa,a.ﬁ,jwyzaxaa?a)ﬂ{uj = 0’ (26)
5=

0 =0

a+p<3

where d, and d,, are the degree of z and y of the coefficient

of the partial derivative 0“0ﬁ t,{...} in the equations respec-
tively, while Ky , 3, 5,.; are k complex functions of M, m,
a, p?, and pgo) only (for every value of the summing

indices a, f3, 7, 6, o, and ).

We conclude this subsection by pointing out that the
linearized field equations in modified gravity theories can
similarly be cast in the form of Eq. (22) or (26), with the
coefficient function of the partial derivatives of the metric
perturbation variables as a polynomial functions of r and y.
In theories such as dynamical Chern-Simons gravity or
Einstein-dilaton-Gauss-Bonnet gravity, BHs often couple
to a scalar field. Schematically, the field equations linear-
ized around these beyond-GR BHs take the form

RV =AY (hes @),
OD(x) = Ag(hgp, @), (27)

where [ is the d’ Alembertian operator defined with respect
to the background BH spacetime, @ is the scalar field to
which the BH couples, and A,* (11,5, @) and Ag (f1,5, P) are
additional terms that depend linearly on A, and ®. The
METRICS approach can straightforwardly accommodate
the scalar field by labeling h; = ®, changing the upper

limit of j to 7, and adding the scalar field equation to the
linearized tensor equations. The field equations in these
modified gravity theories involve only the derivatives of
the Riemann or Ricci curvature tensors, or the Chirstoffel
connections, or their products of integer power (see,
e.g., [41,42,50] for the field equations of dynamical
Chern-Simons gravity and for [107-109] Einstein-
dilaton-Gauss-Bonnet gravity). This amounts to increasing
the upper limit of y in Egs. (22) and (26). In different
modified gravity theories, BH solutions and the coupling
scalar field are usually constructed in terms of rational
functions, either numerically (e.g., [110,111]) or analyti-
cally via a perturbative scheme (see, e.g., [50,112]). For the
BHs whose space-time is not constructed in terms of
rational functions, such as black holes with matter, we
can still accurately approximate the space-time using the
spectral functions by their completeness property and expo-
nential convergence, upon suitable compactification(s).
Thus, for a wide range of BH models, Eq. (27) also
consists of only rational functions, which can also be cast
in the form of Eq. (22) or (26) upon factorization. The
additional coefficient functions (i.e., G and K) can also be
straightforwardly read from A,*(h,, @) and the equation
O®(x#) = Ag (hap, D). The generality of Eqs. (22) and (26)
therefore makes the METRICS approach extremely adapt-
able to compute the QNM frequencies of BHs outside GR or
with matter, as long as the ingoing and outgoing principal
null directions can be defined and found.

B. Converting the linearized Einstein equations
into algebraic equations

Let us now convert the linearized Einstein equations into
an algebraic system of equations through use of our spectral
expansion. We first substitute the truncated spectral expan-
sion of the u; functions into Eq. (26),

J=1 ap=0 y=0 o=

a+p<3

&

S
’Ck,r,ﬁ.ma.ﬁ.jwyz x°

S
)
Il
S

v}’an(Z)Pf()()} =0 (28)

These equations can be further simplified by using the
defining equations for the Chebyshev polynomials and
associated Legendre polynomials, namely

4T, 1 <dT,, 2)
= ——5 | < _nTn ’

dz? 1-22 dz
LPI dp)" "
d}(g =1 <2;( d; — 46+ 1)P)!
m*>
- 1_—)(213; ) (29)
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These equations allow us to pull out more factors of
1 —4% 1 -z, or 1+ z, further simplifying Eq. (26).

We then express the left-hand side of Eq. (26) as a linear
combination of the Chebyshev and associated Legendre
polynomials,

N, N +|m|

SN wETL )P () =, (30)

where sz are independent of z and y, but depend on M, a,
n, ¢, m, and’ o, and k € (1, 10). To satisfy the linearized
Einstein equations, which are homogenous, we must then

have that wZ’f = 0 for every £, n, and ¢ by the orthogonality

of T,(z) and of P!;"‘(;(). Inspecting Egs. (26) and (28),

we notice that w?* depends on v}’ linearly, because

> Burwe (@) 07" =0, (31)

where D,z (@) are 10 x 6 matrices, whose elements can
be at most quadratic polynomials in @ and can be obtained
by evaluating the inner product given by Eq. (41) of [48].

Let us now introduce some new notations to simplify the
expression of the equations we will have to solve. If we
introduce the following vector notations [48],

¢ ot ont oné onf o nf\T
Ve = (017, 057,057, 07, vk ugt)h,

W,e = (W whe Wi, (32)
then Eq. (31) can be written as

N, /\/l+|m\
Wir =Y Y Dupwr (@) =0, (33)
n'=0 ¢'=|m|

where the D, » matrix is now “dotted” into our new
vector v, Let us further define a vector v and w, which,
respectively, store all v,, and w,,,, as

T
_ T T T T T
V= {VOO’VOP""VON/""VW/""V(N1+1)(NX+1)} ,

T
Y S, T T T
w= {WOO’WOP""WON/""wl./\//""W(N:+l)(l\/1+1)} .

(34)

Note that vis a 6(N, + 1)(N, + 1) vector, whereas w is a
10(NV, 4 1)(N, + 1) vector. Then, Eq. (31) can be more
compactly written as

*Recall that n and £ here do not denote the overtone and
azimuthal mode number of the QNM frequency. Rather, n and #
are the order of the Chebyshev and the degree of the associated
Legendre polynomials.

w=D(@)v = [Dy + Do + D0’v=0, (35)

where the Dy ; , matrices are constant, 10(A, + 1)(N, +
1) x 6(N, + 1)(N, + 1) rectangular matrices. The QNM
frequencies of a Kerr BH correspond to the @ such that
Eq. (35) admits a nontrivial solution v.

IV. NUMERICAL METHODOLOGY TO SOLVE
THE EIGENVALUE PROBLEM
IN THE METRICS APPROACH

Unlike in the Schwarzschild BH case, to accurately
compute the QNM frequencies of a Kerr BH we have to
simultaneously solve all ten linearized Einstein equations
[Eq. (26)] for the six finite correction functions [u(z, x)].
In practice, this can be achieved through a Newton-
Raphson method whose details, advantages, and numerical
implementations will be explained next.

A. Newton-Raphson method applied to QNM
frequencies in the METRICS approach

Equation (35) is a linear, homogenous equation for v,
which creates two difficulties in computing the QNM
frequencies. First, Eq. (35) admits a trivial solution, to
which the Newton-Raphson algorithm may accidentally
converge. Second, Eq. (35) is linear in v so the solution is
not unique, i.e., if v is a solution, then cv, where c is a
constant, is also a solution of Eq. (35).

To remedy these two difficulties, we separately consider
perturbations “led” by the polar and axial sectors, i.e.,
perturbations that have a larger amplitude in a particular
parity. To obtain perturbations led by a given parity, we
set the initial guess of the Newton-Raphson method for
the metric perturbations of the opposite parity to zero,
and a spectral coefficient of the leading parity to unity.

Without loss of generality, for polar-led perturbations, we
n=0,=m| __

start with an initial guess of 7, ;<4 = 0 and v,_5 =1;
for axial-led perturbations, we start with /;_sc = 0 and
=07 — 1 Upon iteration of the Newton-Raphson

method, however, the mode that was initialized to zero
will be driven away from zero because our initial guess
does not satisfy the linearized Einstein equations.

The isospectrality of the Teukolsky equation, and thus
of the Einstein equations, however, guarantees that both
the polar- and axial-led modes will have the same QNM
frequencies. In other words, since the spectrum is iso-

pectral, any QNM ¢ must have the same wém and ng’.

Therefore, we expect that if we consider polar-led or axial-
led perturbations, we ought to find the same QNM
frequencies. As a side note, if considering a modified
gravity theory where isospectrality is broken, we need
the initial guesses to be such that purely axial or purely
polar perturbations are excited, which we will explore in
future work.
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Let us then focus our discussion on polar-led perturba-
tions only, keeping in mind that the procedures applied
below apply to the axial-led perturbations similarly.
As mentioned, for polar-led perturbations, our initial guess
of vis

n=0,=m| __
Vi) =1

) (36)
which breaks the linear-scaling invariance of Eq. (35),
so that, for a given w, Eq. (35) admits a nontrivial solution.
With this convention in place, we now have 10(./\/ .+
1)(N, + 1) equations for 6(N, + 1)(NV, + 1) unknowns,
which are the remaining mode components vzz?’#o and w.
We denote all these unknowns by a 6(N, + 1)(N, + 1)-

vector X,

x® = {2 o} (37)

Symbolically, we denote Eq. (35) when in?’f:‘ml =1by

) 6 N. N+m|
P n//
£ =122 ) Buewe(@)y2f” o0,
j=1 W'=0 ¢'=|m| 1723"/:""‘:1
(38)

where the subscript “(P)” reminds us that we are focusing

on the polar-led perturbations, and the bracket notation

[X],s=0.r=m _, implies that X is evaluated with the condition
k=1 -

vzz?’f:‘m‘ = 1 of Eq. (36) enforced. The quantity f(P) can

be thought of as a vector-valued function of the vector x(P),

P (x) = [/ ®icrz oo (39)

There are several approaches to solve Eq. (38), such as
gradient descent, variable projection [113], or Newton-
Raphson (see, e.g., [114]). In this work, we solve Eq. (38)
through the Newton-Raphson method. To devise the
Newton-Raphson iteration procedure, we consider the
infinitesimal differences of £() due to an infinitesimal
displacement of xP) from an initial solution,

df =7 - dx, (40)

where J is the 10N, +1)(NV,+1)x6(N,+1)(N,+1)
Jacobian matrix, whose (i, j)th element is given by

_ 0f;
x| '

JIx=x(,

RIfy (41)

and we have dropped the superscript (P) for clarity. Then
we write

dx = Xn+1 — Xp,

df = f(xn—H) - f(Xn) ~ _f(xn)v (42)

where we have approximated f(x,,;) by 0 because X,
should be a better guess than x,,. Hence, given a guess x,,,
we can update it by solving

J- (Xn+1 - Xn) = _f(Xn)v (43)

which can readily be done using the Moore-Penrose inverse
of J

Xp+1 = Xy — J_l ' f<xn>‘ (44)

Here J~! denotes the Moore-Penrose inverse of J, which is
a matrix of 6(N, +1)(NV, +1) x 10N, + 1)(NV, + 1).
As the residual vector, f(x,) is a 10N, + 1)(NV, + 1)
vector, J7'-f(x,) gives a 6(N,+1)(N,+1) vector,
which is of the same length as x,,.

Formally, the Newton-Raphson method does not provide
an exact solution, but rather it yields an approximate
numerical solution that satisfies the equations to a specified
error tolerance. The iterative method then ends when the
error tolerance is reached. In this work, we terminate the
iterations when

1£(x)l> <, (45)

where ||f(x,)]|, is the 2 norm of the residual vector f(x,,)
and ¢ is the error tolerance. Henceforth, we will set
e=1077. If ||f(x,)|l, =0, all ten linearized Einstein
equations are satisfied exactly.

For the axial-led perturbations, we set

n=0,/=|m
00—, (46)

and we then solve the following system of algebraic
equations

6 N Nytiml
A ! ol
R =120 2 Buewr (@)l =0
J=1 n'=0 ¢'=|m| n=0.0=|m| _;

We solve this equation using the Newton-Raphson

algorithm explained above with £*)(x) = { f,({A)(x)} and

A) = {ing'#o,w(A)}T. When solving for axial-led

modes, we will employ the same tolerance ¢ as when
solving for polar-led modes.

x = x
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B. Advantages of implementing
the Newton-Raphson method

Now that we have explained the details of the Newton-
Raphson algorithm, we can discuss its advantages over the
previous implementation of [48]. First, the version of the
Newton-Raphson method described above allows us to
solve all ten linearized Einstein equations simultaneously.
Previously, in [48], we solved only six (out of the ten)
linearized Einstein equations to compute the QNM
frequencies. In principle, the resulting @ and v obtained
by solving only six equations may not satisfy the remaining
four (whether they do or not depend on which six equations
are chosen), but formally, physically viable metric per-
turbations should satisfy all linearized Einstein equations.
The Newton-Raphson method described above ensures
that the @ and v correspond to metric perturbations that
satisfy all ten linearized Einstein equations, as well as the
four linearized Bianchi identities, the latter of which
implies the conversation of energy and momentum of the
metric perturbations. Thus, the Newton-Raphson method
guarantees that the resulting metric perturbations are
physically viable.

Second, the Newton-Raphson method avoids spurious
eigenvalues, i.e., solutions to the quadratic eigenvalue
problem that do not actually correspond to true QNM
frequencies. This method focuses on one QNM at a time,
and it only explores the physically motivated regions in the
complex plane. As a result, the Newton-Raphson method
saves computational time and effort. In contrast, the method
in [48] transforms the quadratic eigenvalue problem into a
linearized generalized eigenvalue problem, which leads to
many spurious eigenvalues for both numerical and physical
reasons. Numerically, the finite precision to which one
computes the matrices D;_ ; , and the numerical instability
introduced by the transformation contributes to the exist-
ence of spurious eigenvalues. Physically, under-resolving
the physics in the solution (for example, because of
truncation of the approximate spectral expansion), and
misrepresenting the physics in the solution (for example,
due to the use of a leading-order asymptotic expansion in
the resummation of the controlling factor) can also lead to
spurious eigenvalues. Thus, with the implementation
in [48], one needs to identify and separate the physical
eigenvalues from the spurious ones. On the other hand, the
Newton-Raphson algorithm focuses on one QNM at a time,
avoiding the identification problem entirely.

Third, enforcing the conventions in Eq. (36) ensures that
the eigenvector at different spectral orders corresponds to
the same metric perturbations, instead of being arbitrarily
scaled by a multiplicative constant. Solving the whole set of
algebraic equations in this way allows us to reconstruct
metric perturbations, while simultaneously computing the
QNM frequency. This is drastically more convenient than
reconstructing the metric perturbations using the CKK
formalism applied to the Teukolsky solution. By keeping

track of the changes in x, we can also monitor the
numerical stability and terminate the computation when
a certain accuracy is reached. All these improvements make
studying the gravitational perturbations of a rotating BH
with the METRICS approach more efficient.

Finally, the Newton-Raphson method keeps the dimen-
sion of the coefficient matrix unchanged if we apply the
spectral method to other modified gravity theories. For
example, in dynamical Chern-Simons gravity, the linear-
ized field equations usually involve third-order time deriv-
atives of the metric [64,115]. In the frequency domain and
upon spectral expansion, the linearized field equations
involving these higher-order time derivatives result in an
eigenvalue problem of higher-than-second degree in the
QNM frequency. If one transforms this eigenvalue problem
into a linear generalized eigenvalue problem, as done
in [48], then the order (size) of the resulting matrices will
be greatly increased, which requires more memory to store
them and more computational resource to compute the
eigenvalues. However, using the Newton-Raphson algo-
rithm, no augmentation of the matrix is needed, and the
dimension of the matrix that we need to handle remains
unchanged, making the spectral method more easily gen-
eralizable to modified gravity.

C. Numerical implementation

In this subsection, we explain the setup for the numerical
computations of the QNM frequencies with the Newton-
Raphson method. To simplify our discussion, we assume
N, =N, =N. We denote the axial-led frequency of a
given mode ¢ computed using N x N spectral functions by
w((lA) (N) and its polar-led counterpart by a)SIP) (N). Similarly,
we denote the metric perturbations reconstructed using
N x N spectral functions by

N N-+|m|

w2 N) =3 3 i (NT, ()P (). (48)

n=0 ¢=|m|

where v7?(N) are the mode coefficients obtained using
N x N spectral functions. With this at hand, D(w) becomes
a 10(N + 1)? x 6(N + 1)? rectangular matrix and X is a
6(N + 1)? vector.

Let us begin by discussing the initial guess of the QNM
frequency to initialize the Newton-Raphson method. We
will here choose the first two significant figures of the real
and imaginary parts of the known QNM frequencies of
Kerr BHs at the corresponding value of the dimensionless
spin a as the initial QNM frequency guess for most of our
computations. Doing so results in a speed up of our
calculations, which will allow us to explore the spectrum
more efficiently. This choice, however, does not affect
sensitively the METRICS frequencies we will obtain,
as we will show in more detail in Sec. VI B. For example,
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we obtain very similar METRICS frequencies when we use
just the first significant digit of the known QNM frequen-
cies of Kerr BHs as our initial guess. Moreover, if we did
not know the QNM frequencies of the Kerr BH at all, we
would still be able to implement an initial guess as follows.
Since the Kerr metric is a continuous function of a, the
QNM frequency should also depend on a continuously.
Thus, we could start by considering a BH with small spin
a; and use the QNM frequencies of the Schwarzschild BH
as the initial guess. Once the Newton-Raphson method
converges to a QNM frequency for a BH with spin a;, we
could use this value as the initial guess for a BH with a
slightly larger spin. Repeating this process iteratively, we
would be able to build a tower of QNM frequencies with
guesses from the previous iteration.

This argument can be generalized to BHs in modified
gravity. For theories that can be treated as deformations
from GR, continuously parameterized by coupling con-
stants and with a smooth GR limit, we expect the QNM
spectra to branch out from the Kerr spectra continuously in
the complex plane. Therefore, we should be able to obtain
the modified gravity QNM frequencies for small deforma-
tions from GR using the Kerr frequencies as our initial
guess. For larger deformations, we can then take the QNM
frequencies of the small coupling constants as the initial
guess, and continue recursively.

The numerical implementation of the inverse of the
Jacobian matrix requires detailed discussion. We compute
the Moore-Penrose inverse using the built-in PseudoInverse
function of Mathematica with double precision. The
Moore-Penrose inverse and all quantities in the subsequent
computations are stored and computed with double pre-
cision. We checked that increasing the precision limit of the
calculations does not significantly affect our results.

As mentioned before, the termination criterion of the
Newton-Raphson method is controlled by a tolerance,
which we set here to ¢ = 107, That is, we iterate the
Newton-Raphson method until the 2 norm of the residual
vector is below this tolerance. We find empirically that the 2
norm of the residual vector of converged solutions is
usually 107°-107% by the end of the iteration process
(see Fig. 3), and further reducing the tolerance has no
significant effects on the final results. Moreover, when the
Newton-Raphson algorithm converges, it usually converges
within ~10 steps.

As implied in the previous paragraph, there are indeed
cases for which the Newton-Raphson method does not
converge with the numerical settings described above. This
is particularly the case when N is too small to accurately
represent the solution to the linearized Finstein field
equations. While we expect that the linearized Einstein
equations should always admit a nontrivial solution cor-
responding to a QNM, mathematically, algebraic equations
resulting from the spectral expansion of the linearized
Einstein equations may only admit the trivial solution.

At best, the resulting algebraic equations admit an
approximated nontrivial solution, whose residual [f(x)]
is small. If the minimal residual at a given QNM frequency
is larger than the prescribed tolerance, the iterator
becomes trapped in an infinite cycle and the iterations
never converge. To curtail these pathological behavior of
our Newton-Raphson implementation, we perform at most
20 iterations for a given N, and store the resulting @ at the
20th iteration. This choice of maximal iteration number
does not affect our computations, because only the
iterations of small N are affected; in general, we will
select ws computed with a large enough N such that the
iterations converge within 10 steps.

V. QNM FREQUENCIES FROM THE
METRICS APPROACH

In this section, we apply the procedures developed in the
last section to compute the dominant mode (n = 0, [ = 2,
m = 2, the so-called 022 mode) frequency of the Kerr
BHs. Since the 022 mode is the QNM that usually
dominates the ringdown phase of compact binary coales-
cence [15,116,117], we focus on it in this paper, although
the METRICS approach can be applied to any n/m mode.
We will first show the numerical results concerning the
022-mode frequency of the Kerr BH of a = 0.1 and study
its properties. Then, we will apply the METRICS approach
to compute the fundamental frequency of more rapidly
rotating Kerr BHs with a < 0.95.

A. 022-mode frequency of Kerr BHs
with dimensionless spin a =0.1

Let us begin by computing @g,, of a Kerr BH of
dimensionless spin a = 0.1. Although this BH has a small
rotation rate, its numerical results reflect many common
features that we also observe when we study more rapidly
rotating Kerr BHs. Before proceeding to quantify the
properties of the numerical results, we define an error
measure, which is the absolute error between the 022-mode
frequency computed via the METRICS approach (using N
Chebyshev and associated Legendre polynomials) and that
computed by solving the Teukolsky equation using
Leaver’s continued fraction method,

A/P A/P
<S‘é)zz/ )<N> = 0)(()24 )(N) — wyn(L)

, (49)

where the superscript (A) and (P) denote whether the mode
studied is axial- or polar-led, and @y, (L) is the 022-mode
frequency computed using Leaver’s method.

The left panel of Fig. 1 shows the base-10 logarithms of

Eé’;ép) (N) of the Kerr BH of @ = 0.1 as a function of N.

From Fig. 1, we observe two features. First, log, S(()%m (N)
decreases with N approximately linearly for N € [1,29].
This implies that both the axial- and polar-led, 022,
METRICS QNM frequencies converge to the Leaver
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Absolute error (left) and backward modulus difference (right) of the axial-led (blue circles), polar-led (red squares), and

averaged 022-mode frequency (green diamonds) of a Kerr BH with dimensionless spin a = 0.1, computed using the METRICS
approach as a function of the spectral order N. At all spectral orders, the initial guess for the Newton-Raphson method is the first two
significant digits of the known, 022-mode frequency. Observe that the base-10 logarithm of the error and backward modulus difference
decreases approximately linearly with spectral order, as expected from the exponential convergence of spectral expansions.

frequency exponentially with N, which is consistent with
the exponential-convergence property of spectral expan-
sions [118]. The exponential convergence can also be

quantified by computing the backward modulus difference

of wp)”.

(P/A)

BN (N) = |V (N + 1) = iy (V)] (50)

The right panel of Fig. 1 shows the base-10 logarithms of

B((f;ém (N) as a function of N. Observe that log 1068%” (N)
varies with N approximately linearly, consistent with the

pattern of logloé'(()’;ép) (N) and the expected exponential
convergence of the spectral expansion. The monotonically
decreasing property of By, (N) suggests that we should
always select the @y, (N) of the largest computed N for the
range of Ns we investigated.

The second observation we can draw from the left panel

of Fig. 1 is that, at a given N, EE)/;%(N) and Eég)z(N) are

very close to each other. Since both Ef)’;% (N) and 5(()1;2(N )
decrease  exponentially, so does the difference
|w022(N) wéz)z(N)L This implies that a)(g[;%(N) and
a)f)g)z(N) are also very close to each other, which is
seemingly consistent with the expected isospectrality of
QNM frequencies of gravitational perturbations of BHs in

GR. A savvy observer, however, will notice that a)(()/;%(N )

and a)g;)z(N) are not identical, and their difference,
|a)8§%(N ) — w(()l;)z (N)|, is therefore a measure of the error
of the Newton-Raphson algorithm. Nonetheless, if
o, 022(N ) — a)ém( N)| is smaller than the absolute errors
5(()/;%( N) and 5022( ), the METRICS 022-mode frequency
is still consistent with isospectrality.

Figure 2 shows the ratio of |wé§%(N) - (()22( N)| to

Eé’g‘%(N) (blue circles) and to 58;)2(N) (red squares) as a

function of N. Observe that, for small N, |w(<)/;%(N) -
a)é?z(N)| can be larger than 8(()[;%(N) or 582)2(N), which
is reasonable because when N is small, the METRICS
frequency is not very accurate, and the solutions we find
will not necessarily respect isospectrality. Importantly,
however, as N increases and becomes large, and in
particular when N = 29, |w(()g‘;(N) a)(()gz( N)| is smaller
than either Sf)/;%(N) or 88?2(N). This indicates that the
differences between the axial- and polar-led frequencies are

within the absolute error of the frequency, thus confirming
the expected isospectrality of GR. We have also checked
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FIG. 2. Ratio of \a)(()/;%( N) - w(ogz( N)| to 5022( ) (blue circles)
and to 58};)2( N) (red squares) as a function of N. At N = 29,

|wé§2)(N) wf)g)z(N)\ is smaller than both Sf)};)z(N) and EEZZ(N),
indicating that, although a)((gz)(N ) and wg};)z(N ) are not formally
identical due to numerical errors, they are still consistent with
each other, and thus, with the expected isospectrality of the QNM

frequencies of BHs in GR.
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that |wé§%(N ) — a)(()g)2 (N)] is smaller than the absolute error

for larger values of a. Since wé’;%(N) and a)(()g)z(N) are

almost the same, from here on, we take their average and
define this to be the METRICS 022-mode frequency,

@0 (N) = 5 (0 (N) + o) (N)). (51)

N[ =

Quantities associated with the averaged frequency, such as
the absolute error and backward modulus difference, are
labeled as “averaged” in the figures throughout the paper.

To ensure the frequency and eigenvector that we solve
for using the METRICS approach satisfy all ten linearized
Einstein equations, we monitor the residual ||f(xy_ )|, as
the iterations progress at every spectral order N. As pointed
out in Sec. IV C, the algebraic equations [Egs. (38)
and (47)] are just a spectral approximation of the linearized
Einstein equations, and thus, they may not admit an exact
solution. Nonetheless, if the algebraic equations are a good
approximation to the linearized Einstein equations, we still
expect to be able to obtain a solution x such that ||f(x)]|, is
extremely small as compared to the initial guess. Figure 3
shows logo||f») (xy,)|l, as a function of the iteration
number (N;) at different spectral orders, with tolerance
error (¢ = 10‘7) marked by a solid, horizontal, black line.
We show only the residual of the axial-led computations
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FIG. 3. Residual of the algebraic equations at various, fixed

spectral orders N, but as a function of the iteration number N;, of
the Newton-Raphson method used to compute the QNM fre-
quency of an a = 0.1 Kerr BH, where the horizontal line marks
the error tolerance. Only the residual of the algebraic equations
related to the axial-led frequency is shown, because that related to
the polar-led one is quantitatively similar. Observe that, for all
spectral orders, the residual decreases as N;; increases. For small
spectral orders (i.e., N = 6 and 10), the residual reaches a plateau
as N ~ 3 or 4, which is smaller for the N = 10 case than for the
N = 6 case. This is because the algebraic equations cannot
faithfully approximate the linearized Einstein equations if the
spectral order is too small. When the spectral order is sufficiently
large (e.g., N = 15), the residual can become smaller than the
tolerance error, at which point the iterations are terminated.

because the residual of the polar-led computations is
quantitatively similar. Observe that for, all N, the initial
residual is the same because the same initial guess
[cf. Eq. (46)] is used, but as the iterations progress, the
residual decreases. For small spectral orders (i.e., N =6
and 10), the residual reaches a plateau as N;; reaches 3 or 4,
with the minimum residual deceasing for the larger N case.
The plateau and the decrease of the minimal residual is
because the algebraic equations cannot faithfully approxi-
mate the solution to the linearized Einstein equations if the
spectral order is too small. If we approximate the solution
to the linearized Einstein equations with a sufficiently high
spectral order, the minimum residual decreases monoton-
ically with iteration number, until it becomes smaller than
the tolerance. The iterations are then terminated, as in the
N = 15 (green diamonds) case. Observe that, at N = 15,
the final residual is about ten orders of magnitude smaller
than the residual of the initial guess, indicating that the
algebraic equations, and thus all the ten linearized Einstein
equations, are well satisfied numerically.

B. 022-mode frequency of Kerr BHs with moderate
dimensionless spins

We now apply the METRICS approach to compute the
fundamental mode frequency of more rapidly rotating BHs.
The left panel of Fig. 4 shows the £y, (N) of the averaged
022-mode frequency of a Kerr BH with a = 0.3 (blue
circles), 0.6 (red squares), and 0.9 (green diamonds).
We show only the averaged frequency because the axial-
and polar-led frequencies are very close to each other when
N is large, as pointed out in Sec. V A. Observe that, for all
dimensionless spins shown, log;y g (N) first decreases
approximately linearly with N. This feature was also found
in the a = 0.1 case, and it is consistent with the exponential
convergence of spectral expansions. Nonetheless, as N
reaches a certain value that depends on a, the absolute error
reaches an a-dependent plateau (which is unrelated to the
plateau of the residual we studied as a function of iteration
number in the Newton-Raphson method).

To understand the nature of these plateaus, we compute
By (N) for different dimensionless spins, which is shown
in the right panel of Fig. 4. As log;q B (N) decreases
approximately linearly with N throughout N €[1,29], we
conclude that wg,, at different dimensionless spins con-
verges exponentially to a value that is different from the
correct one, as given by Leaver’s, continuous fraction
method. In other words, the METRICS QNM frequencies
show a tiny deviation from the correct value, whose
modulus is ~10~® from the correct frequency. One possible
reason of such a deviation may be the breakdown of the
validity of separating u,(r, y) into a product of a function
of r and a function of y at high dimensionless spin. The
metric components of the Kerr BH spacetime [cf. Eq. (1)]
are not separable in such a product decomposition, since
they contain powers of 7> + a?y? in denominators, which
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FIG. 4. The absolute error (left) and backward modulus difference (right) of the averaged 022-mode frequency of a Kerr BH of
a = 0.3 (blue circles), 0.6 (red squares), and 0.9 (green diamond) computed using the spectral method as a function of the spectral order
N. At all spectral orders, the first two significant digits of the known 022-mode frequency are used as the initial guess to initiate the
Newton-Raphson iterations. We observe that log;o £g»» (N) of different dimensionless spins first decreases approximately linearly with
N. When N reaches an a-dependent value, log;o g (N) for different dimensionless spins reaches an a-dependent plateaus. Since
log o Byys (N) decreases approximately linearly with N for N € [1, 29], the spectral 022-mode frequency is exponentially converging to a
frequency which shows a tiny deviation of modulus of ~107° from the Leaver frequency. This is actually reasonable because we are
solving the linearized Einstein equations transformed from the original ones using the asymptotic factor and the compactified
coordinate. Through the transformation, some physics is inevitably misrepresented, leading to the deviation of the METRICS frequency

from the Leaver frequency.

becomes increasingly manifest as a increases. In view of
this nonseparability, perhaps a more sophisticated function
of y is needed as a basis of the spectral expansion. Another
possible reason for the deviation may lie in the inaccuracy
of the asymptotic factor A(r). In the limit r — r,, A(r)
describes the diverging behavior of the metric perturbations
at the event horizon, which depends on a. However, A(r)
captures only the leading-order asymptotic behavior of
the metric perturbations. To improve the accuracy of the
method, perhaps subleading orders in the asymptotic
behavior of A(r) also need to be included. All of the
above calls for further investigations if one wishes to
improve the implementation of the METRICS approach.
With that in mind, nonetheless, the modulus of the
deviation is of the order of 107, which is small compared
to the existing and foreseeable QNM frequency measure-
ment using ground-based detectors (see, e.g., [15]).
Therefore, we leave such improvements to the METRICS
approach to future studies.

C. 022-mode frequency of Kerr BHs
with dimensionless spins a < 0.95

Using the METRICS approach, we now present results
for the fundamental mode frequency of Kerr BHs with
a <0.95. Table I lists the real (second column) and
imaginary parts (third column) of the averaged 022-mode
frequency at the corresponding a (left-most column). All
METRICS QNM frequencies are computed using 30
Chebyshev and associated Legendre polynomials. We show
only the first ten digits of the METRICS QNM frequencies
because the backward modulus difference is ~107'0 at

N = 29. For reference, the fourth and fifth columns of
Table I, respectively, list the real and imaginary part of
fundamental frequency computed with Leaver’s method at
the corresponding spin. More specifically, w(L) is the
fundamental frequency obtained by solving the Teukolsky
equation using Leaver’s method of continued fractions with
150 terms in the fraction; keeping this large number of
terms, we find that (L) is not changed up to the 16th
decimal at machine precision. To make sure that the QNM
frequencies (and the corresponding eigenvector) satisfy
all ten linearized Einstein equations, the right most two
columns show the residual ratio R, i.e., the ratio between
the residual when the iterations are terminated and that at
the initial guess, namely

R = Hf(xterminated) ||2
1£(x1) I

If the resulting frequency and eigenvector satisfy all ten
linearized Einstein equations well, then R should be close
to zero, which is indeed the case for all dimensionless spins
we calculated.

To visualize the above results, we present the axial-led
(blue circles), polar-led (red squares), and averaged (black
stars) 022-mode frequency computed using the spectral
method for 0.005 < a < 0.95 in Fig. 5. For comparison, the
fundamental frequencies computed with Leaver’s method
are shown as a function of a with a solid gray line. Figure 5
allows us to make several observations. First, both the
axial- and polar-led QNM frequencies are very close to
the known values computed using Leaver’s method at the
corresponding spin, indicating that our spectral method can

(52)
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TABLEI. Averaged 022-mode frequency (real part in the second column and imaginary part in the third column) computed using 30
Chebyshev and associated Legendre polynomials at different dimensionless spins a (first column). At all dimensionless spins, the first
two significant digits of the known 022-mode frequency are used as the initial guess to initiate the Newton-Raphson iterations. Only the
first ten digits of the METRICS QNM frequencies are shown because the backward modulus difference of the 022-mode frequency is
~10719 if 30 Chebyshev and associated Legendre polynomials are used. For reference, we show the real and imaginary parts of
frequencies computed with Leaver’s method on the third and fourth columns, keeping up to 150 terms in the continuous fraction. The

two right most columns show the ratio between the final residual and that at the initial guess [see Eq. (52) for more details].

a wge(spectral) oy (spectral) g (Leaver) oy, (Leaver) axial-led R axial-led R
0.005  0.3743023147  —0.0889522054  0.374302314745705 —0.0889522053640457 8.02x 107! 1.49x 10713
0.1 0.3870175384  —0.0887056990  0.3870175383645592 —0.0887056990268991 9.36 x 10712 3.85x 107!
0.2 0.4021453242  —0.0883111662  0.4021453241072112 —0.08831116615465 6.68 x 10713 1.35 x 10712
0.3 0.4195266818  —0.0877292719  0.4195266799093153 —0.0877292712328145 4.85x 1077 2.38 x 107
0.4 0.4398419217  —0.0868819620  0.439841909727434 —0.0868819580547294 9.32x 107" 434 x 107!
0.5 0.4641230260  —0.0856388350  0.4641229739649294 —0.0856388194008764 6.21 x 10710 1.62 x 10710
0.6 0.4940447818  —0.0837652022  0.4940446109217166 —0.0837651572095065 1.33 x 10~ 1.59 x 10~10
0.7 0.5326002436  —0.0807928732  0.5325997998444519 —0.0807927741196761 5.00x 107" 1.31 x 1071
0.8 0.5860169749  —0.0756295524  0.5860160981862801 —0.07562938913772186  1.89 x 107° 1.36 x 1070
0.9 0.6716142721  —0.0648692359  0.671613259501218 —0.06486906741255006  3.31 x 10~ 1.01 x 10~
0.95 0.7463199985  —0.0531490080  0.7463194371599231 —0.05314891507283093  4.72 x 107! 8.34 x 1071

Although the QNM frequencies computed by the spec-
tral method in Fig. 5 appear to be consistent with the known
values, we would still like to quantify the accuracy of our
results. To this end, we will employ the absolute error
measure of Eq. (49), the residual ratio of Eq. (52), and a

accurately compute the 022-mode frequency for rapidly
rotating BHs. Second, the axial- and polar-led QNM
frequencies almost coincide with each other, once again
indicating consistency with the isospectrality of gravita-
tional QNM spectra of BHs in GR.

al=0.95
—0.055 1——0:084-4
—0.060 1—=0-086
—0.065 1—=0.088 4 a=0.9
ER
§ —0.070 1 ~0.090
—0.075 4
—0.080 A
Teukolsky equation
085 - Axial-led
—0. Polar-led
Averaged
—0.090

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75
Re

FIG. 5. Axial-led, polar-led, and averaged 022-mode frequency of a Kerr BH of different dimensionless spin, from a = 0.005 to
a = 0.95, in the complex plane, computed with the METRICS approach. The solid line represents the frequencies computed by solving
the Teukolsky equation using Leaver’s method. The circles and squares show the values of the polar-led and axial-led QNM frequencies,
while the stars show the averaged values. Observe that the METRICS 022-mode frequencies coincide almost exactly with those
computed with Leaver’s method, indicating that the spectral method is capable of accurately computing the fundamental frequencies of a
generically rotating BH.
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FIG. 6. To gauge the accuracy of the spectral method, we compare the METRICS QNM frequencies (@ygrrics) to those computed
through Leaver’s method [119] (wy ). The top left panel shows the absolute error £ = |@ygrrics — @y |- The bottom left and right panels
show the relative fractional error in the real (AR = |1 — WRS1rics/@R¢]) and imaginary (AM™ = |1 — @l pics/@™]) parts of the
022-mode frequency, respectively. The top right panel shows the ratio between the residual of the linearized Einstein equation at the
initial step and the final step of the Newton-Raphson iterations (see the main text for definition). In all panels, the dashed vertical line
marks the mean value of the a of the remnant BH of GW 150914 reported in [120]. We observe that for the relative fractional error of the
real and imaginary parts of the METRICS 022-mode frequency at all spin is significantly smaller than that obtained by combining all the
LIGO-Virgo ringdown signals, which is ~1072 [15]. This suggests that the spectral 022-mode frequency is accurate enough to be
applied for analyzing actual ringdown signals, where the 022 mode dominates.

new measure: the relative fractional error in the real and
imaginary parts of the polar-led, axial-led, and the averaged
spectral QNM frequencies relative to that computed with
Leaver’s method [119], namely

(P/A)
AP |, _ @im(METRICS)
Re/Im @Re/Im (L) ’
Re/tm @Re/Im (L) ’

where wge/im(METRICS) and wge/im(L) stand for the
real and imaginary parts of @(METRICS) and (L),
respectively.

The top-left, bottom-left, and bottom-right panels of
Fig. 6 show the logarithmic (base 10) absolute error (£y»,),
relative fractional errors in the real part (Ag.), and the
imaginary part (Ap,) parts of the spectral 022-mode
frequency for the axial-led (blue circles), polar-led (red
squares), and averaged (black diamonds) frequencies,
respectively, as a function of a. Observe that, in general,
all three errors increase steadily as a increases.
Quantitatively, all errors first increase sharply from
~10710 to 107° as a increases from O to 0.6, and then
they fluctuate around 107® from a = 0.6 onward. This
behavior reflects the deviation of the METRICS 022-mode
frequency from the true frequency of rapidly rotating BHs,
as shown by the error plateau in the left panel of Fig. 4.
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Crucially, the relative error of the METRICS frequency
is about four orders of magnitude smaller than that obtained
by combining all the LIGO-Virgo ringdown signals, which
is ~1072 [15], and is also significantly smaller than the
(projected) relative fractional measurement uncertainty of
combining ~10? ringdown signals detected with the next-
generation detectors, which is ~107* [100]. This small
relative fractional error of the METRICS frequency indi-
cates that the METRICS frequencies are accurate enough to
use in the analysis of existing and future ringdown signals
detected by ground-based detectors.

The top-right panel of Fig. 6 shows the logarithmic (base
10) residual ratio (R) as a function of a. From this panel,
we identify no significant correlation between R and a.
Nonetheless, R for both leading parities is <107, which
means that the resulting QNM frequency and eigenvector
satisfy all ten linearized FEinstein equations quite well.

VI. ROBUSTNESS OF QUASINORMAL
FREQUENCY EXTRACTION WITH THE
METRICS APPROACH

In this section, we study the robustness of the calcu-
lations presented in the previous section. In particular, we
first focus on exploring the geometry of the solution space
by computing the residual as a function @, with the other
components of x fixed at the eigenvector obtained using the
Newton-Raphson algorithm. We then check the robustness
of the QNM frequency obtained using the Newton-
Raphson algorithms by computing the fundamental fre-
quency using different initial guesses. Finally, we study the
effects of our choice of boundary conditions for the pg(_)oo
constants in the controlling factor of the spectral expansion.

A. Search for spurious minima in solution space

We first explore the robustness of the QNM frequency
calculations by exploring if there exists other (unphysical)
solutions to Egs. (38) and (47) that are near the one we
obtained by the Newton-Raphson iterations. We check this
by computing the residual, ||f(x)||,, as a function of @ with
v fixed at that found from the Newton-Raphson method.
Figure 7 shows a color plot of || f(*)(x)]|, as a function of @
when computing the axial-led frequency of a Kerr BH with
dimensionless spin ¢ = 0.6 and N = 14 terms in the
spectral expansion. The color plot covers a square of width
0.2, centered at the fundamental frequency obtained with
Leaver’s method for a Kerr BH with @ = 0.6 (marked by
the white cross). We choose this spin because it corre-
sponds to a rapidly rotating BH whose frequency does not
require many spectral bases to be accurately computed (see
Fig. 4). We show only the results of the axial-led pertur-
bations because those concerning the polar-led perturba-
tions are similar. Observe that the residual is minimized
only at a position that is very close to the known
Leaver frequency, with no local minima surrounding the

0.000

—0.025

—0.050

—0.075

Im
Wo22

—0.100

0.75
—0.125

0.50
—0.150
0.25
—0.175

0.00

0.400 0.425 0.450 0.475 0.500 0.525 0.550 0.575

Re
Wo22

FIG. 7. The residual, ||f(x)||, [see Eq. (45) for definition], of
computing the axial-led 022 frequency of a Kerr BH of a = 0.6
and N =14 as a function of @ in the complex plane. The
eigenvector v is fixed at the one obtained using the Newton-
Raphson iterations. The color plot covers a square of width of 0.2
centered at the Leaver 022-mode frequency, which is marked by
the white cross. We observe that the residual is minimized at a
position near the known 022-mode frequency, with no other local
minima around. This suggests the Newton-Raphson iterator is not
likely to be attracted or trapped in a local minimum which does
not correspond to a physical QNM frequency. The residual of the
polar-led frequency is similar.

correct fundamental frequency. This indicates that the
Newton-Raphson method will not be attracted or trapped
in local minima that do not correspond to a physical
QNM frequency.

B. Sensitivity to initial guess

Next, we check that the resulting QNM frequency does
not depend on the initial guess sensitively. To study this, we
displace the initial guess by 0.01 “northward,” “eastward,”
“southward,” and “westward” in the complex plane, rela-
tive to the fundamental frequency computed with Leaver’s
method. Figure 8 shows the “trajectory” in the complex
plane traced by the Newton-Raphson iterator for these
different initial guesses, when computing the axial-led 022-
mode frequency of a Kerr BH of a = 0.6 with N = 14
terms in the spectral expansion. The cross in the figure
represents the Leaver 022-mode frequency for this Kerr
BH. We only show the trajectories of the axial-led
frequencies because the trajectories of the polar-led fre-
quency are similar. Observe that, regardless of the direction
of the displacement of the initial guess, the Newton-
Raphson iterator approaches the known frequency within
three iterations. Moreover, regardless of the initial guess
chosen, the iterations reach the tolerance error of 1077
within six iterations. The resulting absolute error of the
axial-led frequencies is smaller than 107 in all cases. The
results of this test indicate that the QNM frequencies
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FIG. 8. The trajectory in the complex plane traced by the

Newton-Raphson iterator as we use differential initial guesses to
compute the axial-led 022-mode frequency of a Kerr BH of
a = 0.6 of spectral order 14. We only show the trajectories of the
axial-led frequencies because the trajectories of computing the
polar-led frequency are similar. The different initial guesses are
obtained by displacing the known 022-mode frequency (black
cross) by 0.01 northward (blue circles), eastward (red squares),
southward (green diamonds), and westward (violet pentagons).
We observe that, within three iterations, the iterator has ap-
proached the known frequency very closely. We verify that
starting from all initial guesses, the iterations reach the tolerance
error of 1077 in six iterations. These results indicate that the QNM
frequencies computed using our spectral method are robust
against the choices of initial guesses.

computed using our spectral method are robust against the
choice of initial guess, allowing us to accurately compute
the QNM frequencies without having an accurate initial
guess a priori.

C. Effects of pg) and p(ol.f)

As in the Schwarzschild case, we find that using different

values of p(;) and pg;) still allows us to accurately compute

the QNM frequencies of a Kerr BH, provided that pg‘) and

pg;) are large enough to capture the diverging behavior of
the metric perturbations at the event horizon and spatial
infinity. If this is the case, then the corresponding u;(—1 <
z,y < +1) are finite within the computational domain.
Figure 9 shows the absolute error of the METRICS 022-
mode frequency computed using the Schwarzschild pl(,jl,€>
and p&? [given by Eq. (16), blue circles] and using the same

pg) and pg;) but enlarged by unity (red squares). Observe

that the absolute error of different sets of pg{) and p(olf,) are

very close to each other, indicating that the accuracy of the

—6 i =
n [ ]
n
— =71
=) ]
(@]
é _g n
3 :
S —91
W
=
éﬂ —10- n
" = ®  Schwarzschild py;) and p(ali)
-11 o o B Schwarzschild py;) and p(ali) +1
0.0 0.2 0.4 0.6 0.8

Dimensionless spin a

FIG. 9. Absolute error of the 022-mode frequency using the
METRICS approach with 30 Chebyshev and associated Legendre
polynomials, with the Schwarzschild pg) and pg,’;) (blue circles,
see main text) and the same p%‘) and p&? but enlarged by unity
(red squares). Observe that a different radial scaling does not
significantly affect the accuracy of the 022-mode frequency,
which indicates the robustness of the METRICS approaches
against different scalings.

QNM frequency calculations does not sensitively depend

on the explicit pg;) and pg,];) used, which is observed and

explained in [48]. Moreover, as also pointed out in [48], this
robustness allows us to circumvent uncertainty about the

“correct” p%‘> and pg,lé), such as the dependence of p%d and

pf,’é) on the dimensionless spin (if any).

Other than these sets of pg) and pf)].f), we also experiment

with the component-independent set of pgc) = pgﬁ) =2.We

find that this set of p%‘) and p&? still allows us to accurately

compute the 022-mode frequency of the Kerr BH, but
special care needs to be taken. We find that, for rapidly
rotating BHs and large N, the Newton-Raphson iterator is
trapped and stuck at the initial guess. In other words, the
iterations do not significantly improve the initial guess. For
example, the left panel of the Fig. 10 shows log;y € (N)
of the axial-, polar-, and averaged 022-mode frequency as a

function of N computed with pgq = pg;) = 2. The hori-
zontal line marks the absolute error of the initial guess
of the Newton-Rapshon iterations for computing the
022-mode frequency of a Kerr BH with a =0.9. We
observe that for N < 12, Egpn(N) first fluctuates between
~1072-107!, and for 13 <N <20, Eyn(N) decreases
exponentially. The absolute error at N =20 is ~107°,
which is similar to the accuracy achieved using the previous

sets of pz{) and pgé). For N > 20, Ey»n(N) of all three
frequencies is very close to the error of the initial guess,
which suggests that the iterations fail to improve our
initial guess.
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FIG. 10. Absolute error of the axial- (blue circles), polar-led (red squares), and averaged (green diamonds) METRICS frequency of a
Kerr BH with a = 0.9, computed assuming pg() = pﬁ? = 2, as a function of the spectral order N (left panel), as well as the absolute error

of the initial guess of the Newton-Raphson iterations (black horizontal line). Observe that the minimal absolute error is ~10~°, which is
similar to the minimal error computed using the other set of pg) and pf(fé). This indicates that the METRICS approach can still be used to

accurately compute the QNM frequency of rapidly rotating BHs using component-independent p(;) and pgﬁ). However, observe also that
when N is large, the absolute error of the final results of the Newton-Raphson iterations is almost the same as the error of the initial
guess, meaning that at that N the Newton-Raphson iterations fail to improve our initial guess. We find that the Newton-Raphson
iterations fail at the spectral order where the rank deficit [see Eq. (54) for definition] of the Jacobian matrix at the final step of the
iterations decrease to < —2 (right panel). This correlation suggests that we should also monitor the matrix rank as the iterations and to

discard the results suffering from significant rank deficit.

This failure of the iteration method is related to the rank
of the Jacobian matrix. Explicitly, when N is sufficiently
large, the rank of J can be significantly smaller than the
length of x. To illustrate this fact, the right panel of Fig. 10
shows the rank deficit of the Jacobian matrix,

rank deficit = rank(J) — dim(x), (54)
at the final step of the Newton-Raphson iterations as a
function of the spectral order. We observe that when
N > 21 for the polar-led perturbations and N > 25 for
the axial-led perturbations, which are the spectral order
when the Newton-Raphson iterations of the corresponding
leading parity fail, the rank deficit drops to < —2, which
implies that the system is significantly underdetermined.
One possible explanation for why this does not happen with

) )

and pg.f of the Schwarzschild spacetime, is that, by

setting p%() and pglf,) to be the same number of all k, we are
artificially demanding that perturbations of all metric
components follow a similar asymptotic behavior, which
increases the degeneracy of the problem. The correlation
between the failure of the Newton-Raphson iterations and
the rank deficit suggests that one should also monitor the
rank of the Jacobian matrix to discard results obtained with
Jacobian matrices of rank deficit < —2.

the pﬁf

VII. EXTRACTIONS OF METRIC
PERTURBATIONS WITH THE
METRICS APPROACH

The METRICS approach offers a distinct advantage over
the established Teukolsky formalism when investigating

perturbed GW metrics. In the Teukolsky formalism,
obtaining metric perturbations from curvature perturbations
involves a complex sequence of steps, including the
introduction of intermediary quantities, such as the Hertz
potential [80,83,121]. On the other hand, the METRICS
approach starts with metric perturbations, obviating the
need for any supplementary metric reconstruction pro-
cedure. In this section, we discuss the extraction of metric
perturbations using the METRICS approach and validate
the accuracy of the reconstructed metric (which we refer to
as the “spectral metric”’). We shall do so by comparing the
Teukolsky perturbation function (y, the solution of the
Teukolsky equation) computed using the spectral metric to
that obtained by numerically solving the Teukolsky equa-
tion. Finally, we analyze the relative content of the axial
and polar sectors of metric perturbations of the Kerr BH
with a < 0.95 obtained using the METRICS approach.

A. Numerical validation with the Teukolsky equations

We validate the accuracy of the spectral metric by
comparing the Teukolsky perturbation function computed
using the spectral metric, y(spec), to that obtained using
Leaver’s method, y(L). In this section, to illustrate the
strength of the METRICS approach, we focus only on the
metric perturbations of an @ = 0.9 Kerr BH, because it is
sufficiently rapidly rotating to allow us to quantify any
source of error in the metric perturbations.

The Teukolsky perturbation function is related to the
perturbed Weyl scalar y, via

w = (r—iMacos 0)*y,, (55)
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and y, is related to metric perturbations through [80,82,83]

—_

A

l,,4:§{( +3a+p—7)(6+2a + 25— 7)hy,
+ (A +E+3y =) (A + i+ 27 = 27) b
~[(A+a+3y-7)(6-25+2)
+(6+3a+B-0)(A+ 20+ 2)hem}, (56)
where

§=m'a,,  A=n"9, (57)
n# and m* are two of the Kinnersly null tetrads in the Boyer-
Lindquist coordinates, the quantities «, 5, u, and v are NP
spin coefficients [70,71,73,122], and

— v
hyn = hy,n*n”,

— 7 U
hm = h,wm”m s

hym = hyn'm”, (58)

are the metric perturbations projected onto the tetrad
vectors. We remind the reader that A is different from
A=(r—ry)(r—r_).

To compute the Teukolsky perturbation function,
w(spec) at a given spectral order N, we first compute
the metric perturbation £, using the METRICS approach
[Eq. (20)]. We then project A, onto the null vectors n* and
m* to obtain the perturbed fourth Weyl scalar y, [Eq. (56)].
Finally, we compute (spec) from y, using Eq. (55). We
denote the y(spec) computed using the spectral metric up
to N spectral orders as y(spec; N).

To obtain w(L), we solve the Teukolsky equation (with
s = —2) using Leaver’s, continued fraction method [119].
More specifically, we solve the radial and angular
Teukolsky equations using a 150-term continued fraction.
We keep this number of terms because we find that the
QNM frequency and the separation constant only change
below the 10th decimal place if more terms are included in
the calculations (i.e., with a large N).

We then compare w(spec; N) and w(L). Since the
Teukolsky equation is a homogenous, linear, partial differ-
ential equation, its solution admits linear-scaling invari-
ance. Thus, to make sure that we are comparing the
w(spec; N) and w(L) that correspond to the same
Teukolsky function, without loss of generality, we fix

w(spec; N, xpy) = w(L,xp) =1,

= (1,r.0,¢) = (0,3,%,0), (59)

by normalizing each of them by their value at xB. If the
METRICS approach correctly reconstructs the metric

perturbations around a Kerr BH, then y/(spec) and w(L)
should be the same. Figure 11 shows the real (right panel)
and imaginary parts (left panel) of w(L) (solid blue line)
and w(spec) (dashed red and dashed-dotted lines for
the axial- and polar-led perturbations, respectively). Both
w(spec) and w(L) vary with r in a similar way. They attain
maxima and minima at similar r positions, and the
numerical value of y(spec) at a given r coordinate is close
to that of y(L) at the corresponding radial coordinate.
These consistencies indicate that the METRICS approach
can correctly reconstruct the metric perturbations around
the Kerr BH.

To quantify the differences between w(spec) and (L)
after the scaling, we define the following mismatch with
respect to r,

Rely (spec) [y (L)

MM =1- , 60
Wl pe] PO’
where
[A|B] = /: drA(t —0.7.0= ’2[4))
xB*(t:O,r,ng,q’)). (61)

Here riy¢ and ry,, should formally be r, and oo, respec-
tively, and the asterisk stands for complex conjugation.
For actual numerical evaluation, we slightly displace the
lower limit from the event horizon to 7y = r, + 1072 to
avoid overflow due to the divergence of the asymptotic
factor multiplied to the metric; similarly, we set ry,, =
rint -+ 200M to make sure the far-field behavior of y is
included in the calculations. To reduce the computational
time required for this calculation, we focus on evaluating
the 2 norm on the equatorial plane; we expect the M
evaluated at different § will show similar variation with
respect to N. If w(spec) =w(L), then MM =0; if
w(spec) is very different from y(L), then MM ~ 1.
Thus, an MM closer to 0 indicates that y(spec) is similar
to w(L). We numerically evaluate the integrals as a
Riemann sum at a radial resolution of Ar = % and check
that further reducing the resolution does not change the
first three digits of the base-10 logarithms of MM. We
find that MM ~ 1072 for both the axial- and polar-led
perturbations of a Kerr BH with a = 0.9, reconstructed
using the METRICS approach. This implies that, in spite of
the small differences, the mismatch between the Teukolsky
function is very good.

Finally, we conclude this subsection by comparing the
asymptotic behavior of y(spec) and w(L) via asymptotic
expansions. The asymptotic behavior of w(L) can be
obtained by the asymptotic expansion of Leaver’s, con-
tinued fraction solution to the Teukolsky equation. The
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The absolute value of the real (top panels) and imaginary parts (bottom panel) of the Teukolsky perturbation

w = (r — iMacos 0)*y,, where y, is the perturbed fourth-Weyl scalar, of a Kerr BH of dimensionless spin a = 0.9, at ¢ = 0 and
on the equatorial plane. The left panels cover from r = r, + 1072M to 20M the right panels cover from r = r, + 1072M to 200M. In all
panels, the vertical axis is in logarithmic scale, the solid vertical line in black marks the position of the outer event horizon (7, ), the solid
blue line shows yr obtained by solving the Teukolsky equation using the Leaver continued fraction method, and the dashed red and dashed-
dotted green lines show y obtained using the axial- and polar-led metric perturbations reconstructed using the METRICS approach,
respectively. Observe that the real and imaginary parts of all y overlap almost completely with each other, show a similar variation pattern
over r, have similar numerical values at a given r, and attain maxima and minima at similar r positions. We evaluated that the mismatch
[defined by Eq. (60)] between the Leaver and the spectral 4 to be ~1% (see main text). These consistencies indicate that the METRICS
approach can also accurately reconstruct metric perturbations around a rapidly rotating Kerr BH, while computing its QNM frequencies.

asymptotic behavior of y(spec) can be obtained by con-
sidering the asymptotic expansion of y that follows from
our metric ansatz [Eq. (6)]. We find that at spatial infinity,
both y(spec) and (L) are asymptotic to r3+2@ei®" and
thus, the asymptotic behaviors match exactly. At the event
horizon, however, we find that

r—r —2—iM(w—mQy )L
wispee) ~ (“=) @
while
r—r, —2—iM(0—-mQy )52
wiL) - (2= (63)

The asymptotic behavior of y(spec) and y (L) at the event
horizon differs by a factor of

r —2—iM(m—mQH)%
<r —r > ’ (64)

which is finite at the event horizon. Hence, w(spec) and
w(L) have the same asymptotic behavior at the event
horizon, up to a constant. These comparisons analytically
prove the validity of our metric ansatz [Eq. (6)] and our
metric reconstruction procedures.

B. Parity content of the reconstructed metric
perturbations

The spectral method can also reconstruct metric pertur-
bations that are mainly led by a particular parity. To
quantify the parity content, we define the parity dominance
(PD) for the spectral metric,

PD — ( 1:1 lu(z. x-N) |l wa )é
Zk:&ﬁ”“k(Za%N)sz

(65)
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where N is the spectral order of computing the QNM
frequencies, and ||.||y, is the weighted 2 norm, defined as

11 = / dy / 2l f )P -2 (66)

Note that the weighted 2 norm differs from the usual 2 norm
of a function by the inclusion of the weighted function
(1- zz)‘%, so that we can analytically evaluate the norm
using the orthogonal properties of the Chebyshev and
associated Legendre polynomials,

Ntlm| ___(£+ i
OZK |:’1:| 2zf’+1r;m'| ”f( )|2>2

PD = ( N+|m| _ (£+m)! nt 2
Siss Yo o e o (V)]

(67)

Heuristically, the parity dominance provides an estimate of
the ratio between the amplitude of the axial- and polar-led
perturbations. If the reconstructed perturbations are purely
axial, then PD(®) = 0 If the reconstructed perturbations are
purely polar, then PD) - +co.

Figure 12 shows the base-10 logarithms of the PD of the
spectral metric perturbations as a function of a. The
horizontal line marks the line PD =1 = log,(PD =0,
when the amplitude of the axial- and polar-led perturba-
tions is approximately equal. Observe that for a S 0.9,
PD < 0.1 for the axial-led perturbations, indicating that the
axial-led perturbations indeed consist of mostly the axial
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FIG. 12. The base-10 logarithms of the parity dominance
[defined by Eq. (65)] of the reconstructed axial-led (blue circles)
and polar-led (red squares) metric perturbations. The parity
dominance, a non-negative number, gives a quantitative estimate
of the ratio between the amplitude of the axial- and polar-led
perturbation. A PD > 1 indicates that the perturbations are
mostly led by the polar sector, and a PD <« 1 indicates that
the perturbations are mostly led by the axial sector. Observe that
for a 5 0.5, PD < 1 for the axial-led perturbations and PD > 1
for the polar-led perturbations, indicating that the axial-led
perturbations indeed consist of mostly axial perturbations and
similarly for the polar-led perturbations.

perturbations; PD > 10 for the polar-led perturbations,
indicating that the polar-led perturbations indeed consist
of mostly the polar perturbations. Although the metric
perturbations obtained here are coupled, one can show that,
at all orders in spin, the even and odd parity versions of the
Teukolsky master function decouple completely [123].
This decoupling implies that there may exist some initial
guesses of the eigenvector x to construct purely axial and
polar perturbations of a rotating BH, which will be
important for the computation of the QNM frequencies
of BHs beyond GR, where isospectrality is typically broken
[64,107-109,124—126]. Such initial guesses might be
obtained by studying the transformation properties of the
metric perturbation ansatz upon the action of the parity
operator. We will explore such initial guesses in future
work. Nonetheless, being able to compute metric pertur-
bations that are led by a given parity when a $ 0.9 is still
insightful and highly nontrivial.

VIII. CONCLUDING REMARKS

We have here further developed and extended a novel
spectral method for computing the frequencies of gravita-
tional QNMs of rotating BHs. We have verified that our
method can accurately and efficiently compute the fre-
quency of the fundamental corotating quadrupole mode
(the “022” mode) of a Kerr BH with dimensionless spin
a £0.95. The individual relative fractional errors of the
real and imaginary parts of the frequency are less than 107,
This accuracy is sufficient to analyze GW ringdown LIGO-
Virgo data, because it is better by three orders of magnitude
than the relative fractional uncertainty of the measured real
and imaginary parts of the 022-mode frequency obtained
by combining all ringdown signals [15]. This accuracy
should also be sufficient to analyze the black-hole ring-
down signals detected by the next-generation detectors,
whose relative fractional uncertainty of the measured real
and imaginary parts of the 022-mode frequency is predicted
to be < 107* [100]. We have also demonstrated that our
method calculates directly and accurately the metric per-
turbations along with the QNM frequencies and we have
carried out a plethora of checks to verify the robustness of
the method.

The METRICS approach has several major advantages
over other existing methods for computing the gravitational
QNM frequencies of BHs. First, the spectral method does
not require the decoupling or simplification of the linear-
ized field equations into several master equations. This is a
significant advantage because decoupling may not be
possible for perturbations of BHs surrounded by matter,
scalar or vector fields and for BHs outside of GR. Second,
the METRICS approach is based on the Regge-Wheeler
gauge, a common gauge in BH perturbation theory that
has the advantage of greatly simplifying the linearized
field equations. This gauge is expected to exist in a wide
class of modified gravity theories, such as dynamical
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Chern-Simons gravity [124-127] and Einstein-dilaton
Gauss-Bonnet gravity [107-109], making the METRICS
approach more broadly applicable than other methods based
on different gauges (e.g., [84,95,97-99,114,122,128-130]).
Third, our spectral method can simultaneously reconstruct
metric perturbations, while computing the QNM frequencies
accurately. This implies the METRICS has direct access to
the GW metric perturbation, without needing to integrate
twice to convert between the Newman-Penrose scalars and
the GW observable. These advantages make the METRICS
approach a powerful tool for studying BH perturbations in
and outside GR.

The METRICS approach also provides new insights into
the gravitational perturbations of the Kerr BH. First, our
work is the first explicit demonstration that the Regge-
Wheeler gauge can be used to accurately compute
the QNM frequencies of a rapidly rotating BH. Before
this work, the Regge-Wheeler gauge had mostly been
applied to Schwarzschild or slowly rotating BHs in GR
or alternative theories [108,109,127]. For rapidly rotating
BHs, previous studies relied heavily on the ingoing
or outgoing radiation gauge through the application of
the Teukolsky equation, or on the harmonic gauge for
studies of the stability and thermal properties of BHs
(e.g., [88,90-92,95,99,104,114,130-133]). Compared to
other gauges, the Regge-Wheeler gauge is particularly
convenient because it can be easily enforced in the frequency
domain by setting some perturbation components to zero.
This reduces the complexity and length of the linearized field
equations, especially if one works directly with metric
perturbations instead of curvature perturbations.

A second insight into gravitational perturbations of Kerr
BHs that is derived from our work is related to our use of
associated Legendre polynomials. We show that this class
of elementary and commonly used spectral functions are
sufficient for studying the gravitational perturbations of
rotating BHs. Usually, associated Legendre polynomials
are used to study scalar perturbations of rotating BHs
or the gravitational perturbations of slowly rotating BHs.
Inspired by the Teukolsky equation, a more “natural”
choice of the angular spectral basis would be spheroidal
harmonics or spin-weighted spherical harmonics, but
these bases are more mathematically complicated.
Using the associated Legendre polynomials can reduce
the difficulty of solving the linearized field equations
because this class of spectral functions is simpler, more
elementary, and more familiar to physicists.

Further refinements of the spectral method can be
explored in future applications to improve its accuracy
and speed. One possible refinement is to use a more
sophisticated spectral basis, such as spin-weighted spheri-
cal harmonics for the angular coordinate. Another possible
refinement is to implement a more sophisticated variant
of the Newton-Raphson iterative scheme to improve
its performance. Yet another refinement is to use of

resummation techniques on the metric perturbations
to improve the accuracy of the QNM frequency calcula-
tions see, e.g., [109]. The results reported in the paper,
however, show that the METRICS approach, in its current
incarnation, is already sufficiently accurate and robust to
produce results that are applicable to the analyses of actual
ringdown signals.

Our immediate next step is to apply the spectral method
to study the gravitational QNMs of rapidly rotating BH in
modified gravity theories, but several other applications are
possible. One such application is to study the perturbations
of spinning BHs in the presence of matter, in order to use
ringdown signals as a probe of dark matter with future
space-based detectors. Another application is the generali-
zation of the METRICS approach to model BHs in the
presence of external sources, as in the case of extreme
mass-ratio inspirals. This could be done by working in the
frequency domain and generalizing the algebraic matrix
equation to an inhomogeneous one. These applications and
more render the METRICS approach a powerful tool for
studying the perturbations of BHs with any spin both in and
outside general relativity, both in vacuum or in the presence
of external matter perturbations.
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APPENDIX: SYMBOLS

The calculations presented in this paper involved numer-
ous symbols. For convenience of the reader, we provide a
list of the symbols and their definitions in this appendix.

044072-24



SPECTRAL METHOD FOR METRIC PERTURBATIONS OF BLACK ...

PHYS. REV. D 109, 044072 (2024)

(1) a is the dimensionless spin of the BH, first defined
in Eq. (1).

(2) Ay(r) is the asymptotic prefactor of the kth pertur-
bation variable, first defined in Eq. (15).

(3) (A) is the superscript that denotes the quantity
concerning the axial-led perturbations, first defined
in Eq. (47).

(4) b= V1 —d?, first defined in Eq. (2).

(5) B(N) is the backward modulus difference of the
QNM frequency, first defined in Eq. (50).

(6) d, is the degree of r of the coefficient of the partial
derivative of the linearized Einstein equations, first
defined in Eq. (22).

(7) d, is the degree of y of the coefficient of the partial
derivative of the linearized Einstein equations, first
defined in Eq. (22).

(8) d, is the degree of z of the coefficient of the partial
derivative of the compactified linearized Einstein
equations, first defined in Eq. (26).

(9) D(w) is the coefficient matrix of spectral expansion,
from one particular basis to another, first defined
in Eq. (31).

(10) A= (r—r,)(r—r_), first defined in Eq. (2).

(11) AR/ js the relative fractional error in the real and
imaginary parts of the METRICS QNM frequencies,
o(METRICS), and the Teukolsky equations, first
defined in Eq. (53).

(12) E(N) is the absolute error between the METRICS
QNM frequencies, w(METRICS), and Leaver’s
method to solve for the QNM modes w(L), first
defined in Eq. (49).

(13) f; is the kth algebraic equation which we solve
to reconstruct metric perturbations, first defined
in Eq. (38).

(14) Gy s0.ap, is the coefficient of W' riy° 0% dlh ; of the
linearized Einstein equations of h;, first defined
in Eq. (22).

(15) hy(r,y) is the functions of metric perturbations, first
defined in Egs. (8a) and (8b).

(16) i = +/—1 is the imaginary unit.

(17) k in the subscript is the component of the metric
perturbation functions and k = 1, ..., 6, first defined
in Egs. (8a) and (8b).

(18) Kyapyso, is the coefficient of ' 2x°02d)(...) of
the linearized Einstein equations in z and y, first
defined in Eq. (26).

(19) [ is the azimuthal mode number of the gravitational
QNMs, first defined in Sec. L.

(20) ¢ is the degree of associate Legendre polynomial
used in spectral expansion, first defined in Eq. (18).

(21) M is the BH mass, which is taken to be M =1
throughout this work, first defined in Eq. (1).

(22) m is the azimuthal number of the metric perturba-
tions, first defined in Eqs. (8a) and (8b).

(23) N is the number of the Chebyshev and associated
Legendre polynomials used in the full spectral
expansion, first defined in Sec. IV C.

(24) N, is the number of the associated Legendre
polynomials included in the spectral expansion, first
defined in Eq. (20).

(25) N, is the number of the Chebyshev polynomials
included in the spectral expansion, first defined
in Eq. (20).

(26) (P) is the superscript which denotes the quantity
concerning the parity-led perturbations, first defined
in Eq. (38).

(27) PD is the parity dominance, which characterizes the
parity content of metric perturbations, first defined
in Eq. (65).

(28) ry = M(1 4 V1 — @?) is the radial coordinate of the
position of the event horizon of the Kerr BH, first
defined below Eq. (2).

(29) r, is the tortoise coordinate, first defined in Eq. (4).

(30) p@ and pg) are the parameters that characterize the
boundary conditions of 4, in future null infinity and
at the horizon, first defined in Egs. (11) and (13).

(31) w,(L) is the frequency of the QNM ¢ computed
using the Leaver method, first defined in Eq. (49).

(32) z= 2% — 1 is the variable that maps r into a finite
domain, first defined in Eq. (17).
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