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We study covariant models for vacuum spherical gravity within a canonical setting. Starting from a
general ansatz, we derive the most general family of Hamiltonian constraints that are quadratic in first-order
and linear in second-order spatial derivatives of the triad variables, and obey certain specific covariance
conditions. These conditions ensure that the dynamics generated by such family univocally defines a
spacetime geometry, independently of gauge or coordinates choices. This analysis generalizes the
Hamiltonian constraint of general relativity, though keeping intact the covariance of the theory, and
leads to a rich variety of new geometries. We find that the resulting geometries depend on seven free
functions of one scalar variable, and we study their generic features. By construction, there are no
propagating degrees of freedom in the theory. However, we also show that it is possible to add matter to the
system by simply following the usual minimal-coupling prescription, which leads to novel models to
describe dynamical scenarios.
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I. INTRODUCTION

The construction of effective models for loop quantum
gravity has become a hot topic in the last years, particu-
larly due to the success of such models in cosmological
scenarios, where they show a generic resolution of the big
bang singularity [1–5]. More recently, the attention has
turned to spherically symmetric scenarios [6–10], to check
whether those predictions of singularity resolution are
robust or rather an artifact of excessive symmetry assump-
tions. These effective models are constructed introducing
certain (so-called holonomy and inverse-triads) modifi-
cations on the Hamiltonian constraint of general relativity
(GR). However, it is widely known that the covariance of
the theory is not explicit in the canonical setting [11,12].
Therefore, in general, such modifications will make the
predictions of the model to depend on the specific gauge
or coordinate choice. This is certainly the case in [13–20],
where the effective geometries are defined with a par-
ticular (gauge-fixed) solution of the Hamilton equations,
and a change of gauge leads, in general, to a different
geometry.
Attempts to construct covariant models in this context

led to no-go results, suggesting that holonomy corrections
were not compatible with covariance, particularly when
coupling matter [21–25]. Nevertheless, these conclusions
were ruled out by the explicitly covariant models studied in
detail in Refs. [26–28]. In fact, these are the only effective
covariant (in the sense that any gauge choice provides the
same geometry) models in the literature to describe a
spherical black hole with corrections motivated by loop

quantum gravity, both in vacuum [26,27] and including
charge and a cosmological constant [28].
The aim of the present work is to perform a systematic

study of the covariance of all possible modifications to the
vacuum GR Hamiltonian constraint that do not increase the
derivative order of the theory. For such a purpose, we will
perform an analysis similar to the one presented in [29] for
spherical models coupled to matter. There, starting from a
generic ansatz, we derived a modified Hamiltonian con-
straint that forms a closed hypersurface deformation
algebra with the diffeomorphism constraint. However, in
order to provide a geometry in an unambiguous way, this is
not enough, and one needs to ensure that the structure
functions of such algebra have the correct transformation
properties (this was indeed the case in the vacuum models
studied in [26–28], but not in general for the models
coupled to matter presented in [29]).
Therefore, we will propose an ansatz for the modified

vacuum Hamiltonian constraint, which will be quadratic in
first-order and linear in second-order spatial derivatives of
the triad variables, while allowing a generic dependence on
all the variables of the model. Then, two conditions will be
implemented, the closure of the canonical hypersurface
deformation algebra and the embeddability condition [11],
which will ensure the covariance of the model. These
conditions will greatly restrict the form of the possible
modifications, and we will obtain the most general
Hamiltonian constraint that obeys such conditions. Then,
we will explicitly provide the form of the metric described
by such constraints, and will analyze its main geometric
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features. We would like to point out that the main results of
this study were already available in [30].
The article is organized as follows. In Sec. II we review

some basic notions of spherical GR in its canonical
formulation. In Sec. III we set our requirements for the
modified models that we will implement in Sec. IV. The
reader interested in the final result of the computation may
jump directly from Sec. III to Sec. IV C, where the main
result of the analysis is presented. In Sec. V we study some
generic features of all the spacetime geometries described
in the article. We also show how to minimally couple matter
fields to the modified vacuum models in Sec. VI, and we
end the manuscript by summarizing and discussing our
main results in Sec. VII.

II. SPHERICAL VACUUM IN CANONICAL
GENERAL RELATIVITY

In spherical symmetry, the spacetime manifold M is a
warped product between a two-dimensional manifold M2

and the two-sphere S2. Choosing coordinates adapted to the
symmetry, the spacetime metric is diagonal by blocks:

ds2 ¼ gABdyAdyB þ r2dΩ2; ð1Þ

where dΩ2 is the metric of the two-sphere, and capital Latin
indices take values 0 and 1. (When convenient, we will
denote the coordinates as t ≔ y0 and x ≔ y1.) The area-
radius function r ¼ rðt; xÞ is a scalar field on the manifold
M2 and encodes the area of the spheres of constant r.
Due to the symmetry, the angular components of the

diffeomorphism constraint of general relativity are vanish-
ing, while the radial component reads,

D ¼ −Ex0Kx þ EφK0
φ; ð2Þ

where the prime stands for a derivative with respect to x.
These are canonically conjugate variables, which, on a
spatial leaf with a constant value of t, obey

fKxðt;x1Þ;Exðt;x2Þg¼ fKφðt;x1Þ;Eφðt;x2Þg¼ δðx1−x2Þ:
ð3Þ

In terms of these variables, the Hamiltonian constraint of
general relativity (assuming a vanishing cosmological
constant) reads,

HðGRÞ ¼ −
Eφ

2
ffiffiffiffiffiffi
Ex

p ð1þ K2
φÞ − 2

ffiffiffiffiffiffi
Ex

p
KxKφ þ

ðEx0Þ2
8

ffiffiffiffiffiffi
Ex

p
Eφ

−
ffiffiffiffiffiffi
Ex

p Ex0Eφ0

2ðEφÞ2 þ
ffiffiffiffiffiffi
Ex

p Ex00

2Eφ : ð4Þ

As it is well known, these constraints obey the hypersurface
deformation algebra,

fD½s1�; D½s2�g ¼ D½s1s02 − s01s2�; ð5aÞ

fD½s1�; HðGRÞ½s2�g ¼ HðGRÞ½s1s02�; ð5bÞ

fHðGRÞ½s1�; HðGRÞ½s2�g ¼ D½qxxðs1s02 − s01s2Þ�; ð5cÞ

where HðGRÞ½s� ≔ R
sHðGRÞdx and D½s� ≔ R

sDdx are the
smeared forms of the constraints, and qxx ≔ Ex=ðEφÞ2 is
positive, which signals that the spacetime is Lorentzian.
In this canonical setting, the algebra encodes the covari-

ance of the theory. Since they commute on-shell, H and D
are first-class constraints, and thus generators of gauge
transformations on the phase space. These gauge trans-
formations also describe coordinate transformations on the
spacetime manifold, and one can indeed understand the
action of D as generating deformations on the spatial leaf,
whileH generates deformations along the normal direction.
Besides, from the structure function in (5c), one can
reconstruct the metric on M2,

gABdyAdyB ¼ αN2dt2 þ 1

jqxxj ðdxþ NxdtÞ2; ð6Þ

whereN andNx are the Lagrange multipliers that define the
total Hamiltonian HT ¼ HðGRÞ½N� þD½Nx�, which gener-
ates the dynamics, and α ≔ −sgnðqxxÞ is the signature of
the spacetime manifold [11]. We have included the absolute
value jqxxj in the metric, though in the GR case it is not
needed since qxx is positive, α ¼ −1, and thus the manifold
is Lorentzian. However, in this form, expression (6) would
also be valid for a negative qxx, with α ¼ 1, which would
lead to a Riemannian metric.
At this point we note that the algebra (5) does not have

any information about the angular components of the
metric, and, in particular, about the scalar r. This is due
to the symmetry reduction. For the full (nonreduced)
theory, one can indeed read out the inverse of the whole
spatial metric from the bracket (5c).

III. COVARIANT DEFORMATIONS
OF THE HAMILTONIAN CONSTRAINT

In brief, the goal of this paper is to construct the most
general Hamiltonian constraint H with the same derivative
structure as the GR constraint (4), with a well defined limit
to GR, and such that it covariantly defines a spacetime
metric along with the diffeomorphism constraint (2). These
requirements can be translated into four precise conditions.
(i) Derivative structure. The first condition concerns

the derivative structure: we will not consider high-order
derivative corrections to the GR constraint (4). Therefore,
the most general constraint that is quadratic in derivatives
of ðEx; EφÞ, and linear in their second derivatives, reads
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H ¼ a0 þ a1Ex00 þ a2Eφ00 þ a11ðEx0Þ2
þ a12Ex0Eφ0 þ a22ðEφ0Þ2; ð7Þ

where the six functions a0, a1, a2, a11, a12, and a22
are completely free functions of the four variables
ðEx; Eφ; Kx; KφÞ, but they do not depend on their
derivatives.
(ii) GR limit. The second condition will ensure that GR is

recovered as a continuous limit of the model. For such a
purpose, we will demand that the functions a0, a1, a11, and
a12 are not identically vanishing, so that (4) is automatically
included as a particular case of (7).
(iii) Closure of the canonical hypersurface deformation

algebra. For the theory to be covariant, the hypersurface
deformation algebra should be closed and, thus, there
should be no anomalies (terms on the right-hand side of
the brackets between the constraints (2) and (7) that do not
vanish on the constraint surface H ¼ 0 ¼ D). In addition,
in order to interpret the constraint (7) as the generator of
deformations along the normal direction to the spatial
leaves, it needs to obey the canonical form of the algebra,

fD½s1�; D½s2�g ¼ D½s1s02 − s01s2�; ð8aÞ

fD½s1�; H½s2�g ¼ H½s1s02�; ð8bÞ

fH½s1�; H½s2�g ¼ D½Fðs1s02 − s01s2Þ�; ð8cÞ

with H½s� ≔ R
sHdx and a certain nonexactly vanishing

structure function F.
(iv) Spacetime embeddability. Given an algebra of the

form (8), and following the discussion of the previous
section, one would be tempted to write the associated
metric as

gABdyAdyB ¼ σN2dt2 þ 1

jFj ðdxþ NxdtÞ2; ð9Þ

where σ ≔ −sgnðFÞ, while N and Nx are the Lagrange
multipliers that define the total Hamiltonian HT ¼ H½N� þ
D½Nx�. However, this will covariantly define a metric tensor
on spacetime only if the structure function F has the
adequate transformation properties. Let us see this in more
detail.
Gauge transformations on the phase space are generated

by the generator H½ϵ⊥� þD½ϵk�, for certain gauge param-
eters ϵ⊥ and ϵk. Since H generates normal andD tangential
deformations with respect to the spatial leaf, such a gauge
transformation must be equivalent to the infinitesimal
coordinate transformation implemented by LϵgAB,where
the vector ϵ is given in terms of the gauge parameters as
ϵA∂A ¼ ϵ⊥nA∂A þ ϵk∂x, with nA∂A ≔ ð∂t − Nx

∂xÞ=N being
the unit normal to the spatial leaf.

Therefore, the last condition we will require is that the
structure function F transforms adequately, in order to
consistently interpret it as the inverse of the spatial metric.
This condition is expressed in a simpler way if we use the
ðt; xÞ components of the vector ϵ rather than the normal-
tangential ones, i.e., ϵA∂A ¼ ϵt∂t þ ϵx∂x, where the rela-
tions ϵ⊥ ¼ ϵtN and ϵk ¼ ϵtNx þ ϵx can be directly
obtained using the definition of the unit normal. Then,
the embeddability condition reads

ϵt∂tð1=FÞ þ ϵx∂xð1=FÞ þ ð2=FÞðNx
∂xϵ

t þ ∂xϵ
xÞ

≈ fð1=FÞ; H½ϵtN� þD½ϵtNx þ ϵx�g; ð10Þ

where the left-hand side is simply the transformation
of F as the inverse of the spatial metric under the Lie
dragging LϵgAB, while the right-hand side provides the
gauge transformation of F as a phase-space function with
the corresponding gauge parameters (for more explicit
details about this derivation see, e.g., Sec. 3 of Ref. [27]).
Note that this condition should be satisfied for any ϵt and ϵx

on-shell, i.e., when the constraints vanish H ¼ 0 ¼ D, and
the equations of motion

Ėx ¼ fEx;H½N� þD½Nx�g; ð11Þ

K̇x ¼ fKx;H½N� þD½Nx�g; ð12Þ

Ėφ ¼ fEφ; H½N� þD½Nx�g; ð13Þ

K̇φ ¼ fKφ; H½N� þD½Nx�g; ð14Þ

are obeyed. Here, the dot stands for the derivative with
respect to t. All along the paper wewill use the symbol≈ for
an equality that is obeyed on-shell, though in some cases it
will also mean on the constraint surface (H ¼ 0 ¼ D).
In summary, we will require that the Hamiltonian

constraint (7), along with the diffeomorphism constraint
(2), should obey the canonical form of the algebra (8) and
the embeddability condition (10), with the functions a0, a1,
a11, and a12 being not exactly vanishing.

IV. CONSTRUCTION

In this section we will construct the most general
Hamiltonian constraint that obeys the four conditions
(i)–(iv) detailed in the previous section. More precisely,
beginning from the ansatz (7), in Sec. IVAwe will impose
the requirement of the closure of the canonical algebra by
ensuring that (8) is obeyed. This will significantly reduce
the freedom of the free functions, by completely fixing the
functional dependence of the Hamiltonian constraint on
the variables Kx and Eφ. Once this is done, in Sec. IV B,
we will impose that the structure function F obeys the
spacetime embeddability condition (10). As it will be
shown below, this requirement will only leave certain
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freedom on the functional dependence on Ex. Along the
way, following condition (ii), we will disregard any
solution that imposes an exactly vanishing value of any
of the functions a0, a1, a11, or a12.
The reader interested only in the final result can skip the

following two subsections and go directly to Sec. IV C,
where Eq. (54) displays the most general Hamiltonian
constraint that obeys conditions (i)–(iv).

A. Closure of the canonical hypersurface
deformation algebra

Since we are considering the classical form of the
diffeomorphism constraint (2), one can easily check that
the bracket of the diffeomorphism constraint with itself
follows (8a), and no anomalies arise. Let us now compute
the nontrivial brackets fD½s1�; H½s2�g and fH½s1�; H½s2�g.
We note that, in order to find the canonical form of the
algebra (8), in several instances we will need to integrate
by parts. In such cases we will simply drop out the
total derivatives from the integrand, and thus neglect the
boundary terms.

1. The bracket fD½s1�;H½s2�g
One can directly take the form of the Hamiltonian

constraint (7), compute fD½s1�; H½s2�g, and find restrictions
on the free functions by imposing that the bracket is given
by (8b). However, the computations can be somehow
simplified a bit, if one first considers the geometric
meaning of this bracket.
The diffeomorphism constraint is the generator of gauge

transformations on the spatial leaf. More precisely, a
gauge transformation generated by D½ux� on a phase-space
function f corresponds to a Lie dragging of f along the
vector u ¼ ux∂x on spacetime, that is, ff;D½ux�g ¼ Luf.
Therefore, the bracket fD½s1�; H½s2�g can be understood
as the gauge transformation of the Hamiltonian constraint
and, if it is given by (8b), it simply means that the
Hamiltonian constraint is a weight-one scalar density.1

Let us thus analyze the weight of the different variables.
The gauge transformations,

fKx;D½ux�g ¼ uxK0
x þ ux0Kx; ð15Þ

fEx;D½ux�g ¼ uxEx0; ð16Þ

fKφ; D½ux�g ¼ uxK0
φ; ð17Þ

fEφ; D½ux�g ¼ uxEφ0 þ ux0Eφ; ð18Þ

imply that Ex and Kφ are (weight-0) scalars on the spatial
leaf, while Eφ and Kx are weight-one scalar densities.

Therefore, without considering derivatives, there are three
independent scalar quantities, and the most general scalar
function on the spatial leaf is given by fðKx=Eφ; Ex; KφÞ.
Now, the action of the derivative with respect to x on a

scalar density will increase its weight by one, though it
generically will produce an object that is not a scalar
density. This is easy to see by taking into account that, in
any one-dimensional manifold (like the spatial leaf under
consideration), a weight-w scalar density is equivalent to a
(weight-0) covariant tensor of rank w.2 Therefore, the
derivative of a scalar, like for instance Ex0, is automatically
a weight-one scalar density (i.e., a one-form). However, the
derivative of a weight-one scalar density (i.e., a one-form),
like for instance Ex00 or Eφ0, will not have the correct
transformation properties of a weight-two scalar density
(i.e., a rank-two covariant tensor).
With this information at hand, we construct, among the

family of Hamiltonian constraints (8b), the most general
weight-one expression (i.e., counting every prime as
contributing one to the weight) as

H ¼ Eφb0 þ b1
Ex00

Eφ þ b2
Eφ00

Eφ2 þ b11
ðEx0Þ2
Eφ þ b12

Ex0Eφ0

Eφ2

þ b22
ðEφ0Þ2
Eφ3 ; ð19Þ

with bk ¼ bkðKx=Eφ; Ex; KφÞ, for k ¼ 0; 1; 2; 11; 12; 22,
being free functions of the three independent scalar
quantities (on the spatial leaf) of the model. However, as
expected, (19) is not a weight-one scalar density (i.e., a one-
form), and there are still certain restrictions that must be
imposed so that (8b) is obeyed.
More precisely, if one computes the Poisson bracket

between the diffeomorphism constraint (2) and the
Hamiltonian constraint (19), after removing derivatives
of s1 through integration by parts, one can write

fD½s1�; H½s2�g ¼
Z

dxs1ðs2Γ0 þ s02Γ1 þ s002Γ2Þ: ð20Þ

Here Γ0, Γ1, and Γ2 are complicated expressions that
depend on the six free functions bk and their partial
derivatives, and also on all the variables ðEx; Kx; Eφ; KφÞ
and their radial derivatives. However, the terms Γ0, Γ1, and
Γ2 do not depend on s2 nor its derivatives. Therefore, the
right-hand side of the above expression will vanish on the
constraint surface, s2Γ0 þ s02Γ1 þ s002Γ2 ≈ 0, only if each of
the terms vanish independently, that is,

Γ0 ≈ 0; ð21Þ

1Recall that the Lie derivative of a weight-w scalar density f is
given by Luf ¼ uxf0 þ wfux 0.

2Here we are assuming a positive w. A scalar density with a
negative weight w is equivalent to a (weight-0) contravariant
tensor of rank jwj.
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Γ1 ≈ 0; ð22Þ

Γ2 ≈ 0: ð23Þ

In order to evaluate the different expressions on the
constraint surface, we isolate Ex00 and K0

φ from the con-
straint equations D ≈ 0 andH ≈ 0, with their form given in
(2) and (19), respectively. Then, we substitute Ex00, K0

φ, and
their subsequent derivatives in Γ0, Γ1, and Γ2. Last, we
remove all the terms including D, H, and their derivatives.
This procedure leads to

Γ2 ≈Að2Þ
1 K0

x þAð2Þ
2 Ex0 þAð2Þ

3 K0
φ; ð24Þ

with

Að2Þ
1 ≔

3

Eφ2

∂b2
∂Kx

; ð25Þ

Að2Þ
2 ≔

1

Eφ

�
3
Kx

Eφ

∂b2
∂Kφ

þ 3
∂b2
∂Ex − b12 − b1

�
; ð26Þ

Að2Þ
3 ≔ −

1

Eφ2

�
2b22 þ 6b2 þ 3

Kx

Eφ

∂b2
∂Kx

�
: ð27Þ

Now, since the free functions bk do not depend on the
derivatives of the variables with respect to x, Γ2 ≈ 0 will be
obeyed only if the coefficient of any primed variable in
expression (24) vanishes by itself off-shell, that is,

Γ2 ≈ 0 ⟺ Að2Þ
i ¼ 0 ∀ i ¼ 1; 2; 3: ð28Þ

We have thus found three independent equations, leading to
the following three conditions,

∂b2
∂Kx

¼ 0; ð29Þ

b22 ¼ −3b2; ð30Þ

b12 ¼ −b1 þ 3
Kx

Eφ

∂b2
∂Kφ

þ 3
∂b2
∂Ex : ð31Þ

Enforcing these conditions in Γ1, its form is simplified a bit,
and it reads

Γ1 ≈Að1Þ
1 þAð1Þ

2 K0
xEx0 þAð1Þ

3 ðEx0Þ2 þAð1Þ
4 Ex0Eφ0

þAð1Þ
5 ðEφ0Þ2 þAð1Þ

6 Eφ00; ð32Þ

where all the derivatives of the variables are written
explicitly. Therefore, using the same rationale as above,

Γ1 ≈ 0 ⟺ Að1Þ
i ¼ 0 ∀ i ¼ 1;…; 6: ð33Þ

We proceed to read the easiest conditions and use them to
simplify the remaining anomalies. First,

0 ¼ Að1Þ
2 ¼ −

3

Eφ2

∂b2
∂Kφ

ð34Þ

demands that b2 is independent of Kφ. Using this,

0 ¼ Að1Þ
1 ¼ 3Eφ b0

b1

∂b2
∂Ex ð35Þ

requires that b2 is a constant function. Finally,

0 ¼ Að1Þ
6 ¼ 3b2

Eφ2 ð36Þ

sets b2 ¼ 0, thus removing the term Eφ00 from the
Hamiltonian. In fact, one can check that these three
conditions, along with (29)–(31), are necessary and suffi-
cient so that, not only Γ1 ≈ 0 is satisfied, but also Γ0 ≈ 0.
In order to display the final form of the constraint, for

convenience, let us define b̃0 ≔ b0=b1 and b̃11 ≔ b11=b1
(recall that, due to condition (ii), b1 cannot be identically
vanishing). In this way, after implementing the above
conditions on (19), the resulting constraint is given by

H ¼ b1

�
Eφb̃0 þ b̃11

ðEx0Þ2
Eφ −

Ex0Eφ0

Eφ2 þ Ex00

Eφ

�
; ð37Þ

which yields (8) along with (2), that is, Γ0 ¼ 0, Γ1 ¼ 1, and
Γ2 ¼ 0 off-shell. Note that, at this point of the analysis,
there are only three free functions b̃0, b̃11, and b1, which
depend on the three scalar combinations of the variables
Kx=Eφ, Kφ, and Ex.

2. The bracket fH½s1�;H½s2�g
We now move on to compute the Poisson bracket

between two Hamiltonian constraints (37), and impose
the necessary conditions so that its form is given by (8c). If
we define s ≔ s1s02 − s01s2, and remove all derivatives of s
through integration by parts, the bracket takes the form

fH½s1�; H½s2�g ¼
Z

dxðs1s02 − s01s2ÞΓ3; ð38Þ

where Γ3 does not depend on s1 nor s2, and it is a
combination of the different variables ðEx; Kx; Eφ; KφÞ
and their first-order derivatives ðEx0; K0

x; Eφ0; K0
φÞ. As

above, we use now (2) and (37) to solve D ≈ 0 and
H ≈ 0 for K0

φ and Ex00, respectively. Substituting them in
Γ3 and setting the constraints to zero, we find

Γ3 ≈Að3Þ
1 K0

x þAð3Þ
2 Ex0 þAð3Þ

3 Eφ0 þAð3Þ
4 K0

xðEx0Þ2

þAð3Þ
5 Eφ0ðEx0Þ2 þAð3Þ

6 ðEx0Þ3: ð39Þ
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In this expression all derivatives of the variables with

respect to x are explicit, and thus the anomaliesAð3Þ
i depend

on the variables ðEx; Kx; Eφ; KφÞ, but not on their deriv-
atives. Therefore, as done in the previous subsection, the
condition of anomaly freedom is translated to the vanishing

of every Að3Þ
i coefficient, that is,

Γ3 ≈ 0 ⟺ Að3Þ
i ¼ 0 ∀ i ¼ 1;…; 6: ð40Þ

The simplest conditions are given by

0 ¼ Að3Þ
1 ¼ −

Eφ

Kx
Að3Þ

3 ¼ −b21
∂
2b̃0
∂K2

x
; ð41aÞ

0 ¼ Að3Þ
4 ¼ −

Eφ

Kx
Að3Þ

5 ¼ −
b21
Eφ2

∂
2b̃11
∂K2

x
; ð41bÞ

implying that both b̃0 and b̃11 are at most linear in Kx,

b̃0 ¼ c00ðKφ; ExÞ þ Kx

Eφ c01ðKφ; ExÞ; ð42aÞ

b̃11 ¼ c10ðKφ; ExÞ þ Kx

Eφ c11ðKφ; ExÞ: ð42bÞ

After enforcing these conditions, the remaining two anoma-
lies are simplified to

0 ¼ Að3Þ
6 ¼ b21

Eφ3

�
∂c10
∂Kφ

−
∂c11
∂Ex

�
; ð43aÞ

0 ¼ Að3Þ
2 ¼ b21

Eφ

�
∂c00
∂Kφ

þ 2ðc00c11 − c01c10Þ −
∂c01
∂Ex

�
:

ð43bÞ
It is easy to see that the general solution to these equations
can be written in terms of two free functions of two
variables, fðKφ; ExÞ and gðKφ; ExÞ ≠ 0, and two additional
functions, uðExÞ and vðExÞ, which only depend on Ex, as
follows,

c00 ¼
1

g

�
∂f
∂Ex þ vþ uf

�
; ð44aÞ

c01 ¼
1

g
∂f
∂Kφ

; ð44bÞ

c10 ¼
u
2
þ 1

2

∂

∂Ex ½logðgÞ�; ð44cÞ

c11 ¼
1

2

∂

∂Kφ
½logðgÞ�: ð44dÞ

Therefore, replacing the above conditions in (37), we obtain

H ¼ b1

�
Eφ

g

�
vþ uf þ ∂f

∂Ex þ
Kx

Eφ

∂f
∂Kφ

�

þ ðEx0Þ2
2Eφ

�
uþ 1

g

�
∂g
∂Ex þ

Kx

Eφ

∂g
∂Kφ

��

−
Ex0Eφ0

Eφ2 þ Ex00

Eφ

�
: ð45Þ

The Poisson bracket of this constraintwith itself is now given
by (38), with

Γ3 ¼ FDþ Γ4H0 þ Γ5DHþ Γ6H; ð46Þ

and thus Γ3 is zero on the constraint surface.
Hence, in order to fulfill condition (iii) of having the

canonical form of the algebra (8), which will allow us to
interpret the Hamiltonian constraint as the generator of
normal deformations,weneed to further restrict its form (45).
First, one can check that the coefficients Γ4 and Γ5

above,

Γ4 ¼ −
1

Eφ

∂b1
∂Kx

; ð47Þ

Γ5 ¼
1

Eφ2

�
2

b1

∂b1
∂Kx

∂b1
∂Kφ

−
∂
2b1

∂Kx∂Kφ

�
; ð48Þ

vanish if b1 is independent of Kx, i.e., b1 ¼ c1ðKφ; ExÞ.
Second, implementing this last condition on Γ6, we find

Γ6 ¼
Ex0

Eφ2

�
∂c1
∂Kφ

− c1
∂ logðgÞ
∂Kφ

�
ð49Þ

and thus Γ6 vanishes when c1ðKφ; ExÞ ¼ g̃ðExÞgðKφ; ExÞ,
for a generic function g̃. Finally, when we insert these
conditions in F, we find

F ¼ g̃2g2

Eφ2

∂

∂Kφ

�
1

g
∂f
∂Kφ

þ 1

2g

�
Ex0

Eφ

�
2 ∂g
∂Kφ

�
: ð50Þ

In this way, the most general Hamiltonian constraint of the
form (7), that follows the canonical form of the hypersur-
face deformation algebra (8) with the diffeomorphism
constraint (2), is given by

H ¼ g̃

�
Kx

∂f
∂Kφ

þ Eφ

�
vþ fuþ ∂f

∂Ex

�
−
Ex0Eφ0

Eφ2 g

þ ðEx0Þ2
4Eφ

�
guþ ∂g

∂Ex þ
Kx

Eφ

∂g
∂Kφ

�
þ Ex00

Eφ g

�
; ð51Þ

with the structure function (50).
In summary, the implementation of the condition (iii) per-

formed in this subsection has completely fixed the func-
tional dependence of the constraint (51) on Eφ and Kx,
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while there is still some freedom left on its dependence on
Ex and Kφ. This freedom is encoded in the five free
functions fðKφ; ExÞ, gðKφ; ExÞ, uðExÞ, vðExÞ, and g̃ðExÞ.

B. Spacetime embeddability

In order to complete our construction, in this subsection
we will implement the condition (iv) about the spacetime
embeddability of the theory, as given explicitly by Eq. (10).
This relation ensures that the inverse of the structure
function F qualifies as a radial-radial component of the
metric. However, it turns out that Eq. (10) is not generically
satisfied by F as given in (50). Therefore, this condition
will further restrict the form of the free functions in the
Hamiltonian (51).
Just in the same way as when solving for anomalies in

the previous subsection, the fact that the functions f, g, u, v,
and g̃ do not depend on radial derivatives of the variables
allows us to find independent relations for the free
functions. In fact, one can check that the transformation
property (10) is obeyed by the structure function (50) only
if the following two equations hold,

g2
∂
3f

∂K3
φ
−
�
2g

∂
2g

∂K2
φ
−
�

∂g
∂Kφ

�
2
�

∂f
∂Kφ

¼ 0; ð52aÞ

g2
∂
3g

∂K3
φ
−
�
2g

∂
2g

∂K2
φ
−
�

∂g
∂Kφ

�
2
�

∂g
∂Kφ

¼ 0: ð52bÞ

This system of partial differential equations only includes
derivatives with respect to Kφ, and the second equation is
uncoupled to f. Therefore, it is easy to obtain the general
solution, which can be written as follows,

f ¼
�
A
ω2

sin2ðωKφ þ φfÞ þ χ

�
Ag; ð53aÞ

g ¼ −
Ag

2
cos2ðωKφ þ φf þ φÞ; ð53bÞ

where the six integration functions, A, Ag, φf, φ, ω, and χ
depend solely on Ex. Note that, remarkably, the imple-
mentation of the spacetime embeddability condition has
completely fixed the dependence of the Hamiltonian
constraint on the variable Kφ and only free functions of
Ex survive.
We want to point out that since f and g must be real, the

functions A, Ag, and χ must also be real. However, the
integration functions ω, φf, and φ can be either real or
complex. Besides, the limit ω → 0 [with φf=ω → ϕ,
where ϕ ¼ ϕðExÞ] is well behaved and defines a particular
solution of the family (53), with g being independent
of Kφ and f being quadratic in Kφ, i.e., g ¼ g0ðExÞ and
fðKφ;ExÞ ¼ f0ðExÞ þ f1ðExÞKφ þ f2ðExÞK2

φ. Finally, the

condition (ii) implies that Ag cannot be identically vanish-
ing and that φf þ φ ≠ π=2 when ω ¼ 0.
At this point we have been able to implement the four

conditions (i)–(iv), and replacing the form (53) into (51)
will provide the most general Hamiltonian constraint we
were seeking. Nonetheless, it is possible to see that there is
still some redundancy, and the number of free functions in
the Hamiltonian constraint can be reduced by performing
certain redefinitions. More precisely, we get rid of φf

through the canonical transformation Kφ → Kφ − φf=ω

and Kx → Kx −Eφ ∂ðφf=ωÞ
∂Ex , which leaves invariant the dif-

feomorphism constraint. Further, we set g̃ ¼ −g=Ag and
Ag ¼ exp ½R ðB − uÞdEx�, with B ¼ BðExÞ. We also

introduce yet another function V ≔ −ðvþ Bχ þ ∂χ
∂ExÞ×

exp ½R ðu − BÞdEx�, so that all the “potential” terms are
gathered in a unique function. Finally, it is also convenient
to define WðExÞ ≔ exp½R BdEx�.

C. Result

Taking all the above into account, the most general
Hamiltonian constraint that obeys conditions (i)–(iv), and
thus covariantly defines the metric (9), reads

H¼ g

�
EφV −Eφ A

ω2
sin2ðωKφÞ

∂

∂Ex

�
log

�
AW
ω2

��

þ 1

2

�
Ex00

Eφ −
Ex0Eφ0

Eφ2 þ ∂ logðWÞ
∂Ex

ðEx0Þ2
2Eφ

�
cos2ðωKφ þφÞ

−
�
Kx þKφEφ ∂ logðωÞ

∂Ex

�
A
ω
sinð2ωKφÞ

−
�
ωKx þKφEφ ∂ω

∂Ex þEφ ∂φ

∂Ex

��
Ex0

2Eφ

�
2

× sinð2ðωKφ þφÞÞ
�
; ð54Þ

where g ¼ gðExÞ, ω ¼ ωðExÞ, φ ¼ φðExÞ, A ¼ AðExÞ,
V ¼ VðExÞ, and W ¼ WðExÞ are free functions of the
variable Ex. This result is unique up to canonical trans-
formations that respect the form of the diffeomorphism
constraint (2) and do not include derivative terms. As
explained in Appendix B, this Hamiltonian constraint is
equivalent to the one recently presented in Ref. [31].
Recall that, as long as the Hamiltonian is real, the

arguments of the trigonometric functions may be complex,
changing to hyperbolic solutions, and that the limit ω → 0
is well defined. In fact, it is easy to see that such limit, along
with the choice of functions g ¼ ffiffiffiffiffiffi

Ex
p

, V ¼ −1=ð2ExÞ,
A ¼ 1, W ¼ ffiffiffiffiffiffi

Ex
p

, and φ ¼ 0, renders (54) into (4), and
thus corresponds to the particular case of vacuum GR. In
fact, the choice V ¼ −1=ð2ExÞ þ Λ=2, with a constant Λ,
reproduces a cosmological constant term, which should
obviously be allowed by covariance.
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The structure function F that appears in the bracket (8c),
considering the above Hamiltonian constraint (54), reads

F ¼ Fs

Eφ2 ; with

Fs ≔ g2 cosðωKφ þ φÞ
�
A cosðωKφ − φÞ

þ
�
Ex0

2Eφ

�
2

ω2 cosðωKφ þ φÞ
�
: ð55Þ

At this point, it is very convenient to define the function

M ≔
�
Ex0

2Eφ

�
2

cos2ðωKφ þ φÞ − A
sin2ðωKφÞ

ω2
; ð56Þ

which can be shown to be a spacetime scalar, as its
transformation (on-shell) is given by

fM;H½ϵtN� þD½ϵtNx þ ϵx�g ≈ ϵtṀ þ ϵxM0: ð57Þ
This function can be used to reexpress the Hamiltonian
constraint in the following compact form,

H ¼ g
Eφ

Ex0

��
V þ ∂ logðWÞ

∂Ex M

�
Ex0 þM0 −

D
Eφ

∂M
∂Kφ

�
:

ð58Þ
From here, one can deduce that on the constraint surface
(H ≈ 0 and D ≈ 0) M is a function of Ex only, and it is
explicitly given by

M ≈ −
�
WðExÞ þ

Z
VðExÞdEx

�
; ð59Þ

up to an integration constant. In terms of this function, Fs
also takes a very simple form,

Fs ¼ g2ðA cos2ðφÞ þ ω2MÞ: ð60Þ
In turn, this shows that Fs is also a spacetime scalar and,
on-shell, it is a function of Ex only.
Let us finish this section with some remarks. It is very

interesting to note that the covariance requirement—i.e.,
conditions (iii) and (iv)—has severely restricted the func-
tional dependence of the Hamiltonian constraint (54) on the
different variables. In particular, its dependence on Eφ, Kx,
and Kφ is completely fixed, and only free functions of Ex

are allowed. More precisely, the variable Kx only appears
linearly, while the dependence on Eφ is a bit more involved,
but, apart from the derivative term Eφ0, it only appears
either linearly or with certain inverse powers. Concerning
Kφ, it appears in several terms, both inside and outside the
argument of trigonometric functions (which, as commented
above, can also be hyperbolic). These trigonometric func-
tions may be of special relevance in the context of effective
models of loop quantum gravity, since, motivated by the
holonomy variables that are used in this theory for the

quantization, the building of effective models has been
based on the so-called polymerization, which consists on
replacing the curvature degrees of freedom, like Kφ, by
certain trigonometric function. In this respect, we would
like to stress that the trigonometric functions that appear in
the Hamiltonian constraint (54) are a direct consequence of
the implementation of conditions (iii) and (iv).
In summary, we have obtained the family of Hamiltonian

constraints (54), which generalize GR in spherical sym-
metry, though keeping the good covariance properties,
which will allow us to provide a consistent spacetime
metric. As will be explained below in more detail, in
general, these models are not equivalent to GR and they
lead to different spacetime geometries, thus the uniqueness
results [32,33] do not apply here. This has already been
shown in Refs. [26–28], where particular cases of the
Hamiltonian constraint (54) were studied in detail.

V. STRUCTURE OF THE SPACETIME

In this section we provide the spacetime geometry
defined by the models constructed in the previous section,
and analyze its main features. This section is divided in
four subsections. In Sec. VA the full four-dimensional
spacetime metric is constructed. In Sec. V B we present the
curvature invariants. In Sec. V C we show that all the
spacetimes under consideration have a Killing vector field
in the M2 sector. Finally, in Sec. V D we discuss the
general properties and structure of these geometries.

A. The spacetime metric

By construction, there are no propagating degrees of
freedom in this theory since there are two conjugate couple
of variables, ðEx; KxÞ and ðEφ; KφÞ, and two first-class
constraints. The Hamiltonian constraint (54), along with
the diffeomorphism constraint (2), and the Lagrange multi-
pliers (N, Nx) define the Hamiltonian H½N� þD½Nx�,
which encodes the dynamics of the system. As usual,
one can obtain the equations of motion for the different
variables through the Poisson brackets,

Ėx ¼ fEx;H½N� þD½Nx�g; ð61Þ

K̇x ¼ fKx;H½N� þD½Nx�g; ð62Þ

Ėφ ¼ fEφ; H½N� þD½Nx�g; ð63Þ

K̇φ ¼ fKφ; H½N� þD½Nx�g: ð64Þ

The solution to these equations in a given gauge will
provide the metric tensor of the two-dimensional manifold
M2 in certain coordinate system:

gABdyAdyB ¼ σN2dt2 þ 1

jFj ðdxþ NxdtÞ2; ð65Þ
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with F as defined in (55). Note that, in principle, the sign of
F is not fixed, and thus the signature of this metric is
encoded in σ ≔ −sgnðFÞ. Due to the construction per-
formed above, a change of gauge will simply correspond to
a change of coordinates, and thus this (two-dimensional)
line element is covariantly defined.
Now, in order to provide a complete four-dimensional

geometric picture of the spacetime, this line element must
be extended. Our aim is to describe spherically symmetric
spacetimes, and thus, following the discussion of Sec. II,
we will assume that the four-dimensional manifold M is a
warped product M ¼ M2 × S2, with line element,

ds2 ¼ gABdyAdyB þ r2dΩ2; ð66Þ

where r is the function that provides the area of the spheres.
Due to the symmetry reduction, the Hamiltonian only
contains information about the geometry of the manifold
M2, but it knows nothing about r. The only requirement
for this function is that it should be a spacetime scalar.
Since, among our basic variables, Ex is the only spacetime
scalar, one can assume r ¼ rðExÞ in general, and thus rwill
be (another) independent free function of the model. For the
particular case of GR its value is given by r ¼ ffiffiffiffiffiffi

Ex
p

.
With the full four dimensional metric (66) at hand, we

can move on to study the geometry of the spacetime. Even
if our construction has severely restricted the freedom of
the model, there are still seven free functions (A, V, W, g,
ω, φ, and r) of the variable Ex, and the specific properties of
the spacetime will depend on their precise form. However,
we will be able to conclude some relevant features quite
generically.

B. Curvature

For a spherically symmetric metric of the form (66), the
gradient of the area-radius function vA ≔ ∇Ar, where ∇ is
the covariant derivative associated with the two-
dimensional metric gAB, contains key physical information
of the spacetime. In any coordinate system, the form of this
vector is explicitly given by,

vAdyA ¼ dr
dEx ½Ėxdtþ ðExÞ0dx�; ð67Þ

where, making use of the equation of motion (61),

Ėx ¼ NxEx0 þ 2Ng
ω cosðωKφ þ φÞ ½ðAþ ω2MÞ sinðωKφÞ

× cosðφÞ þ ω2M cosðωKφÞ sinðφÞ�: ð68Þ

In particular, the norm of vA will be very relevant in the
analysis of the structure of the spacetime, since the spheres
of constant t and x will be trapped or not depending on its
sign (because the mean curvature vector of those spheres is

2vA=r). Therefore, contracting the indices with the metric
(66), we define

U ≔ vAvA ≈ −4σ
�

dr
dEx

�
2

g2MðAþ ω2MÞ: ð69Þ

The sign of U is thus completely characterized by A, ω, and
M. For the Riemannian (σ ¼ 1) caseU is always positive or
vanishing if vA ¼ 0. For the Lorentzian (σ ¼ −1) case, in
the regions where U is negative (positive) the correspond-
ing spheres are trapped (nontrapped), while the hyper-
surfaces where U ¼ 0 are either marginally trapped (if
vA ≠ 0) or minimal (if vA ¼ 0).
In addition, all the information regarding the spacetime

curvature is encoded in the norm U of the vector vA, the
trace of its gradient∇AvA, and the Ricci scalar R of the two
dimensional metric gAB. More precisely, there are only two
independent spacetime curvature scalars, namely the four-
dimensional Ricci scalar,

ð4ÞR ¼ Rþ 2

r2
ð1 −UÞ − 4

r
∇AvA; ð70Þ

and the scalar,

U ¼ −
1

6

�
Rþ 2

r2
ð1 −UÞ þ 2

r
∇AvA

�
; ð71Þ

which provides all nonzero components of the Weyl tensor,

ð4ÞWABCD ¼ ðgADgBC − gACgBDÞU; ð72Þ

ð4ÞWAϕBϕ ¼ ð4ÞWAθBθsin2θ ¼ r2

2
sin2θgABU; ð73Þ

ð4ÞWθϕϕθ ¼ r4sin2θU; ð74Þ

and permutations, where θ and ϕ are the angular coor-
dinates, with dΩ2 ¼ dθ2 þ sin2 θdϕ2.
Depending on the specific form of the free functions in

the Hamiltonian constraint (54), these curvature invariants
might have a very different behavior and, in particular,
might diverge at one or several values of Ex. In the
particular case of vacuum GR, a divergence appears at
Ex → 0 (r → 0), which signals the classical singularity. In a
modified theory, this divergence might still be present, and
even new ones appear at different values of r. However,
there might also be singularity-free spacetimes. This was
indeed the case in Refs. [26–28], where the domain of Ex

was constrained to certain regions with no curvature
divergences (in contrast to GR, where the domain of Ex

is the whole positive real line).
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C. Killing vector fields

Since the spacetime (66) is spherically symmetric, there
are three independent Killing vector fields on S2. However,
not all spherically symmetric spacetimes contain Killing
fields on the sector M2. In this section, we will show that
such a Killing field exists for all the theories defined by the
Hamiltonian constraint (54). This is a nontrivial result,
though one would intuitively expect that this is the case,
due to the fact that, by construction, there are no propa-
gating degrees of freedom in the dynamics described by
this family of deformed Hamiltonians.
The Killing equation reads

ξμ;ν þ ξν;μ ¼ 0; ð75Þ

where μ, ν ¼ 0; 1; 2; 3 are four-dimensional indices and the
semicolon ; stands for the covariant derivative associated
with the four-dimensional metric (66). Assuming that the
angular components of the vector are vanishing, that is
ξμdxμ ¼ ξAdxA, it is easy to see that the above equation can
be decomposed in the following relations:

ξA;θ ¼ ξA;ϕ ¼ 0; ð76Þ

ξAvA ¼ 0; ð77Þ

∇AξB þ∇BξA ¼ 0; ð78Þ

where∇, as already defined above, is the covariant derivative
compatiblewith the two-dimensionalmetric gAB onM2. It is
clear that relations (76) simply imply that ξA is independent
of the angular coordinates, while (77) requests the Killing
vector to be orthogonal to vA. Therefore, in all the points
where vA is not vanishing, the most general vector that obeys
relations (76)–(77) is given by

ξA ¼ huA; ð79Þ

where h is a scalar function on M2 and the vector
uA ≔ ϵABvB, with ϵAB being the covariant Levi-Civita tensor
on M2,3 defines the orthogonal direction to vA.
The remaining equation (78) can be decomposed in three

scalar equations simply by projecting it along the vector vA

and its orthogonal uA,4

vAvB∇AξB ¼ 0; ð80Þ
vAuBð∇AξB þ∇BξAÞ ¼ 0; ð81Þ

∇Aξ
A ¼ 0: ð82Þ

Replacing the form (79) of the Killing vector field, these
three equations take the form,

huAvB∇AvB ¼ 0; ð83Þ

UvA∇Ah − hðU∇AvA − 2vAvB∇AvBÞ ¼ 0; ð84Þ

uA∇Ah ¼ 0: ð85Þ

The last relation (85) implies that ∇Ah must be propor-
tional to vA, and thus h must be a function of r only, i.e.,
h ¼ hðrÞ. Then, (84) is a first-order linear ordinary differ-
ential equation for hðrÞ, which can be rewritten as follows,

U2
dhðrÞ
dr

− hðrÞðU∇AvA − 2vAvB∇AvBÞ ¼ 0: ð86Þ

If U is nonvanishing, this can be further simplified writing
the term inside brackets as a total derivative,

U2

�
dhðrÞ
dr

− hðrÞ∇A

�
vA

U

��
¼ 0: ð87Þ

Then, for U ≠ 0, the solution to this equation reads

hðrÞ ¼ exp

�Z
dr∇A

�
vA

U

��
; ð88Þ

where a global integration constant has been fixed without
loss of generality (it only amounts to a constant rescaling of
the Killing field). Making use of the equations of motion
and the weak equality (59), it is possible to perform this
integral and obtain the following simple expression,

h2 ≈
W2

4ð dr
dExÞ2g2jFsj

; ð89Þ

which explicitly provides h in terms of the free functions of
the model for U ≠ 0. In the case U ¼ 0, which implies a
lightlike vector vA (recall that for this derivation we
are assuming vA ≠ 0), equation (84) requires either
vA∇AU ¼ 0 or h ¼ 0. Therefore, at points where U ¼ 0

and vA∇AU ≠ 0 the Killing vector field vanishes (h ¼ 0).
For points with U ¼ 0 ¼ vA∇AU the form of h is not
restricted by Eq. (84), and thus in general the Killing field
will be lightlike there (unless continuity, or some other
condition, on the function h requires it to be vanishing at
this point).
The only nontrivial equation left is (83). This equation

does not restrict further the form of h, it rather imposes a
necessary condition on the spacetime geometry for the
existence of the Killing vector field. It can be rewritten as,

uA∇AU ¼ 0: ð90Þ

3That is, ϵAB ¼ 1ffiffiffiffi
jgj

p ηAB, with ηAB being the antisymmetric

symbol with value η01 ¼ 1 and g the determinant of gAB.
4Note that the metric is given by gAB ¼ ðσuAuB þ vAvBÞ=U.
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That is, the gradient of U must be orthogonal to uA, and
thus proportional to vA. This implies that the Killing vector
will exist if U is a function of r only. As can be seen in
Eq. (69), this is indeed the case for the family of
Hamiltonians derived here, as long as the function r ¼
rðExÞ is invertible. This completes the proof of the
existence of the Killing field.
In this way, we have shown that, as long as vA ≠ 0, all

the spacetimes under consideration have a Killing vector
field ξA in theM2 sector. This Killing field is orthogonal to
vA and takes the form (79), with the function h given by
(89) for U ≠ 0. For hypersurfaces r ¼ a where the vector
vA ≠ 0 is lightlike, and thus UðaÞ ¼ 0, there are two possi-
bilities: if vA∇AU ≠ 0 the Killing vector ξA is also require
to vanish there (h ¼ 0), while if vA∇AU ¼ 0 the function h
is free and in general ξA will be lightlike. On the other hand,
at minimal hypersurfaces where vA ¼ 0, the above analysis
does not apply, Eq. (77) is automatically satisfied, and the
existence of the Killing field will depend on condition (78)
being fulfilled. However, if the vector vA vanishes only
locally at r ¼ a, and thus ∇AvB ≠ 0 there, and the
spacetime is smooth around that point,5 the Killing vector
will be defined at r ¼ a by continuity.
As a side remark, in the appendix we present the

construction and the conditions for the existence of the
Killing field in terms of the Einstein tensor. In this way, one
can see how the mentioned conditions are automatically
fulfilled for vacuum general relativity, which makes contact
with the usual Birkhoff’s theorem.

D. General features of the spacetimes

The dynamics given by the family of Hamiltonian
constraints (54) will define a spacetime with metric (66).
In the particular case of GR, the scalar part of the structure
function reads Fs ¼ Ex, which is positive for all positive
values of Ex, and the area-radius function is r ¼ ffiffiffiffiffiffi

Ex
p

.
This construction defines a Lorentzian manifold (the
Schwarzschild spacetime), with the area of spherical orbits
taking all values between zero and infinity, and a singu-
larity located at r → 0, where the curvature scalar (71)
diverges.
However, in the general case, Fs ¼ FsðExÞ will not be

defined for all positive values of Ex, and the domain of Ex

will be restricted to certain finite or infinite domains. Each
disjoint domain will define an independent spacetime,
where, once the function r ¼ rðExÞ is fixed, the area of
the spheres will correspondingly be restricted. The signa-
ture of the metric at each value of Ex will be given by the
sign of F there. As long as FsðExÞ ≠ 0, the signs of Fs and
F coincide, and thus Fs encodes also the signature.
However, roots z of FsðEx ¼ zÞ ¼ 0 need to be analyzed

carefully. In general, these roots will imply a boundary of a
given Lorentzian or Riemannian region. Depending on the
behavior of the dynamics there, these points may or may
not be part of the spacetime manifold. Also, they may or
may not be traversable, in the sense that there might exist an
open subset of Ex around Ex ¼ z, where Fs is well defined.
Although such traversability does not necessarily imply a
signature change since the sign of Fs may be the same for
the whole open subset. With all the free functions of the
model, the amount of possible cases is very wide, so a case
by case analysis should be performed once the form of the
different functions has been fixed.
Nonetheless, despite the freedom that the model still

encodes, there are several general properties of the space-
time that we can draw. In these spherical spacetimes, there
are two key vectors: the gradient of the area-radius function
vA (67), with its norm U given in (69), and the Killing
vector field ξA. As long as vA ≠ 0, from Eq. (79) it is
straightforward to see that these vectors are orthogonal
ξAvA ¼ 0, and that the norm of the Killing field is given by

G ≔ ξAξ
A ¼ σh2U: ð91Þ

For a Riemannian spacetime (σ ¼ 1) both G and U have a
positive sign, while for a Lorentzian spacetime ðσ ¼ −1Þ
they have opposite signs. This fact defines two generic
regions for these Lorentzian spacetimes:

(i) G < 0 and U > 0: static nontrapped regions, where
ξA is timelike and vA spacelike, like the exterior of
the Schwarzschild black hole.

(ii) G > 0 and U < 0: homogeneous trapped regions,
where ξA is spacelike and vA timelike. Depending on
the direction of vA, in these regions the spheres can
be trapped to the future, like in the interior of the
Schwarzschild black hole, or trapped to the past
(antitrapped), like in the interior of the Schwarzs-
child white hole.

Roots of the scalar functions G ¼ GðExÞ and U ¼
UðExÞ define, in general, three-dimensional hypersurfaces
on the manifold, where Ex is constant (and, once an
invertible relation r ¼ rðExÞ has been fixed, will imply a
constant r). In the Riemannian case, a root of these scalar
functions imply that the corresponding vector (ξA and vA,
respectively) vanishes there. However, in the Lorentzian
case, the vanishing of G ¼ GðExÞ or U ¼ UðExÞ may
imply two different things: either the corresponding vector
vanishes or it is lightlike. Clearly, if they imply a change of
sign in a smooth region of the spacetime, these roots will
happen simultaneously (i.e., UðzÞ ¼ 0 and GðzÞ ¼ 0), and
thus define a boundary Ex ¼ z between a static and a
homogeneous region. But in general there will be roots of
U, which will not be roots of G.
Note that relation (79), and thus (91), is valid for vA ≠ 0.

Therefore, a lightlike vA implies either a vanishing (if
h ¼ 0) or a lightlike (if h ≠ 0) Killing field ξA. But, in

5By smoothness of a region of the spacetime we will imply that
all the fields are locally analytic.
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general, at hypersurfaces where vA ¼ 0 (and thus U ¼ 0),
ξA does not need to be lightlike or vanishing (and thus
G ≠ 0). Nonetheless, if vA vanishes only locally at a given
hypersurface, and the spacetime is smooth around that
hypersurface, relation (91) should also be obeyed there.
Hence, under the assumption of smoothness, vA ¼ 0 also
implies a lightlike (if h ≠ 0) or vanishing (if h ¼ 0) ξA,
unless h diverges. Interestingly, from (89), we see that this
latter is indeed the case if Fs also vanishes there, while

W2

g2ð dr
dExÞ2

≠ 0. Therefore, in a smooth region of the spacetime,

there can be a hypersurface where vA ¼ 0, but with a
neither lightlike nor vanishing ξA (i.e., G ≠ 0), if Fs

vanishes and W2

g2ð dr
dExÞ2

≠ 0 there. However, the modulus of

the Killing field G to be finite, it is necessary that U
vanishes there too.
Let us thus check the possible simultaneity in the roots of

Fs and U. From their expressions (60) and (69), one can
write in general

g2ω2U ¼ −4σ
�

dr
dEx

�
2

ðFs − g2Acos2φÞðFs þ g2Asin2φÞ;

ð92Þ

which, for a vanishing Fs, leads to the relation

g2ω2UjFs¼0 ¼ 4σ

�
dr
dEx

�
2

g2A2sin2ð2φÞ: ð93Þ

Therefore, if gω ≠ 0 at this hypersurface, either U ¼ 0 or
sgnðUÞ ¼ σ. That is, in a Lorentzian spacetime a hyper-
surface where Fs ¼ 0 and gω ≠ 0 is either embedded in a
homogeneous region (where U < 0) or U ¼ 0 there. This
latter is the case, in particular, if sinð2φÞ ¼ 0, either locally
at that hypersurface or exactly for the whole spacetime.
Since an exact vanishing of sinð2φÞ defines a subfamily of
models with certain interesting features, let us analyze them
in a bit more detail.

1. The subfamily of models with φ=nπ=2

A particularly interesting subfamily of models, for which
a root of Fs always implies a vanishing U, given that
gω ≠ 0, corresponds to the case when the free function
φ ¼ φðExÞ reads φ ¼ nπ=2, for any integer n.6 But, before
analyzing the behavior of the roots of Fs, let us first note
that the constant form of the function φ under consideration
introduces certain symmetries in the system. In particular,
from Eq. (55) we see that, when φ ¼ nπ=2, the two terms
inside the parenthesis have the same phase, and the scalar
part of the structure function is then given as

Fs ¼ g2cos2
�
ωKφþ

nπ
2

��
ð−1ÞnAþ

�
Ex0

2Eφ

�
2

ω2

�
: ð94Þ

From this expression it is straightforward to conclude that,
if A has a definite sign for all values of Ex, the sign of Fs
will also be fixed in the following instances7:

(i) ω real and ð−1ÞnA ≥ 0 for all Ex ⟹ Fs ≥ 0 ⟹
Lorentzian signature.

(ii) n odd, ω purely imaginary, and A ≥ 0 for all Ex ⟹
Fs ≥ 0 ⟹ Lorentzian signature.

(iii) n even,ω purely imaginary, and A ≤ 0 for all Ex ⟹
Fs ≤ 0 ⟹ Riemannian signature.

Therefore, these cases can only describe either Lorentzian
or Riemannian spacetimes, and a signature change is
completely excluded.
In addition, from (94), one can see that Fs can vanish

either because the term in parenthesis vanishes, or because
the global factor does. On the one hand, if the term in
parenthesis vanishes, at Fs ¼ 0 one has that ð−1ÞnA=ω2 ¼
−ðEx0=ð2EφÞÞ2 ≤ 0. On the other hand, if the global
factor vanishes, since it has a definite sign, then the
signature around Fs ¼ 0 will be given by the term in
parenthesis: for a Riemannian region one then has
Fs ≤ 0 ⇒ ð−1ÞnA=ω2 ≤ 0, while for a Lorentzian region
the sign of ð−1ÞnA=ω2 is not fixed.
As commented above, the form of the function φ ¼

nπ=2 makes sinð2φÞ to be exactly vanishing, and thus the
right-hand side of (93) vanishes. Since U ¼ 0, in principle,
the vector vA might be either lightlike or vanishing at that
hypersurface. Assuming smoothness and making use of
relations (89), (91), and (92), it is easy to obtain the norm of
the Killing field there,

GjFs¼0 ¼
σW2A
g2ω2

ð−1Þnþ1: ð95Þ

This expression shows that, if W2A is not vanishing at that
hypersurface, the Killing field is either spacelike or time-
like, but not lightlike, which implies that the vector vA is
vanishing there. In summary, for this particular subfamily
of models, under the commented assumptions (smoothness,
g2ω2 ≠ 0 and W2A ≠ 0 locally), the roots of Fs always
define minimal hypersurfaces, where vA ¼ 0.8 In a
Lorentzian spacetime (σ ¼ −1) the Killing field is space-
like (for ð−1ÞnA=ω2 > 0) or timelike (for ð−1ÞnA=ω2 < 0)
at that hypersurface. And, since neither G nor U changes
sign there, this hypersurface simply defines a boundary
between two homogeneous (if ð−1ÞnA=ω2 > 0) or between
two static (if ð−1ÞnA=ω2 < 0) regions. For a Riemannian
spacetime (σ ¼ 1), as commented above, ð−1ÞnA=ω2 is

6Note that, for such values of φ, the Hamiltonian (54) to be real
ω must be either real or purely imaginary.

7Take into account that cos2ðixþ nπ=2Þ ¼ cosh2ðxÞ for n
even, and cos2ðixþ nπ=2Þ ¼ − sinh2ðxÞ for n odd.

8Note that it is immediate to extend this result to a local
vanishing of sinð2φÞ.
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always negative at Fs ¼ 0, which makes, as expected,
GjFs¼0 to be positive.
For a detailed analysis of a particular nontrivial case of

this subfamily of models, which shows some of the features
described above, we direct the reader to Refs. [26,27],
where a regular version of the Schwarzschild black hole
was constructed. Such model corresponds to the choice of
functions φ ¼ 0, ω real, and A > 0 for all Ex, and thus
implies a non-negative Fs with Lorentzian signature.
Furthermore, in that case Fs turns out to be only defined
in the interval r∈ ½r0;∞Þ, for some finite r0. At the
hypersurface r ¼ r0 the scalar part of the structure function
Fs vanishes, and it is therefore a minimal hypersurface with
vA ¼ 0 and a spacelike Killing field. This hypersurface is a
boundary between two homogeneous (a trapped and an
antitrapped) regions. This spacetime turns out to be
completely regular and geodesically complete. Another,
more involved, example, but also with a non-negative Fs, is
presented in Ref. [28], where the previous black-hole
model is endowed with electric charge and a cosmological
constant.

VI. MINIMAL COUPLING OF MATTER

As explained above, the models presented here for
vacuum spherical gravity are nondynamical. In order to
describe a dynamical process, like a black hole formation or
an explosion, it is necessary to provide a prescription to
couple matter degrees of freedom to the model in a
consistent way.
The model admits matter following the usual minimal-

coupling prescription. Let us, for instance, consider a scalar
field with Lagrangian density

Lm ≔ −
1

2

ffiffiffiffiffi
jgj

p
ðgμν∂μψ∂νψ þ VðψÞÞ: ð96Þ

Using the metric (66), and assuming that ψ is spherically
symmetric, and thus independent of the angular coordi-
nates, we get

Lm ¼ −
r2

2N
ffiffiffiffiffiffijFjp ðσðψ̇ − Nxψ 0Þ2 þ jFjN2ðψ 0Þ2 þ N2VÞ:

ð97Þ

The conjugate momentum of the scalar field is defined as

Pψ ≔
∂Lm

∂ψ̇
¼ −

σr2

N
ffiffiffiffiffiffijFjp ðψ̇ − Nxψ 0Þ; ð98Þ

and can be inverted to write the time derivative

ψ̇ ¼ −σN
ffiffiffiffiffiffi
jFj

p Pψ

r2
þ Nxψ 0: ð99Þ

We can then perform a Legendre transformation to obtain
the total matter Hamiltonian,

ψ̇Pψ − Lm ¼ NHm þ NxDm; ð100Þ

which is a sum of constraints, with

Dm ≔ Pψψ
0; ð101Þ

Hm ≔
ffiffiffiffiffiffijFjp
2

�
−σ

P2
ψ

r2
þ r2ðψ 0Þ2

�
þ r2

2
ffiffiffiffiffiffijFjp VðψÞ: ð102Þ

The total Hamiltonian of the system then reads

HT ¼
Z

ðNðHþHmÞ þ NxðDþDmÞÞdx; ð103Þ

with H and D as defined in (54) and (2), respectively, and
the matter contributions to the constraints (101) and (102).
This new set of constraints satisfies the canonical hyper-
surface deformation algebra (8) by construction.
In the GR limit, where F ¼ Ex=Eφ2 and r ¼ ffiffiffiffiffiffi

Ex
p

, we
recover the usual form,

HðGRÞ
m ¼ P2

ψ

2
ffiffiffiffiffiffi
Ex

p
Eφ

þ Ex3=2ðψ 0Þ2
2Eφ þ

ffiffiffiffiffiffi
Ex

p

2
EφVðψÞ: ð104Þ

Certainly, this can be generalized to any Lorentz-invari-
ant Lagrangian. For completeness, since it could be of
relevance to study gravitational collapse, we provide here
also the contributions of a minimally coupled dust field ϕ to
the diffeomorphism and Hamiltonian constraints of the
model,

Dm ≔ Pϕϕ
0; ð105Þ

Hm ≔ Pϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jFjϕ02

q
; ð106Þ

where Pϕ is the conjugate momentum to ϕ.
As can be seen in the above examples, the resulting

matter Hamiltonian is just the same as it would be in GR
with minimally coupled matter, with the only difference
lying on the (radial component of the) metric. Therefore,
the minimal coupling keeps the same functional form (just
replacing qxx ¼ Ex=ðEφÞ2 with F) while exhibiting, in
principle, a different dynamical behavior.
The above result is of great relevance in the field of

effective loop quantum gravity, since holonomy corrections
have long been considered incompatible with the presence
of matter fields (see, e.g., Refs. [22,25]). This was not a
covariance issue as in pure vacuum, but the matter coupling
rather produced inevitable anomalous terms in the hyper-
surface deformation algebra. However, in Ref. [29], a
prescription was presented in order to consistently couple
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matter to holonomy corrected spherical gravity. This
prescription can be understood as performing a canonical
transformation followed by a linear combination of GR
constraints. The description of matter is therefore auto-
matic, but the procedure gives rises to nonminimal cou-
plings. (The contribution of a scalar field coupled in
this way to a holonomy corrected model can be seen in
Eq. (36) of Ref. [29].) Both procedures, the minimal
coupling presented here and the nonminimal one performed
in Ref. [29] covariantly couple the scalar field to the
gravitational sector, although their dynamics will, in gen-
eral, differ. A specific analysis of such dynamics is left for
future work.

VII. CONCLUSIONS

We have analyzed covariant generalizations of the
Hamiltonian constraint of general relativity under the
assumption of spherical symmetry. In this context, by
covariant we mean that the dynamics generated by this
generalized Hamiltonian constraint should lead in a
precise sense to define a geometry on the spacetime,
independently of gauge or coordinate choices. More
precisely, we have constructed the most general
Hamiltonian constraint that obeys the four conditions
(i)–(iv) detailed in Sec. III. The first condition (i) requires
that the constraint should have the same derivative
structure as in general relativity, without including
higher-order spatial derivatives. Therefore, the structure
of the constraint is given by (7), where its dependence on
spatial derivatives of the variables is fixed, and there are
six generic free functions, which can depend on all the
variables of the system but not on their derivatives. The
second condition (ii) is just a technical assumption so that
some of the free functions are not taken to be exactly
vanishing in the subsequent analysis. In this way, we
ensure that the GR Hamiltonian constraint will be con-
tained as a particular case of the result.
Conditions (iii) and (iv) are the actual nontrivial require-

ments that implement the covariance of the model. On the
one hand, (iii) demands that the Hamiltonian constraint (7)
obeys the canonical hypersurface deformation algebra (8)
along with the diffeomorphism constraint (2), which is
taken to have the same form as in GR. In this way, this
algebra, which encodes the covariance of the theory in
the canonical setting, will be closed and there will be no
anomalies. In addition, from here one can interpret, as
usual, the diffeomorphism constraint as the generator of
deformations on the spatial leaf, while the Hamiltonian
constraint will be the generator of deformations in the
normal direction. On the other hand, (iv) requires that the
structure function that appears in the bracket between two
Hamiltonian constraints should have the correct trans-
formation properties to be interpreted as an inverse spatial
metric. Once these two conditions are met, the spacetime
metric (9) can unambiguously be defined. For this metric,

any change of coordinates in spacetime corresponds to a
gauge transformation in phase space, and therefore the
geometry is covariantly defined.
The main result of the paper is then given by Eq. (54),

which displays the most general Hamiltonian con-
straint that obeys the four conditions specified above.
Remarkably, the implementation of conditions (iii) and
(iv) considerably reduces the freedom: from the six free
functions of four variables in our initial ansatz (7), one
ends up with just six functions of the variable Ex in (54). It
turns out that Ex is, among the basic variables of the
model, the only one that is a spacetime scalar. Interes-
tingly, in this constraint there are some trigonometric
functions (which can also be hyperbolic), which could be
interpreted as holonomy corrections in the context of
effective-model building of loop quantum gravity. We
would like to emphasize again that in our study such
trigonometric functions appear as a direct consequence of
the covariance conditions (iii) and (iv). Therefore, this
result might be a more fundamental motivation for
holonomy corrections, and could be used as a guide to
construct covariant effective models in this context. Let us
point out that the theory of general relativity is recovered
in the limit where the argument of the trigonometric
functions tends to zero, and can be understood as some
kind of limiting case between the trigonometric and
hyperbolic behavior of the Hamiltonian.
The dynamics generated by the family of Hamiltonian

constraints (54) defines a geometry in spacetime, though
only for the sector M2. Due to the assumption of spherical
symmetry, the hypersurface deformation algebra does not
encode the complete information of the full four-
dimensional spacetime, and, in particular, the form of the
area-radius function r is missing. This adds another free
function to the model. With all these free functions, it is not
possible to explicitly solve the equations of motion and
obtain the geometry. However, we have been able to
conclude a number of relevant features of the spacetimes
under consideration. In particular, we have shown, and
explicitly computed, that all the spacetimes contain aKilling
vector field, in addition to the threeKilling fields of spherical
symmetry. Furthermore, unlike in GR, we observe that in
general the structure function in the bracket between two
Hamiltonian constraints is not positive definite, and thus the
spacetimes can have either a Riemannian or a Lorentzian
signature. In fact, the structure function might not even be
defined for all the values of r, and thus its domain might be
restricted (this is what happens, for instance in the particular
models studied in Refs. [26–28]). In general, the form of
the structure function will define domains of r, which are
either Riemannian or Lorentzian. In the Lorentzian sector,
the sign of the Killing field defines two generic types of
regions: static nontrapped regions (similar to the exterior
of a Schwarzschild black hole) and homogeneous trapped
regions (similar to the interior of a Schwarzschild black
hole). Besides, there are some relevant hypersurfaces
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that can be either lightlike Killing horizons, minimal hyper-
surfaces, or boundaries betweenRiemannian andLorentzian
regions.
In particular, we have studied a bit in more detail a

subfamily of models, which are defined by fixing one of the
free functions of the model ðφ ¼ nπ=2Þ. Under certain
conditions, we have been able to show that, for this
subfamily, the signature of the spacetime is fixed and,
thus, there is no possibility of a dynamical signature
change. In addition, we have analyzed the behavior of
the different fields around the vanishing point of the
structure function.
A more detailed analysis of the dynamics would require

fixing some of the remaining free functions. One open
question is how general is the mechanism of singularity
resolution seen in the particular models [26–28], or what
are the minimum requirements on the free functions to
provide such resolution. In those cases, as already com-
mented above, the form of the structure function reduces
the domain of r and, in some cases, r ¼ 0 is not included,
where the curvature scalars diverge, and thus this leads to a
singularity-free spacetime. This is generic for the black-
hole model analyzed in Refs. [26,27], but when adding
charge and cosmological constant, as in Ref. [28], the
resolution of the singularity requires certain restrictions on
the parameters.
As the last result of the paper we point out that, since the

model is completely covariant, in order to add matter one
can simply follow the usual minimal-coupling prescription.
This is a very relevant result in the context of effective
models of loop quantum gravity, since the covariant
coupling of matter to such models has been under dis-
cussion for long time. In particular, we explicitly provide
the contributions to the Hamiltonian and diffeomorphism
constraints of a scalar and a dust matter fields. The model
can then be used to study dynamical scenarios like a
gravitational collapse. However, there are other proposals
to (nonminimally) couple matter [29], that should be valid
at least for certain subfamily of the models presented here.
This coupling will, in general, generate a different dynam-
ics and a detail comparison between both could be of
interest.
Finally, we would like to comment that a similar study

was recently presented in Ref. [31] and, as detailed in
Appendix B, the Hamiltonian (54) is equivalent to the one
obtained in that paper.
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APPENDIX A: BIRKHOFF’S THEOREM

In Sec. V C we have derived the conditions of the
existence of a Killing field in the M2, and shown that
these are obeyed by the family of Hamiltonians (54). Let us
now rewrite these conditions in terms of the Einstein tensor.
For the spherically symmetric spacetimes under consid-
eration, the Einstein tensor has four nontrivial components:
three in the M2 sector,

ð4ÞGAB ¼ −
2

r
∇AvB þ gAB

r2
ðU − 1þ 2r∇CvCÞ; ðA1Þ

and one in the S2 sector,

ð4ÞGθ
θ ¼ ð4ÞGϕ

ϕ ¼ −
R
2
þ 1

r
∇AvA: ðA2Þ

From Eq. (A1) one can write the derivative of the vector vA
as follows,

∇AvB ¼ −
r
2
ð4ÞGAB þ gAB

2r
ð1 −U þ r2ð4ÞGC

CÞ: ðA3Þ

This relation can then be used, on the one hand, to
write the condition for the existence of the Killing vector
field (90) as,

ð4ÞGABvAuB ¼ 0: ðA4Þ

On the other hand, the function hðrÞ that defines the Killing
vector ξA ¼ hðrÞuA can be rewritten as,

hðrÞ ¼ exp

�Z
dr

r
U2

�
ð4ÞGABvAvB −

U
2

ð4ÞGA
A

��
; ðA5Þ

as one can check by substituting (A3) in (88). Now, from
the last two expressions it is explicit that in vacuum general
relativity, GAB ¼ 0, the Killing vector exists and, more
precisely, it is given by ξA ¼ uA.

APPENDIX B: EQUIVALENCE WITH THE
MODEL BY BOJOWALD AND DUQUE

Very shortly before the submission of this paper, the
preprint [31] appeared online with a similar study. This
research, done in parallel to ours (which is mainly based in
Ref. [30]), considers also derivatives of the extrinsic-
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curvature variables that are not implemented in our
ansatz (7). However, a canonical transformation is then
performed in order to absorb those derivatives, and, their
final result, given by Eq. (147) of Ref. [31], is indeed
equivalent to the constraint (54) derived in the present
paper. More precisely, considering the canonical trans-
formation from the variables ðEx; Kx; Eφ; KφÞ in Eq. (54)
to ðẼx; K̃x; Ẽφ; K̃φÞ as given by,

λ̄K̃φ ¼ ωðExÞKφ þ φðExÞ;
Ẽφ

λ̄
¼ Eφ

ωðExÞ ;

Ẽx ¼ Ex;

K̃x ¼ Kx þ
Eφ

ωðExÞ
�
∂ωðExÞ
∂Ex Kφ þ

∂φðExÞ
∂Ex

�
;

with λ̄ being a constant, and the following redefinition of
our six free functions ðg;ω;φ; A; V;WÞ,

λ0
λ̄
¼ gffiffiffiffiffiffi

Ex
p

ω
;

cf ¼ A cosð2φÞ;

λ̄q ¼ −
A
2
sinð2φÞ;

λ̄2cf0 ¼
2A
W

∂W
∂Ex sin

2ðφÞ;

λ̄2α0 ¼
2Ex

ω

�
A sinð2φÞω ∂φ

∂Ex

þ sin2ðφÞω3
∂

∂Ex

�
A
ω2

�
− ω3V

�
;

α2 ¼ 2Ex

�
∂ logW
∂Ex − 2

∂ logω
∂Ex

�
;

the constraint (54) takes the form given by Eq. (147)
of Ref. [31].
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