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A set of tidal Love numbers quantifies tidal deformation of compact objects and is a detectable imprint in
gravitational waves from inspiraling binary systems. The measurement of black hole Love numbers allows
us to test strong-field gravity. In this paper, we present a parametrized formalism to compute the Love
numbers of static and spherically symmetric black hole backgrounds, connecting the underlying equations
of a given theory with detectable quantities in gravitational-wave observations in a theory-agnostic way.
With this formalism, we compute the Love numbers in several systems. We further classify black hole Love
numbers according to whether they vanish, are nonzero, or are “running” (scale- dependent), in theories or
backgrounds that deviate perturbatively from the general relativity values. The construction relies on static
linear perturbations and scattering theory. Our analytic and numerical results are in excellent agreement. As
a side result, we show how to use Chandrasekhar’s relations to relate basis of even parity to odd parity.
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I. INTRODUCTION

The first direct detection of gravitational waves from
colliding black holes (BHs), GW150914 [1,2], confirms a
key prediction of Einstein’s general relativity (GR) and
provides direct evidence for BH mergers. Currently, around
a hundred events of coalescence of binary BHs, neutron
stars, and binary BH–neutron stars have been detected.
These observational achievements have opened unprec-
edented opportunities to independently measure the Hubble
constant [3] and to place constraints on the propagation speed
of gravitational waves [4–6], on the nuclear matter equation
of state in neutron stars [7–9], and on tests of general
relativity or of the nature of compact objects [10–12].
Additionally, the binary neutron star merger GW170817 is
associated with an electromagnetic counterpart, i.e., short
γ-ray bursts [4] and kilonova/macronova [13], establishing
neutron star mergers as one of the sources of r-process
nucleosynthesis, which has opened up the field of multi-
messenger astronomy [14]. The further improvement of
sensitivity of current detectors and the addition of
KAGRA [15] and next generation detectors to the network
[16–18] will provide decisive answers to outstanding ques-
tions to gravitational physics and astrophysics.
Inspiraling binary objects are well approximated by

point particles at large separations [19]. The orbit shrinks
due to the backreaction of gravitational radiation, and
eventually finite-size effects come into play during the
late stages of the coalescence process. Among these, tidal
processes are crucial. Tidal effects can be quantified by a
set of “tidal Love numbers” (TLNs) [20–23], which depend

on the internal structure of the object and the underlying
theory of gravity. Tidal effects are imprinted in gravita-
tional waveforms at 5PN order [24]. The measurement of
TLNs via gravitational-wave observation thus allows us to
explore the dense environment inside the object and test
strong-field gravity [25]. With the TLN, GW170817 leads
to constraints on the neutron star equation of state [7–9].
Four-dimensional vacuum BHs in GR have vanishing

TLNs [21,26–30]. However, BHs in alternative theories of
gravity can acquire nonvanishing TLNs [25,31,32].
Hypothetical horizonless compact objects motivated by
quantum gravity have nonzero TLNs [25,33]. Likewise, the
presence of matter fields around a BH endows the geometry
with nonzero TLNs [34–38]. Therefore, detection of non-
vanishing TLNs could be a smoking gun for new physics at
the horizon scale or evidence for nontrivial environments.
Events detected by the Laser Interferometer Gravitational
Wave Observatory (LIGO) and Virgo are consistent with
vanishing TLNs [39,40]. In the future, the LIGO, the Laser
Interferometer Space Antenna, and the Einstein Telescope
will be able to constrain TLNs with much higher accuracy,
making this an exciting line of research [25,41]. It is thus
crucial to study the TLNs of BHs beyond GR or in
astrophysical environments. Specific setups were recently
studied [25,31,32,34,35,37]; for some systems, a logarith-
mic scale dependence appears, which seems to indicate a
running of these numbers [25,32,34]. However, the gen-
erality of such results and the underlying structure are
unclear. Furthermore, a change in background, for exam-
ple, the addition of charge, does not necessarily give rise to
nonvanishing TLNs [25], another poorly understood result,
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despite some indications of a hidden symmetry as cause for
the vanishing of TLNs of BHs [42–51].
The required equations to be solved for the computation

of TLNs are typically reduced to the form of master
equations. These are “small” (perturbative in some param-
eter) modifications of the corresponding vacuum GR
equations, under the assumption that the background itself
departs only slightly from BH spacetimes in vacuum GR.
Both the deviations from GR and from exact vacuum
environments give such modification. This implies that
even if nonzero BH TLNs are measured with high accuracy
with future observations, it does not necessarily mean the
departure from GR in the strong-field regime. A priori
theoretical assumption, vacuum environments can lead to
misinterpretation of observational data. Nevertheless, astro-
physical environments around BHs are still poorly under-
stood, being difficult to distinguish the environmental effect
from modification of theories of gravity.
The BH TLNs in specific setups, either particular

theories of gravity or particular matter configurations, were
studied. Here, we present a parametrized BH Love number
formalism program to connect the underlying equations in
a given system to the corresponding BH TLNs, unveiling
the general properties of BH TLNs in a theory-/model-
agnostic manner, also allowing one to quantifiably inves-
tigate the deviation from the vacuum GR value, zero. We
assume that the deviation from GR and/or an exact vacuum
assumption is small and there is no coupling among the
different physical degrees of freedom. Given master equa-
tions to be solved, one can immediately obtain the
corresponding TLN with this approach. The construction
of our formalism for the (nonrunning) TLNs relies on both
linear static perturbation theory and scattering theory. In
particular, the latter is a sophisticated and robust method
proposed in Ref. [36], allowing one to bypass the gauge-
ambiguity issue [52,53] and the degeneracy between linear
responses and subleading corrections to applied fields (see
also Refs. [29,54,55]). This is conducted with analytical and
numerical approaches, which are in good agreement each
other. We also provide the formalism for the coefficients of
running of the TLNs and demonstrate what modification
leads to the appearance of the running behavior.
This work is structured as follows. In Sec. II, we briefly

review the TLNs and the running that comes from the
appearance of logarithmic corrections. We then introduce
the TLNs for scalar- and vector-field perturbations. The
parametrized BH TLN formalism is introduced in Sec. III.
We then show the general property of the TLNs in slightly
modified systems from a Schwarzschild background.
Section IV provides examples of application of our formal-
ism to particular theories. In Sec. V, we discuss the physical
interpretation of our findings and future directions. The
Appendixes present details of the analytical computation of
the TLNs, the utilization of the Chandrasekhar transforma-
tion [56], and how the TLNs are imprinted in scattering

waves. Throughout the paper, we use geometrical units
where c ¼ G ¼ 1, except for in Sec. II A.

II. TIDAL RESPONSE OF BLACK HOLES

We begin by considering the linear response and TLNs of
spherically symmetric bodies in Newtonian gravity [20–23].
We then introduce relativistic TLNs and scalar- and vector-
field TLNs. We also discuss a running behavior, where
the TLNsdepend on the scalemeasured, appearing in generic
backgrounds, e.g., a Schwarzschild-Tangherlini background
[26,57], Chern-Simons gravity [25], the presence of matter
fields [34], or an effective field theory framework [32].

A. Newtonian theory

Consider a compact body of mass M immersed in the
tidal environment generated by an external gravitational
source. We assume that the external tidal field is weak and
slowly varying in time. The tidal interaction is described by
the linear response of the gravitational potential of the body
against static perturbations. As a result of the interaction,
the initially spherically symmetric gravitational potential
deforms anisotropically. The tidal deformation is quantified
by a set of the TLNs.
In Newtonian gravity, the TLN is a proportionality

constant between the applied tidal field and the resulting
multipole moment of the body. In a Cartesian coordinate
system xi ¼ ðx; y; zÞwith origin located at the center ofmass
of the body ðx ¼ 0Þ, the tidal field with the gravitational
potential UextðxÞ is characterized by the “tidal moments,”

EhLi ≔ ∂hLiUextjx¼0: ð1Þ

Here, L ≔ i1i2 � � � il represents a collection of l individual
indices; for any l-index tensor TL, ThLi means that TL is
symmetric and traceless in any pair of arbitrary two indices
in L; ∂L ≔ ∂i1∂i2 � � � ∂il .1 The tidal moments (1) correspond
to the coefficients of the lth order in a Taylor expansion of
UextðxÞ around the center of mass of the body, i.e.,

UextðxÞ ¼
X∞
l¼0

1

l!
EhLixhLi; ð2Þ

where xL ≔ xi1xi2 � � � xil . The scalar E and the vector Ei
induce the change of mass of the body and translation of the
center of mass, respectively. The contribution of l ≥ 2
introduces the tidal deformation.
The “multipole moments” of the body are defined by

QhLi ≔
Z

ρðx0Þx0hLid3x0; ð3Þ

1One can also define so-called symmetric trace-free projection
of an arbitrary tensor [23,58].
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where ρðxÞ is the mass density inside the body. Without
the external tidal field, the body is spherically symmetric;
therefore, the multipole moments except for l ¼ 0 vanish.
The monopole moment (l ¼ 0) corresponds to mass of the
body. In the presence of the tidal field, the induced multi-
pole moments are linearly related to the tidal moments (1),

QhLi ¼ −
2

Gð2l − 1Þ!! κlr
2lþ1
0 EhLi; ð4Þ

where r0 is the radius of the body and κl is the lth tidal
Love number. We assume l ≥ 2, since monopole (l ¼ 0)
and dipole (l ¼ 1) tidal moments only contribute into
translation of mass and the center of mass, respectively.
The TLN κl is calculated in terms of linear static

perturbations to the coupled system of the linearized
Poisson equation and Euler’s equation in spherical polar
coordinates ðr; θ;φÞ with origin at the center of mass of the
body. Imposing regularity at the origin for the mass density
and the gravitational potential, the total gravitational
potential in the system takes the form

Uðr; θ;φÞ ¼ −
GM
r

−
X
l;m

4πG
2lþ 1

dlmrl

×
�
1þ 2κl

�
r0
r

�
2lþ1

�
Ylmðθ;φÞ: ð5Þ

Here, dlm is a constant associatedwith the tidalmoments (1);
Ylmðθ;φÞ is the spherical harmonic. In Eq. (5), the first term
on the right-hand side corresponds to the gravitational
potential at the zeroth order; the second and third terms
correspond to the applied tidal field and the induced multi-
pole moment at the first order, respectively. Equation (5)
explicitly shows that the presence of the external tidal field
induces the angular dependence into the gravitational poten-
tial, which is initially spherically symmetric.

B. Relativistic theory

In the relativistic framework, TLNs are computed in
terms of linear static gravitational perturbation theory. A
perturbation of multipole l can be decomposed into
even- and odd-parity sectors [59–61]. Correspondingly,
an applied tidal field, multipole moments, and TLNs have
two sectors [20–22,25].
In asymptotically Cartesian and mass centered coordi-

nates ðt; r; θ;φÞ, the external tidal field and the multipole
moments of any static, spherically symmetric, and asymp-
totically flat spacetime can be extracted from the asymptotic
behavior of the metric components in the asymptotically flat
region [20,25,62],

gtt ¼ −1þ 2M
r

−
X
l≥2

�
2

lðl − 1Þ r
lðElYl0 þ ðl > l0ÞÞ

−
2

rlþ1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
MlYl0 þ ðl > l0Þ

��
;

gtφ ¼
X
l≥2

�
2

3lðl − 1Þ r
lþ1ðBlSl0φ þ ðl > l0ÞÞ

þ 2

rl

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
Sl

l
Sl0φ þ ðl > l0Þ

��
; ð6Þ

where we have defined M as the Arnowitt-Deser-Misner
mass of the central gravitational source, El and Bl as the
even- and odd-parity tidal fields, respectively, andMl and
Sl as themassmultipole moments and the current multipole
moments, respectively. The notation of ðl > l0Þ denotes the
contribution of l0ð< lÞ poles. Only the above metric
components will be necessary in the following, where it
was assumed—as we do in the remainder by construction—
that one can write the geometry coordinates with such an
asymptotic behavior. In general, in the presence of extra
degrees of freedom, such as nontrivial scalar or vector fields,
one needs their asymptotic properties as well to determine
the linear response of the spacetime against external per-
turbations. We work under the assumption that there is no
coupling among different physical degrees of freedom and
that the deviation from vacuumGR is sufficiently small. We
then define the even- and odd-parity sectors of the TLNs in
the relativistic framework as [20–22,25]

κþl ≔ −
lðl − 1Þ
2r2lþ1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
Ml

El
;

κ−l ≔ −
3lðl − 1Þ

2ðlþ 1Þr2lþ1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
Sl

Bl
; ð7Þ

where r0 is the radius of the central gravitational source.
These are also called “electric-” and “magnetic-type”TLNs,
respectively.2 We note that such a coordinate-independent
definition is known to lead to ambiguities in the correspon-
dence with physical observables [53]. We will brush these
aside and assume that the full motion of a compact binary is
performed in coordinates adapted to the above.
The TLNs κ�l are calculated in terms of linear gravita-

tional perturbations. With Eqs. (6) and (7), the asymptotic

2There is an alternative definition by Cardoso et al.
(CFMPR) [25,31],

κ�l;CFMPR ¼
�
r0
M

�
2lþ1

κ�l ; ð8Þ

where massM is introduced to the normalization factor instead of
r0. This is useful for some exotic compact objects, e.g., boson
stars, in which a radius is not well defined.
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expansion of a linear static perturbation ðhlÞμν at large
distances reads the TLNs,

ðhlÞttjr≫r0 ∝
�
r
r0

�
l
½1þOðr0=rÞ�

þ 2κþl

�
r0
r

�
lþ1

½1þOðr0=rÞ�; ð9Þ

and

ðhlÞtφjr≫r0 ∝
�
r
r0

�
lþ1

½1þOðr0=rÞ�

−
2ðlþ 1Þ

l
κ−l

�
r0
r

�
l
½1þOðr0=rÞ�: ð10Þ

We focus on a Schwarzschild BH. With the spherical-
harmonic decomposition, the linearized Einstein equations
on the Schwarzschild background are reduced into equa-
tions for the radial components of each multipole. Under
the Regge-Wheeler gauge [59], the radial components of
the even- and odd-parity sectors in the Fourier domain are
described by the Zerilli-Regge-Wheeler equations [59–61],

f
d
dr

�
f
dΦ�

l

dr

�
þ ½ω2 − fV�

l �Φ�
l ¼ 0; ð11Þ

f ≔ 1 −
rH
r
; ð12Þ

where r ¼ rH is the location of the event horizon and the
effective potentials are given by

Vþ
l ≔

9λr2Hrþ 3λ2rHr2 þ λ2ðλþ 2Þr3 þ 9r3H
r3ðλrþ 3rHÞ2

;

V−
l ≔

lðlþ 1Þ
r2

−
3rH
r3

; ð13Þ

with λ ≔ l2 þ l − 2. Here, the azimuthal number m ¼ 0
because of the spherical symmetry of the background.
We now focus on static perturbations ω ¼ 0. With

the relations between the master variables Φ�
l and the

components of each multipole mode of the linear pertur-
bation [36,63], the TLNs can be read off from Φ�

l at large
distances [26,36],

Φ�
l jr≫rH ∝

�
r
rH

�
lþ1
�
1þO

�
rH
r

��

þ 2
ðlþ 2Þðlþ 1Þ

lðl − 1Þ κ�l

�
rH
r

�
l
�
1þO

�
rH
r

��
:

ð14Þ

Here, Φ�
l are required to be regular at the BH horizon

r ¼ rH. Note that the form of Eq. (14) holds for geometries

close to a Schwarzschild spacetime at large distances as
well. Awell-known intriguing result is that all the TLNs of
a Schwarzschild BH vanish, i.e., κþl ¼ κ−l ¼ 0 [21].

C. Love numbers for spin-s fields

Scalar-field (s ¼ 0) and vector-field ðjsj ¼ 1Þ perturba-
tions on a Schwarzschild background with the spherical-
harmonic decomposition in the Fourier domain are
governed by

f
d
dr

�
f
dΦs

l

dr

�
þ ½ω2 − fVs

l�Φs
l ¼ 0; ð15Þ

with

Vs
l ≔

lðlþ 1Þ
r2

þ ð1 − s2ÞrH
r3

: ð16Þ

The case of jsj ¼ 2 corresponds to the Regge-Wheeler
equation in Eq. (11).
We now focus on static perturbations ω ¼ 0. From the

master variablesΦs
l, the “spin-s-field TLNs” κ

s
l can be read

off [25,26,49],

Φs
ljr≫rH ∝

�
r
rH

�
lþ1
�
1þO

�
rH
r

��

þ κsl

�
rH
r

�
l
�
1þO

�
rH
r

��
: ð17Þ

Here, the requirement of the regularity for Φs
l at the horizon

determines theTLN κsl. It is known that the spin-s-fieldTLNs
of the Schwarzschild BH all vanish, i.e., κsl ¼ 0 [26,49].

D. Running of the Love numbers

The TLNs above are read off from the asymptotic
expansion of linear perturbations at large distances, which
consists of the power of r solely. The value is constant and
therefore is independent of the scale measured.
However, in more generic systems, e.g., in the presence

of matter fields [34], or other background or theories
[25,26,32,57], perturbation fields do not necessarily take
the form of a simple power-law series at large distances.
Instead, the asymptotic behaviors can include logarithmic
terms at large distances,

Φ�
l jr≫rH ∝

�
r
rH

�
lþ1

½1þOðrH=rÞ�

þ 2
ðlþ 2Þðlþ 1Þ

lðl − 1Þ K�
l

�
ln

�
r
rH

�
þOð1Þ

�

×

�
rH
r

�
l
½1þOðrH=rÞ�; ð18Þ

with a constant K�
l for gravitational perturbations, and
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Φs
ljr≫rH ∝

�
r
rH

�
lþ1

½1þOðrH=rÞ� þKs
l

�
ln

�
r
rH

�
þOð1Þ

�

×

�
rH
r

�
l
½1þOðrH=rÞ�; ð19Þ

with a constant Ks
l for spin-s-field perturbations. The

prefactor of the linear response term ðrH=rÞl includes a
logarithm and indeed depends on r.
The coefficient of the logarithmic term is interpreted

as a β function in the context of a classical renormalization
flow [26,57,64]. In the current work, we regard K�

l and Ks
l

as fundamental parameters of a given system, which are
independent of the scale measured and then evaluate them.

III. PARAMETRIZED FORMALISM

We introduce the formalism that allows one to compute
the TLNs in a theory-agnostic manner under the assump-
tions that (i) the background is spherically symmetric,
(ii) the deviation from vacuum GR is small, and (iii) there
is no coupling among the different physical degrees of
freedom. We also discuss the general structure and pro-
perties of the TLNs in such modified backgrounds. We
further note a subtle case when applying our formalism to
particular theories.

A. Framework

We deform the Zerilli-Regge-Wheeler equations (11)
and spin-s-field perturbation equations (15),

f
d
dr

�
f
dΦ�=s

l

dr

�
þ
�
ω2 − f

�
V�=s
l þ δV�=s

l

��
Φ�=s

l ¼ 0;

ð20Þ

where the linear parametrized small power-law corrections
to the effective potentials (13) and (16) are introduced,

δV�=s
l ¼ 1

r2H

X∞
j¼3

α�=s
j

�
rH
r

�
j
: ð21Þ

Here, we have assumed jα�=s
j j ≪ r2HjV�=s

l jr→rH j for the

smallness of r2HjδV�=s
l j.3 We exclude j ¼ 0, 1, 2 from our

analysis, as these would always be unboundedly large
corrections at large distances (for example, j ¼ 0 would
represent a massive field, which changes the asymptotic
behavior of the tidal field and the induced multipoles in a
nontrivial manner, and whose TLNs are not yet understood
properly).

Perturbation equations for scalar and vector fields on a
static, spherically symmetric spacetime close to the
Schwarzschild spacetime can be reduced to the form of
Eq. (20) in general [65]. There is no rigorous proof for
gravitational perturbations, but the analysis in Refs. [65,66]
supports such claim.
Given two independent solutions Φ�=s

A;l and Φ�=s
B;l of

Eq. (20) with two different corrections, δV�=s
A;l and δV�=s

B;l ,

respectively, one can show that their superpositionΦ�=s
AB;l ≔

Φ�=s
A;l þΦ�=s

B;l satisfies Eq. (20) with the composite correc-

tion δV�=s
AB;l ≔ δV�=s

A;l þ δV�=s
B;l within the first order of the

small coefficients. Therefore, the TLNs in the current
framework are well described by small linear corrections
to the vanishing TLNs of GR,

κ�l ¼ 0þ
X∞
j¼3

α�j e
�
j ; κsl ¼ 0þ

X∞
j¼3

αsje
s
j: ð22Þ

Here, we call e�=s
j a “basis” set for the TLNs. We also

introduce a basis for the coefficient of the running TLNs,

K�
l ¼ 0þ

X∞
j¼3

α�j d
�
j ; Ks

l ¼ 0þ
X∞
j¼3

αsjd
s
j: ð23Þ

The bases e�=s
j , d�=s

j are both theory independent. We
evaluate them in the next section, this being one of the
main results of this work. Once the basis is known, one
can immediately compute the TLNs and the coefficient of
the running TLNs up to the linear order of a given theory
by reading off the corresponding coefficients α�=s

j from
perturbation equations reduced into the form of Eq. (20).
We give relations for the tidal polarizability coefficients,

which are useful for data analysis in gravitational-wave
observation [22,67,68]4:

Gμl ≔
�
GM
c2

�
2lþ1

Λl ¼ 2rH2lþ1

ð2l − 1Þ!!
X∞
j¼3

αþj e
þ
j ; ð24Þ

for the mass multipole moments, and

Gσl ≔
�
GM
c2

�
2lþ1

Σl ¼ ðl − 1ÞrH2lþ1

4ðlþ 2Þð2l − 1Þ!!
X∞
j¼3

α−j e
−
j ;

ð25Þ

for the current multipole moments. Here, Λl and Σl are the
dimensionless tidal deformability parameters for the mass
multipole moments and the current multipole moments,

3The assumption jα�=s
j j ≪ r2HjV�=s

l jr→rH j is the sufficient
condition for jδV�=s

l =V�=s
l j ≪ 1, instead of max r2HjδV�=s

l j ≪ 1

in Ref. [65].

4We write G and c explicitly even though they are set to be
unity throughout the paper.
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respectively; M is the mass of the back hole. To the best of
our knowledge, the role of running TLNs in the dynamics
of binaries and on gravitational waveforms is unknown.

B. Computation of the basis set

We now focus on the main result of this work, the
calculation of the basis set for TLNs. This is the counterpart
of the basis set for quasinormal frequencies that was
calculated in Refs. [65,66,69]. Since we are assuming
small deviations from GR, the equations to be solved
simplify considerably and we are able to obtain analytical
results. These are powerful findings, which also teach us
which type of potentials lead to nonrunning, running, or
vanishing responses (i.e., basis), revealing the general
property of the TLNs. We then provide numerical results
for the nonrunning TLNs in scattering theory, which are in
excellent agreement with the analytical results. We further
introduce a method, based on a recurrence relation for the
basis, to verify consistency of our results.

1. Analytical approach

Since the problem is linear, we can focus on the solution
of Eq. (20) with a single power-law correction of j, in
the static limit ω ¼ 0 and in a perturbative approach in α.
First, we expand the master variable Φ�=s

l in terms of the

coefficient α�=s
j up to the linear order,

Φ�=s
l ¼ Φ�=s

ð0Þ þ α�=s
j Φ�=s

ð1Þ : ð26Þ
We then solve the master equation order by order, imposing
regularity at the horizon. The TLN is read off from the
asymptotic behavior of the first-order horizon-regular
solution Φ�=s

ð1Þ at large distances, determining the basis.
Details of the calculation for odd-parity and spin-s-field
perturbations are given in Appendix A. A discussion of
electric-type TLNs is provided in Appendix B.
One of our main findings is a qualitative dependence

of the bases e�=s
j and d�=s

j on the power j, which is
summarized in Table I:

(i) j ≥ 2lþ 4 for e−=sj and d−=sj : the first-order horizon-
regular solutionΦ−=s

ð1Þ takes the form of a finite series

in powers of rH=r starting at ðrH=rÞl,

Φ−=s
ð1Þ ∝

�
rH
r

�
l
½1þOðrH=rÞ�: ð27Þ

Note that this is not an asymptotic behavior of the
variables at large distances and that Φ−=s

ð0Þ has been

renormalized in the process. The bases e−=sj are
computed in a closed form in Appendix A. For
example, we have

e−j jl¼2 ¼ −
1

60ðj − 7Þ ; ð28Þ

for the quadrupolar magnetic-type TLN κ−2 , and

esjjl¼jsj ¼ −
1

ð2jsj þ 1Þðj − 2jsj − 3Þ ; ð29Þ

for the jsjth spin-s-field TLN κsjsj (note: even-parity
gravitational perturbations are not described by this
result and are insteaddiscussed inAppendixB). There
is no running d−=sj ¼ 0 for j ≥ 2lþ 4. Results for
higher l can be obtained in a similar way and are
discussed in Appendix A.

(ii) j ≥ 2lþ 4 for eþj and dþj : the first-order horizon-
regular solution Φþ

ð1Þ takes the form of an infinite

series in powers of rH=r starting at ðrH=rÞl,

Φþ
ð1Þjr≫rH ∝

�
rH
r

�
l
½1þOðrH=rÞ�: ð30Þ

The basis eþj is analytically calculated in the manner
demonstrated in Appendix B, and again we note that
Φþ

ð0Þ has been renormalized. There is no running

dþj ¼ 0 for j ≥ 2lþ 4. As an alternative approach,
one can generate eþj for j ≥ 2lþ 4 from e−j by
exploiting the Chandrasekhar transformation [56] as
shown in Appendix C. The results all agree with
those in the direct analytical derivation.

(iii) 2jsj þ 3 ≤ j ≤ 2lþ 3 for e−=sj and d−=sj : the first-
order horizon-regular solution Φ−=s

ð1Þ takes the form
of an infinite series at large distances and includes
logarithmic terms, e.g., schematically,

Φ−=s
ð1Þ jj¼2lþ3;r≫rH ∝

�
ln

�
r
rH

�
þOð1Þ

�

×

�
rH
r

�
l
½1þOðrH=rÞ�: ð31Þ

TABLE I. Summary of the dependence of the bases e�=s
j and d�=s

j , for the TLNs (22) and (23) on the power j for the potential
modification (21).

j ≥ 2lþ 4 2jsj þ 3 ≤ j ≤ 2lþ 3 3 ≤ j ≤ 2jsj þ 2

Odd (jsj ¼ 2), jsj ¼ 0, 1
Nonzero nonrunning

	
e�=s
j ≠ 0; d�=s

j ¼ 0

 Nonzero running

	
e−=sj ¼ 0; d−=sj ≠ 0



Zero

	
e−=sj ¼ d−=sj ¼ 0



Even (jsj ¼ 2) Nonzero running

	
eþj ¼ 0; dþj ≠ 0
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The appearance of logarithmic corrections can be
understood as running of the TLN. We read d−=sj off
from the asymptotic behavior at large distances.
The presence of the running behavior also means
e−=sj ¼ 0 for 2jsj þ 3 ≤ j ≤ 2lþ 3. For 2jsj þ 3 ≤
j ≤ 2lþ 2, contributions decaying slower than the
term of ðrH=rÞl are present, e.g., ðrH=rÞl−1 [see, e.g.,
Eq. (A41)], while logarithmic corrections still appear
on the order of ðrH=rÞl. The physical interpretation
for the slowly decaying terms is unclear and this
problem is left for our outlook.

(iv) 3 ≤ j ≤ 2jsj þ 2 for e−=sj and d−=sj : the first-order
horizon-regular solution Φ−=s

ð1Þ takes the form of a

finite series up to the order of ðrH=rÞjsj−1. There is no
series of ðrH=rÞl½1þOðrH=rÞ�, e.g., for l ¼ 2,

Φ−
ð1Þjj¼4 ¼ −

r
6rH

�
1þ 2rH

3r
þ 1

2

�
rH
r

�
2
�
; ð32Þ

which is the same as Eq. (A21). The absence of
the series ðrH=rÞl½1þOðrH=rÞ� means that the
corrections of 3 ≤ j ≤ 2jsj þ 2 have no contribu-
tion into linear responses for static odd-parity and
spin-s-field perturbations; the first-order horizon-
regular solution is interpreted as an applied field.
We therefore conclude e−=sj ¼ d−=sj ¼ 0 for 3 ≤
j ≤ 2jsj þ 2.

(v) 3 ≤ j ≤ 2lþ 3 for eþj and dþj : the first-order hori-
zon-regular solution Φþ

ð1Þ takes an infinite series at

large distances and has logarithmic terms, e.g.,
schematically,

Φþ
ð1Þjj¼2lþ3;r≫rH ∝

�
ln

�
r
rH

�
þOð1Þ

�

×

�
rH
r

�
l
½1þOðrH=rÞ�: ð33Þ

The appearance of logarithmic corrections means
that the running behavior appears, while eþj ¼ 0. For
3 ≤ j ≤ 2lþ 2, there are contributions decaying
slower than the term of ðrH=rÞl [see, e.g., Eq. (B9)],
while logarithmic corrections still appear on the
order of ðrH=rÞl. We leave the physical interpreta-
tion for the slowly decaying terms in our outlook.

We thus obtain the general property of the TLNs implied
by the bases summarized in Table I: (i) corrections of δV�=s

l
for j ≥ 2lþ 4 lead to nonzero and nonrunning TLNs. The
good agreement with the numerical result in terms of
scattering theory (see next section) supports our analytical
results and indicates they are ambiguity-free [52,53,57].
(ii) Corrections of δVþ

l (δV−=s
l , respectively) for 3 ≤ j ≤

2lþ 3 (2jsj þ 3 ≤ j ≤ 2lþ 3, respectively) give rise to

running TLNs. Running can therefore appear in high
multipoles even if the lowest multipoles have no running.
This is indeed observed in Chern-Simons gravity [25] and
an effective field theory framework [32]. (iii) Corrections of
δV−=s

l for 3 ≤ j ≤ 2jsj þ 2 has no contribution into linear
responses. The vanishing of magnetic-type TLNs of
Reissner-Nordström BHs [25] is understood up to linear
order of the BH charge (see also Sec. IV B).

2. Numerical approach

We now consider the unambiguous numerical calcula-
tion of the basis of the TLNs, e�=s

j , for j ≥ 2lþ 4, in
scattering theory. The strategy was introduced in Ref. [36]
(see also Refs. [29,54]) and an analytic continuation
of l from an integer to generic numbers plays an important
role in exploiting the analytic property of the hypergeo-
metric functions in the analysis. Details are described in
Appendix D.
We assume that the frequency of scattering waves is

sufficiently low, ωrH ≪ 1. As shown in Appendix D, for
j ≥ 2lþ 4, the solution of Eq. (20) at large distances is
well approximated by

Φ�=s
ðFÞ;l ¼ q�=s

ðFÞ;lðrÞ
�

r
rH

�
lþ1

eiωr

×
	
Mðlþ 1 − iωrH; 2lþ 2;−2iωrÞ

þ γ�=s
l Uðlþ 1 − iωrH; 2lþ 2;−2iωrÞ
; ð34Þ

where q�=s
ðFÞ;lðrÞ is a function determined in Appendix D

[see, e.g., Eqs. (D13) and (D14)]. Mða; b; zÞ and
Uða; b; zÞ are confluent hypergeometric functions, nota-
bly Kummer’s and Tricomi’s functions, respectively [70];
γ�=s
l is a function of ω to be determined numerically

below. Note that q�=s
ðFÞ;lðrÞ is independent of the correction

δV�=s
l and takes the form of q�=s

ðFÞ;lðrÞjr≫rH ¼ 1þ
OðrH=rÞ. The function Φ�=s

ðFÞ;l in Eq. (34) at r → ∞
takes the form of superposition of ingoing and outgoing
waves and therefore satisfies the boundary condition for
scattering waves [36].
The functionΦ�=s

ðFÞ;l takes the following form in a domain

rH ≪ r ≪ 1=ω [36]:

Φ�=s
ðFÞ;ljrH≪r≪1=ω ¼ q�=s

ðFÞ;lðrÞ
�

r
rH

�
lþ1
�
1þOðωrÞ

þ F�=s
l

�
r
rH

�
−2l−1

½1þOðωrÞ�
�
; ð35Þ

with the “response function” F�=s
l defined by [29,36,54]

F�=s
l ðωÞ ≔ i

ð−1Þl
22lþ1ðωrHÞ2lþ1

Γð2lþ 1Þ
Γðlþ 1 − iωrHÞ

γ�=s
l : ð36Þ
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Equation (36) implies that the leading behavior of
Φ�=s

ðFÞ;ljrH≪r≪1=ω takes the form compatible with the asymp-

totic expansion of the master variables, i.e., Eqs. (14) and
(17), implying that the response function (36) captures
linear responses. We stress that subleading corrections to
applied fields and linear responses are not degenerate
thanks to the analytic continuation of l from an integer
to generic numbers [28–30,36,54,57].
The comparison of Eq. (36) with Eqs. (14) and (17)

leads to

κ�l ¼ ið−1Þllðl − 1Þ
22lþ2ðlþ 2Þðlþ 1Þ

× lim
ω→0

Γð2lþ 1Þ
ðωrHÞ2lþ1Γðlþ 1 − iωrHÞ

γ�l ; ð37Þ

and

κsl ¼ lim
ω→0

ið−1ÞlΓð2lþ 1Þ
22lþ1ðωrHÞ2lþ1Γðlþ 1 − iωrHÞ

γsl: ð38Þ

It follows that, with the value of γ�=s
l being obtained, the

TLNs are computed. Therefore, the problem to compute
the TLNs numerically boils down to evaluating γ�=s

l for a
given small frequency ω.
To obtain γ�=s

l numerically, we use direct integration,
a widely used method in the context of computation
of quasinormal mode frequencies [56]. We first prepare
the numerical solution Φ�=s

LR;l by integrating Eq. (20)
from the vicinity of the horizon outward to large
distances, subject to the ingoing-wave condition at
the horizon. We next obtain two independent solutions,
Φ�=s

M;l and Φ�=s
U;l , by numerically integrating Eq. (20)

from large distances r ¼ rmax inward to the horizon
with initial data,

Φ�=s
M;ljr¼rmax

¼ q�=s
ðFÞ;l

�
r
rH

�
lþ1

eiωr

×Mðlþ 1 − iωrH; 2lþ 2;−2iωrÞ; ð39Þ
and

Φ�=s
U;l jr¼rmax

¼ q�=s
ðFÞ;l

�
r
rH

�
lþ1

eiωr

× Uðlþ 1 − iωrH; 2lþ 2;−2iωrÞ: ð40Þ

We then construct the numerical solution, Φ�=s
RL;l ≔

Φ�=s
M;l þ γ�=s

l Φ�=s
U;l . To construct the global numerical

solution that satisfies the ingoing-wave condition at
the horizon and the boundary condition for scattering
waves at large distances simultaneously, we search γ�=s

l
for a given small frequency so that the Wronskian of
Φ�=s

LR;l and Φ�=s
RL;l vanishes at some matching radius.

In GR (δV�=s
l ¼ 0), using γ�=s

l in Eqs. (37) and (38), we
find indeed a result consistent with the vanishing of the
TLNs for various matching radii, upper integration limits
rmax=rH ð≲103Þ, and input frequencies ωrH ð∼10−10Þ.
We find that the bases e�=s

j of all the perturbations of the
lowest multipoles for j ≥ 2lþ 4 are stable with a five-digit
accuracy when the parameters of the direct integration
(outer boundary and matching radius) are varied. The
accuracy for the higher multipoles l ¼ jsj þ 1; jsj þ 2;
jsj þ 3 is at least three digits. For all the perturbations of
the lowest multipoles, the bases that we obtain numerically
are in good agreement with the analytical results with a
relative error≲0.1%. For the higher multipoles, those are in
agreement with ≲1% at j ¼ 2lþ 4; the accuracy tends to
be worse for higher j.
The bases of the TLNs are thus computed numerically in

an unambiguous manner. This is because (i) scattering
waves satisfy the boundary conditions that capture the
physical property of the waves, which fix the ratio of
the coefficient of the growing series in r=rH to that of the
decaying series and are incompatible with a coordinate
transformation altering the asymptotic behavior of the
waves in r → ∞ [29,52,53]; (ii) there is no degeneracy
between subleading corrections to applied fields and linear
responses in defining the response function (36) thanks to
the analytic continuation of l from an integer to generic
numbers [28–30,36,54,57]; (iii) γ�=s

l is computed from the

Wronskian of Φ�=s
LR;l and Φ�=s

RL;l at some matching radius
unambiguously.

3. Recurrence relation

An important consistency check of our result can be
done using the following recurrence relations among the
different bases e�=s

j for j ≥ 2lþ 4 [71]5:

5We correct the typo in the term of ðrH=rÞjþ3 in Eq. (26) in the
reference.
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eþjþ5 ¼ −
1

27ðjþ 2Þ3 f4λ
3ðj − 3ÞðωrHÞ2eþj−2 þ 36λ2ðj − 2ÞðωrHÞ2eþj−1

− ½λ3ðj − 2Þð4λ − jðj − 4Þ þ 5Þ − 108λðj − 1ÞðωrHÞ2�eþj
− ½λ2ð6λðλ − 1Þ þ j3ð2λ − 9Þ − 9j2ðλ − 3Þ þ jðλð25 − 4λÞ þ 6ÞÞ − 108jðωrHÞ2�eþjþ1

− λ½3λðλ − 4Þ − j3ðλðλ − 18Þ þ 27Þ þ 3λj2ðλ − 9Þ − jðλð23λ − 21Þ − 27Þ�eþjþ2

− 9½−λ2ðj3 þ 4jþ 2Þ þ λðjþ 1Þð6j2 þ 3jþ 4Þ − 3jðjþ 1Þðjþ 2Þ�eþjþ3 − 9½3ðjþ 1Þðjþ 2Þð2jþ 3Þ
− λðjð3jððjþ 3Þ þ 13Þ þ 9ÞÞ�eþjþ4g; ð41Þ

for the even-parity perturbation, and

e−=sjþ5 ¼−
1

ðjþ 2Þðjþ 2þ 2sÞðjþ 2− 2sÞ

×

�
4jðωrHÞ2e−=sjþ1þðjþ 1Þðj− 2lÞðjþ 2lþ 2Þe−=sjþ3

− ð2jþ 3Þ½2ð1− s2Þ− 2lðlþ 1Þþ jðjþ 3Þ�e−=sjþ4

�
;

ð42Þ

for odd-parity perturbations and spin-s-field perturbations.
The same relations hold for d�=s

j of j ≥ 3 as well. The

analytical results for e�=s
j and d�=s

j all exactly satisfy those
recurrence relations with ω ¼ 0. Since we are currently
interested in either static perturbations or low-frequency
waves, terms of ðωrHÞ2 are ignored henceforth.
The relations (41) and (42) are derived from the

following consideration: First, we redefine the master
variables,

Φ�=s
l ¼ Φ̃�=s

l þ ϵ

�
1− f

�
1

2

dY�=s
j

dr
− Y�=s

j
d
dr

��
Φ̃�=s

l ; ð43Þ

where jϵj ≪ 1. Here, the functions Y�=s
j are generating

functions of the field redefinition,

Yþ
j ≔

ðλrþ 3rHÞ3
r3H

�
rH
r

�
j
; ð44Þ

Y−=s
j ≔

�
rH
r

�
j
: ð45Þ

The redefinition (43) modifies the shape of the effective
potentials, but the physical quantities, e.g., quasinormal
mode frequencies and TLNs, must be invariant because
the underlying theory is the same, provided that the
redefinition keeps the boundary conditions. Therefore,
their “deviation” computed in the current parametrized
framework must be zero (see Ref. [71]).

In the absence of running, the redefinition (43) for j ≥
2lþ 4 for Φþ

l (j ≥ 2lþ 1 for Φ−=s
l ) keeps the ratio

between the coefficient of the growing series in r and
the decaying one, meaning that the leading asymptotic
behaviors of the solution at large distances remain
unchanged. Redefining the master variables by Eq. (43)
for j ¼ 2lþ 4 (j ¼ 2lþ 1, respectively) first leads to the
relation (41) among eþj for 2lþ 4 ≤ j ≤ 2lþ 9 [the

relation (42) among e−=sj for 2lþ 4 ≤ j ≤ 2lþ 6, respec-
tively]. Then, recurrence relations (41) and (42) determine
eþ2lþ10 and e−=s2lþ7, respectively. In this way, one can obtain
the basis up to any order of j, once the bases at the lower
order are known.
In the presence of running, the redefinition (43) of j ≥ 3

for Φþ
l (j ≥ 0 for Φ−=s

l ) keeps the ratio between the
coefficients of the growing series in r and that of the
decaying series, meaning that the leading asymptotic
behaviors of the solution at large distances remain
unchanged. We therefore have the same recurrence rela-
tions as Eqs. (41) and (42) for d�=s

l as well.

C. Results

Our main results are presented in Table II, which gives
the bases of the quadrupolar electric- and magnetic-type
TLNs, i.e., e�j jl¼2 for j ≥ 8, which are analytically calcu-
lated in terms of static perturbations in the perturbative
manner of the correction. The analytic expression for
e−j jl¼2 is given in Eq. (28). The data for gravitational
ðjsj ¼ 2Þ, scalar-field (s ¼ 0), and vector-field ðjsj ¼ 1Þ
perturbations of l ¼ jsj; jsj þ 1; jsj þ 2; jsj þ 3 for 2lþ
4 ≤ j ≤ 50 are provided online [72].
Table III is another main result, giving the bases of the

quadrupolar running electric- and magnetic-type TLNs,
d�j jl¼2. The data for gravitational ðjsj ¼ 2Þ, scalar-field
(s ¼ 0), and vector-field ðjsj ¼ 1Þ perturbations of l ¼
jsj; jsj þ 1; jsj þ 2; jsj þ 3 are provided in online [72]. It is
worth mentioning that the bases for two sectors of the
running TLNs at j ¼ 7 are identical, i.e., dþ7 ¼ d−7 ; this
property breaks at lower j. This is common to other
multipoles, i.e., dþ2lþ3 ¼ d−2lþ3.
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Figure 1 visualizes eþj of l ¼ 2, 3, 4 as a function of j.
The absolute value of eþj is monotonically decreasing as j is
increased. The qualitative behavior is common to other
parity/spin perturbations.

D. Convergence of the series

Consider now the convergence of the series expansion of
the TLNs in Eq. (22). Note that d�=s

j ¼ 0 for j ≥ 2lþ 4;
hence the expansion of the running TLNs in Eq. (23) is a
finite series. The criterion for convergence is

lim
n→∞

���� α
�=s
nþ1e

�=s
nþ1

α�=s
n e�=s

n

���� < 1: ð46Þ

For odd-parity and spin-s-field perturbations with l ¼ jsj,
one can show from Eqs. (28) and (29),

lim
n→∞

����� e
−=s
nþ1jl¼jsj
e−=sn jl¼jsj

����� ¼ 1: ð47Þ

For generic cases, we find that the asymptotic behaviors
take the form from the analytical result,

e�=s
j ∼ −

Γ�=s

j
; j ≫ 10; ð48Þ

where Γ�=s is a positive constant. Figure 2 shows the
asymptotic behavior together with the exact results for the
even-parity quadrupolar basis. The asymptotic value pro-
vides a good description even at moderate values of j.
Additionally, the recurrence relations (41) and (42) for

large j take the forms

TABLE II. Bases of the quadrupolar electric- and magnetic-
type TLNs, i.e., e�j jl¼2 for j ≥ 8, analytically calculated. The
analytic expression for e−j jl¼2 is given in Eq. (28). The data for
gravitational ðjsj ¼ 2Þ, scalar-field (s ¼ 0), and vector-field
ðjsj ¼ 1Þ perturbations of l ¼ jsj; jsj þ 1; jsj þ 2; jsj þ 3 for
2lþ 4 ≤ j ≤ 50 are provided online [72]. The results are derived
analytically with arbitrary accuracy, but we truncate at ten digits.
Note that e�=s

j ¼ 0 for 3 ≤ j ≤ 2lþ 3.

j eþj jl¼2 e−j jl¼2

8 −0.02156690509 −0.01666666667
9 −0.01081520056 −0.008333333333
10 −0.007051104784 −0.005555555556
11 −0.005164475128 −0.004166666667
12 −0.004045502617 −0.003333333333
13 −0.003311127186 −0.002777777778
14 −0.002795061669 −0.002380952381
15 −0.002414022140 −0.002083333333

TABLE III. Bases of the quadrupolar running electric- and
magnetic-type TLNs, i.e., d�j jl¼2 for j ≤ 7. Although there are no
analytical expressions for generic j, dþ7 jl¼2, d

þ
6 jl¼2, and d−7 jl¼2

are analytically derived in Eqs. (B8), (B11), and (A18), respec-
tively. The data for gravitational ðjsj ¼ 2Þ, scalar-field (s ¼ 0),
and vector-field ðjsj ¼ 1Þ perturbations of l ¼ jsj; jsj þ 1;
jsj þ 2; jsj þ 3 are provided online [72]. The results are derived
analytically with arbitrary accuracy, but we truncate at ten digits.
Note that dþj ¼ 0 for j ≥ 2lþ 4 and d−=sj ¼ 0 except for
2jsj þ 3 ≤ j ≤ 2lþ 3.

j dþj jl¼2 d−j jl¼2

3 −0.005273437500 0
4 0.02500000000 0
5 0.009375000000 0
6 −0.02500000000 0
7 −0.01666666667 −0.01666666667

FIG. 1. The even-parity bases for l ¼ 2, 3, 4. These bases share
the same qualitative behavior with other parity/spin perturbations
for a fixed l.

FIG. 2. The even-parity quadrupolar basis. The blue points
correspond to our exact analytical results, the solid orange line
corresponds to approximation in Eq. (48), with Γþ ≃ 0.0177.
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0 ≃ −
λ3

27
eþj

�
1 −

eþjþ1

eþj

�
þ λ2ðλ − 9Þ

27
eþjþ1

�
1 −

eþjþ2

eþjþ1

�

þ λðλ − 3Þ
3

eþjþ2

�
1 −

eþjþ3

eþjþ2

�

þ ðλ − 1Þeþjþ3

�
1 −

eþjþ4

eþjþ3

�
þ eþjþ4

�
1 −

eþjþ5

eþjþ4

�
; ð49Þ

and

e−=sjþ3

 
1 −

e−=sjþ4

e−=sjþ3

!
− e−=sjþ4

 
1 −

e−=sjþ5

e−=sjþ4

!
≃ 0: ð50Þ

Thus, we find

lim
n→∞

���� e
�=s
nþ1

e�=s
n

���� ¼ 1: ð51Þ

The criterion for convergence in Eq. (46) reduces to

lim
n→∞

���� α
�=s
nþ1

α�=s
n

���� < 1: ð52Þ

Therefore, the expansion of the TLNs by Eq. (22) is
convergent if the expanded potential itself converges.

E. Subtle case

We note a subtle case in the application of our formalism.
It happens only when, although a given potential correction
has nonzero αþj (α−=sj , respectively) for 3 ≤ j ≤ 2lþ 3

(2jsj þ 3 ≤ j ≤ 2lþ 3, respectively), K�=s
l in Eq. (23)

vanishes, i.e.,

X2lþ3

j¼3

αþj d
þ
j ¼ 0;

X2lþ3

j¼2jsjþ3

α−=sj d−=sj ¼ 0: ð53Þ

For example, this holds in the odd-parity sector of
octupolar gravitational perturbations of the effective field
theory of ϵ1 in Ref. [31].6 The same happens in the even-
parity sector of quadrupolar gravitational perturbations
as well.
If Eq. (53) holds, the field will have no logarithmic

corrections at large distances and, instead, will give the
nonrunning TLNs. However, each j contribution has a
logarithmic term according to the analysis in Appendixes A
and B (see also Sec. III B 1). That means that a miracle

cancellation of the logarithmic terms in the summation
over j happens.
Even with Eq. (53), one can compute κ�=s

l in Eq. (22).7

However, it is subtle if the obtained κ�=s
l is indeed the

TLN for the following reason: in the construction in
Sec. III B 1, the first-order horizon-regular solutions with
logarithmic corrections for each j have the terms of the
form p�=s

j ½lnðr=rHÞ þ c�=s
j �ðrH=rÞl, at large distances,

where p�=s
j and c�=s

j are constants [see e.g., Eqs. (A16)
and (A41)]. Then, its summation over j becomes

X2lþ3

j¼3

p�=s
j lnðr=rHÞðrH=rÞl þ

X2lþ3

j¼3

p�=s
j c�=s

j ðrH=rÞl:

When the summation of the logarithmic terms vanishes,P
2lþ3
j¼3 p�=s

j c�=s
j comes into play as a constant appearing in

front of ðrH=rÞl, which may be interpreted as another
contribution into the nonrunning TLN, in addition to j ≥
2lþ 4 leading to κ�=s

l in Eq. (22). However, our formalism

does not take
P

2lþ3
j¼3 p�=s

j c�=s
j into account. This is because

c�=s
j generically includes subleading corrections to terms
decaying slower than ðrH=rÞl as well, but the distinction is
ambiguous, meaning it is unclear if the contribution ofP

2lþ3
j¼3 p�=s

j c�=s
j is a purely tidal response. To resolve this

subtlety, a better understanding of the slower decaying
terms is required.

IV. EXAMPLES

We now provide examples of the application of our
formalism to particular theories of gravity, whose linear
perturbation equations can be reduced into the form of
Eq. (20) with a convergent potential correction δV�=s

l .

A. Effective field theory

We apply our formalism to the effective field theory
approach in Refs. [31,73], in which deviation from GR is
characterized by three parameters associated with higher-
order curvature corrections. We here focus on corrections
of Λ̃ and Λ, which are translated into dimensionless
coupling parameters ϵ2 and ϵ1, respectively [31].

1. ϵ2 correction

A nonspinning BH in this setup is described by the
Schwarzschild geometry. The even-parity sector of gravi-
tational perturbations is governed by the Zerilli equation in
Eq. (11); therefore, the electric-type TLNs all vanish [31].
On the other hand, the odd-parity sector satisfies the
deformed Regge-Wheeler equation, i.e.,

6Although the right-hand side in Eq. (53) is exactly zero, the
bases d�=s

j provided online [72] give Oð10−11Þ × ϵ1 because we
truncated them at tenth digits, even though they are obtained at
arbitrary digits. 7Note that e�=s

j ¼ 0 for 3 ≤ j ≤ 2lþ 3 (see also Table I).
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f
d
dr

�
f
dΦ−

l

dr

�
þ ½ω2 − fðV−

l þ δV−
l Þ�Φ−

l ¼ 0; ð54Þ

with the correction

δV−
l ¼ ϵ2

18ðlþ 2Þðlþ 1Þlðl − 1Þ
r2H

�
rH
r

�
10

: ð55Þ

Only the tenth coefficient in the expansion of the TLN in
Eq. (22), i.e., α−10, is nonzero. For the quadrupolar case
l ¼ 2, we have the analytic expression for the basis,
e−j jl¼2, in Eq. (28), thereby immediately obtaining

κ−2 ¼ −
12

5
ϵ2: ð56Þ

Taking into account the difference of the definition in
Ref. [31] from the current work (see footnote 2), we
reproduce the result κ−2 ¼ −ϵ2384=5 in the reference
exactly.
In the same manner, we obtain

κ−3 ¼ −18.4286ϵ2; ð57Þ

for l ¼ 3. For l ≥ 4, running behaviors appear, e.g., the
coefficient is calculated to

K−
4 ¼ 432.000ϵ2; ð58Þ

for l ¼ 4. This trend—running appears in higher
multipoles—is also observed in Chern-Simons gravity in
Ref. [25] and the effective field theory framework in
Ref. [32] (see also Sec. IV C).

2. ϵ1 correction

In this setup, a nonspinning BH slightly deviates from
the Schwarzschild geometry. We here discuss the odd-
parity sector of gravitational perturbations. The even-parity
sector of quadrupolar gravitational perturbations corre-
sponds to the “subtle” case of Sec. III E.
Following the manner in Ref. [65], the master equation is

reduced into the deformed Regge-Wheeler equation (54)
but the correction takes the form, e.g.,

δV−
2 ¼ −

5ϵ1
4r2H

�
rH
r

�
3

−
15ϵ1
16r2H

�
rH
r

�
4

−
5ϵ1
8r2H

�
rH
r

�
5

−
5ϵ1
16r2H

�
rH
r

�
6

þ 5ϵ1
16r2H

�
rH
r

�
8

þ 5ϵ1
8r2H

�
rH
r

�
9

−
39729ϵ1
16r2H

�
rH
r

�
10

þ 24413ϵ1
4r2H

�
rH
r

�
11

−
58617ϵ1
16r2H

�
rH
r

�
12

; ð59Þ

for l ¼ 2. The variable Φ−
l for generic l is related to the

original master variable Ψϵ1
l in Ref. [31] by

Ψϵ1
l ¼ ð1þ ϵ1δZÞ−1=2Φ−

l ;

δZ ¼ 19968M10 − 11264M9rþ 5Mr9

4r9ðr − 2MÞ ; ð60Þ

where M is the BH mass that satisfies rH=M ¼ 2þ 5ϵ1=4.
The master equation of l ¼ 3 can also be reduced into the
deformed Regge-Wheeler equation (54) but it corresponds
to the subtle case of Sec. III E.
To obtain the TLNs, we first expand Φ−

l in terms of ϵ1
up to the linear order: Φ−

l ¼ Φ−
ð0Þ þ ϵ1Φ−

ð1Þ. Then, Ψ
ϵ1
l in

Eq. (60) is also expanded as

Ψϵ1
l ¼ Φ−

ð0Þ þ ϵ1

�
Φ−

ð1Þ −
δZjϵ1¼0

2
Φ−

ð0Þ

�
: ð61Þ

One can immediately calculate the “TLN”, say, κ−Φ;l, forΦ−
l

with our formalism by Eq. (22), e.g.,

κ−Φ;2 ¼
2717

4800
ϵ1; ð62Þ

for l ¼ 2. Note that this is not the TLN of the BH
in the current theory. We next obtain the prefactor,
say, 2ðlþ 2Þðlþ 1Þ=½lðl − 1Þ�κ−δZ;l, of ðrH=rÞl of
−ϵ1ðδZjϵ1¼0ÞΦ−

ð0Þ=2 at large distances. The TLN is there-
fore computed by κ−l ¼ κ−Φ;l þ κ−δZ;l, e.g.,

κ−2 ¼ 27

50
ϵ1; ð63Þ

for l ¼ 2. Here, we have used Φ−
ð0Þ ¼ ðr=rHÞ3 for l ¼ 2.

Taking into account the difference of the definition in
TLNs, we recover exactly the value ϵ1432=25 quoted
in Ref. [31].

B. Reissner-Nordström black holes

We apply the formalism to the odd sector of gravitational
perturbations on a Reissner-Nordström BH of small charge,
i.e., r− ≪ rH, where rH=− is the location of the outer
and inner horizons, respectively. Following Ref. [65], the
perturbation equation is reduced to

f
d
dr

�
f
dΦ−

l

dr

�
þ
��

1−
r−
rH

�
−2
ω2 − fðV−

l þ δV−
l Þ
�
Φ−

l ¼ 0;

ð64Þ

with the correction

δV−
l ¼ α−0

r2H
þ α−3

r2H

�
rH
r

�
3

þ α−4
r2H

�
rH
r

�
4

þO
�
r−
rH

�
2

; ð65Þ
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where we have introduced

α−0 ¼ 2ðωrHÞ2
r−
rH

; α−3 ¼ −
l2 þ lþ 4

3

r−
rH

; α−4 ¼ 5r−
2rH

:

ð66Þ

We ignore the contribution of ðωrHÞ2. The variable Φ−
l is

related to the original master variableΦ−
RN;l in the Reissner-

Nordström spacetime by

Φ−
RN;l ¼

�
1 −

r−
r

�
−1=2

Φ−
l : ð67Þ

The analysis in Sec. III shows that the corrections of
3 ≤ j ≤ 6 give no series of ðrH=rÞl½1þOðrH=rÞ� in Φ−

l .
Noting Φ−

l jr−¼0 is a finite series in r=rH without inverse
powers, one can then show that Φ−

RN;l in Eq. (67) has the
vanishing magnetic-type TLNs up to Oðr−=rHÞ, which is
consistent with the known exact result [25].
For the static quadrupolar gravitational perturbation,

Eqs. (A21) and (A29) with the parametrization by Eq. (66)
lead to the horizon-regular solution up to linear order,

Φ−
RN;2 ¼

�
r
rH

�
3
�
1þ 4r−

3rH

rH
r

�
; ð68Þ

which explicitly shows the vanishing of the TLN within
Oðr−=rHÞ. This is indeed the horizon-regular solution of
the master equation up to Oðr−=rHÞ for the odd-parity
gravitational perturbation in the static limit, e.g., Eq. (29)
in Ref. [65].

C. Running in the effective field theory

We further apply our formalism to the coefficient of the
octupolar, running, jsj ¼ 1, TLN in Ref. [32]. The master
equation is reduced into the form of Eq. (20) with the
correction

δV1
3 ¼

110α̃

r2H

�
rH
r

�
3

þ 105α̃

r2H

�
rH
r

�
4

þ 100α̃

r2H

�
rH
r

�
5

þ 95α̃

r2H

�
rH
r

�
6

þ 90α̃

r2H

�
rH
r

�
7

−
77α̃

r2H

�
rH
r

�
8

−
1056α̃

r2H

�
rH
r

�
9

; ð69Þ

where α̃ ≔ αk2=r4H (see Ref. [32] for notation). The
variable Φ1

3 is associated with the original Ψ3 in
Ref. [32] by

Ψ3 ¼
�
1 − α̃

44r7H − 54r6Hrþ 10rHr6

r6ðr − rHÞ
�−1=2

Φ1
3: ð70Þ

The presence of the terms of 5 ≤ j ≤ 9 in δV1
3 implies the

appearance of a running behavior.
As in Sec. IVA 2, we obtain the prefactor of

lnðr=rHÞðrH=rÞ3½1þOðrH=rÞ� in Φ1
3 by Eq. (23),

K1
Φ;3 ¼ 100.571α̃: ð71Þ

The absence of logarithmic terms in Φ1
3jα̃¼0 means that the

original variable Ψ3 has the identical coefficient of the
logarithmic correction as that of Φ1

3, i.e.,

K1
3 ¼ 100.571α̃: ð72Þ

We thus recover the coefficient of the running behavior
in Ref. [32].

V. SUMMARY

In this work, we have developed a theory-agnostic para-
metrized formalism to compute the TLNs of BHs in generic
theories, for which the perturbations can be put in a master
equation close to that of vacuum GR. Our framework
assumes that (i) the background is static and spherically
symmetric, (ii) master equations take the formof those ofGR
with small linear corrections, and (iii) there is no coupling
among different physical degrees of freedom. With this
formalism, one can quantifiably investigate the deviation
of BH TLNs from the GR value, zero. Additionally, given
master equations in the form of Eq. (20), one can immedi-
ately compute the corresponding TLNs up to the linear order
of corrections. Our formalism correctly recovers known
results in the literature [25,31,32].
Our formalism provides a computational framework, but

also unveils some of the general properties of the tidal
response of static and spherically symmetric BHs. Our
findings on the qualitative behavior of model-independent
coefficients in the current framework are summarized in
Table I. For small linear power-law corrections to the
effective potentials in GR, i.e., Eq. (21), those of j ≥
2lþ 4 contribute with nonzero TLNs, while those of 3 ≤
j ≤ 2lþ 3 (7 ≤ j ≤ 2lþ 3, respectively) give rise to
running of the electric-type (magnetic-type, respectively)
TLNs. Corrections of 3 ≤ j ≤ 6 in the odd-parity sector
have no contributions into tidal responses. A running
behavior can appear in higher multipoles even if the lowest
multipole has no running TLNs. This is consistent with the
observations in Chern-Simons gravity in Ref. [25] and the
effective field theory framework in Ref. [32].
One should note that our formalism assumes nonrota-

ting BHs. Clearly, a generalization to include BH spin is
necessary. Fortunately, two facts help us here. The first is
that even spinning BHs have zero TLNs [28,29]. Any
nonzero TLN is then an imprint of new physics, whether
the BH is spinning or not. Second, for reasons not yet
totally understood, BHs observed in the gravitational-wave
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band all have, at most, modest spins [74]. It might thus
be interesting to consider systems constructed per-
turbatively under the assumption of slow rotation. We
expect that modification to the Sasaki-Nakamura [75,76]
(or Chandrasekhar-Detweiler [77]) equations, which reduce
to the Regge-Wheeler/Zerilli equations in the nonrotating
limit, are more useful extensions of our work.
This work can be extended in various directions. First,

the extension to systems with couplings among different
physical degrees of freedom reveals a rich structure of the
TLNs in systems that slightly deviate from GR and/or exact
vacuum environments. Second, it is important to develop
the formalism in rotating BH backgrounds for testing
theories of gravity via future gravitational-wave observa-
tions. Third, the construction of the formalism in a variety
of potential corrections, not only the simple power-law
expansion in Eq. (21), expands the scope of the application
of the parametrized formalism. Finally, it is possible, in
principle, to extend the parametrized formalism to dynami-
cal TLNs in line of Refs. [78–80] with our scattering-theory
approach.
There still remain open questions in understanding tidal

responses of compact objects. First, it is unclear how the
running TLNs work in the dynamics of binaries and on
gravitational waveforms. Second, it would be important to
study how the running TLNs we found and their cancella-
tion discussed in Sec. III E can be understood in terms of
an effective field theory description in an unambiguous
manner in Refs. [54,57,64]. Third, the physical interpre-
tation of terms decaying slower than the term of multipole
moments in the asymptotic behavior of perturbation fields
at large distances is ambiguous. We expect that a better
understanding of it leads to resolving the subtlety discussed
in Sec. III E. Finally, there might be some connection
between vanishing of the TLNs even in the presence of
deviation from a Schwarzschild background and “hidden”
symmetric structure [42–51], or possibly in relation with
the ambiguity of an effective potential pointed out
in Ref. [71].

The perturbation data can be found online [72].
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APPENDIX A: MAGNETIC-TYPE
AND SPIN-S-FIELD LOVE NUMBERS

Here we provide some details on the analytical calcu-
lation of TLNs and how their properties change qualita-
tively depending on the power-law index j, as we
summarized in Sec. III B 1.
Consider the odd-parity gravitational and spin-s-field

perturbations in Eq. (20) with a single power-law correc-
tion, in the static limit ω → 0,

d
dr

�
f
dΦ−=s

l

dr

�
−
�
V−=s
l þ α−=sj

r2H

�
rH
r

�
j
�
Φ−=s

l ¼ 0; ðA1Þ

where V−=s
l is in Eqs. (13) and (16). We expand the variable

Φ−=s
l in the small coefficient α−=sj up to linear order as

Φ−=s ¼ Φ−=s
ð0Þ þ α−=sj Φ−=s

ð1Þ . Order by order, Eq. (A1) is then

d
dr

�
f
dΦ−=s

ð0Þ
dr

�
− V−=s

l Φ−=s
ð0Þ ¼ 0; ðA2Þ

at the zeroth order and

d
dr

�
f
dΦ−=s

ð1Þ
dr

�
− V−=s

l Φ−=s
ð1Þ ¼ 1

r2H

�
rH
r

�
j
Φ−=s

ð0Þ ; ðA3Þ

at the first order.

1. l= jsj case
We begin by considering the l ¼ jsj case. Imposing the

regularity condition at r ¼ rH, we obtain the horizon-
regular solution at the zeroth order,

Φ−=s
ð0Þ ¼

�
r
rH

�jsjþ1

: ðA4Þ

We set the coefficient as unity without loss of generality.
The zeroth-order horizon-regular solution is purely grow-
ing in r, explicitly showing the vanishing of the quad-
rupolar magnetic-type TLN of Schwarzschild BHs [21].
Consider now first-order contributions of α−=sj . Expand

Φ−=s
ð1Þ as
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Φ−=s
ð1Þ ¼

�
r
rH

�jsjþ1X∞
k¼0

β−=sk

�
rH
r

�
k
: ðA5Þ

With this expansion, Eq. (A3) is reduced to

�
rH
r

�
j−3

þ 2jsjβ−=s1 −
X∞
k¼1

ðk − 2jsjÞ½ðkþ 1Þβ−=skþ1

− kβ−=sk �
�
rH
r

�
k
¼ 0: ðA6Þ

Notice that β−=s0 is free from any constraint, corresponding
to the coefficient of the horizon-regular solution at the first
order, i.e., Φ−=s

ð1Þ ¼ β−=s0 ðr=rHÞjsjþ1. We set β−=s0 ¼ 0 with-

out loss of generality because this solution only contributes
to the renormalization to the zeroth-order horizon-regular
solution (A4). In the following, we analyze Eq. (A6) for
each of the cases j ≥ 2jsj þ 4, 4 ≤ j ≤ 2jsj þ 3 ðs ≠ 0Þ,
and j ¼ 3.

a. j ≥ 2jsj+ 4
One finds the recurrence relation,

ðkþ 1Þβ−=skþ1 ¼ kβ−=sk ; ðA7Þ

which implies that, for jsj ¼ 1, 2, the coefficients β−=sk
vanish for 1 ≤ k ≤ 2jsj due to the presence of the term
ðrH=rÞj−3 and the factor k − 2jsj in the sum in Eq. (A6); for
s ¼ 0, the coefficient β01 is free.

The coefficient β−=s
2jsjþ1

is free and determines the

sequence of β−=sk up to k ¼ j − 3 uniquely from the

recurrence relation (A7). The coefficient β−=sj−2 is then
determined by

β−sj−2 ¼
1þ ð2jsj þ 1Þðj − 2jsj − 3Þβs

2jsjþ1

ðj − 2jsj − 3Þðj − 2Þ : ðA8Þ

The recurrence relation (A7) determines the coefficients
β−=sk for k ≥ j − 1 as well, leading to an infinite polynomial
of rH=r, corresponding generically to the horizon-singular
function.
The recurrence relation (A7) implies that one can set

β−=sk ¼ 0 for k ≥ j − 2 by choosing

β−=s
2jsjþ1

¼ −
1

ð2jsj þ 1Þðj − 2jsj − 3Þ ; ðA9Þ

such that β−=sj−2 vanishes. With this choice, the finite
polynomial in 2jsj þ 1 ≤ k ≤ j − 3 corresponds to another
independent first-order horizon-regular solution. We thus
obtain the horizon-regular solution up to first order,

Φ−=s
jsj ¼

�
r
rH

�jsjþ1

−
α−=sj

ð2jsj þ 1Þðj − 2jsj − 3Þ
�
rH
r

�jsj

×

�
1þ � � � þ 2jsj þ 1

j − 3

�
rH
r

�
j−2jsj−4�

: ðA10Þ

Equation (A10) allows one to read off the TLNs,

κ−2 ¼ −
α−j

60ðj − 7Þ ; ðA11Þ

for the odd-parity gravitational perturbation ðjsj ¼ 2Þ, and

κ−=sjsj ¼ −
α−=sj

ð2jsj þ 1Þðj − 2jsj − 3Þ ; ðA12Þ

for the scalar-field (s ¼ 0) and vector-field ðjsj ¼ 1Þ
perturbations [see definition in Eq. (14)]. We thus obtain
analytic expressions for the bases for the TLNs,

e−j jl¼2 ¼ −
1

60ðj − 7Þ ; ðA13Þ

for odd-parity gravitational perturbations ðjsj ¼ 2Þ, and

esjjl¼jsj ¼ −
1

ð2jsj þ 1Þðj − 2jsj − 3Þ ; ðA14Þ

for scalar- (s ¼ 0) and vector-field ðjsj ¼ 1Þ perturbations.
These satisfy the recurrence relation (42) for ω ¼ 0.

b. 4 ≤ j ≤ 2jsj+ 3 (s ≠ 0)

Equation (A6) implies β−=s1 ¼ 0. The recurrence relation

(A7) then gives β−=sk ¼ 0 for 1 ≤ k ≤ j − 3 [by noting

β−=sj−2 ≠ 0 as Eq. (A6) implies]. The coefficient of ðrH=rÞj−3
in Eq. (A6) leads to the relation

βsð≠0Þj−2 ¼ 1

ðj − 2jsj − 3Þðj − 2Þ : ðA15Þ

Thus, for j ¼ 2jsj þ 3, the power-series expansion in
Eq. (A5) is not appropriate, since the asymptotic behavior
at large distances does not scale as powers of r solely. In
fact, solving Eq. (A3) directly shows that the first-order
solution includes logarithmic terms of r. After renormaliz-
ing the zeroth-order horizon-regular solution (A4), the
asymptotic behavior of the first-order horizon-regular
solution at large distances takes the form

Φ−
ð1Þjr≫rH ¼ −

1

5

�
rH
r

�
2
�
ln

�
r
rH

�
þOð1Þ

�
½1þOðrH=rÞ�;

ðA16Þ

for jsj ¼ 2, and
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Φ1
ð1Þjr≫rH ¼−

rH
3r

�
ln

�
r
rH

�
þOð1Þ

��
1þO

�
rH
r

��
; ðA17Þ

for jsj ¼ 1. This can be understood as running of the
TLNs [25,26,32,34,57], whose coefficient is interpreted as
a β function in the context of a classical renormalization
flow [26,57,64]. One can read the bases of the coefficient of
the running TLNs,

d−7 jl¼2 ¼ −
1

60
; ðA18Þ

for jsj ¼ 2, and

d15jl¼1 ¼ −
1

3
; ðA19Þ

for jsj ¼ 1.
We focus on 4 ≤ j ≤ 6 for jsj ¼ 2 and j ¼ 4 for jsj ¼ 1.

With β−=sj−2 determined, the recurrence relation (A7) gen-
erates a finite polynomial of rH=r up to k ¼ 2jsj, which
corresponds to another independent horizon-regular
solution with the coefficient β−=sj−2 at the first order. For
k ≥ 2jsj þ 1, the recurrence relation (A7) gives an infinite
polynomial that corresponds to the horizon-singular sol-
ution with the coefficient β−=s

2jsjþ1
at the first order. Imposing

the regularity condition at the horizon, i.e., β−=s
2jsjþ1

¼ 0, we
obtain the horizon-regular solution,

Φ−
ð1Þjj¼6 ¼ −

rH
4r

; Φ−
ð1Þjj¼5 ¼

1

6

�
1þ 3rH

4r

�
; ðA20Þ

Φ−
ð1Þjj¼4 ¼ −

r
6rH

�
1þ 2rH

3r
þ 1

2

�
rH
r

�
2
�
; ðA21Þ

for jsj ¼ 2, and

Φ1
ð1Þ ¼ −

1

2
; ðA22Þ

for jsj ¼ 1. Therefore, up to first order,

Φ−
2 ¼

�
r
rH

�
3
�
1− α−j

ð8− jÞð6− jÞ þ 18

72

�
1−
�
1−

rH
r

�

×

�
1þ � � � þ 3

ð7− jÞð8− jÞ þ 1

�
rH
r

�
3
��


; ðA23Þ

for jsj ¼ 2, and

Φ1
1 ¼
�

r
rH

�
2
�
1−

α1j
2

�
1−
�
1−

rH
r

��
1þ rH

r

��

; ðA24Þ

for jsj ¼ 1. The absence of the term of ðrH=rÞjsj shows that
the TLNs vanish. Thus, we conclude that corrections of

4 ≤ j ≤ 2jsj þ 2 ðs ≠ 0Þ have no contribution to the
expansion of TLNs in Eq. (22).

c. j= 3

For s ¼ 0, there are no coefficients β0k compatible with
Eq. (A6); a power-series expansion in Eq. (A5) is not
appropriate. Solving Eq. (A3) directly shows that the first-
order solution includes logarithmic terms in r. After
renormalizing the zeroth-order horizon-regular solution
(A4), the asymptotic behavior of the first-order horizon-
regular solution at large distances reads

Φ0
ð1Þjr≫rH ¼ −

�
rH
r

�
0
�
ln

�
r
rH

�
þOð1Þ

�
½1þOðrH=rÞ�:

ðA25Þ

This is again a sign of a running behavior [25,26,32,34,57],
whose coefficient is interpreted as a β function [26,57,64].
One finds the basis of the coefficient of the running TLNs,

d03jl¼0 ¼ −1: ðA26Þ

Equation (A6) for s ≠ 0 leads to

β−=sð≠0Þ1 ¼ −
1

2jsj ; ðkþ 1Þβ−=sð≠0Þkþ1 ¼ kβ−=sð≠0Þk ; ðA27Þ

for 1 ≤ k ≤ 2jsj and

ðkþ 1Þβ−=sð≠0Þkþ1 ¼ kβ−=sð≠0Þk ; ðA28Þ

for k ≥ 2jsj þ 1, where β−=s
2jsjþ1

is free. On the one hand,

Eq. (A27) implies that there is another horizon-regular

solution with the coefficient β−=sð≠0Þ1 ð¼ −ð2jsjÞ−1Þ, which
takes the form of a finite polynomial of rH=r. On the
other hand, Eq. (A28) gives rise to an infinite polynomial
that corresponds to the horizon-singular solution with the

coefficient β−=sð≠0Þ
2jsjþ1

. Imposing regularity at the horizon,

β−=sð≠0Þ
2jsjþ1

¼ 0, we obtain

Φ−
ð1Þ ¼ −

1

4

�
r
rH

�
2
�
1þ 1

2

rH
r
þ 1

3

�
rH
r

�
2

þ 1

4

�
rH
r

�
3
�
;

ðA29Þ

for jsj ¼ 2, and

Φ1
ð1Þ ¼ −

r
2rH

�
1þ rH

2r

�
; ðA30Þ

for jsj ¼ 1. Therefore, up to first order,
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Φ−
2 ¼

�
r
rH

�
3
�
1 −

25α−3
48

�
1 − f

�
1þ � � � þ 3

25

�
rH
r

�
3
��


;

ðA31Þ

for jsj ¼ 2, and

Φ1
1 ¼

�
r
rH

�
2
�
1 −

3α13
4

�
1 − f

�
1þ rH

3r

��

; ðA32Þ

for jsj ¼ 1. There is no ðrH=rÞjsj term; TLNs vanish even up
to first order, meaning that corrections of j ¼ 3 have no
contribution to the expansion of TLNs in Eq. (22).

2. General l case

Consider now the extension to generic l. Expand the
first-order solution of Eq. (A3) as

Φ−=s
ð1Þ ¼

�
r
rH

�
lþ1X∞

k¼0

β−=sk

�
rH
r

�
k
: ðA33Þ

With this expansion, Eq. (A3) is reduced to�
rH
r

�
jþl−2

Φ−=s
ð0Þ þ ðl2 − s2Þβ−=s0 þ 2lβ−=s1

−
X∞
k¼1

½ðkþ 1Þðk − 2lÞβ−=skþ1

−fkðk − 2lÞ þ l2 − s2gβ−=sk �
�
rH
r

�
k
¼ 0; ðA34Þ

where Φ−=s
ð0Þ is the horizon-regular solution at zeroth order.

Note that the first term on the left-hand side takes the form
of the ðl − jsj þ 1Þth-order finite polynomial in rH=r,�
rH
r

�
jþl−2

Φ−=s
ð0Þ ¼

�
rH
r

�
j−3

þ � � � þ c−=sl

�
rH
r

�
j−3þl−jsj

;

ðA35Þ

where c−=sl is a constant determined uniquely. Henceforth,
we focus on l ≥ jsj þ 1.

a. j ≥ 2l+ 4

One finds the recurrence relation,

ðkþ 1Þðk− 2lÞβ−=skþ1 ¼ ½kðk− 2lÞ þ l2 − s2�β−=sk ; ðA36Þ

which implies that β−=sl−jsjþ1
¼ β−=slþjsjþ1

¼ 0 and β−=s2lþ1 is
free. Noting 2lþ 1 ≤ j − 3 in the current assumption, the
presence of Φ−=s

ð0Þ has no contribution to the sequence of

β−=sk for 0 ≤ k ≤ 2l. Therefore, β−=sk ¼ 0 for l − jsj þ
1 ≤ k ≤ 2l.

Equation (A34) also shows

β−=s1 ¼ −
l2 − s2

2l
β−=s0 : ðA37Þ

Given β−=s0 , the recurrence relation (A36) generates a finite
polynomial up to k ¼ l − jsj, which only contributes to the
renormalization of the zeroth-order solution Φ−=s

ð0Þ . We set

β−=s0 ¼ 0 so that β−=sk ¼ 0 for 0 ≤ k ≤ l − jsj without loss
of generality.
The free coefficient β−=s2lþ1 leads to an infinite polynomial

from the recurrence relation (A36), which corresponds
to a horizon-singular function. The highest-order contri-
bution of Φ−=s

ð0Þ , i.e., the term of c−=sl in Eq. (A35), is at

k ¼ j − 2þ l − jsj. The coefficient β−=sj−2þl−jsj is deter-

mined by c−=sl in addition to β−=s2lþ1 [Eq. (A8) for l ¼ jsj
with c−=sjsj ¼ 1]. To remove the singular contribution, we

choose β−=s2lþ1 so that β−=sk ¼ 0 for k ≥ j − 2þ l − jsj,
thereby obtaining the finite polynomial for 2lþ 1 ≤ k ≤
j − 3þ l − jsj, which corresponds to the horizon-regular
solution at the first order. We thus arrive at

Φ−=s
l ¼

�
r
rH

�
lþ1
�
1þ � � � þ c−=sl

�
rH
r

�
l−jsj�

þ α−=sj β−=s2lþ1

×

�
rH
r

�
l
�
1þ � � � þ βj−3þl−jsj

β−=s2lþ1

�
rH
r

�
−lþj−4−jsj�

:

ðA38Þ

The zeroth- and first-order solutions are, respectively,
purely growing and decaying in r. Thus, the correction
j ≥ 2lþ 4 gives nonzero TLNs κ−=sl ¼ α−=sj β−=s2lþ1, where

β−=s2lþ1 is determined by β−=sj−2þl−jsj ¼ 0, thereby obtaining

the basis e−=sj ¼ β−=s2lþ1.

b. 2jsj+ 3 ≤ j ≤ 2l + 3

We now solve directly Eq. (A3), imposing regularity at
the horizon and renormalizing the zeroth-order horizon-
regular solution. The asymptotic behavior at large distances
includes a logarithmic term, e.g.,

Φ−
ð1Þjl¼3;r≫rH ¼ −

1

7

�
rH
r

�
3
�
ln

�
r
rH

�
þOð1Þ

�

×

�
1þO

�
rH
r

��
; ðA39Þ

for j ¼ 9. We then find the basis of the coefficient of the
running TLNs,
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d−9 jl¼3 ¼
3

20

�
−
1

7

�
≃ −0.02142857143: ðA40Þ

For 2jsj þ 3 ≤ j ≤ 2lþ 2, there appear series decaying
slower than ðrH=rÞl at large distances, e.g.,

Φ−
ð1Þjl¼3;r≫rH ¼ −

1

6

�
rH
r

�
2
�
1þO

�
rH
r

��
þ 5

21

�
rH
r

�
3

×

�
ln

�
r
rH

�
þOð1Þ

��
1þO

�
rH
r

��
;

ðA41Þ

for j ¼ 8. The logarithmic term appears at order of ðrH=rÞl.
A series whose leading term decays slower than ðrH=rÞl is
present. Its physical interpretation is unclear. We can read
the basis of the running TLNs, e.g.,

d−8 jl¼3 ¼
3

20

�
5

21

�
≃ 0.03571428571: ðA42Þ

c. 3 ≤ j ≤ 2jsj+ 2
All terms from Φ−=s

ð0Þ in Eq. (A35) contribute to the

sequence of β−=sk for j − 2 ≤ k ≤ j − 2þ l − jsj. The order
of the highest-order contribution, k ¼ j − 2þ l − jsj, is
smaller than k ¼ lþ jsj þ 1 at which the right-hand side
of the relation (A36) vanishes. Therefore, we have a finite
polynomial for 0 ≤ k ≤ lþ jsj, which corresponds to a
horizon-regular solution including the contribution into the
renormalization of the zeroth-order solution.
The recurrence relation (A36) then leads to β−=sk ¼ 0 for

lþ jsj þ 1 ≤ k ≤ 2l − 1. The coefficient β−=s2lþ1 is free and
generates an infinite polynomial that corresponds to a
horizon-singular solution. Setting β−=s2lþ1 ¼ 0, we find

Φ−=s
ð1Þ ¼ β−=s0

�
r
rH

�
lþ1

þ � � � þ β−=slþjsj

�
rH
r

�jsj−1
; ðA43Þ

where β−=slþjsj is determined by the recurrence relation (A36)

with β−=s0 being set. There is no series of ðrH=rÞl½1þ
OðrH=rÞ�, meaning no linear responses. Therefore, correc-
tions of 3 ≤ j ≤ 2jsj þ 2 have no contribution to the
expansion of the TLN in Eq. (22).
We provide an example obtained by solving Eq. (A3)

directly. After renormalization of the zeroth-order horizon-
regular solution, the first-order horizon-regular solution
reads, e.g., for j ¼ 6,

Φ−
ð1Þjl¼3 ¼ −

1

12
þ 7

120

rH
r
: ðA44Þ

APPENDIX B: ELECTRIC-TYPE TIDAL
LOVE NUMBERS

The extension of the previous construction (Appendix A)
to electric-type TLNs is straightforward, and we sketch it
here. We focus on the quadrupolar case (l ¼ 2). Extension
to arbitrary l is trivial.
We have the zeroth-order horizon-regular solution,

Φþ
ð0Þjl¼2 ¼

4r
4rþ 3rH

�
r
rH

�
3
�
1þ 3

2

rH
r
−
3

4

�
rH
r

�
3
�
: ðB1Þ

The Zerilli equation with l ¼ 2 at the first order takes the
form

d
dr

�
f
dΦþ

ð1Þ
dr

�
− Vþ

2 Φ
þ
ð1Þ ¼

1

r2H

�
rH
r

�
j
Φþ

ð0Þ: ðB2Þ

The general solution in a closed form is cumbersome.
It consists of a linear combination of a horizon-regular
and a horizon-singular solution. We choose one of the
integration constants such that the horizon-singular
solution is removed. Another integration constant only
contributes into the renormalization of the zeroth-order
horizon-regular solution (B1).
The asymptotic behavior at large distances is qualita-

tively different if j ≥ 2lþ 4 or 3 ≤ j ≤ 2lþ 3. We discuss
the derivation of the TLNs in j ≥ 2lþ 4 and show the
appearance of a running behavior in 3 ≤ j ≤ 2lþ 3.

1. j ≥ 2l+ 4

Here, we consider j ¼ 8 as an example. The asymptotic
behavior of the horizon-regular solution at large distances
takes the form

Φþ
ð1Þjl¼2;r≫rH ¼ ct8

�
r
rH

�
3
�
1þO

�
rH
r

��

þ cq8

�
rH
r

�
2
�
1þO

�
rH
r

��
; ðB3Þ

where ct8 is the remaining integration constant of the
general solution of Eq. (B2), and

cq8 ¼ −
697

675
þ 112

81
ln

�
7

4

�
: ðB4Þ

The form of the ct8 series is identical to the zeroth-order
horizon-regular solution (B1). One can set ct8 ¼ 0 without
loss of generality because it only contributes into the
renormalization of the zeroth-order horizon-regular solu-
tion (B1). The series of cq8 is independent of that choice.
With ct8 ¼ 0, the first-order horizon-regular solution is

interpreted as a purely tidal response. Noting that the
coefficient of the leading term of the zeroth-order
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horizon-regular solution (B1) at large distances is unity, we
read the basis of the TLNs off,

eþ8 jl¼2 ¼
1

12

�
−
697

675
þ 112

81
ln

�
7

4

��
≃ −0.02156690509:

ðB5Þ

This agrees with the value obtained with another analytical
approach introduced in Appendix C and the numerical
result in scattering theory in Appendix D. The same
happens for other jð≥ 2lþ 4Þ.

2. 3 ≤ j ≤ 2l+ 3

We first focus on j ¼ 7. The first-order horizon-regular
solution at large distances takes the form

Φþ
ð1Þjl¼2;r≫rH ¼ ct7

�
r
rH

�
3
�
1þO

�
rH
r

��
þ cq7

�
ln

�
r
rH

�

þOð1Þ
��

rH
r

�
2
�
1þO

�
rH
r

��
; ðB6Þ

where ct7 is the remaining integration constant of the
general solution of Eq. (B2), and

cq7 ¼ −
1

5
: ðB7Þ

The ct7 series is identical to the zeroth-order horizon-regular
solution (B1). One can set ct7 ¼ 0. The series of cq7 is
independent of that choice. We therefore interpret the series
of cq7 as a quadrupolar tidal response.
A running behavior appears. We read the basis of the

running TLN off,

dþ7 jl¼2 ¼
1

12

�
−
1

5

�
≃ −0.01666666667: ðB8Þ

We next consider j ¼ 6. Asymptotically the first-order
horizon-regular solution behaves at large distances as

Φþ
ð1Þjl¼2;r≫rH ¼ ct6

�
r
rH

�
3
�
1þO

�
rH
r

��

þ c6
5

6

rH
r

�
1þO

�
rH
r

��
þ c6

�
ln

�
r
rH

�

þOð1Þ
��

rH
r

�
2
�
1þO

�
rH
r

��
; ðB9Þ

with ct6 a constant determined by the remaining integration
constant of the general solution of Eq. (B2), and

c6 ¼ −
3

10
: ðB10Þ

The series of ct6 is identical to the zeroth-order horizon-
regular solution (B1). One can set ct6 ¼ 0, while the series
of c6 is independent of that choice.
The presence of the series whose leading term decays

slower than ðrH=rÞ2 is a similar effect seen in Eq. (A41). Its
physical interpretation is unclear and is left in our outlook.
The logarithmic term at the order of ðrH=rÞ2 is interpreted
as running of the TLN. It is clear that there is no degeneracy
between the running TLN and subleading corrections to the
tidal field. One can read off the basis of the running TLN,

dþ6 jl¼2 ¼
1

12

�
−

3

10

�
≃ −0.02500000000: ðB11Þ

For a generic j, the logarithmic term appears as the
prefactor of ðrH=rÞl½1þOðrH=rÞ�, which is interpreted as
running of the TLNs. We read off the basis of the running
TLNs without the degeneracy with subleading corrections
to tidal fields.

APPENDIX C: BASIS OF THE ELECTRIC-TYPE
LOVE NUMBERS WITH THE

CHANDRASEKHAR TRANSFORMATION

Although one can, in general, compute the electric-type
TLNs in the manner in Appendix B, we now describe how
the basis for electric-type TLNs can be obtained in another
approach. We first generate a dual system to the given
Zerilli-Regge-Wheeler equations with a single power-law
correction in the form of Eq. (20) by exploiting the
Chandrasekhar transformation [56]. The dual system is
described by the Regge-Wheeler/Zerilli equations with
different corrections from the seed one but shares identical
TLNs. We then give the scheme to generate the basis of
the electric-type TLNs from the basis of the magnetic-
type TLNs.

1. Dual system via the Chandrasekhar transformation

We rewrite Zerilli-Regge-Wheeler equations (11) as

H�
lΦ�

l ¼ 0; ðC1Þ

where we have defined

H�
l ≔ f

d
dr

�
f
d
dr

�
þ ½ω2 − fV�

l �: ðC2Þ

Here, V�
l is given by Eq. (13). Now, we introduce the

Chandrasekhar transformation [56],

D� ≔ rHf
d
dr

�
�

3r2Hf
rðλrþ 3rHÞ

þ λðλþ 2Þ
6

�
; ðC3Þ

with λ ¼ ðlþ 2Þðl − 1Þ. The operatorH�
l in Eq. (C2) can

be rewritten as
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H�
l ¼ 1

r2H

�
D�D∓ þ

�
λ2l2ðlþ 1Þ2

36
þ ω2r2H

��
: ðC4Þ

With this relation, one can show from Eq. (C1) that the
functions Φ̃∓

l ≔ D∓Φ�
l satisfy the Regge-Wheeler/Zerilli

equations, i.e.,

H∓
l Φ̃

∓
l ¼ 0: ðC5Þ

The Chandrasekhar transformation (C3) allows one to
generate an opposite parity solution from a given parity
solution.
We exploit the Chandrasekhar transformation (C3) to

construct another parity solution from a given solution in a
system with a single power-law correction for a fixed j,
described by

ðH�
l − δH�

j ÞΦ�
l ¼ 0; ðC6Þ

where we have defined

δH�
j ≔

α�j
r2H

f

�
rH
r

�
j
: ðC7Þ

Expanding Φ�
l in terms of α�j up to linear order, i.e.,

Φ� ¼ Φ�
ð0Þ þ α�j Φ�

ð1Þ, Eq. (C6) reduces to (order by order)

H�
lΦ�

ð0Þ ¼ 0; ðC8Þ

H�
lΦ�

ð1Þ ¼ δH�
j Φ�

ð0Þ: ðC9Þ

Acting with D∓ on Eq. (C8), we obtain H∓
l Φ̃

∓
ð0Þ ¼ 0

ðΦ̃∓
ð0Þ ≔ D∓Φ�

ð0ÞÞ because of the relation (C4). Then, acting
with D∓ on Eq. (C9) yields

H∓
l Φ̃

∓
ð1Þ ¼ δH̃∓

j Φ̃
∓
ð0Þ; δH̃∓

j ≔
D∓δH�

j Φ�
ð0Þ

D∓Φ�
ð0Þ

; ðC10Þ

where we defined Φ̃∓
ð1Þ ≔ D∓Φ�

ð1Þ. Therefore, the operator
D� in Eq. (C3) maps Eq. (C6) into another system,

ðH∓
l − δH̃∓

j ÞΦ̃∓
l ¼ 0: ðC11Þ

It should be stressed that the TLNs in the original system
and the generated system are identical because the
Chandrasekhar transformation (C3) keeps the boundary
conditions for j ≥ 2lþ 4. We have confirmed that this is
indeed the case in terms of both scattering theory and static
perturbations, as will be mentioned later.
We give the explicit forms of the correction in the

generated system in l ¼ 2, 3, i.e., δH̃∓
j in Eq. (C10), in

terms of static perturbations ω ¼ 0. Under the regularity

condition at the horizon, we have the analytical solutions at
the zeroth order,

Φþ
ð0Þjl¼2 ¼

r
4rþ 3rH

�
r
rH

�
3
�
1þ 3

2

rH
r
−
3

4

�
rH
r

�
3
�
;

Φ−
ð0Þjl¼2 ¼

�
r
rH

�
3

; ðC12Þ

for the quadrupolar perturbations, and

Φþ
ð0Þjl¼3 ¼

r
10rþ 3rH

�
r
rH

�
4

×

�
1 −

1

3

rH
r
−
1

2

�
rH
r

�
2

þ 1

20

�
rH
r

�
4
�
;

Φ−
ð0Þjl¼3 ¼

�
r
rH

�
4
�
1 −

5

6

rH
r

�
; ðC13Þ

for the octupolar perturbations. From Eq. (C10),

δH̃∓
j ¼ fδṼ∓

j ; ðC14Þ

where

δṼ−
j jl¼2 ¼

4r3Hα
þ
j

r4ð4rþ 3rHÞ
��

rH
r

�
j−5

þ jþ 3

4

�
rH
r

�
j−4

þ j − 2

8

�
rH
r

�
j−3

−
3ðjþ 1Þ

8

�
rH
r

�
j−2

−
3j
16

�
rH
r

�
j−1

þ 3ðjþ 1Þ
16

�
rH
r

�
j
�
; ðC15Þ

δṼþ
j jl¼2 ¼

4rHα−j
4r3 þ 6rHr2 − 3r3H

��
rH
r

�
j−3

−
j − 6

4

�
rH
r

�
j−2

þ jþ 4

16

�
rH
r

�
j−1

þ 3ðj − 3Þ
16

�
rH
r

�
j
�
; ðC16Þ

for the quadrupolar perturbations, and

δṼ−
j jl¼3 ¼

60r4Hα
þ
j

r4ð60r2 − 32rHr − 15r2HÞ

×

��
rH
r

�
j−6

þ 3j − 32

60

�
rH
r

�
j−5

−
2jþ 9

30

�
rH
r

�
j−4

−
j − 2

120

�
rH
r

�
j−3

þ jþ 1

40

�
rH
r

�
j−2

þ j
400

�
rH
r

�
j−1

−
jþ 1

400

�
rH
r

�
j
�
; ðC17Þ
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δṼþ
j jl¼3 ¼

60r2Hα
−
j

60r4 − 20rHr3 − 30r2Hr
2 þ 3r4H

×

��
rH
r

�
j−4

−
3jþ 20

60

�
rH
r

�
j−3

þ 23j − 135

300

�
rH
r

�
j−2

−
17jþ 32

1200

�
rH
r

�
j−1

−
j − 3

80

�
rH
r

�
j
�
; ðC18Þ

for the octupolar perturbations.
The even- (odd-, respectively) parity perturbations in the

original system (C6) and the odd (even, respectively) in the
generated system (C11) share identical TLNs. One can
show, in terms of static perturbations, that this indeed holds:
the quadrupolar odd (even, respectively) perturbation with
correction power j has identical TLN with the quadrupolar
even (odd, respectively) perturbation with correction given
by Eq. (C16) [Eq. (C15), respectively]. This is also the case
of the octupolar perturbations with Eqs. (C18) or (C17). We
have also verified numerically, in terms of scattering theory,
that the even (odd, respectively) perturbation of the
correction power j has identical TLNs for the odd (even,
respectively) perturbation with correction in Eq. (C10).

2. Basis of the electric-type Love number

Even-parity perturbations with correction power j can be
mapped to odd-parity perturbations with different correc-
tion characterized by j solely. Since the Chandrasekhar
transformation (C3) keeps the TLN for j ≥ 2lþ 4 as
mentioned above, one can generate the basis of electric-
type TLNs from that of magnetic-type TLNs.
As an example, we focus on the quadrupolar even-parity

perturbation in the presence of the correction of j with the
coefficient αþj . The corresponding correction in the odd-
parity perturbation is given by Eq. (C15), which can be
expanded in rH=r in the form of

δṼ−
j jl¼2 ¼

1

r2H

X∞
k¼j

α̃−k

�
rH
r

�
k
: ðC19Þ

The coefficients α̃−k depend on the correction of the given
even-parity perturbation, i.e., j and αþj . The analytic
expression for the basis of magnetic-type quadrupolar
TLN is given by Eq. (28). With e−j in Eq. (28), the basis
of the electric-type quadrupolar TLN is calculated to

eþj jl¼2 ¼
1

αþj

X∞
k¼j

α̃−k e
−
k ; ðC20Þ

which is explicitly

eþj jl¼2 ¼ −
1

60αþj

X∞
k¼j

α̃−k
k − 7

: ðC21Þ

The result is in good agreement with both the analytical and
numerical results.

APPENDIX D: LOVE NUMBERS
IN SCATTERING THEORY

We now explain how TLNs of a Schwarzschild black
hole are imprinted in scattering waves, based on the basic
idea in Refs. [29,36]. We then investigate the validity of the
approximation used here in modified systems (20).

1. Scattering waves around a black hole

In the following, we analytically solve the Zerilli-Regge-
Wheeler equations (11) and the spin-s-field perturbation
equations (15) approximately, under the assumption that
the frequency is low, ωrH ≪ 1, with a matched asymptotic
expansion [81,82]. This method relies on the analytic
properties of hypergeometric functions. As we discuss,
an analytic continuation of l from an integer to generic
numbers plays an important role in the construction of
linearly independent solutions.8 This treatment allows one
to overcome the degeneracy between applied fields and
linear responses [28–30,36,54,57].
The exterior region to the horizon can be divided into

two regions: the near region ðrH < r ≪ 1=ωÞ and the far
region ðr ≫ rHÞ. In each, one can obtain the analytical
local solution of Eqs. (11) and (15) approximately. After
imposing boundary conditions on the near-region solution
at the horizon and on the far-region solution at infinity,
we match them in an overlapping region of the two regions.
We then construct the analytical global solution under the
unambiguous boundary conditions.

a. Near-region solution

We introduce the function X�=s
l ðrÞ such that

Φ�=s
l ðrÞ ¼

�
rH
r

�
l
fiωrHX�=s

l ðrÞ: ðD1Þ

Here, l takes arbitrary values, and we adopt the coordinate

x ≔ f ¼ 1 −
rH
r
: ðD2Þ

Without any approximation, Eqs. (11) and (15) are redu-
ced to a perturbed Gaussian hypergeometric differential
equation,

8The analytic continuation of l from an integer is formalized in
terms of the renormalized angular momentum [83].
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xð1 − xÞ d
2X�=s

l

dx2
þ
�
γðNÞ −

�
α�=s
ðNÞ þ β�=s

ðNÞ þ 1
�
x

�
dX�=s

l

dx

− α�=s
ðNÞ β

�=s
ðNÞ

�
1þ Δ�=s

ðNÞ;lðxÞ
�
X�=s
l ¼ 0; ðD3Þ

with

αsðNÞ ≔ lþ sþ 1þ iωrH;

βsðNÞ ≔ l − sþ 1þ iωrH; γðNÞ ≔ 1þ 2iωrH; ðD4Þ

and ðα�ðNÞ; β�ðNÞÞ ≔ ðαsðNÞ; βsðNÞÞjjsj¼2. Here, we defined

Δ−=s
ðNÞ;lðxÞ ≔

1

ðl − sþ 1þ iωrHÞðlþ sþ 1þ iωrHÞ

× ðωrHÞ2
xðx − 3Þ þ 3

ðx − 1Þ3 ; ðD5Þ

and

Δþ
ðNÞ;lðxÞ≔ 6

3xð2x− 1Þ þ lðlþ 1Þð1− 3xÞ þ 1

ðlþ 3Þðl− 1Þ½λþ 3ð1− xÞ�2 þOðωÞ:

ðD6Þ

For odd-parity ðjsj ¼ 2Þ, scalar- (s ¼ 0), and vector-field
ðjsj ¼ 1Þ perturbations, Eq. (D5) implies jΔ−=s

ðNÞ;lj ≪ 1 for

r=rH ≪ ðωrHÞ−2=3. Therefore, the valid regime extends
even up to the overlapping region r ≫ rH under the
assumption of ωrH ≪ 1.
In the case of the even-parity perturbation, Eq. (D6)

implies that Δþ
ðNÞ;l → 12=ððlþ 3Þðl − 1ÞλÞ at large dis-

tances x → 1. Figure 3 gives the example of the quad-
rupolar (l ¼ 2) and octupolar (l ¼ 3) perturbations. Here,
the approximation in the quadrupolar case is subtle in r≳
10rH but, as will be seen in the next section, the far-region

solution is still a good approximation even in r≲ 10rH (see
Fig. 4); therefore, one can match the two solutions
at r≲ 10rH.
With jΔ�=s

ðNÞ;lj ≪ 1 in the near region ðrH < r ≪ 1=ωÞ,
we can regard Eq. (D3) as the Gaussian hypergeometric
differential equation. Setting Δ�=s

ðNÞ;l ¼ 0, the function

X�=s
l ðxÞ is exactly written in terms of the Gaussian hyper-

geometric functions around r ¼ rH [70],

X�=s
l ðxÞ ¼ Ainx−2iωrH2F1ðα�=s

ðNÞ − γðNÞ þ 1;

β�=s
ðNÞ − γðNÞ þ 1; 2 − γðNÞ; xÞ
þ Aout2F1ðα�=s

ðNÞ ; β
�=s
ðNÞ ; γðNÞ; xÞ: ðD7Þ

Imposing the ingoing-wave condition ðAout ¼ 0Þ, we thus
obtain the near-region solution,

Φ�=s
ðNÞ;l ¼ x−iωrHð1 − xÞl2F1ða; b; c; xÞ; ðD8Þ

with a ≔ lþ 3 − iωrH, b ≔ l − 1 − iωrH, and c ≔ 1−
2iωrH.

b. Far-region solution

We introduce the functions q�=s
ðFÞ;lðrÞ and Z�=s

l ðrÞ such

that

Φ�=s
l ðrÞ ¼ q�=s

ðFÞ;lðrÞ
�
r
rH

�
lþ1

eiωrZ�=s
l ðrÞ: ðD9Þ

With y ≔ −2iωr, we reduce Eqs. (11) and (15) to a
perturbed confluent hypergeometric differential equation,

FIG. 3. The absolute vales of Δþ
ðNÞ;l with ωrH ¼ 10−10 for

l ¼ 2, 3, which are the black and orange lines, respectively. FIG. 4. The absolute values of ϵþðFÞ;2 and Δþ
ðFÞ;2 with

ωrH ¼ 10−10, which are the black solid and orange dashed
lines, respectively. We note jϵþðFÞ;2j ≃ 0.003 and jΔþ

ðFÞ;2j ≃ 0.2

at r ¼ 7rH.
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y
d2Z�=s

l

dy2
þ ð2lþ 2 − yÞ

�
1þ ϵ�=s

ðFÞ;lðyÞ
�
dZ�=s

l

dy

− ðlþ 1 − iωrHÞ
�
1þ Δ�=s

ðFÞ;lðyÞ
�
Z�=s
l ¼ 0; ðD10Þ

where

ϵ�=s
ðFÞ;lðrÞ ≔

rH

�
1þ 2 r2

rH
f d

dr ln q
�=s
ðFÞ;l

�
2ðr − rHÞðlþ 1þ iωrHÞ

; ðD11Þ

and

Δ�=s
ðFÞ;lðrÞ ≔

−irH
2ðlþ 1ÞωrHðr − rHÞq�=s

ðFÞ;l

×

��
ðlþ 1Þ

�
lf þ rH

r

�
− r2V�=s

l

�
q�=s
ðFÞ;l

þ r2f
d2

dr2
q�=s
ðFÞ;l þ r

�
2lþ 1 − 2ðlþ 1Þ r

rH

�

×
d
dr

q�=s
ðFÞ;l

�
þOðω0Þ: ðD12Þ

Can a domain such that jϵ�=s
ðFÞ;lj; jΔ�=s

ðFÞ;lj ≪ 1 exist? Note

that the leading behavior of ϵ�=s
ðFÞ;l and the Oðω0Þ term in

Δ�=s
ðFÞ;l scale as 1=r at large distances. We determine q�=s

ðFÞ;l so

that 1=ω contributions in Δ�=s
ðFÞ;l vanish,

qþðFÞ;2 ¼
4r3 þ 6rHr2 − 3r3H

r2ð4rþ 3rHÞ
;

qþðFÞ;3 ¼
60r4 − 20rHr3 − 30rHr2 þ 3r3H

6r3ð10rþ 3rHÞ
;

qþðFÞ;4 ¼
840r5 − 1050rHr4 þ 100r2Hr

3 þ 150r3Hr
2 − 5r5H

140r4ð6rþ rHÞ
;

ðD13Þ

and

q−=sðFÞ;jsj ¼ 1; q−=sðFÞ;jsjþ1
¼ 1 −

5rH
6r

;

q−=sðFÞ;jsjþ2
¼ 1 −

3rH
2r

þ 15

28

�
rH
r

�
2

: ðD14Þ

These indeed make jϵ�=s
ðFÞ;lj; jΔ�=s

ðFÞ;lj ≪ 1. Figure 4 shows an

example of jϵþðFÞ;2j and jΔþ
ðFÞ;2j for ωrH ¼ 10−10.

In the regime jϵ�=s
ðFÞ;lj; jΔ�=s

ðFÞ;lj ≪ 1 in the far region

ðr ≫ rHÞ, we set ϵ�=s
ðFÞ;l ¼ Δ�=s

ðFÞ;l ¼ 0, thereby obtaining

Z�=s
l in terms of confluent hypergeometric functions [70],

Z�=s
l ðyÞ ¼ Mðlþ 1 − iωrH; 2lþ 2; yÞ

þ γ�=s
l Uðlþ 1 − iωrH; 2lþ 2; yÞ: ðD15Þ

Here, γ�=s
l is a function of ω. We thus obtain the far-region

solution,

Φ�=s
ðFÞ;l ¼ q�=s

ðFÞ;l

�
r
rH

�
lþ1

eiωr

× ½Mðlþ 1 − iωrH; 2lþ 2;−2iωrÞ
þ γ�=s

l Uðlþ 1 − iωrH; 2lþ 2;−2iωrÞ�: ðD16Þ

The far-region solution Φ�=s
ðFÞ;l at infinity takes the form

of superposition of the ingoing and outgoing waves
and satisfies the boundary condition for scattering
waves [36,54].

c. Matching in the overlapping region

There exists an overlapping region ðrH ≪ r ≪ 1=ωÞ
where the near-region solution (D8) and the far-region
solution (D16) both are valid. In the overlapping region,
they take the forms

Φ�=s
ðNÞ;ljrH≪r≪1=ω

¼ C�=s
ðNÞ;l½1þOðωr2H=rÞ�

�
r
rH

�
lþ1

×

�
1þO

�
rH
r

�
þK�=s

l ðωÞ
�
r
rH

�
−2l−1

�
1þO

�
rH
r

��

;

ðD17Þ

with

K�=s
l ðωÞ ≔ Γð−2l − 1Þ

Γð2lþ 1Þ

×
Γðlþ sþ 1 − iωrHÞΓðl − sþ 1 − iωrHÞ

Γð−lþ s − iωrHÞΓð−l − s − iωrHÞ
;

ðD18Þ

and

Φ�=s
ðFÞ;ljrH≪r≪1=ω ¼ q�=s

ðFÞ;lðrÞ
�

r
rH

�
lþ1
�
1þOðωrÞ

þF�=s
l

�
r
rH

�
−2l−1

½1þOðωrÞ�
�
; ðD19Þ

with the response function F�=s
l defined by [29,36,54]

F�=s
l ≔ i

ð−1Þl
22lþ1ðωrHÞ2lþ1

Γð2lþ 1Þ
Γðlþ 1 − iωrHÞ

γ�=s
l : ðD20Þ
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Here, C�=s
ðNÞ;l is a bounded function of ω without zeros [36].

It should be remarked that K�
l in Eq. (D18) is independent

of the parity. Note that q�=s
ðFÞ;lðrÞjr≫rH ¼ 1þOðrH=rÞ at

large distances [see, e.g., Eqs. (D13) and (D14)]. The
subleading correction is not degenerate with the linear
response because of the analytic continuation of l from an
integer to generic numbers.
The condition for the successful matching of Φ�=s

ðNÞ;l and

Φ�=s
ðFÞ;l is the vanishing of the Wronskian of their leading

terms in the overlapping region, leading to

K�=s
l ¼ F�=s

l ; ðD21Þ

which determines γ�=s
l in Eq. (D16). We thus obtain the

approximate global solution under the physical boundary
conditions at the horizon and infinity.

2. Love numbers imprinted in scattering waves

The static perturbation essentially has the near-region
part only, due to the absence of other length scales other
than the horizon radius. The absence of an unambiguous
physical boundary condition at large distances leads to
potential ambiguities [53] in computing the TLNs.
It can be seen that the asymptotic behavior of the near-

region solution in the overlapping region, Eq. (D17), takes
the form of Eqs. (14) and (17) in the static limit ω → 0,
implying that the function K�=s

l in Eq. (D18) captures the

TLNs κ�l and κsl. In fact, K�=s
l vanishes in ω → 0 and

l → Z [36], which recovers the well-known result based on
the static perturbation [21,26,49]. Additionally, the match-
ing condition (D21) indicates that the TLNs are imprinted
in the response function (D20), which is defined under the

boundary condition for scattering waves at infinity.
Therefore, the TLNs can be calculated in terms of low-
frequency scattering waves in an unambiguous manner.
We note that there is no degeneracy between subleading
corrections to applied fields and linear responses because
of an analytic continuation of l to generic numbers
[28–30,36,54,57].

3. Validity of the far-region solution
in modified systems

We discuss the validity of the far-region solution (D16)
in the presence of corrections to the potential. Substitute
Φ�=s

l in Eq. (D9) into Eq. (20) with the single power
correction,

δV�=s
j;l ¼ α�=s

j

r2H

�
rH
r

�
j
; ðD22Þ

and obtain the equation for Z�=s
l , which takes the form of

Eq. (D10) with the same ϵ�=s
ðFÞ;l as Eq. (D11), but slightly

different Δ�=s
ðFÞ;l in Eq. (D12) with V�=s

l → V�=s
l þ δV�=s

j;l .

We use q�=s
ðFÞ;l of the case of α�=s

j ¼ 0, e.g., Eqs. (D13)

and (D14). Even with the corrections of j ≥ 2lþ 4, one
can show that the far-region solution (D9) approximates
well the solution of Eqs. (11) and (15) with the single
power correction at large distances.
On the other hand, the validity is subtle in 3 ≤ j ≤

2lþ 3while keeping the numerical accuracy enough when
computing TLNs in the manner in Sec. III B 2. This is
because there appears series decaying slower than ðrH=rÞl
and/or logarithmic terms according to the analytical results
in Appendixes A and B [see, e.g., Eqs. (A41) and (B9)].
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