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A remarkable double-copy relation of Einstein gravity to QCD in Regge asymptotics is
Γμν ¼ 1

2
CμCν − 1

2
NμNν, where Γμν is the gravitational Lipatov vertex in the 2 → 3 graviton scattering

amplitude, Cμ its Yang-Mills counterpart, and Nμ the QED bremsstrahlung vertex. In QCD, the Lipatov
vertex is a fundamental building block of the BFKL equation describing the 2 → N scattering of gluons at
high energies. Likewise, the gravitational Lipatov vertex is a key ingredient in a 2D effective field theory
framework describing trans-Planckian 2 → N graviton scattering. We construct a quantitative correspon-
dence between a semiclassical Yang-Mills framework for radiation in gluon shockwave collisions and its
counterpart in general relativity. In particular, we demonstrate the Lipatov double copy in a dilute-dilute
approximation corresponding to RS;L, RS;H ≪ b, where RS;L, RS;H are the respective emergent Schwarz-
child radii generated in shockwave collisions and b is the impact parameter. We outline extensions of the
correspondence developed here to the dilute-dense computation of gravitational wave radiation in the close
vicinity of one of the black holes, the construction of graviton propagators in the shockwave background,
and a renormalization group approach to compute 2 → N amplitudes that incorporates graviton
Reggeization and coherent graviton multiple scattering.
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I. INTRODUCTION

The discovery of the AdS=CFT correspondence between
N ¼ 4 supersymmetric Yang-Mills theory and string theory
in AdS5 × S5 spacetime triggered great interest in quantita-
tive relations between QCD-like theories and gravity in a
variety of geometries [1]. A significant subsequent develop-
ment1 is the quantitative color-kinematics duality between
perturbative QCD amplitudes and amplitudes in Einstein
gravity discovered by Bern, Carrasco, and Johansson
(BCJ) [3]. The origins of this duality, with possible exten-
sions to loop amplitudes in supersymmetric variants of these

theories [4,5], can be traced to thework of Kawai, Lewellyn,
and Tye (KLT), who found that tree-level n-point closed-
string amplitudes can be written as sums over products of
open-string amplitudes.2 At energies much below the inverse
string scale λs where string theory reduces to quantum field
theory, this double copy relates a tree-level four-point
amplitude in gravity to tree-level four-point amplitudes in
Yang-Mills theory [7]. SimilarKLT-type relations derived for
higher-point string amplitudes can be generalized in the field
theory limit to arbitrary numbers of external particles. For
discussions of the extension of these dualities to higher loop
orders, we refer the reader to [5].
Though not as widely known, a double copy between

gravitational amplitudes and QCD amplitudes in the Regge
asymptotics of both theories was derived previously by
Lipatov in two remarkable papers prior to the KLT
work [8,9]. Specifically, as we shall discuss at length,
Lipatov observed that the effective gravitational vertex
that represents the sum of all 2 → 3 amplitudes can be
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1A brief general introduction can be found in [2].

2Thiswas recently extended to one-loop string amplitudes in [6].
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expressed as a difference of two terms, one representing the
bilinear of its Yang-Mills 2 → 3 counterpart and the other
the bilinear of the QED bremsstrahlung vertex. In QCD,
this effective vertex widely known as the Lipatov vertex is a
key building block of the 2 → N scattering amplitude in
Regge asymptotics s ≫ jtj, where s is the squared center-
of-mass energy and −t is the squared momentum transfer.
The Lipatov vertex together with the“Reggeization” of the
t-channel gluon propagator generates the celebrated BFKL
equation [10,11] for the perturbative Pomeron describing
the energy evolution of high-energy cross sections to
leading-logarithmic (LLx) and next-to-leading-logarithmic
(NLLx) accuracy in Bjorken x, for x → 0 in the Regge
limit [12,13]. For the interpretation of the Lipatov double
copy in terms of the BCJ color-kinematics duality, we refer
the reader to [14–16].
The common features of Lipatov vertices and Reggeized

propagators formed the basis of Lipatov’s 2D Reggeon
effective field theory (EFT) for QCD and gravity [17].
Based on this work, and their previous work in this
direction [18–20], Amati, Ciafaloni, and Veneziano
(ACV) [21,22] significantly developed the 2D EFT to
compute the S-matrix for eikonal scattering and inelastic
graviton emission as a function of the impact parameter in
the kinematic region b > RS > λs, where b is the impact
parameter of the scattering, RS the Schwarzchild radius,
and λs the string length scale. An interesting question in this
regime is whether gravitational collapse due to the over-
occupancy of soft gravitons produced occurs at a critical
impact parameter bc ∼ RS, leading to black hole formation.
For some of the subsequent literature in this direction, see
for instance [23–26] and references within.
In examining and developing the chain of ideas on

2 → N trans-Planckian scattering and black hole formation
in gravity (which can be traced to the seminal S-matrix
investigations of black holes in [27–31]), we are motivated
both by the aforementioned quantitative double-copy con-
nections as well as by highly suggestive qualitative, and
seemingly universal, features of high-energy scattering in
QCD and gravity that emerge when the occupancy N ≫ 1,
which were discussed in [32]. On the gravity side of this
semiclassical correspondence, it was argued that 2 → N
trans-Planckian scattering leads to the formation of black
holes understood as semiclassical lumps of size RS that
saturate unitarity when αN ∼ 1, where α ¼ Q2=M2

Pl for a
probe with momentum resolution Q ∼ 1=RS [33,34]. (Note
that M2

Pl ¼ ℏ=G, where G is Newton’s constant.) Such
black hole semiclassical lumps saturate S-matrix unitarity if
and only if the microstate entropy in the scattering is
S ¼ 1=α [35]. This entropy saturates the Bekenstein-
Hawking area law, where MPl is interpreted as the
Goldstone scale corresponding to the breaking of Poincaré
invariance [36]. The connections between the semiclassical
“Quantum N-Portrait” (BHNP) of black hole dynamics and
theACVapproach havebeendiscussedpreviously in [23,34].

The QCD side of the semiclassical correspondence can
be traced back forty years to the observation that in the
Regge asymptotics of s ≫ jtj ≫ Λ2

QCD, gluon distributions
in hadrons saturate at a maximal occupancy of N ¼ 1=αS in
a region of screened color charge of size 1=QS, where
QS ≫ ΛQCD is the emergent saturation scale [37,38]. The
many-body dynamics of gluon saturation is described in the
color glass condensate (CGC) EFT [39–41], where a large
number of fast (light-cone) color sources (as, for example,
in a nucleus with atomic number A ≫ 1) source high-
occupancy gauge fields, with the latter existing on para-
metrically much shorter timescales than the former; the
explicit construction of the EFT for large nuclei was
performed in [42–45]. The kinematic separation of fast
and slow modes in the EFT naturally leads to a Wilsonian
renormalization group (RG) framework describing the
evolution in rapidity of the separation between color
sources and fields [46–52].
In the infinite-momentum frame, the semiclassical lump

as viewed by a probe is a gluon shockwave, and scattering
cross sections in this regime can be constructed from
n-point Wilson line correlators in the shockwave back-
ground. The nonlinear RG equations describing their
evolution with rapidity capture the physics of eikonalized
multiple scattering contributions, as well as inelastic gluon
emission treated on the same footing.3 For the simplest two-
point correlator describing the inclusive deeply inelastic
scattering (DIS) cross section at a fixed impact parameter,
the corresponding RG equation has a closed nonlinear form
(for A ≫ 1 and Nc ≫ 1) called the Balitsky-Kovchegov
(BK) equation [46,55]. The BK equation has a nontrivial
fixed point that unitarizes the cross section at maximal
occupancy [40,56]; its behavior is described by the energy-
dependent saturation scale QS. In the weak-field limit
where nonlinear corrections are small, the BK equation
reduces to the BFKL equation we discussed previously.
The takeaway message from this discussion is that the

semiclassical CGC EFT quantitatively reproduces results
from the perturbative QCD Feynman diagram results for
2 → N scattering. Further, it enables one (in the high-
occupancy regime of a large number of sources, or
A ≫ 1) to go well beyond by including the physics of both
inelastic radiation and multi-Pomeron interactions, the latter
being essential for unitarization of the cross section.
Computations in the CGC EFT including all-order power
corrections are now at NLLx accuracy and provide a
quantitative description of multiparticle production at col-
lider energies [57].
The question we shall address beginning with this

work and in subsequent work is whether the framework
of semiclassical strong-field EFTs can analogously be

3The RG picture in the CGC EFT can be mapped to the 2D
Reggeon EFT developed by Lipatov [53] that we discussed
earlier; see, for instance, [54].
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applied to gravity in Regge asymptotics. This approach is
complementary to that of ACV and can be regarded as a
quantitative realization of the ideas discussed in the context
of gravity in [33–36] and the connections to the CGC EFT
noted in [32]. We emphasize that while double copies—in
particular, the classical double copy we shall discuss
shortly—provide a powerful guide in this investigation,
the development of the desired semiclasssical EFT is not
necessarily limited to the regime of their applicability. This
is because “classical” in our context refers to the regime of
very high occupancies (N ≫ 1)—or strong fields.
A sketch of the connections outlined is shown in Fig. 1.

The question we have posed can be sharpened to inquire
whether one might take advantage of powerful techniques
developed over decades for QCD at high occupancy (follow-
ing the direction of the arrow at the top of Fig. 1) and classical
double-copy relations (following the path of the arrow at the
top left downwards) as a possible route to make progress in
the study of gravity at high occupancies relevant for black
hole formation at a critical impact parameter, b ∼ RS. This
would be complementary to extending perturbative gravity
techniques (following the path of the bottom arrow) directly
to the high-occupancy regime.4

We begin our detailed study with the observation that the
QCD Lipatov vertex is simply obtained in shockwave
collisions in the CGC EFT in two analytically accessible
limits [62,63]: (a) the “dilute-dilute” limit, where the
saturation scales in two colliding ultrarelativistic nuclei
are smaller than the typical transverse momentum of the
gluons produced, and (b) the “dilute-dense” limit, where
the saturation scale of one of the colliding nuclei is
comparable to the transverse momentum of the emitted
gluons but smaller than the saturation scale of the other
nucleus. To first provide context to the reader unfamiliar with
shockwave collisions in QCD, we should mention that the
study of gluon shockwave collisions in the context of a first-
principles approach to quark-gluon plasma (QGP) formation
in ultrarelativistic heavy-ion collisions goes back twenty-five
years. Analytic formulations were first developed in the
“dilute-dilute” regime [64–67] and subsequently extended to
the “dilute-dense” regime [62,63,68,69]. The full “dense-
dense” shockwave collisions most relevant to QGP formu-
lation are only accessible through numerical simulations of
Yang-Mills equations initiated in [70–72]. A complementary

approach to gluon shockwave collisions at strong coupling in
QCD-like theories is that initiated by taking advantage of the
AdS=CFT correspondence [73–76]. While fundamentally
different from the perspective here, there are nevertheless
interesting common technical features that wewill comment
on in our later discussion. For a summary of subsequent
developments and progress in the study of thermalization of
the QGP in both weak-coupling–strong-field and strong-
coupling frameworks, we refer the reader to [77].
A key idea in the CGC EFT is that partons at large

rapidities with momentum fractions x ∼ 1 in the 2 → N
process are static on the relevant timescales of the scatter-
ing, and they source the production of x ≪ 1 “wee” gluons
at smaller rapidities. In the semiclassical picture, these
large-x partons can be represented by a higher-dimensional
(classical) color representation, since dynamical wee
gluons couple to a large number of static color charges
when N ≫ 1 [42,45]. Hence, inclusive gluon production at
a given rapidity of interest and fixed impact parameter (in
2 → N scattering, where the fastest sources have light-cone
momenta P� → ∞) is described by solutions of ð3þ 1ÞD
Yang-Mills equations in the presence of two static (inde-
pendent of light cone x�) color-charge densities ρA;BðxÞ
that are δ functions in x∓. Further, in this infinite-
momentum-frame picture, the entire dynamics of the
color-charge distributions is in 2D transverse space.5

As we will describe at length, it is the solution of the
Yang-Mills equations—the limits ρA=□⊥; ρB=□⊥ ≪ 1 and
ρA=□⊥≪1 and ρB=□⊥∼1 (with □⊥ ¼ δij∂i∂j), corre-
sponding to the dilute-dilute and dilute-dense frameworks,
respectively—in which one recovers the Lipatov vertex
[62,63]. (Here, □⊥ denotes the typical squared transverse
momenta of wee gluons in the scattering of nucleus A off
nucleus B.) Albeit very simple, this description in terms of
transverse color-charge density distributions goes to the
heart of the RG [47]; the semiclassical picture of 2 → N
scattering described as the scattering of shockwaves is
reproduced with changing rapidity Y → Y 0, with the dom-
inant quantum fluctuations in the window ΔY ¼ Y 0 − Y
absorbed into the evolution of the sources ρA;BY → ρA;BY 0 .
In Einstein-Hilbert gravity, we analogously treat 2 → N

scattering by modeling the large occupancy of (static on
relevant timescales) gravitons above and below the rapidity
of interest as possessing densities ρA, ρB. The semiclassical

FIG. 1. Sketch of double-copy relations between QCD and gravity in the low- and high-occupancy regimes of the theories.

4We note that there are significant developments in EFT
approaches [58–60] to perturbative gravity and in worldline
methods [61].

5This gives a simple explanation for the 2D nature of Lipatov’s
EFT.
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problem is then the scattering of the corresponding gravi-
tational shockwaves and the derivation of the inclusive
spectrum of emitted gravitons. As in the Yang-Mills case,
we will employ the dilute-dilute and dilute-dense classi-
fication, with the relevant expansion parameters being
RL=b and RH=b, where RL and RH are the radii of the
regions of overoccupied gravitons and b is the impact
parameter in the scattering. In this paper, we will restrict
ourselves to the dilute-dilute case RL=b; RH=b ≪ 1 but
shall comment on the dilute-dense (RL=b ≪ 1, RH ∼ 1)
scenario, which we will address in follow-up work. We will
demonstrate explicitly that the Lipatov double copy is
recovered in the dilute-dilute framework.
We note that there is extensive literature on the classical

double copy between Yang-Mills and Einstein-Hilbert grav-
ity, some of which is relevant to our work and has directly
inspired aspects6 of it [78–86]. However, as noted, what is
meant by classical for themost part in theseworks is different
fromwhat ismeant by classical in the deeply inelastic strong-
field regime of copious graviton radiation, where it is the
quantum mechanical coherence of radiation that leads to
emergent classical behavior for N ≫ 1 on timescales of
interest. The outstanding question here is whether black hole
formation occurs at some critical impact parameter. While
this question has been addressed7 for classical gravitation
shockwave collisions in several analytical and numerical
works [88–93]—following pioneering work in [94–99]—
noneof theseworks, to the best of our knowledge, do so in the
context of uncovering a semiclassical fixed point at a critical
impact parameter ofRGevolution. In otherwords,what is the
gravitational equivalent of the BK equation in Regge
asymptotics? The work of Lipatov, of ACV et al., and of
Dvali et al., are very suggestive, as is the large body of work
we noted on the emergent dynamics of gluon saturation in
QCD.Wewill outline the necessary ingredients here but will
leave more detailed investigations to future papers.
Recently, the BCJ double copy has emerged as a

powerful tool to study gravitational radiation emerging
from the classical conservative dynamics of binary black
hole collisions, with amplitude computations providing
results toOðG3Þ [100] and recently evenOðG4Þ in the post-
Minkowski expansion [101].8 An excellent discussion of its

relation to different approaches in the literature can be
found in [106]. It is therefore natural to consider potential
gravitational wave signatures from the deeply inelastic
strong-field regime of our interest, where radiation effects
significantly modify eikonal multiple scattering. A useful
connection of our work to the post-Minkowskian analysis
is through the ACV approach that we discussed earlier
[107]. We will briefly discuss potential future applications
of the Regge EFT we develop here.
The paper is organized as follows: In Sec. II, we briefly

summarize the perturbative computation of the 2 → N
ladder in QCD and gravity in multi-Regge asymptotics.
In Sec. II A, we discuss how one goes from the computation
of perturbative amplitudes in the Regge regime of QCD to a
quantitative semiclassical picture, as illustrated by the
arrow at the top of Fig. 1. In particular, we discuss how
gluon radiation can be computed in shockwave collisions
in a systematic power counting scheme. In Sec. II B, we
outline the extant discussion of perturbative gravity and
the Lipatov vertex in the Regge regime and motivate the
semiclassical approach suggested by the arrow to the
bottom left of Fig. 1.
The gravitational analog of gluon shockwave collisions

is discussed at length in Sec. III. We begin by introducing
the Aichelburg-Sexl shockwave metric for mass distribu-
tions with transverse extent and demonstrate the structure
of the metric in different coordinate frames. We discuss
linearized fluctuations about this shockwave background
and the structure of the gravitational Wilson line in the
light-cone gauge. This structure is a gravitational double
copy of the identical object in QCD. Shockwave collisions
are discussed next, albeit only in a dilute-dilute approxi-
mation corresponding to impact parameters that are small
enough to trigger inelastic graviton production but suffi-
ciently large that multiple scattering/nonlinear (“tidal”)
effects are subdominant. A key element in this derivation
is the solution of the geodesic equations for the energy-
momentum tensor, which admits a contact term that is
essential to recover the Lipatov double copy in the solution
of the shockwave equations of motion. We briefly discuss
the relation of our double-copy derivation of the Lipatov
result to prior classical double-copy work in the literature.
These double-copy connections will be fleshed out further
in forthcoming work.
In Sec. IV, we discuss at some length further directions

under investigation that were prompted by the results in this
paper. The first of these is the spectrum of gravitational
wave radiation and potential observational consequences
thereof. The second is the generalization of our dilute-dilute
results to the dilute-dense regime, where gravitation wave
radiation takes place in close vicinity to one of the black
holes and therefore necessitates multiple scattering/
nonlinear corrections to the spectrum in the ultraviolet.
This goes hand in hand with the derivation of graviton
propagators in the dense shockwave background, whose

6The color-kinematic duality between gluon radiation in the
dilute-dilute regime computed in [64–67] and that of gravitational
radiation was discussed in [78,79]. Since the presence of the
Lipatov vertex in classical Yang-Mills solutions was only first
noted in [62,63] for both dilute-dilute and dilute-dense shock-
wave collisions, the Lipatov double-copy relation was not
identified in these works.

7An engaging recent discussion and additional references can
be found in [87].

8The references [102–105] include the recent studies on post-
Minkowskian expansion in general relativity from a modern
amplitude perspective, where the subtleties related to the ex-
traction of classical physical observables from quantum mechani-
cal calculations are articulated.
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structure also bears exact analogy to the QCD case. A
major future step would be to put all these elements
together to derive a renormalization group framework
toward understanding black hole formation as a possible
fixed point of the evolution at a critical impact parameter.
This program is motivated by the QCD case where one
understands the emergence of gluon saturation as a non-
trivial fixed point of renormalization group evolution in
rapidity. We will also discuss in this section a comple-
mentary understanding of the classical double copy in the
language of asymptotic symmetries and the possible
universal features of the Goldstone dynamics of wee
partons in QCD and gravity on the celestial sphere.
These ideas are motivated by the remarkable exact analogy
of a color memory effect in QCD to that in gravity [108];
the former is concretely realized in the CGC EFT [109].
We end the paper with a brief summary. The paper

includes several appendixes that contain details of the
computations in the main text. In Appendix A, we
introduce readers unfamilar with gluon shockwave com-
putations to some of the details of the computations. Most
importantly, we show how the QCD Lipatov vertex is
derived for dilute-dense shockwave collisions. Appendix B
contains a brief review of general relativity, the conventions
employed, and many of the details of the linearized Einstein
equations presented in the main text. The geodesic sol-
utions for the evolution of the energy-momentum tensor are
discussed in Appendix C. Details of the extraction of the
gravitational Lipatov vertex and Fourier transforms are
given in Appendix D.

II. 2 → N GLUON AND GRAVITON AMPLITUDE
IN MULTI-REGGE KINEMATICS: LIPATOV
VERTEX AND REGGEIZED PROPAGATORS

In this section, we will discuss the building blocks of the
cascade of wee partons that leads to high-occupancy states
in QCD and gravity in Regge asymptotics. In addition to
the aforementioned 2D EFTwork of Lipatov and the ACV
et al. and Dvali et al. approaches, the dynamics of wee
gravitons under boosts is a key feature of Susskind’s wee
parton interpretation [110] of the ’t Hooft holographic
principle [111]. It is therefore useful and important to
discuss modern EFT approaches to wee parton dynamics in
QCD that in particular address the phenomenon of gluon
saturation in the context of further applications of these
ideas to the Regge limit of gravity. In Sec. II A, we will
provide a brief introduction to these ideas in QCD and shall
motivate the semiclassical framework that formulates
2 → N scattering in the language of gluon shockwave
collisions. Readers familiar with these ideas can skip this
subsection altogether. In Sec. II B, we will outline the
parallel formulation of these ideas in gravity (noting both
similarities to and differences from the QCD case) that
will motivate the discussion of gravitational shockwave

collisions in Sec. III. In Sec. IV, we will return to some of
the ideas9 outlined in Sec. II B.

A. Scattering in QCD in multi-Regge kinematics:
From amplitudes to shockwave collisions

The Lipatov vertex in QCD is a fundamental building
block of the BFKL equation describing the high-energy
evolution of QCD cross sections. The other essential
component is the Reggeized gluon propagator. Together,
as illustrated in Fig. 2, they constitute the real and virtual
parts, respectively, of the kernel KBFKL of the BFKL
Hamiltonian describing the 2 → N scattering amplitude
in Regge asymptotics. We will sketch the key elements here
and will refer the reader to reviews [12,13] for more details.
Consider 2 → 2 scattering of hadrons in the Regge limit

where s ¼ ðp1 þ p2Þ2 → ∞, and where t ¼ ðp1 − p3Þ2 is
held fixed, with jtj ≫ Λ2

QCD. This scattering regime is
characterized by strong ordering in the light-cone momenta
of the two final-state particles: pþ

3 ≫pþ
4 with jp3j ≃ jp4j,

which is equivalent to strong ordering in their rapidities10 y.
When there are N additional soft gluon emissions, as shown
in Fig. 2, the corresponding multi-Regge kinematics (MRK)
is specified by strong ordering of these gluons in their
respective rapidities, with the transverse momenta k of all
final-state particles being of comparable magnitude:

yþ0 ≫ yþ1 ≫ yþ2 ≫ � � �≫ yþN ≫ yþNþ1; with ki ≃ k: ð1Þ

We label here the rapidities of p3 and p4 in Fig. 2 as y0 and
yNþ1, respectively. At energies much higher than any mass
scale in the theory, the dominant contributions to inelastic
2 → 2þ N processes come from the kinematic region
specified in Eq. (1).
The aforementioned BFKL equation predicts a rapid

growth of the deeply inelastic scattering (DIS) electron-
hadron scattering cross section at high energies such as those
accessed at the HERA collider and the future Electron-Ion
Collider (EIC) [113]. In DIS, the hard scale is the spacelike
squaredmomentumQ2 of the exchanged virtual photon. The
BFKL equation can be used to compute the inclusive DIS
cross section at small xBj (where xBj ∼Q2=s), whose energy
evolution is characterized by the unintegrated gluon distri-

bution F ðx; kÞ, with jkj ∼
ffiffiffiffiffiffi
Q2

p
, the typical transverse

momenta of emitted gluons. At small values of gluon
momentum fractions x ∼ xBj, F ðx; kÞ satisfies the evolution
equation

∂F
∂ logð1=xÞ ¼ KBFKL ⊗ F ; ð2Þ

9Note that shockwave solutions for 2D EFTs of QCD and
gravity were also discussed previously in [99,112].

10Light-cone momenta can be parametrized by their rapidity y
as p ¼ ðpþ ¼ jpjeþy; p− ¼ jpje−y; pÞ.

UNIVERSAL FEATURES OF 2 → N SCATTERING IN QCD … PHYS. REV. D 109, 044064 (2024)

044064-5



where KBFKL is the BFKL kernel and ⊗ represents a
convolution in transverse momenta. At leading logarithmic
accuracy in x (LLx), ðαs logð1=xÞÞ ∼ 1, with αs being the
strong coupling constant, this RG evolution equation resums
all-order ðαs lnð1=xÞÞn contributions in perturbation theory.
This in turn gives rise to a rapid monotonic rise of the
inclusive DIS cross section as σ ∼ sω, where the exponent
ω ¼ 4Ncαsðlog 2Þ=π, and Nc is the number of colors.11

The precise details of the kernelKBFKL can be found, for
instance, in [41]; they are not relevant at this stage of our
discussion to the corresponding dynamics in gravity.
However, its building blocks are important to understand,
and we will briefly sketch the structure of the virtual and
real contributions to the kernel.
The virtual part of the BFKL kernel KBFKL comes from

multiple t-channel gluon exchange diagrams which expo-
nentiate in the regime given by Eq. (1) [114]. The reason for
exponentiation is that in the MRK regime, every additional
virtual gluon exchange, as shown in Fig. 3, is accompanied
by a leading logarithmic factor of αs logðs=jtjÞαðtÞ. Here,
αðtÞ is the one-loop gluon Regge trajectory defined to be

αðtÞ ¼ αsNct
Z

dk
ð2πÞ2

1

k2ðq − kÞ2 ; t ¼ −q2: ð3Þ

(Note that cross diagrams such as those shown in Fig. 2 are
suppressed in this kinematics.) Since s=jtj → ∞ in Regge
kinematics, ðαs logðs=jtjÞÞn ∼Oð1Þ to all n orders, which
allows for the exponentiation of all such contributions. This

gives rise to the Reggeized gluon propagator, where one
simply replaces the ith gluon propagator in Fig. 2 by

1

ti
→

1

ti
eαðtiÞðyi−1−yiÞ: ð4Þ

The difference yi−1 − yi in the rapidities of the (i − 1)th and
ith final state particles is proportional to the Mandelstam
variable log si−1;i. Consequently, the replacement in Eq. (3)
is proportional to sαðtÞ. This can be viewed as describing the
exchange of a “quasiparticle” of spin j ¼ 1þ αðtÞ—the
Reggeized gluon—depicted in Fig. 3 as a thick gluon line.
Reggeization in QCD has been shown to hold to next-to-
leading-log accuracy but breaks down beyond. For the state
of the art, we refer the reader to [13].
The real part of KBFKL comes from the square of

Lipatov’s central emission effective vertex Cμ, which is
depicted as a red dot in Fig. 2. This vertex describes the
production amplitude of a soft gluon in the scattering of
partons in Regge kinematics. Fundamentally, one can use
the Jacobi identity in MRK kinematics to represent the sum
of the four Feynman diagrams that correspond to brems-
strahlung emission from initial- and final-state hadrons plus
the diagram with an emission from the internal virtual
process as a diagram with one effective emission vertex—
as shown in Fig. 4:
Adding up the five diagrams in the MRK regime, one

finds the following expression for the effective vertex Cμ:

Cμðq1; q2Þ ≃ −q1μ þ q2μ þ p1μ

�
p2 · k
p1 · p2

−
q21

p1 · k

�

− p2μ

�
p1 · k
p1 · p2

−
q22

p2 · k

�
; ð5Þ

where the ≃ sign indicates that only the transverse
components of the momenta q1, q2 of exchanged gluons
are relevant in MRK kinematics. The vertexCμ is a function
of the transverse momenta q1, q2 alone; despite the form
of the equation above, it has no dependence upon the
incoming external momenta p1, p2. (This will become
apparent in the light-cone gauge, as we will describe
shortly.) Indeed, the Lipatov vertex is universal in the
sense that it is insensitive to the nature of the external
particles (such as, for instance, its spin). Also, it is gauge

FIG. 2. Multigluon production amplitude in multi-Regge kin-
ematics depicting the two key components in BFKL evolution:
(a) The red blobs represent the nonlocal Lipatov’s effective
vertex, and (b) the thick vertical gluon lines represent the
Reggeized gluon propagator incorporating (leading-logarithmic
in x) all-order virtual corrections.

FIG. 3. The Reggeized gluon, illustrated as a thicker
version of the lighter bare gluon, resums all of the leading
logðs=jtjÞ logðjtj=λÞ corrections to the single-gluon exchange
amplitude, where λ is an infrared cutoff that cancels in cross
sections.

11This growth in the cross section is far more rapid than that
observed at HERA. It is tamed both by including next-to-leading-
logarithmic contributions and by gluon saturation effects [57], as
we will discuss further.
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covariant; one can check that the Ward identity kμCμ ¼ 0

holds, where k ¼ q1 þ q2. This result for the effective
emission vertex was first obtained in QCD by Lipatov,
hence the name [114]. As we noted, and shall discuss
shortly, its analog in gravity for 2 → 3 was also computed
by Lipatov.12

The outstanding achievement of Lipatov and colleagues
was to show that 2 → N scattering (or equivalently, the
imaginary part of the 2 → 2 amplitude) in MRK kinematics
could in leading logarithmic kinematics be described as an
iteration of one rung of the ladder containing Reggeized
gluons and the Lipatov vertex, as illustrated in Fig. 2. The
color singlet projection of the exchange of two Reggeized
gluons is the perturbative Pomeron, the weak coupling
counterpart of the soft Pomeron often invoked to describe
the systematics of total cross sections [117].
However, BFKL dynamics is not the complete story.

First, the solutions of the BFKL equation show that the
unintegrated gluon distribution F ðx; kÞ diffuses to infrared
and ultraviolet momenta with increasing rapidity. The
former is clearly troublesome, since it is the nonperturba-
tive regime k ∼ ΛQCD, where weak coupling computations
are invalid. Further, the rapid growth of the inclusive cross
section for a fixed impact parameter violates unitarity at
large rapidites. Not least, the increasing phase space
occupancy due to the rapid proliferation of gluons at small
x suggests that many-body (higher twist) correlations are
important. All of these issues persist at next-to-leading
logarithmic accuracy.

Perturbative and nonperturbative arguments suggest that
the phase space occupancy of gluons in QCD canmaximally
be Oð1=αsÞ, leading to a much weaker growth of gluon
distributions. This phenomenon, known as gluon saturation
[37,38], is characterized by an emergent close packing scale
QSðxÞ ≫ ΛQCD atmaximal occupancy that is responsible for
the unitarization of the inclusive cross section at fixed impact
pararameter. In otherwords, for aweakly interacting probe of
given fixed Q2 with αðQ2Þ ≪ 1, there is a corresponding
value of x for which the probe scatters off the hadron target
with unit probability at occupancy N ∼ 1=αs ≫ 1.
We noted earlier that small-x physics at high occupancy

is described by the color glass condensate (CGC) EFT
[39–41]. The underlying physics in the DIS context is
captured by the illustration of the DIS process in Fig. 5. In
the rest frame of the dipole target, the fast-moving nucleus
with momentum Pþ → ∞ emits a large number of gluons,
which in the Regge limit are ordered in rapidity, with the
fastest gluons (represented by the longest gluon lines)
comoving with the valence degrees of freedom on the light
cone, and the slowest (small-x) gluons scattering off the
target, with x ∼ xBj.
A dipole of size r2 ∼ 1=Q, at an impact parameter

b ≪ 1=ΛQCD, will exchange colored gluons with a lump
(represented by the dotted rectangle) of maximal size 1=QS
consisting of static color sources on the relevant timescale
of the scattering. Since the lump has a high occupancy,
N ∼ 1=αs, it is quasiclassical, with energy levels

13 separated

FIG. 4. Soft gluon emission diagrams contributing to the Lipatov effective vertex Cμðq1; q2Þ denoted by the red dot. (Contributions
from u-channel crossed diagrams are suppressed as jtj=s.)

12It was further generalized in the context of open-string
scattering in [115,116], which in the limit α0 → 0 agrees with
Eq. (5).

13Since the energy separations of the high-occupancy screened
gluons are ∼QS=N, the characteristic decay time of the shock is
∼ 1

αsQs
, which is considerably longer than the typical resolution

scale 1=Q of the probe but much shorter than the eikonal
timescale, ∼Pþ=Q2 [32].
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by 1=N; further, since the lump contains a large number
of color charges, its color charge is given by a higher-
dimensional classical representation of the SUðNc ¼ 3Þ
algebra [42,43,45].
Since the dipole perceives the lump as being Lorentz

contracted in its rest frame, the lumpy “shockwave”
distribution can be represented by a transverse color-
charge density distribution ρNðxÞ. The dipole scattering
at leading order in this EFT picture is then captured by the
formula

hdσLOi ¼
Z

½DρN�WY0
½ρN�dσ̃LO½ρN�: ð6Þ

In this expression, dσ̃LO denotes the tree-level scattering
amplitude of the quark-antiquark dipole off the classical
“Coulomb” background field generated by the source
distribution ρNðxÞ, and WY0

½ρN� is the gauge-invariant
stochastic distribution of these color sources at the rapidity
scale Y0 separating the sources from the fields that interact
with the probe. At next-to-leading order, including the
leading OðαsÞΔY, real, and virtual corrections to the
shockwave with the change of rapidity ΔY ¼ Y1 − Y0,
one obtains the same structure as Eq. (6) for the evolved
lump distribution ρN½Y0� → ρN½Y1�, with WY1

½ρN� satisfy-
ing the Wilsonian renormalization group equation

∂WY1
½ρN�

∂ΔY
¼ HJIMWLK WY1

½ρN�: ð7Þ

An essential ingredient in this computation is the compu-
tation of quark and gluon shockwave propagators

[44,46,118–121] that can be mapped to gluon–gluon–
Reggeized-gluon (and quark–quark–Reggeized-gluon)
propagators [122,123] in Lipatov’s Reggeon field theory
that we alluded to previously. These have their counterpart
in the effective vertex for the graviton–Reggeized-
graviton–Reggeized-graviton three-point vertex that we
will return to later in the paper.
The JIMWLKHamiltonian [47–52] has an extremely rich

structure corresponding to an n-body hierarchy of lightlike
Wilson line correlators [46] that describe arbitrary final states
in the CGC EFT to LLx accuracy.14 In particular, the
inclusive dipole correlator dσLO ∝ 2Nc½1 − S�, where the
dipole S-matrix S ¼ 1

Nc
hVðx⊥ÞV†ðy⊥ÞiρN . Here, Vðx⊥Þ ¼

P expði ρN
□

2⊥
Þ, and x⊥; y⊥ are the dipole coordinates with r2 ¼

x⊥ − y⊥ and b ¼ ðx⊥ þ y⊥Þ=2 (for configurationswhere the
quark and antiquark equally share the virtual photon’s light-
cone momentum). In the large-Nc limit, and for a large
nucleus with atomic number A ≫ 1, the JIMWLK equation
for the dipole S-matrix results in the nonlinear BK equation,

∂S
∂ΔY

¼ αsNc

2π2
KBFKL ⊗ ½SS − S�: ð8Þ

We have suppressed here the nontrivial coordinate depend-
ence of the quantities on the rhs of this equation. In the
perturbative limit of S ¼ 1 − F̃ with F̃ ≪ 1 the Bessel-
Fourier transform of the unintegrated gluon distribution, this
equation can be linearized and is precisely the coordinate-
space counterpart of the BFKL equation in Eq. (2). However,
as is transparent, this equation has in addition a nontrivial
fixed point at S → 0, corresponding to the classicalization
and unitarization of the cross section.
The relevant message from the above discussion is that

the semiclassical framework of static sources and dynami-
cal fields in the CGC EFT reproduces the 2 → N scattering
amplitude described by the BFKL equation in multi-Regge
kinematics and its nonlinear generalizations. In Regge
language, the BK equation resums so-called “fan” diagrams
containing multi-Pomeron interactions. A significant ad-
vantage of this approach is that it provides a powerful way
to describe multiparticle final states in hadron/nucleus
scattering in Regge asymptotics. We will turn now to a
discussion of these collisions and demonstrate how the
Lipatov vertex emerges in this framework.
In the semiclassical framework of the CGC EFT, multi-

particle production in Regge asymptotics is described to
the lowest order by the collision of gluon shockwaves. A
natural formalism in this strong-field context is the “in-in”
Schwinger-Keldysh formalism as opposed to the “in-out”
formalism of the S-matrix. One considers instead single-
inclusive and multiparticle correlations of the produced

FIG. 5. The scattering of a quark-antiquark dipole in DIS off a
boosted heavy nucleus. The lengths of the emitted gluon lines
indicate their distances in rapidity from “valence” partons whose
rapidities are close to the light cone of the heavy nucleus. At high
energies, partons inside the dashed box can be represented by a
coherent color-charge density ρnucleus that is static on the time-
scales of the interaction.

14This RG framework extends to NLLx accuracy; the dis-
cussion of these developments is, however, outside the scope of
this manuscript.
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gluons rather than the 2 → N scattering probability.15 For
simplicity, we will consider only the single-inclusive gluon
(and graviton) “bremsstrahlung” spectrum.
For strong sources comprising the large-x modes of the

scattering nuclei (which are of order ρnucleus ∼ 1=g), the
leading term in the power counting is the produced
classical field Aμ

cl, which too is of order Oð1=gÞ; the
single-inclusive distribution is therefore of Oð1=αsÞ. At
next-to-leading order, there are two sorts of contributions:
these are (a) the one-loop correction to the classical field
aμquant, which is Oð1Þ, and (b) the small fluctuation
propagator haμquantaνquanti. It is the logarithmic enhance-
ments αs lnð1=xÞ ∼Oð1Þ to these contributions that con-
tribute to the JIMWLK Hamiltonian, and they are thereby
absorbed in the evolution of the single-inclusive gluon
distribution. Thus, at each step in the rapidity evolution of
the individual nuclei, the problem of n-particle inclusive
gluon production at a given rapidity is simply the solution
of the QCD Yang-Mills equations in the presence of the
static source distributions of each of the nuclei evolved up
to that scale.16

The Yang-Mills (YM) equations for the general problem
of shockwave collisions are given by

DμFμν ¼ JνHI; ð9Þ

where Fμν ¼ ∂μAν − ∂νAμ þ ig½Aμ; Aν� is the field strength
tensor and JμHI is the covariantly conserved current:
DμJ

μ
HI ¼ 0. For the case of shockwave scattering of nuclei

(as in heavy-ion collisions at ultrarelativistic energies), the
shockwave currents can be represented as

Jν;aHI ¼ δνþρaAðx⊥Þδðx−Þ þ δν−ρaBðx⊥ÞδðxþÞ: ð10Þ

Here, ρaAðx⊥Þ and ρaBðx⊥Þ are the quasiclassical color-charge
distributions of each of the nuclei, corresponding to a higher-
dimensional representation of the color charges depicted
in Fig. 5. (We emphasize that their RG evolution includes
both real emissions and virtual loops to all orders to LLx
accuracy.) These are distributed in the transverse plane of the

scattering; for A ≫ 1, the weight functional17 W½ρA;B�
is Gaussian-distributed such that hρaA;Bðx⊥ÞρbA;Bðy⊥Þi ¼
Q2

Sδ
abδð2Þðx⊥ − y⊥Þ, with Q2

S ∝ A1=3Λ2
QCD. Note that the

A ≫ 1 limit of QCD provides an explicit construction
[42,43,45] demonstrating the emergent saturation scale18

we discussed in the Introduction. The δðx∓Þ terms represent
eikonal currents for which classical subeikonal corrections
are Oð1=P�Þ, respectively. Finally, we observe that the
currents are independent of the light cone times x�, respec-
tively; this reflects that they are static color sources on the
timescales of gluon production at the rapidity of interest.
The nucleus-nucleus scattering problem thus formulated

[64,65] in full generality for ρA ∼ 1=g can only be solved
numerically [70,71,77]. However, one can identify the
expansion parameters ρA=□⊥; ρB=□⊥ (□⊥ ≡ ∂

2⊥) in the
YM equations that one can expand in to obtain analytic
solutions. These are the dilute-dilute YM asympotics
of ρA=□⊥; ρB=□⊥ ≪ 1 (corresponding to the regime of
large transverse momenta k⊥ ≫ QS) [64–67] and dilute-
dense asymptotics: ρA=□⊥≪1;ρB=□⊥∼1 [62,63,69], or
QS;A ≪ k⊥ ≪ QS;B. The dense-dense regime of ρA=□⊥;
ρB=□⊥ ∼ 1, as noted previously, is not analytically trac-
table and corresponds to fully nonlinear solutions of the
YM equations.

FIG. 6. The dilute-dilute regime of shockwave scattering in
QCD. The inclusive gluon distribution (depicted by the emission
of a gluon line at rapidity y) is insensitive to the eikonal
exchanges (depicted with blue dashed lines) within the color
ρA and ρB that interact via the emission of Reggeized gluons that
interact via the effective Lipatov vertex.

15For a detailed discussion of the relation between the “in-in”
and “in-out” formalism in the context of multiparticle production
in quantum field theory, we refer the reader to [124,125]. Many
features of the Reggeon field theory language of Pomerons and
Reggeons can be understood in terms of the combinatorics of cut
and uncut subgraphs (Cutkosky rules) of multiparticle final states
in the presence of strong fields [126]. In strong fields, multi-
particle probabilities and multiparticle-inclusive distributions are
qualitatively different objects. See also [127] for a recent related
discussion.

16This presumes that the wee partons of each of the nuclei do
not talk to each other before the collision—the weight functionals
W½ρnucleus� containing the nonperturbative information on their
n-body distributions factorize in the collision. This factorization
holds when ρnucleus ∼ 1=g to LLx accuracy [128,129].

17Unless required, we will henceforth drop the rapidity label Y;
it should be understood that the classical equations are describing
scattering that generates a gluon distribution at a given rapidity.

18For simplicity, we have assumed here that the nuclei are
identical. For nuclei with different atomic numbers, there will be
two saturation scales, reflecting the fact that one has different
initial distributions of color charge in each.
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The dilute-dilute scattering case is illustrated in Fig. 6,
and the dilute-dense case in Fig. 7. In the former case, since
ρA=□⊥; ρB=□⊥ ≪ 1, coherent multiple scattering is sup-
pressed in both of the colliding nuclei. One can consider
this the “BFKL regime” of high-energy scattering, since in
this limit the energy evolution of both “lumps” is described
by the BFKL equation. In contrast, in the dilute-dense case
(to keep track of light and heavy sources, we shall switch
notations here, with ρL;H respectively denoting the corre-
sponding distributions) when ρH=□⊥ ∼ 1, the multiple
scattering insertions onto the emitted gluon can be
absorbed into a Wilson line, as we shall now discuss.19

In the context of dilute-dilute and dilute-dense scattering,
the classical YM problem can be cast as follows: A gluon
shockwave with transverse source distribution ρHðxÞ mov-
ing in the positive-z direction is generated by the current

Jμ ¼ gδμ−δðx−ÞρHðxÞ; ð11Þ

where Ta is a generator of the color algebra and δðx−Þ is the
Dirac delta function. It is straightforward to verify that the
exact solution toYMequationswith this current20 is given by

Āμðx−; xÞ ¼ −gδμ−δðx−Þ
ρHðxÞ
□⊥

: ð12Þ

This is the singular shockwave solutionwhere there is a delta
function singularity in x−. It shows that in the regions x− > 0
or x− < 0, the field strength Fμν vanishes. However, as
shown below, the gauge fields do not identically vanish. In
the region x− < 0, the gauge field is trivial; but for x− > 0,
it is a pure gauge. This is best seen by performing a
gauge transformation to light-cone gauge: Aμ → UAμU† þ
i
g U∂μU† on the solution in Eq. (12), with the transformation
matrix U given by

Uðx−; xÞ ¼ exp
�
ig2Θðx−Þ ρHðxÞ

□⊥

�
; ð13Þ

where Θðx−Þ is the step function. In the new gauge, only
transverse components of the gauge field are nonvanishing
and are given by

Ai ¼
i
g
Θðx−ÞŨ∂iŨ†; where Ũ¼ exp

�
ig2

ρHðxÞ
□⊥

�
: ð14Þ

The form of the gluon shockwave clearly demonstrates
that in the region x− > 0, the gauge field is a pure gauge.
This shockwave solution is the non-Abelian equivalent of
the Weizsäcker-Williams distribution in classical electro-
dynamics [42,43].
To set up the shockwave collision problem, one turns on

the current of the incoming shockwave with the transverse
color-charge distribution ρLðxÞ moving in the negative-z
direction:

Jμ ¼ gδμþδðxþÞρLðxÞ: ð15Þ

This is schematically shown in the spacetime dia-
grams Fig. 8.
Past the collision time t ¼ 0, in the dilute-dilute approxi-

mation, one simply linearizes the YM equations to linear
order in the sources ρH and ρL and solves21 for the radia-
tion field aμ. In light-cone gauge aþ ¼ 0, the result
(derived in detail in Appendix A) for the physical compo-
nents of the gauge field takes the form

□ai;c ¼ −g3
�
ΘðxþÞΘðx−Þ∂i

�
ρH
□⊥

ρL

�

− 2δðxþÞδðx−Þ ρH
□⊥

∂iρL
□⊥

�
TaTbfabc: ð16Þ

Taking the Fourier transform of this equation and using the
momenta of the emitted gluons on shell, k2 ¼ 2kþk−−
k2 ¼ 0, one obtains

FIG. 7. Dilute-dense scattering where ρL=□⊥ ≪ 1 and
ρH=□⊥ ∼ 1. For the latter, coherent multiple scatterings from
the nucleus onto the emitted gluon are unsuppressed, and they
can be summed up into a lightlike Wilson line.

19It is not feasible to factorize coherent multiple scatterings
from both nuclei into separate Wilson lines. The reader should
also note that in this classification, one always has ρA;B ∼ 1=g.
The situation when ρA;B ≪ 1=g is quite subtle [130,131] and
beyond the scope of this discussion.

20Covariant current conservation follows from the equation of
motion and the Jacobi identity of the Lie algebra generators. The
covariant derivative action on an adjoint field F is given by
DμF ¼ ∂μF − ig½Aμ; F�.

21In the QCD case, in marked contrast to gravity, the impact
parameter (in transverse space) between the two shockwaves has
to be much smaller than the size of the hadron to ensure that the
gauge coupling is small enough to apply perturbative methods to
compute the radiation field aμ from classical YM equations.
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ai;cðkÞ¼−
2ig3

k2þiϵk−

Z
d2q2
ð2πÞ2

�
q2i−ki

q22
k2

�
ρH
q21

ρL
q22

TaTbfabc:

ð17Þ

In this result for the radiation field, 1=k2 corresponds to the
emitted gluon propagator, 1=q21 and 1=q

2
2 are the exchanged

Reggeized gluon propagators, and theLipatov vertex appears
as the term in the parenthesis, as illustrated in Fig. 6.
To see the latter, wewill recast the covariant expression for

the Lipatov vertex in Eq. (5) into light-cone gauge. Towards
this end, we partially gauge fix the gluon polarization vector
εþ ¼ 0. This implies ε−k− ¼ εiki, εμp

μ
1 ¼ 0, εμp

μ
2 ¼ ε−p−

2 ,
since p1 ¼ ðpþ

1 ; 0; 0; 0Þ and p2 ¼ ð0; p−
2 ; 0; 0Þ. With these

relations, it is straightforward to deduce the form of Cμ in
light-cone gauge [132]:

ε�μðkÞCμðq1;q2Þ¼−2ε�i

�
q2i−ki

q22
k2

�
≡ε�i Ciðq1;q2Þ: ð18Þ

The light-cone gauge expression makes transparent the fact
that the dependence of this vertex is only on q1 and q2, and
not the external momenta p1, p2.
In [62], Blaizot, Gelis, and one of us, and later Gelis

and Mehtar-Tani in [63], noted that the Lipatov vertex is
embedded in the classical YM solutions in both the dilute-
dilute and dilute-dense scattering regimes. The result of the
dilute-dense computation gives

aiðkÞ ¼ −
2ig

k2 þ iϵk−

Z
d2q2
ð2πÞ2

�
q2i − ki

q22
k2

�

×
ρLðq2Þ
q22

ðUðkþ q2Þ − ð2πÞ2δ2ðkþ q2ÞÞ; ð19Þ

where UðkÞ is the Fourier transform of the lightlike Wilson
line operator,

Uðx−; xÞδðxþÞ ¼ exp

�
ig
Z

x−

−∞
dz−Ā−ðz−; xÞ · T

�
; ð20Þ

where Ā−ðz−; xÞwas given in Eq. (12). As observed earlier,
the Wilson line encodes the coherent multiple scattering
of the emitted gluon off the dense source ρH in Fig. 7.
Expanding the above result to lowest order in ρH allows one
to recover the dilute-dilute result in Eq. (17).
To summarize, the Lipatov vertex first computed in the

context of the 2 → 3 scattering amplitude can be obtained
from solutions of the classical YM equations in the
presence of nontrivial sources that evolve with rapidity
via the BFKL/BK/JIMWLK equations, depending on the
kinematics of interest. As emphasized, an important ingre-
dient in this derivation are the shockwave propagators in
the strong background fields ρA;B ∼ 1=g. Reggeized gluons
can be understood as the gauge fields coupling to these
sources [133,134];wewill return to this discussion inSec. IV.

B. Scattering in gravity in multi-Regge kinematics:
From amplitudes to shockwave collisions

In Sec. II A, we discussed the building blocks of 2 → N
scattering in QCD in Regge asymptotics. These are the
Lipatov vertex, which appears in the 2 → 3 amplitude, and
the Reggeized gluon propagator that arises from iterating
the IR-divergent pieces of the virtual contributions to the
2 → 2 amplitude. In [8,9], Lipatov demonstrated that the
corresponding 2 → N amplitude in gravity can be con-
structed analogously, with the building blocks being the
gravitational Lipatov vertex and the Reggeized graviton
propagator. As we shall discuss, the former has a contri-
bution corresponding to the double copy of the QCD
Lipatov vertex, and the latter is similar to the QCD
Reggeized gluon propagator with the intercept of the
Regge trajectory at 2 instead of its value of unity in the
QCD case.
Since in Sec. II A we showed that the BFKL ladder and

generalizations thereof could be reproduced in a powerful
semiclassical RG framework, it is natural to ask whether the
same semiclassical approach can be applied to describe
2 → N scattering in gravity forN ≫ 1. From the qualitative
arguments presented in [32], and from the derivation we
will present in Sec. III and the subsequent discussion in
Sec. IV, we conjecture this to be the case. Establishing it
fully will, however, take considerable work beyond the
scope of this paper.

FIG. 8. Spacetime diagram of the collision of two gluon
shockwaves. The red and blue lines represent the lightlike
trajectories of the two incoming shockwaves. The future light
cone of the collision point t ¼ z ¼ 0 is where radiation occurs. In
the other regions, where the field strength vanishes, the gauge
field is a pure gauge in regions II and III, and it is trivial in
region I.
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The conjectured map of the semiclassical CGC EFT
to a semiclassical Regge EFT of gravity is by no means
obvious, since we are dealing with two very different
theories. QCD becomes a strongly interacting confining
theory in the infrared (or at large impact parameters in the
context of the discussion here), while gravity becomes a
strongly interacting theory in the UV, whose structure is
that of a yet undetermined theory of quantum gravity. More
specifically, the Regge limit of 2 → 2 scattering in gravity,
unlike QCD, involves several dimensionful scales. Setting
ℏ ¼ 1, the Planck mass (Mp) or Planck length (lp) is
related to the parameter (κ) or Newton’s constant (G),

κ2

8π
¼ G ¼ 1

M2
p
¼ l2

p; ð21Þ

and the trans-Planckian scattering regime is specified by
taking the center-of-mass energy

ffiffiffi
s

p
≫ Mp, where we have

the hierarchy of scales lp ≪ RS ≪ b. Here, b is the impact
parameter which is conjugate to the momentum transfer Q.
The latter combines with Mp to give the dimensionless
gravitational coupling

αðQÞ ¼ Q2

M2
p
: ð22Þ

This is clearly very different from the behavior of αs
in QCD.
The scale RS is the characteristic Schwarzschild radius

set by the center-of-mass energy
ffiffiffi
s

p
:

RS ≡G
ffiffiffi
s

p ¼
ffiffiffi
s

p
M2

p
: ð23Þ

For incoming particles with impact parameter within RS,
classical arguments suggest that a black hole will be formed
[135]. To avoid encountering complications of near-horizon

effects, we will restrict ourselves to the regime where the
impact parameter b is much larger than the Schwarzschild
radius b ≫ RS. A specific goal will be to understand if RS
(which in a black hole quantumportrait framework [33] is the
inverse of the saturation scaleQS) can similarly be extracted
from the RG evolution of the 2 → N amplitude to smaller
impact parameters.
It is well known that at large impact parameters b ≫ RS,

the 2 → 2 gravitational amplitude eikonalizes in the Regge
limit [18,136,137]. The diagrams that contribute to eikon-
alization come from resumming the horizontal ladder and
cross ladder series shown in Fig. 9(a). In these diagrams,
the eikonal approximation requires that the momenta of the
exchanged gravitons be neglected with respect to those of
the high-energy lines—namely, ðp1 − kÞ2 ≈ −2p1 · k. This
replacement is illustrated by the crosses in Fig. 9(a). The
resummation of this series generates the eikonal amplitude:

iMEik ¼ 2s
Z

d2b e−iq·bðeiχðb;sÞ − 1Þ; ð24Þ

where the IR-divergent eikonal phase χðb; sÞ is given by

χðb; sÞ ¼ κ2s
2

Z
d2k
ð2πÞ2

1

k2
eib·k: ð25Þ

The full one-loop four-point amplitude contains the
two sets of contributions shown below22:

Mð1Þ ∼
κ2

8π2

�
−iπs log

�
−t
Λ2

�
þ t log

�
s
−t

�
log

�
−t
Λ2

��
;

ð26Þ

FIG. 9. Multiple t-channel graviton exchange diagrams including both eikonal and off-shell propagators.

22This expression only includes the leading terms in the Regge
limit that have an IR divergence. For the complete expression, see
for instance Eqs. (14) and (18) in [138], and references therein.
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where Λ is an IR cutoff. The first term in the parenthesis
is from the aforementioned eikonal amplitude, and the
other is the contribution from off-shell propagators. Since
both terms have exactly the same IR divergence in
the Regge limit, the first term dominates over the second
term; the latter is subleading as −t=s ∼ R2

S=b
2 and there-

fore not relevant for the large-impact-parameter regime
b ≫ RS [139]. This is qualitatively different from the
perturbative QCD case, where the double logs dominate
over the eikonal phase contribution. For a nice discussion
of this difference from the double-copy perspective,
see [140].
When one takes all-loop iterations23 of the 2 → 2

amplitude, the first term corresponds to multiple scattering
contributions which can be resummed into an exponential
form (in impact parameter space) and results in the eikonal
amplitude in Eq. (24). The behavior of the iteration of the
second term in the parenthesis in Eq. (26) is familiar from
the QCD discussion. These are the doubly logarithmic
divergent Sudakov logs whose resummation (from multiple
graviton exchange) leads to Reggeization. Our discussion
of the one-loop result would suggest that Reggeization is
kinematically suppressed in gravity as R2

S=b
2 and therefore

not important at large impact parameters.
However, as is evident from the expression, these

double logs are important at smaller impact parameters.
Furthermore, they are essential to the problem of interest
here—the construction of the 2 → N inelastic amplitude.
This is because the IR divergences from the loop terms
cancel those from the real emission amplitude in the
scattering cross section for this process. This cancellation
is identical to the QCD case and therefore important for the
same reason as for particle production in perturbative QCD
(and in QED). Thus, Reggeization should go through in the
same manner as in QCD, and along with the gravitational
Lipatov vertex, provide the building blocks for the con-
struction of the 2 → N amplitude to all orders to leading
logarithmic accuracy.

In [8,9], Lipatov computed the gravitonRegge trajectory24

αðtÞ ¼ −κ2t
Z

d2k
ð2πÞ2

1

k2ðq − kÞ2

×

�
ðk · ðq − kÞÞ2

�
1

k2
þ 1

ðq − kÞ2
�
− q2

�
;

q2 ¼ −t ð27Þ

that gives rise to Reggeized graviton propagators. As in
QCD, the graviton Regge trajectory contributes to the virtual
part of the gravitational BKFL kernel as shown in [8,145].
The real part of the gravitational BFKL kernel gets a

contribution from the square of the gravitational Lipatov
vertex.25 In covariant form, it can be expressed as a double
copy of the gauge theory Lipatov vertex Cμ as

Γμνðq1; q2Þ≡ 1

2
Cμðq1; q2ÞCνðq1; q2Þ

−
1

2
Nμðq1; q2ÞNνðq1; q2Þ; ð28Þ

where one has an additional double copy of the quantityNμ.
This is the soft photon vertex [147]

Nμðq1; q2Þ ¼
ffiffiffiffiffiffiffiffiffi
q21q

2
2

q �
p1μ

p1 · k
−

p2μ

p2 · k

�
; ð29Þ

dressed by an overall factor
ffiffiffiffiffiffiffiffiffi
q21q

2
2

p
. These vertices are gauge

invariant (Nμkμ ¼ Γμνkν ¼ 0) and traceless (ημνΓμν ¼ 0).
An important point worth mentioning about the gravi-

tational Lipatov vertex is that the presence of the NμNν

term is required by unitarity. The term with the CμCν

structure alone has a simultaneous pole in the overlapping
s1 ¼ ðkþ p1Þ2 and s2 ¼ ðkþ p1Þ2 channels. The pres-
ence of such a term in an amplitude is forbidden by the
so-called Steinmann relations [148,149], which ensure
that there are no poles and discontinuities in overlapping

FIG. 10. The leading corrections to the eikonal scattering
series, captured by H-diagrams. The red dots indicate gravita-
tional Lipatov vertices.

23Einstein gravity is nonrenormalizable in the sense of a
conventional quantum field theory. When we discuss all-loop
contributions, we refer here to contributions that dominate at
leading log in the Regge limit that are iterations of the one-loop
four-point graviton amplitude. Pure gravity in four dimensions is
known to be renormalizable to this order [141]; for a nice
discussion of UV divergences at two loops, and relevant
references, see [142]. Whether Reggeization holds beyond
one-loop order in gravity is not known. From the modern EFT
perspective, renormalizability may not be relevant to this issue,
since our focus is on the IR regime of the theory [59]; indeed, it
has been argued that black holes UV-complete gravity [143].
Though we will not address this issue here, we note that an
interesting program to address aspects of this issue would be to
consider renormalization in the strong-shockwave background.
In QCD, this does not add anything to the discussion, but the
situation may be qualitatively different in gravity for the afore-
mentioned reason of UV completion.

24See [144] for earlier work on graviton Reggeization in pure
Einstein gravity.

25This effective vertex capturing the emission of soft gravitons
in MRK kinematics was also discovered in the context of closed-
string scattering [115,116] and later on in [14,15,146], where
double-copy relations to the gauge theory Lipatov vertex were
made.

UNIVERSAL FEATURES OF 2 → N SCATTERING IN QCD … PHYS. REV. D 109, 044064 (2024)

044064-13



energy channels. A discussion of these relations in the
context of the gravitational Lipatov vertex can be found
in [14,15,146,150].
The full content of the 2 → 3 “block” of the 2 → N

amplitude in multi-Regge kinematics is represented by the
so-called H-diagram [22] shown in Fig. 10. Albeit sub-
leading as R2

S=b
2 in the eikonal expansion, this provides the

leading contribution to inelastic graviton production, which
becomes increasingly important as b → RS.
For the purposes of the discussion in the following

section, it will be useful to recast the covariant formula for
the Lipatov vertex into corresponding expressions in light-
cone gauge, where they simplify considerably. Let εμðkÞ be
the gluon polarization vector and εμνðkÞ be the graviton
polarization tensor, such that (suppressing helicity labels)

εμνðkÞ ¼ εμðkÞενðkÞ; εμðkÞkμ ¼ 0: ð30Þ

In the light-cone gauge εþμ ¼ 0, one finds that the soft
photon emmision factor in Eq. (29) takes the form

ε�μðkÞNμðq1; q2Þ ¼ −2
ffiffiffiffiffiffiffiffiffi
q21q

2
2

q
ε�i ki
k2

≡ ε�i Niðq1; q2Þ: ð31Þ

Using this result along with Eq. (18) and the gauge-
invariance condition Γμνkν ¼ 0, one can obtain all non-
vanishing components of the gravitational Lipatov vertex in
the light-cone gauge. The explicit expressions for these are
as follows:

Γijðq1; q2Þ ¼ 2

�
q2i − ki

q22
k2

��
q2j − kj

q22
k2

�
− 2kikj

q21q
2
2

k4
;

ð32Þ

Γ−iðq1;q2Þ¼
4k−
k2⊥

�
ðq1 ·q2Þ

�
q2i−ki

q22
k2

�
−ki

q21q
2
2

k2

�
; ð33Þ

Γ−−ðq1; q2Þ ¼
8k2−
k4⊥

½ðq1 · q2Þ2 − q21q
2
2�: ð34Þ

In the next section, we will present an alternative
derivation of the central emission Lipatov vertex in a
semiclassical framework of Einstein-Hilbert gravity that
is exactly analogous to the discussion in Sec. II A. The
large occupancy of gravitons resulting from their brems-
strahlung across a wide range of rapidities higher than the
rapidity of interest allows one to treat their dynamics as a
static mass distribution that couples coherently to the
emitted graviton analogously to the classical color density
in the QCD case.
What we have discussed thus far is analogous to the

discussion of the dilute-dilute regime in QCD whose RG
evolution is described by the BFKL equation. One may
therefore ask whether in gravity one has an identical

classification of inclusive distributions as “dilute-dilute,”
“dilute-dense,” and “dense-dense” as described for the
QCD case in Sec. II A. Our discussion in this paper will
focus on the simplest dilute-dilute case but, we will briefly
address the dilute-dense case in Sec. IV in the context of
shockwave propagators necessary to promote the 2 → 3
computation to the RG description of 2 → N scattering.
The explicit computation of these propagators will cast
further quantitative light on the gravitational dilute-dense
and dense-dense regimes.
Even though the quantitative tools to address the dilute-

dense and dense-dense regimes are not fully developed
(unlike the QCD case), we believe nevertheless that such
regimes must exist on physical grounds. The discussion can
be framed in the context of the extensive work of ACV
classifying the different regimes that contribute to trans-
Planckian scattering. As discussed by ACV, the resumma-
tion of all possible contributions due to graviton exchanges
to the 2 → 2 S-matrix can be expressed generally as an
exponentiated form in impact parameter space as e2iδðb;EÞ.
The phase δðb; EÞ is generically complex, with the imagi-
nary part corresponding to inelastic final states describing
2 → N emissions. It can be organized in pure gravity26 as a
power series expansion in R2

S=b
2 and l2

p=b2. Writing the
S-matrix in ACV’s convention as S ¼ e2iðδ0þδ1þδ2þ���Þ, the
known phase factors are [19]

δ0 ¼ Gs log

�
L
b

�
; δ1 ¼

6G2s
πb2

log s;

δ2 ¼
2G3s2

b2

�
1þ i

π
log s

�
log

L2

b2
þ 2

��
: ð35Þ

Here, δ0 corresponds to the eikonal phase χðb; sÞ we
discussed earlier. The second term, δ1, corresponds to a
pure quantum gravity correction G2s=b2 ∼Gsðl2

p=b2Þ,
which can be ignored for the regime b ≫ RS ≫ lp. Like
δ0, this contribution is purely real. The final term in ACV’s
decomposition, δ2, is a classical correction proportional to
G3s2=b2 ∼ GsðR2

S=b
2Þ. One observes that while these

terms are weighted by various powers of R2
S=b

2 or
l2
p=b2, they all appear with a factor of the dimensionless

combination Gs ≫ 1. On the face of it, this demonstrates
that it is inconsistent to truncate the expansion of the
exponential e2iδðb;EÞ to a finite number of terms.
Our interest is in the inelastic contributions to the 2 → 2

S-matrix that correspond to 2 → N final states. In particu-
lar, one may ask whether the (unsuppressed) all-order soft
rescattering contributions to the hard 2 → 3 inclusive
distribution arising from multiple rescattering exchanges
can be factorized into the Weinberg soft factor containing

26In other extended theories of gravity such as string theory,
there can appear ratios of other length scales—for instance,
λ2s=b2.
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all soft real and virtual exchanges. This question was
addressed both by Lipatov and ACV, who both distin-
guished between soft “Weinberg” momentum k ≪ q1, q2
and the opposite “Lipatov” semihard regime k ≫ q1, q2
(where q1, q2 are the t-channel momentum transfers in the
multi-Regge 2 → N amplitude, and k is the momentum of
the emitted graviton), in the terminology of [26]. As
already shown by Lipatov, and confirmed by ACV, all
Weinberg-type multiple exchanges and radiation can be
absorbed into the overall Weinberg soft factor multiplying
the semihard multi-Regge amplitude.
On the basis of this discussion, we would conclude that

there is indeed a dilute-dilute Lipatov regime of evolution
of the semihard inelastic 2 → N amplitude in the Regge
regime. One may further ask whether the dilute-dilute
evolution regime is larger or smaller than it is in QCD
before high-parton-density effects become important. On
the one hand, the occupancy N (at a given impact
parameter) of inelastically produced hard final-state
gravitons grows much more rapidly than the multiplicity
of gluons in QCD due to the larger Regge trajectory in the
former. On the other hand, these occupancies have to be
much larger in gravity for semihard graviton rescattering
and recombination to be significant. Regardless of the
width in rapidity of the dilute-dilute regime, the growth of
graviton occupancy must saturate as it does in QCD,
because the probability for such emissions at a fixed
impact parameter cannot exceed unity. It has been argued
on information-theoretic grounds that the growth satu-
rates for N ¼ 1=αcrit, where αcrit ¼ αðQsÞ≡Q2

S=M
2
p and

QS ¼ 1=RS is an emergent scale [33,35,143]. As noted
earlier, the similarities between this dynamics and that of
the CGC has been discussed previously [32]. We will
return to the quantitative realization of this picture à la
CGC in Sec. IV B.

III. SEMICLASSICAL SCATTERING OF
GRAVITATIONAL SHOCKWAVES

A. Gravitational shockwaves

Aichelburg and Sexl [151] showed that when a
Schwarzschild black hole characterized by mass mH is
given an infinite boost γ → ∞ (say, along the positive-z
direction), then in the limit mH → 0, with total energy
μH ¼ γmH held fixed, one obtains the shockwave
spacetime

ds2¼ 2dxþdx− −δijdxidxjþ8μHGδðx−Þ logðΛjxjÞðdx−Þ2:
ð36Þ

Here, Λ is an IR cutoff scale. This metric is a solution
to Einstein’s equation [Eq. (B7) in Appendix B], with
a nonvanishing energy-momentum (EM) tensor given
by Tμν ¼ δμ−δν−δðx−Þδð2ÞðxÞ required to support this

geometry. This is the EM tensor of a massless point particle
located at the origin of the transverse space x ¼ 0.
Motivated by our discussion in Sec. II A, one can general-

ize this form of the EM tensor to include a source with
transverse spatial density ρHðxÞ, which has the shockwave
profile27

Tμν ¼ δμ−δν−μHδðx−ÞρHðxÞ: ð37Þ

The resulting more general shockwave spacetime has the
metric

ds2 ¼ 2dxþdx− − δijdxidxj þ fðx−; xÞðdx−Þ2; ð38Þ

where

fðx−; xÞ ¼ 2κ2μHδðx−Þ
ρHðxÞ
□⊥

¼ κ2

π
μHδðx−Þ

Z
d2y lnΛjx − yjρHðyÞ: ð39Þ

We used in the second equality the Green’s function of the
two-dimensional Laplacian □⊥ ≡ δij∂i∂j. In this singular
form, where the source ρH appears linearly and a delta
function appears in the metric, one sees that the spacetime is
flat in the regions in front of (x− < 0) and behind (x− > 0)
the shockwave. However, the inertial frames in these regions
are not identical. They are related by a coordinate trans-
formation of the Minkowski vacuum. This is to be expected
intuitively, since the passing shock should affect spacetime
measurements differently in these regions [28,30]. To see it
more rigorously, we transform to the y-coordinate frame,
which is related to the x coordinate by the discontinuous
transformation

x− ¼ y−; xi ¼ yi − κ2μHy−Θðy−Þ
∂i

□⊥
ρHðyÞ;

xþ ¼ yþ − κ2μHΘðy−Þ
ρHðyÞ
□⊥

þ 1

2
κ4μ2H y−Θðy−Þ

�
∂i

□⊥
ρHðyÞ

�
2

: ð40Þ

This transformation comes from analyzing null geodesics
passing through the spacetime specified in Eq. (38), a point

27A subtle point is that for a Schwarzschild black hole at rest,
the energy-momentum tensor vanishes. When boosted to γ → ∞,
a nonvanishing stress tensor develops as a consequence of the
singular nature of the limit, which erases the information of the
horizon. However, it is important to keep in mind that the mass
distributions we will discuss are not to be thought of as strict δ-
functions in x−. As in Sec. II A, this source in Regge asymptotics is
the “static” distribution of gravitons at higher rapidities; there is
therefore an implicit rapidity-scale dependence of this distribution.
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we will return to shortly. The metric in the y-coordinate
system takes the form

ds2 ¼ 2dyþdy− − gijdyidyj; ð41Þ

where gij has a nonlinear dependence on the source ρH and is
given by

gij ¼ δij − y−Θðy−Þ
�
2κ2μH

∂i∂j

□⊥
ρHðyÞ

− κ4μ2Hy
−
�
∂i∂k

□⊥
ρHðyÞ

��
∂j∂k

□⊥
ρHðyÞ

��
: ð42Þ

The continuous form of the metric in Eq. (41) is an exact
solution of Einstein’s equations with the EM tensor in
Eq. (37). It makes manifest that the region in front of the
shock (y− < 0) is the Minkowski vacuum, while the region
after the shock (y− > 0) is a pure gauge transformation of the
Minkowski vacuum. (The latter is seen by computing the
Riemann tensor Rμνρσ of the metric in the y− > 0 region,
which turns out to vanish even though its connection
coefficients do not vanish.)
This is exactly analogous to the Yang-Mills shockwave

solution in the color glass condensate EFT, for which the
field strength tensor vanishes before and after the shock-
wave even though the gauge fields do not vanish; they are
distinct pure gauge solutions separated by the gluon
shockwave [42,43].

B. Linearized fluctuation around the shockwave
background and the gravitational Wilson line

Having discussed the properties of the gravitational
shockwave metric, we will now analyze the structure of
small fluctuations around it. At the classical level, small
fluctuations are governed by linearized Einstein equations
around the shockwave background. For this purpose, it is
simpler to use the singular form of the gravitational
shockwave given in Eq. (38). We start by writing small
perturbations about the metric as

gμν ¼ ḡμν þ κ hμν: ð43Þ

Weweighted the fluctuation field hμν here by the coupling κ
so that its kinetic term is canonically normalized. Working
in the light-cone gauge

hμþ ¼ 0; ð44Þ

the linearization procedure of Einstein’s equations results in
the following set of second-order equations:

□hij− ḡ−−∂2þhij¼0; □hi−− ḡ−−∂2þhi−¼∂þhij∂jḡ−−;

□h−−− ḡ−−∂2þh−−¼ð∂i∂jḡ−−Þhijþ2ð∂iḡ−−Þ∂jhij: ð45Þ

These equations are not all independent, since there are first-
order constraint relations among various components of hμν:
∂þh−i ¼ ∂jhij; ∂þh−− ¼ ∂ih−i. Furthermore, Einstein’s
equations set h≡ δijhij ¼ 0. These equations imply that
hij are the independent components of themetric fluctuations
corresponding to the physical degrees of freedom.
Next, we solve these equations. In the vicinity of x− ¼ 0,

the transverse derivatives acting on hij in Eq. (45) can be
neglected, and we obtain

∂−hij −
1

2
ḡ−−∂þhij ¼ 0; ð46Þ

which can be solved for the fluctuation at x− ¼ x−0 . The
solution is given by

hijðxþ; x−; xÞ ¼ Vðx−; xÞhijðxþ; x− ¼ x−0 ; xÞ; ð47Þ

where the gravitational Wilson line operator V is given by

Vðx−; xÞ≡ exp

�
1

2

Z
x−

x−
0

dz−ḡ−−ðz−; xÞ∂þ
�
: ð48Þ

Using the constraint relations, the solution for the other two
components can be written as

h−iðx−Þ ¼ Vðx−Þh−iðx−0 Þ þ ð∂jVÞ
1

∂þ
hijðx−0 Þ; ð49Þ

h−−ðx−Þ ¼ Vðx−Þh−−ðx−0 Þ þ 2ð∂iVÞ
1

∂þ
h−iðx−0 Þ

þ ð∂i∂jVÞ
1

∂
2þ
hijðx−0 Þ: ð50Þ

One can verify that the above result satisfies the equations of
motion in Eq. (45). The solutions in Eqs. (47), (49), and (50)
are gluing formulas that connect plane-wave evolution from
one side of the shockwave to plane-wave evolution on the
other side. The gravitational Wilson line operator V appear-
ing in these formulas are shift operators that act along the
shockwave and whose magnitude is a function of the energy
of the shockwave and its transverse distribution.
The exact analog of Eqs. (47), (49), and (50) in the gauge

theory case was worked out in [63]. These results have a
flavor of a double-copy relation. In particular, the gauge-
theory Wilson line and the gravitational Wilson line are
related by the color-kinematic replacement rule, which has
been extensively discussed in the literature [80,140]; we
will briefly revisit it in Sec. III C 4.

C. Shockwave collisions

In this subsection, we will address the problem of the
collision of two gravitational shockwaves in the dilute-
dilute approximation analogous to the QCD case discussed
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in Sec. II A. In our setup, we consider two incoming
gravitational shockwaves along the z axis, separated by
impact parameter b in the transverse plane, with the
collision point at z ¼ t ¼ 0. These shockwaves are gen-
erated by the EM tensor (in the region t < 0),

Tμν ¼ δμ−δν−μHδðx−ÞρHðxÞ þ δμþδνþμLδðxþÞρLðxÞ: ð51Þ

This is depicted in Fig. 11, where regions II and III are
spacelike regions of heavy (H) and light (L) shockwaves,
respectively, before the collision, that correspond to the
respective coordinate transformation of Minkowski vacua
(in other words, they are pure gauges—see the discussion
in Sec. III A above), while region I is the common
Minkowski vacuum shared by both the shockwaves.
Finally, region IV corresponds to the future of the collision,
in which the EM tensor of each of the shocks will get
modified and backreact to create a radiative spacetime with
a nonvanishing curvature in region IV.
We will first calculate the correction to the EM tensor

and the modified metric in region IV in the dilute-dilute
approximation, where we keep terms to linear order in ρH
and ρL. (In contrast, the dilute-dense approximation cor-
responds to keeping terms which are of all orders in ρH but
only linear order in ρL.) We will then set up the equations of
motion of the metric in the dilute-dense approximation.
However, for our purposes, it suffices to solve for the

modification of the EM tensor and the metric in the
dilute-dilute approximation, since we are working in the
regime b > RS. (See the discussion in Sec. I.)

1. Equations of motion

Treating the spacetime created by shockwave H as
background, we consider small perturbations hμν around it:

gμν ¼ ḡμν þ hμν: ð52Þ

Here, ḡμν is the background metric tensor appearing in
Eq. (38). We decompose the perturbation hμν into a term

hð1Þμν of order OðρLÞ which is sourced by Tþþ [appearing in

Eq. (51)] and a term hð2Þμν of orderOðρHρLÞ coming from the
backreaction of the corrected EM tensor at this order.
Therefore,

hμν ¼ hð1Þμν þ κ hð2Þμν : ð53Þ

We weighted hð2Þμν by a factor of κ in order to ensure the
corresponding kinetic term is canonically normalized.
Working in the light-cone gauge28 hμþ ¼ 0, linearizing
Einstein’s field equations around ḡμν, and further process-
ing the results in the equation of motion for the traceless
field h̃ij,

ḡ−−∂2þh̃ij −□h̃ij

¼ κ2
�
ð2∂i∂j −□⊥δijÞ

1

∂
2þ
Tþþ

þ 2Tij − δijT −
2

∂þ
ð∂iTþj þ ∂jTþi − δij∂kTþkÞ

�
: ð54Þ

Here, h̃ij ≡ hij − 1
2
δijh, where h ¼ δijhij; see Appendix B

for details. Further, □ is the d’Alembertian operator,
and T ≡ δijTij.
The other components of the metric fluctuations are

obtained from the solution for h̃ij using the constraint
relations

∂þh−i ¼ ∂jh̃ij þ κ2
�
2

∂þ
Tþi −

∂i

∂
2þ
Tþþ

�
;

∂
2þh−− ¼ ∂i∂jh̃ij − κ2

�
□⊥
∂
2þ
Tþþ − T − 2Tþ− þ ḡ−−Tþþ

�
:

ð55Þ

We refer the reader to Appendix B for further details
of these results. These equations are to be further

FIG. 11. Trajectories of colliding ultrarelativistic particles. The
dilute-dense approximation is the one where the trajectory of the
“heavy” graviton shockwave (depicted in red) is unchanged,
whereas that of the “light” shockwave (depicted in blue) under-
goes a shift [according to Eq. (59)]. The trajectories in the future
of the collision are bent slightly inwards, but this effect is small at
large impact parameters between the two shocks in the transverse
plane.

28This gauge condition leaves a residual gauge freedom unfixed.
We will fix the gauge completely by demanding the transversality
of physical polarizations of the graviton: ∂μhμν ¼ 0.
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supplemented with the covariant conservation equations of
the EM tensor, which are given in Eq. (B14). However, the
conservation laws by themselves do not uniquely determine
the evolution of the EM tensor. This is evident from
Eq. (B14), since there are more unknowns than the number
of equations. As we will now elaborate, to address this
problem, we will need to consider the geodesic motion
[152–154] of the ultrarelativistic distribution of particles ρL
as they cross the shockwave background of ρH.

2. Geodesic motion and evolution of EM tensor

The task at hand is to compute how the EM tensor of the
ultrarelativistic distribution of particles L gets modified as
they cross the region of influence of the gravitational field
of shockwave H. We will first consider the point-particle
approximation of the second shockwave, where we take
ρLðxÞ ¼ δð2Þðx − bÞ. The covariant EM tensor of a spinless
point particle moving along a worldline XμðsÞ is given by

TμνðxÞ ¼ μLffiffiffiffiffiffi
−ḡ

p
Z

∞

−∞
dλ Ẋμ Ẋν δð4Þðx − XðλÞÞ: ð56Þ

Here, ḡ ¼ −1 is the determinant of the background metric
in Eq. (38), and the dot denotes differentiation with respect
to the worldline parameter λ. The form of the EM tensor in
Eq. (56) follows from the relativistic action of a massless
point particle. (See Appendix C) It is covariantly con-
served, provided the worldline XμðλÞ satisfies the geodesic
equation

Ẍμ þ Γμ
νρẊνẊρ ¼ 0; gνρẊνẊρ ¼ 0: ð57Þ

The second relation ensures that the geodesic is null.

Hence, in order to determine corrections to Tμν, it
suffices to compute the worldline XμðλÞ from Eq. (57).
The nonvanishing connection coefficients are

Γþ
−− ¼ 1

2
∂−ḡ−−; Γþ

−i ¼ Γi
−− ¼ 1

2
∂iḡ−−: ð58Þ

Upon solving Eq. (57) with appropriate boundary con-
ditions at negative times, one finds

X− ¼ λ; Xi ¼ bi − κ2μHX−ΘðX−Þ ∂iρHðbÞ
□⊥

;

Xþ ¼ −κ2μHΘðX−Þ ρHðbÞ
□⊥

þ κ4μ2H
2

X−ΘðX−Þ
�
∂iρHðbÞ
□⊥

�
2

:

ð59Þ

The null geodesic is continuous along the x− and transverse
directions (as a function of X−) but acquires a discontinuity
along the xþ direction after crossing the shockwave H at
X− ¼ 0, as shown in Fig. 11. This is precisely the content of
the coordinate transformation in Eq. (40) noted in Sec. III A.
[The transformation in Eq. (40) is a solution to the null
geodesic equation with generic boundary conditions.]
Using Eq. (56), the result in Eq. (59) allows us to

reconstruct all components of particle L’s EM tensor in the
dilute-dense approximation. The detailed expressions are
given in Appendix C. In what follows, we will need the
formulas in the dilute-dilute approximation for the full EM
tensor; in other words, we need to sum up the changes in
EM tensors of both particles H and L. However, in the light-
cone gauge, as shown in Appendix C, the EM tensor of
particle H does not get any corrections from the gravita-
tional background of particle L. The results for the non-
vanishing components of the EM tensor are

Tþþ ¼ μLδðxþÞρL þ κ2μHμLΘðx−Þ
�
δ0ðxþÞ ρH

□⊥
ρL þ x−δðxþÞ∂i

�
∂iρH
□⊥

ρL

��
; T−− ¼ μHδðx−ÞρH;

T−þ ¼ κ2μHμLδðxþÞδðx−Þ
ρH
□⊥

ρL; Tþi ¼ κ2μHμLδðxþÞΘðx−Þ
∂iρH
□⊥

ρL: ð60Þ

This result was a consequence of the strict point-particle
approximation. However, since we are neglecting tidal
effects, we can generalize the point-particle delta function
to a finite transverse source distribution ρL, with details
provided in Appendix C.
An important detail is that in the point-particle approxi-

mation at finite impact parameter, the solution has the
freedom of adding a “contact term” of the form ρHρL to the
solution of the EM tensor. This gives a δð2ÞðxÞδð2Þðb − xÞ ¼
δð2ÞðbÞδð2Þðb − xÞ contribution that vanishes for jbj > RS,

which is the approximation for which the point-particle
computation is valid. However, such a contact term in
position space gives a finite contribution in momentum
space. The coefficient of such contact terms cannot be fixed
by the point-particle analysis, and the freedom to add them
will of course affect the final solution. This freedom should
in principle be fixed by other physical considerations; in
our case, this would be the unitarity of multiparticle
production [discussed below Eq. (29)]. With this in mind,
in the solution for Tþþ above, we added such a term by
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hand in the second term in the square brackets. As we will
see in the next subsection, this results in the correct
expression for the Lipatov emission vertex.29

3. Solution and the Lipatov vertex

We first solve for h̃ð1Þij , which is the fluctuation in the
background created by the light shockwave. In this
approximation, Eq. (54) becomes

−□h̃ð1Þij ¼ κ2μLxþΘðxþÞð2∂i∂j −□⊥δijÞρL þOðκ4Þ;

where on the rhs we plug in the order OðρLÞ expression for
Tþþ from Eq. (60). Note that h̃ð1Þij is independent of x−,
since the right side of this equation is independent of x−.

Therefore, □h̃ð1Þij ¼ −□⊥h̃
ð1Þ
ij , which leads to the result

h̃ð1Þij ¼ κ2μLxþΘðxþÞ
�
2∂i∂j

□⊥
− δij

�
ρL þOðκ4Þ: ð63Þ

At order OðρHρLÞ, the solution for the field h̃ð2Þij is
obtained by inserting the solution in Eq. (63) and the result
for the corrected EM tensor in Eq. (60), along with Eq. (39),
into Eq. (54). We then find

□h̃ð2Þij ¼ 2δðxþÞδðx−Þ ρH
□⊥

Pij
ρL
□⊥

− ΘðxþÞΘðx−Þ
�
Pij

�
ρH
□⊥

ρL þ xþx−∂k

�
∂kρH
□⊥

ρL

��

− 2

�
∂i

�
∂jρH
□⊥

ρL

�
þ ∂j

�
∂iρH
□⊥

ρL

�
− δij∂k

�
∂kρH
□⊥

ρL

���
; ð64Þ

where Pij ¼ 2∂i∂j − δij□⊥. We suppress in this expression an overall factor of κ3μHμL on the right side for clarity. This
equation can be easily integrated in Fourier space, which gives

k2h̃ð2Þij ðkÞ ¼
Z

d2q2
ð2πÞ2

�
2Pijðq2Þ −

q22
kþk−

�
PijðkÞ

�
1þ k · q1

kþk−

�
− 2ðkiq1j þ kjq1i − δijk · q1Þ

��
ρHðq1Þ
q21

ρLðq2Þ
q22

; ð65Þ

where we have used the shorthand notation PijðpÞ≡
2pipj − δijp2. The transverse momenta are constrained
to satisfy k ¼ q1 þ q2. Additional details in the derivation
of this result are provided in Appendix D.
To extract the Lipatov vertex from this result, we need

to use the momenta k of the graviton h̃ð2Þij on shell,
2kþk− − k2 ¼ 0, with the Lipatov vertex being the residue
of the 1=k2 pole. After simple manipulations, and restoring
the factor κ3μHμL, we find

h̃ð2Þij ðkÞ ¼
2κ3μHμL
k2 þ iϵk−

Z
d2q2
ð2πÞ2 Γijðq1; q2Þ

ρH
q21

ρL
q22

; ð66Þ

where Γij is the gravitational Lipatov vertex defined
in Eq. (32).
As noted in the previous subsection, this result crucially

relied on the addition of the contact term in the result of
Tþþ. Without such a term, we would only reproduce the
strict Yang-Mills double-copy CμCν part of the Lipatov
vertex correctly. However, to get the NμNν term (which, we
recall from the discussion in Sec. II B, is required by
unitarity), such a contact term in the solution for Tþþ is
necessary. Its presence cannot be argued for strictly on
classical grounds, and in our semiclassical framework, it
likely comes from a consistent application of Cutkosky’s
rules in strong gravitational backgrounds. In other words,
the point-particle approximation is a bad one even at large
impact parameters when considering multiparticle produc-
tion. We will return to this point in future work.
To complete our derivation, one can in a similar manner

to the derivation of Eq. (66) work out the expressions for
h−i and h−− (with further details in Appendix D):

hð2Þ−i ðkÞ ¼
κ3s

k2 þ iϵk−

Z
d2q2
ð2πÞ2 Γ−iðq1; q2Þ

ρH
q21

ρL
q22

;

hð2Þ−−ðkÞ ¼
κ3s

k2 þ iϵk−

Z
d2q2
ð2πÞ2 Γ−−ðq1; q2Þ

ρH
q21

ρL
q22

; ð67Þ

29As shown in Appendix C, the geodesic analysis for Tþþ
gives

Tþþ ¼ μLδðxþÞρL þ κ2μHμLΘðx−Þ

×

�
δ0ðxþÞ ρH

□⊥
ρL þ x−δðxþÞ ∂iρH

□⊥
∂iρL

�
: ð61Þ

The addition of the contact term is of the form

κ2μHμLx−Θðx−ÞδðxþÞρHρL; ð62Þ
which vanishes in the point-particle limit for large impact
parameters.
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where Γ−i, Γ−− were given in Eqs. (33) and (34) and
s ¼ 2μHμL is the center-of-mass energy squared.
Equation (67) is the principal result of our paper. It

demonstrates that using a purely semiclassical approach in
precise analogy to the Yang-Mills computations in [62]
and [63], one recovers the gravitation Lipatov vertex. Our
result is also very suggestive that ρH=q21 and ρL=q

2
2 have the

structure of Reggeized graviton propagators. Quantum
corrections to the bare propagators can be absorbed in
the rapidity-scale-dependent source distributions, thus pro-
viding a Wilsonian RG interpretation of Reggeization
analogous to the QCD interpretation. We will discuss this
perspective further in Sec. IV.

4. Relationship between gauge and
gravity shockwave collisions

Akhoury and Saotome in [80] pointed out a relationship
between the gauge-theory shockwave and gravitational
shockwave in terms of a precise double-copy relation.
The gauge-theory shockwave (derived in Appendix A)
takes the form

A− ¼ −gδðx−Þ ρHðxÞ
□⊥

; ð68Þ

whereas the gravitational shockwave takes the form30 (we
repeat the expression here with the canonically normalized
gravitational field)

−
1

2
g−− ¼ −κδðx−Þ μHρHðxÞ

□⊥
: ð69Þ

One observes that a replacement of the color-charge density
ρH in QCD for the mass density μHρH in gravity and g → κ
in the gluon shockwave result gives the expression for the
gravitational shockwave.
At the next order in the coupling, we have for the gauge-

theory result31 derived in Appendix A,

aiðkÞ ¼
g3

k2 þ iϵk−

Z
d2q2
ð2πÞ2 Ciðq1; q2Þ

ρH · T
q21

ρL
q22

: ð70Þ

As for the replacements above, we recover Eq. (66) by
replacing g → κ, the color-charge densities ρH=L with the

mass densities μH=LρH=L, and the QCD Lipatov vertex Ci

with the gravitational Lipatov vertex Γij. As mentioned
previously, the connections of the gravitational classical
double copy to the Yang-Mills one were observed earlier
[78], but the Lipatov double copy of the emission vertices
was not pointed out there. Indeed, the particular form of
Eq. (70) is a consequence of ensuring that the double-copy
structure of the Lipatov vertices is manifest (which are both
kinematic factors) rather than the color-kinematic relations.
The experience with 2 → N amplitudes in Regge asymp-
totics suggests that the Lipatov double-copy relation is the
robust quantity rather than the color-kinematic duality. We
expect, however, that upon taking the ultrarelativistic limit
of the emission formulas in [78], and applying the color-
kinematic duality, one should recover the Lipatov double
copy. This connection has been made explicit by us in a
separate publication [155].

IV. OUTLOOK

In the previous section, we established that the Lipatov
emission vertex of the gravitational 2 → 3 radiation ampli-
tude in Regge asymptotics can be obtained from a semi-
classical computation of the first-order corrections in the
metric produced in the collision of two shockwaves. The
results are very suggestive that powerful strong-field semi-
classical methods developed in the color glass condensate
EFT of QCD can potentially be employed in gravity
(despite the substantial differences in the two theories)
due to common universal features of Regge asymptotics.
Here, we will outline directions to pursue in extensions of
this work. One of these is to compute the spectrum of
gravitational radiation using strong-field techniques. The
other is to extend our dilute-dilute studies to the dilute-
dense regime of trans-Planckian gravitational scattering
and to develop the renormalization group tools that can
help understand black hole formation as arising from the
dynamics of wee gravitons. This latter study will, of course,
influence the quest to observe signals of quantum effects in
gravitational wave radiation. A final topic of interest is the
possible formulation of the commonalities between the
overoccupied dynamics of QCD and gravity in the lan-
guage of asymptotic symmetries.

A. Gravitational bremsstrahlung

From the result in Eq. (66), one can calculate the
spectrum of energy EGW carried by gravitational wave
radiation as

dEGW

dωdΩ
¼ 1

2π2
ω2

X
λ

jMðλÞj2: ð71Þ

Here, ω and Ω are, respectively, the Fourier conjugate of
xþ ¼ ðtþ zÞ= ffiffiffi

2
p

and the solid angle. The sum on the rhs is
over the two physical polarizations λ of the gravitational

30In this formula, we rescaled the expression for g−− by a
factor of κ with respect to the expression given in Eq. (38), since
this normalization leads to a canonically normalized kinetic term
for g−− when viewed as a fluctuating field. We observe a relative
minus sign in the double copy. This is because one is comparing
the ð−1ÞnMn n-point process in gravity to the ð−1Þn−1An
n-point process in gauge theory [80].

31Here, we have changed slightly the notation for the color-
charge densities with respect to the Appendix, such that ρH ≡
ρaHT

a denotes the color-charge density matrix and used the
identity ifabcρbHρ

c
L ¼ −ðTbÞcaρbHρcL ¼ ½ðρH · TÞρL�a).
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wave amplitude MðλÞ, obtained by contracting h̃ð2Þij ðkÞ
computed in Eq. (66) with the physical graviton polariza-

tion tensors εðλÞij :

MðλÞ ¼ k2h̃ð2Þij ðkÞεðλÞij : ð72Þ

This follows from the standard LSZ reduction formula; see,
for instance, [62]. We note that the latter reference performs
a parallel analysis of the gluon emission amplitude,
spectrum, and average multiplicity of gluons produced in
proton-nucleus collisions in Regge asymptotics using the
semiclassical approach, where one solves classical Yang-
Mills equations of motion in the presence of colliding
shockwave sources.
The “classical” computation of Eq. (71) was performed32

in [156,157], and the main features of the spectrum were
found to agree in a computation based purely on the
amplitudes approach in [158,159]. As we explain below,
the result of our paper clearly illuminates why the two
approaches should agree.
The problem of gravitational radiation has an old history

and has been studied using several approaches in a variety
of scenarios. Early works on computing the energy spec-
trum of gravitational radiation were done in setups which
had as ingredients

(i) Nonrelativistic and relativistic scattering with finite
boost factor γ.

(ii) The masses of the colliding particles were non-
vanishing.

(iii) The impact parameter is large.
In [160], Matzner and Nutku used the Weizsäcker-Williams
method of virtual quanta to compute the spectrum of
gravitational radiation emitted from a particle scattering
off a Schwarzschild black hole. More definitive investiga-
tions of gravitational wave radiation in the collision of two
relativistic sources dates back to the works of D’Eath [94]
and by Kovacs and Thorne [95,161]. These papers com-
puted the frequency and angular distribution of gravita-
tional energy radiated in the regime of small deflection
angles (of the trajectories of incoming particles) and small

emission angles (of the emitted radiation as measured from
the collision axis in the center-of-mass frame).
The case of scattering of strictly massless particles was

studied more recently in [156–159]. It was found that at low
enough frequencies (ω≲ b−1), the energy spectrum is
approximately flat and reaches a constant value at zero
frequency. This is famously known as the zero-frequency
limit (ZFL) [162] and is dictated by the Weinberg soft
graviton theorem [147]. Roughly speaking, the ZFL is
obtained from the Weinberg current

JμνW ¼ κ
X
i

ηi
pμ
i p

ν
i

pi · q

[where pi are (hard) momenta of external lines from which
soft gravitons of momenta q are emitted] in the construction

of the amplitude MðλÞ
W ¼ JμνW εμν in Eq. (71). One finds that

at ω ¼ 0, the angular integrated result for small deflection
angles θ2 ∼ −4t=s takes the form [157,163]

dEGW

dω
¼ −

4

π
Gt log

�
s
−t

�
: ð73Þ

This is the small-frequency part of the spectrum, which is
universal in the sense that the details of the internal
structure of the scattering objects and that of the scattering
process are not important. This regime reliably describes
scattering processes at both large and small impact
parameters.
On the other hand, to go away from the ZFL, the details

of scattering become important. For Regge scattering at
large impact parameters, the energy spectrum is likewise
computed by replacing in the above argument the Weinberg
current with the Lipatov current Γμν defined in Eq. (28).
The resulting expression was analyzed in detail [158,159],
and the results were found to be consistent with the
classical computation of the spectrum in [156]. In light
of our result, this is to be expected, since the radiation
amplitude obtained from the classical approach is nothing
but Lipatov’s emission vertex—a point that was not
emphasized in [156].
In the Regge scattering regime, a unanimous conclusion

of these (classical- and quantum-amplitude-based) studies
is the emergence of a characteristic frequency scale
ω ∼ 1=RS, beyond which the spectrum ceases to be flat
and assumes a 1=ω behavior. This is interesting, since even
though at large impact parameters one is away from the
black hole formation region, the spectrum already shows
signs of the characteristic gravitational radius. However,
this feature of the spectrum leads to a logarithmic UV
divergence for the total energy radiated. One can argue that
such a divergence can be naturally regulated by the non-
linearities of general relativity (that were largely ignored
in these studies) which will smoothly cut off the spectrum
at some characteristic frequency. Indeed, as mentioned

32These references took (seemingly) different classical ap-
proaches to computing the energy spectrum. While the method
in [156] is the same as in our presentation here, [157] studied the
spectrum using the complex Bondi-Sachs news function Cwithin
the Fraunhofer approximation of classical radiation theory. The
energy flux density at future null infinity Iþ is given in terms
of C by

dEGW

du
¼ 1

2π

Z
d2Ωj∂uCj2;

where u is the retarded time; at null infinity Iþ, this becomes
u ¼ t − r, and the news function C is given by the asymptotic
form of a Riemann tensor in the postcollision spacetime. Fourier-
transforming this equation wrt u gives dEGW

dω .
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in [157], the method used in their work has the shortcoming
of neglecting the strong-curvature regime, thereby exclud-
ing a rigorous treatment of the high-frequency domain.
Under the approximation used in those studies (inelastic
scattering at large impact parameters), the 1=ω behavior is
valid until ω ∼ b2=R3

S, beyond which a hard cutoff leads to
the 1=ω2 behavior of the spectrum [157]. (Indications of
this profile were already seen in the extrapolations of the
finite-γ results in [95].) We depict this schematically
in Fig. 12.
One can contrast these results with the spectrum of

gluons emitted in QCD shockwave collisions schematically
shown in Fig. 13. At high jkj ∼ ω (of the radiated gluon),
gluons have a perturbative tail due to asymptotic freedom
(as opposed to gravity, which becomes strong in the
UV ∼Mpl), and their energy spectrum effectively follows
the corresponding Weizsäcker-Williams 1=ω2 distribution.

This behavior gets modified at the saturation scale
jkj ¼ Qs, below which the behavior is logarithmic in ω
until ω ∼ ΛQCD, where confinement takes over (unlike
gravity, which becomes free in the IR). In both QCD
and gravity, one sees the emergence of a saturation scale in
the radiation spectrum [32,42,143].
It would be of great interest to revisit this issue in the

dilute-dense approximation (discussed further below),
which can potentially allow us to rigorously analyze the
spectrum in the high-frequency domain. This approxima-
tion would include multiple scattering effects of the emitted
graviton off the heavy source shown schematically in
Fig. 14. The result of the dilute-dense approximation
(which includes resummation of coherent rescattering
encoded in the gravitational Wilson line) can lead to
improved UV behavior of the frequency spectrum via an
exponentiation of the leading-order process; this is pre-
cisely what happens in QCD.
The exponentiation in QCD was already shown in the

dilute-dense solution in Eq. (19), which was used to
compute the spectrum of emitted gluons. We point out
that this computation in gravity is for large impact
parameters, but taking into account the short-distance
nonlinear effects of GR, which a highly energetic graviton
emitted off the lighter shock will be sensitive to. Finding a
detailed form of the high-frequency spectrum would be
relevant for future gravitational wave observations, which
include gravitational wave bursts [164–166] emitted in
close hyperbolic encounters of highly energetic sources like
primordial black holes [167] or as stochastic backgrounds
thereof [168,169].
While the aforementioned computation is likely within

reach, the interesting problem of the gravitational wave
spectrum produced near the black hole formation threshold
is arguably much more challenging. This threshold is
expected to occur at a critical impact parameter b ∼ RS
[135] and is characterized by deflection angles of order 1.
This problem in trans-Planckian scattering has seen several
attempts in the recent past [24,88–91,170,171], but a
satisfactory picture is still elusive. One naively expects
the spectrum of GW radiation near the threshold to be very
different due to large numbers of fast-moving gravitons in
the 2 → N final state, all of which are multiple-scattering
with both the shock waves. This is the full dense-dense

FIG. 12. Schematic plot of the frequency spectrum of gravi-
tational radiation in high-energy gravitational shockwave colli-
sions at small emission angles [158,159]. The key features of the
plot are (i) the zero-frequency limit (ZFL) that is governed by
Weinberg soft graviton current, (ii) the nearly flat logarithmic
behavior in the region b−1 < ω < R−1

S , and (iii) 1=ω behavior
beyond the ω ∼ R−1

S region that gets modified around Oðb2=R3
SÞ.

FIG. 13. Schematic plot of the classical energy spectrum of
gluons emitted in gluon shockwave collisions. The key features
are (i) at large ω, the spectrum is dominated by the Weizsäcker-
Williams 1=ω2 behavior, and (ii) logarithmic behavior below the
ω ∼Qs saturation scale, which continues till ω ∼ ΛQCD.

FIG. 14. The dilute-dense generalization depicting coherent
multiple scattering off the dense source that a highly energetic
graviton emitted from the light source will be sensitive to. The
double graviton lines represent Reggeized graviton propagators
that are important for smaller impact parameters.
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regime, where the efficiency of gravitational radiation
(defined as the ratio EGW=E of energy radiated in gravi-
tational waves to the total energy of the process) is a
relevant quantity of interest that has been a much-debated
topic in the literature [87,92,93,170]. It is clearly interest-
ing, therefore, to obtain a quantitative understanding of the
spectrum of gravitational radiation as a function of the
impact parameter, especially for values where deflection
angles are not small and tidal effects become important. To
the best of our knowledge, this problem has not been
studied in detail for the trans-Planckian scattering regime.
This is where the dilute-dense generalization of the
computation presented in this paper would be crucially
relevant, which we will outline next.

B. Dilute-dense generalization and
renormalization group evolution

Wewill now comment on the generalization of our result
of the Lipatov emission vertex to the dilute-dense approxi-
mation, where the high-occupancy source ρH is resummed
to all orders representing its coherent scattering of the
radiated graviton field, as illustrated in Fig. 14. An
important reason for pursuing this generalization (other
than those mentioned in the previous section) is to inves-
tigate the gravitational analog of the Balitsky-Kovchegov
equation in QCD, as discussed previously in Sec. II B. In
the latter case, the nontrivial fixed point of RG evolution
corresponds to gluon saturation with an emergent satura-
tion scale Qs; the corresponding RG equation in gravity
would describe an analogous saturation of semihard grav-
itons at the emergent scale b ¼ RS.
Substantial insights toward this goal can be gained from

the QCD case which, following [62,63], we briefly describe
here. There are essentially three steps involved. The first
step is to calculate the evolution of the current of the light
shockwave as it passes through the dense shockwave on the
other light cone. In the strict eikonal approximation (where
the trajectories of the shockwaves do not bend), this
evolution is straightforwardly determined by covariant
current conservation and results in dressing up the initial
current by a lightlike Wilson line.33

The next step is to linearize the Yang-Mills equations
around the dense shockwave background. The equations

are inhomogenous, as they are sourced by the evolved
current determined from the previous step. The last step is
to solve these linearized inhomogenous differential equa-
tions, which requires the knowledge of Green’s functions of
the wave operator in the shockwave background. These
propagators were computed in [44,118,121]. One needs to
solve an eigenvalue differential equation of the form

□shockϕ ¼ λϕ; ð74Þ

where □shock is the Laplacian in the shockwave back-
ground; the shockwave Green’s function is then given by

Gðx; x0Þ ¼
Z

dλ
ϕλðxÞϕ̄λðx0Þ

λ − iϵ
: ð75Þ

For instance, the shockwave propagator of a Dirac fermion
(in momentum space) takes the form [120]

iSðp; p0Þ ¼ ð2πÞ4δð4Þðp − p0ÞiS0ðpÞ
þ iS0ðpÞAqðp; p0ÞiS0ðp0Þ: ð76Þ

Here, S0 is the free Dirac propagator, and Aqðp; p0Þ is the
part that encodes all the multiple interactions with the
shockwave background and is given by

Aqðp; p0Þ ¼ 2πδðp− − p0
−Þγ−ϵðp−Þ

×
Z

d2ze−iz·ðp−p0ÞðUðp−; zÞ − 1Þ; ð77Þ

where Uðp−; zÞ ¼ Peigϵðp−ÞρðzÞ=□⊥ is the path-ordered
Wilson line operator (in the same representation of the gauge
group as that of theDirac fermion) and ϵðxÞ ¼ θðxÞ − θð−xÞ.
The dressed propagator can be pictorially represented as
shown in Fig. 15. A similar expression exists for the gluon
propagator in the shockwave background [118,119,121].
One anticipates the same to hold for propagators in the

background of gravitational shockwaves. For real scalar
fields, the gravitational shockwave propagator takes the
form

iSðp1; p2Þ ¼ ð2πÞ4δð4Þðp1 − p2ÞiS0ðp1Þ
þ iS0ðp1ÞAshockðp1; p2ÞiS0ðp2Þ; ð78Þ

FIG. 15. Dressed propagator of a Dirac fermion in the gluon
shockwave background, represented by the cross. The first term
on the rhs is the free Dirac propagator. The second term resums
multiple scatterings of the fermion line on the background,
corresponding to the effective vertex in Eq. (77).

33In the dilute-dense approximation in QCD, the dominant
contribution appears to come from multiple t-channel gluon
exchange between color sources at higher rapidities [with
occupancy Oð1=αsÞ] and the outgoing gluon. Since the shock-
wave is at large occupancy, classical effects dominate over the
quantum corrections; resummation over coherent multiple gluon
exchanges is represented by a Wilson line, which is a solution to
the classical equations of motion. On the surface, this power
counting dominates over contributions from real emissions and
virtual loops. However, though these are formally suppressed
by αs, they contain large αs logðs=jtjÞ contributions of Oð1Þ in
Regge asymptotics, and therefore of equal importance as multiple
scattering contributions.
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where S0 is the free scalar propagator and S0AS0 is the
effective vertex with Aðp1; p2Þ given by [172]

Ashockðp1; p2Þ ¼ 4πp−
2 δðp−

2 − p−
1 Þ

×
Z

d2xeiðp2−p1Þ·xðe−iḡðxÞ2 p−
1 − 1Þ: ð79Þ

The exponent appearing in the parenthesis is the gravita-
tional Wilson that we discussed in Sec. III B.
The knowledge of the Green’s function in the shockwave

background is imperative for deriving the BK equation in
QCD. The basic idea is that one considers the interaction of
a quark-antiquark dipole with the shockwave and consider
all dressed one-loop diagrams that result from emission and
absorption within the dipole. One such one-loop diagram
involves a gluon propagator that undergoes coherent
scattering with the shockwave. The fundamental quantity
of interest is the two-point correlator of Wilson lines
(denoted by S), whose one-loop correction can be explicitly
computed given the gluon shockwave propagator. It turns
out that the one-loop correction to this transition amplitude
is larger than the tree-level term by a factor of αsY, where
Y ≡ logðpþ=PþÞ is the large phase-space factor that comes
from the one-loop integral, where pþ is the corresponding
gluon light-cone momentum and Pþ is the momentum of
the nucleus. For αsY ∼ 1, one needs to resum such con-
tributions to all loop orders, amounting to exponentiation of
the one-loop term. From this result, the BK equation (which
is an evolution of S in Y) can be extracted—see [173] for
further details.
We expect that these techniques will be applicable to the

dilute-dense generalization in gravity. In this paper, we
computed the evolution of EM tensor of a boosted pointlike
source as it scatters off the dense shockwave. From this
result, one can conclude that at large impact parameters, the
scattering is essentially eikonal and the EM tensor of the
light shockwave is dressed by the gravitational Wilson line
operator in Eq. (48). However, it is evident from Eq. (C1)
that this is no longer true as one lowers b toward RS, where
the EM tensor develops nonvanishing components along
the transverse directions. Such terms were already impor-
tant to consider in the dilute-dilute computation; we
therefore expect these to also be relevant for the dilute-
dense generalization. This generalization will also incor-
porate Reggeization of semihard gravitons encoded in the
ρA;BðqÞ=q2 factors. As discussed at length in Sec. II B,
Reggeization occurs due to multiloop graviton exchanges
at order Oð−t=sÞ. In order to recover this effect in the
shockwave picture, one needs to compute the graviton
propagator in the shockwave background and demonstrate
that ρA;BðqÞ=q2 satisfy the graviton Regge trajectory given
in Eq. (27). The analog in QCD is the derivation of the
BFKL equation via the shockwave framework. In gravity,
we expect this computation to give the evolution equation
computed by Lipatov in Eq. (80) of [9]. A further

extension, as previously discussed in Sec. II B, would be
to compute the gravitational analog of the BK equation and
determine its regime of validity relative to the counterpart
of the BFKL equation. The computation of the graviton
shockwave propagators will be addressed in a forthcoming
publication.

C. Double-copy and asymptotic symmetries

A topic of great recent interest are the constraints
imposed on amplitudes in gauge theories and gravity by
asymptotic symmetries, the study of which goes by the
name celestial holography [174]. These asymptotic sym-
metries can be understood as giving rise to soft theorems in
gauge theories and gravity and a memory effect that in
principle can be measured [175]. Of interest to us is the
concrete analogy between the color memory effect in QCD
and the gravitational memory effect [108]. In [109], it was
shown that the CGC shockwave encodes this color memory
effect and that the 2D dynamics of wee gluons in the
transverse plane could, through a stereographic projection,
be mapped onto the celestial sphere at null infinity.
This raises the question of whether the dynamics of wee

gluons can be understood as Goldstone dynamics on the
celestial sphere, as for instance argued for soft photons
in [176] and for soft gravitons in [177]. The broken
asymptotic symmetry in this case is that of large gauge
transformations spontaneously broken by the shockwave,
which, as we have seen in Sec. III, is common to both our
QCD and gravity shockwave formulations. In the gravity
case, this is the Bondi–van der Burg–Metzner–Sachs
(BMS) asymptotic symmetry of supertranslations and
superrotations [178,179]. In this mapping, there is the
key assumption that the shockwave is static in light-cone
time xþ—the transverse dynamics hence can be ported to
null infinity. While this is manifestly not the case due to
confinement, it can be argued that for perturbative proc-
esses on short timescales, the assumption may be valid.
However, a more subtle issue is the semiclassical nature of
the condensate, where the finite energy levels of Oð1=NÞ
(note that N ¼ 1=αs is the occupancy of modes) imply the
shockwave decays on a timescale characterized by the
Goldstone decay constant.
In the Regge limit of QCD, the symmetries satisfied by the

emergent semiclassical color-charge densities (represented,
for instance, by ρH in our notation) are those of the largest
symmetric subgroup of SUð3Þ—see, for instance, the dis-
cussion in [45]. The corresponding Goldstone modes are the
Reggeized gluon fields we discussed that have frequencies
ω ∼QS. Since this is notω → 0, as would be the case if they
were truly asymptotic, it would be interesting to explore
whether the geometric interpretation in terms of BMS
symmetries is robust. This has been argued to be the case
in the black hole quantum portrait framework [180,181].
Indeed, in [32], it was shown that the parametric dependence
of the Reggeized-graviton–Reggeized-graviton–graviton

HIMANSHU RAJ and RAJU VENUGOPALAN PHYS. REV. D 109, 044064 (2024)

044064-24



vertex and that of its QCD counterpart were identical; it is
important to note that this correspondence is only appli-
cable when αN ¼ Oð1Þ. Further studies exploring the
impact of asymptotic symmetries on the classical double
copy are needed.

V. SUMMARY

In this work, we explored a quantitative connection
between 2 → N scattering in QCD and Einstein gravity in
Regge asymptotics. Despite the clear differences between
the two theories, the dynamics of multiparticle production
has a number of common features in the Regge limit.
Specifically, the dynamics is controlled by the copious
production of wee partons in both theories. In QCD, this
leads to the well-known phenomenon of gluon saturation,
which is quantitatively described by the color glass con-
densate EFT. In gravity, a parallel development has been to
describe black holes as saturated self-bound states of wee
gravitons—the black hole quantum N-portrait (BHNP)
framework. The universality between quantum states in
the regime where the wee parton occupancy is of the order
of the inverse of the coupling in Eq. (22) was noted
previously in [32].
As we discussed, the CGC description of saturated gluon

states is highly developed with the evolution of the non-
perturbative dynamics of wee partons described by non-
linear RG equations that are known to next-to-leading logs
in x accuracy and recovers the RG equations of perturbative
QCD in the UV. The elements of the CGC framework are
semiclassical fields that can be mapped onto the language
of Reggeon field theory (inspired by diagrammatic com-
putations) with a clear correspondence established to its
building blocks, Reggeization, and the Lipatov vertex.
Since these are the very same building blocks in perturba-
tive discussions of 2 → N scattering in gravity, it is natural
to likewise consider that whether strong-field techniques
developed in the CGC EFT might be applicable and
provide a complementary framework to that developed
by ACV which employs the diagrammatic language of
Reggeon field theory.
A remarkable additional feature of the two theories that

goes beyond the above stated analogies and possible
universality is that of the BCJ/classical double copy that
has emerged as a powerful tool for quantitative computa-
tions. We noted that a particular Regge double copy
between the Lipatov vertex in QCD and the effective
gravitational central emission vertex was established by
Lipatov over 40 years ago. A central result of our paper is
that this double-copy relation can be recovered in our
semiclassical approach in gravitational shockwave colli-
sions at large impact parameters. This derivation parallels
the extraction of the QCD Lipatov vertex in the scattering
of gluon shockwaves performed previously. Our approach
also provides fresh insight from the semiclassical perspec-
tive into how and why the QED bremsstrahlung vertex

enters into the double copy. The QCD example also
suggests a useful classification of shockwave scattering
into dilute-dilute, dilute-dense, and dense-dense regimes.
Our results for gravitational shockwave scattering also

suggest that one can construct dressed gravitational
shockwave propagators with an analogous structure to
QCD shockwave propagators. These can then be employed
in a semiclassical derivation of graviton Reggeization
along the lines of gluon Reggeization. If successful, this
will allow us to construct a nonlinear RG description of
multiparticle production as a function of impact parameter
and rapidity. The formation of a black hole would then be
understood as a nontrivial fixed point of the RG flow. In
QCD, the nontrivial fixed point corresponds to the clas-
sicalization and unitarization of the 2 → N amplitude; this
is also the conjecture in the BHNP, and a quantitative
derivation in the language of RG flow is desirable. A
conceptual issue that would be important to resolve in this
regard is how the Goldstone picture of asymptotic sym-
metries that are broken by both graviton and gluon
shockwaves applies at finite frequencies. This is relevant
to understanding the emergence of a universal area law in
the dynamics of wee partons.
Not least, we addressed how our semiclassical frame-

work relates to the large body of work on gravitational
shockwave scattering. This is, of course, of great impor-
tance in understanding gravitational wave radiation in
particular with respect to uncovering possible signatures
of RG evolution and black hole formation in the radiation
spectrum. We plan to undertake a quantitative study of such
signatures in future work.
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APPENDIX A: GLUON SHOCKWAVE
SCATTERING IN QCD

The classical Yang-Mills (YM) equations of motion in
the presence of external currents are

DμFμν ¼ Jν; ðA1Þ

where the field strength is defined as Fμν ¼ ∂μAν − ∂νAμ þ
ig½Aμ; Aν� and the current Jμ is covariantly conserved:
DμJμ ¼ 0. The action of the covariant derivative on an
adjoint field F is given by

DμF ¼ ∂μF − ig½Aμ; F�: ðA2Þ

A gluon shockwave is generated by the current

Jν;a ¼ gδνþδðx−ÞρHTaðxÞ; ðA3Þ

where Ta is a generator of the color algebra. This form is
analogous to the form of the energy-momentum tensor
Eq. (37) in gravity. It is straightforward to verify that the

exact solution, Āa
−, to the YM equations with this source is

given by

Āa
− ¼ −gδðx−Þ ρHðxÞ

□⊥
Ta: ðA4Þ

This form admits a precise double-copy relation to the
gravitational shockwave in the coordinate system given in
Eqs. (38) and (39) through a color-kinematic replacement
made precise in [80]. In this appendix, we shall describe the
scattering of two such shockwaves in the dilute-dilute
approximation and showhow theQCDLipatov vertex arises.

1. Gluon shockwave collisions and the Lipatov vertex

The approach for solving this problem is similar to the
one in gravity. One begins by linearizing the YM equations
over the shockwave background Eq. (12), which is linear in
the light-cone gauge:

Aþ ¼ 0: ðA5Þ

In this gauge, the YM equations can be written as

−∂þ∂μAμ þ ig½Aμ; ∂þAμ� ¼ Jþ;

□A− − ∂−∂μAμ − ig½∂μAμ; A−� − 2ig½Aμ; ∂μA−� þ ig½Aμ; ∂−Aμ� ¼ J−;

□Ai − ∂i∂μAμ − ig½∂μAμ; Ai� − 2ig½Aμ; ∂μAi� þ ig½Aμ; ∂iAμ� ¼ Ji: ðA6Þ

A straightforward linearization Aμ ¼ Āμ þ aμ of these equations gives the set of equations

−∂þ∂μaμ ¼ Jþ;

□a− − ∂−∂μaμ − ig½∂μaμ; A−� − 2ig½Ā−; ∂þa−� þ 2ig½ai; ∂iĀ−� ¼ J−;

□ai − ∂i∂μaμ − 2ig½Ā−; ∂þai� ¼ Ji: ðA7Þ

The first equation is a constraint relation which relates ai
to a−. This implies that the equations for a− and ai are not
independent. The consistency of the set of equations is
represented by

∂μJμ ¼ ig½Ā−; Jþ�; ðA8Þ
which is nothing but covariant current conservation. This
discussion is entirely analogous to that in gravity.
Next, we incorporate the effect of the other incoming

shockwave. This is generated by the current

Jþ;a ¼ gδðxþÞρLðxÞTa: ðA9Þ

Plugging this relation into Eq. (A7) and first solving to
linear order in ρL but zeroth order in ρH gives us the gauge
field for the second shock in the light-cone gauge:

ai;a ¼ gΘðxþÞ ∂iρL
□⊥

Ta þOðρLρHÞ; a− ¼ OðρLρHÞ:

ðA10Þ

We now need to determine the form of the current
postcollision. In QCD, the problem of finding the evolved
current is considerably simpler than that in gravity. The
reason is that in QCD one can solve for the currents using
simply the conservation law in the strict eikonal approxi-
mation where the initial current Jþ of the second shock
does not develop any components along the transverse
and − longitudinal direction. Then, in the dilute-dilute
approximation, Eq. (A8) can be solved for the correction to
Jþ by inserting the leading-order results on the rhs. Using
the Lie algebra relation ½Ta; Tb� ¼ ifabcTc, we get
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Jþ;c ¼ g3δðxþÞΘðx−Þ ρH
□⊥

ρLTaTbfabc: ðA11Þ

Plugging the results from Eqs. (A10) and (A11) into the
equations of motion of ai and a− in Eq. (A7) gives us [at
order OðρLρHÞ]

□ai;c ¼ −g3
�
ΘðxþÞΘðx−Þ∂i

�
ρH
□⊥

ρL

�

− 2δðxþÞδðx−Þ ρH
□⊥

∂iρL
□⊥

�
TaTbfabc; ðA12Þ

□a−;c ¼ 2g3ΘðxþÞδðx−Þ
�
∂iρH
□⊥

∂iρL
□⊥

�
TaTbfabc: ðA13Þ

Upon taking the Fourier transforms of these equations,
and putting the momenta of the emitted gluon on shell,
we find

ai;cðkÞ¼−
2ig3

k2þ iϵk−

Z
d2q2
ð2πÞ2

�
q2i−ki

q22
k2

�
ρH
q21

ρL
q22

TaTbfabc;

ðA14Þ

a−;cðkÞ ¼ −
2ig3

k2 þ iϵk−

Z
d2q2
ð2πÞ2

ðq1 · q2Þ
kþ

ρA
q21

ρB
q22

TaTbfabc:

ðA15Þ

From these expressions, we can now extract the QCD
Lipatov vertices in the light-cone gauge:

Ci ¼ −2
�
q2i − ki

q22
k2

�
; C− ¼ −2

ðq1 · q2Þ
kþ

: ðA16Þ

The above result satisfies ∂μCμ ¼ 0. This computation can
be straightforwardly generalized to all orders in ρH—as
performed in [62,63].

APPENDIX B: GR REVIEW AND
LINEARIZATION OF EINSTEIN’S EQUATIONS

1. GR review and conventions

The action for Einstein-Hilbert gravity is

Sgrav ¼ −
1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
R; ðB1Þ

where g ¼ detðgμνÞ is the determinant of the metric tensor
and κ is proportional to the Newton constant G:

κ2 ¼ 8πG ¼ 8π

M2
p
: ðB2Þ

It has mass dimension ½κ� ¼ −1 in natural units (ℏ ¼ 1).
The scalar curvature R is related to the Ricci curvature

tensor Rμν by the contraction of its indices R ¼ Rμνgμν.
The Ricci tensor is in turn given by the contraction of
components of the Riemann tensor:

Rμν ¼ Rσ
μσν: ðB3Þ

We are working in conventions where the Riemann
curvature tensor is given by the commutator (following
the same convention as Wald’s book but opposite to
Weinberg’s convention, where there is a minus sign on
the rhs)

½∇σ;∇ρ�Vν ¼ VμRμ
νρσ; ðB4Þ

with V being an arbitrary four-vector and ∇ being the
covariant derivative whose action on V is defined as

∇μVν ¼ Vν;μ ¼ ∂μVν − Γρ
μνVρ;

Γρ
μν ¼ 1

2
gρσð∂μgσν þ ∂νgμσ − ∂σgμνÞ: ðB5Þ

Equation (B4) then gives the Riemann tensor in terms of the
following combination of Christoffel symbols Γ and its
derivatives:

Rσ
μαβ ¼ ∂αΓσ

μβ − ∂βΓσ
μα þ Γρ

μβΓσ
ρα − Γρ

μαΓσ
ρβ: ðB6Þ

Varying the Einstein-Hilbert action with respect to the
metric gives the Einstein field equations

Rμν −
1

2
gμνR ¼ κ2Tμν; ðB7Þ

where the energy-momentum tensor Tμν is included on the
rhs to account for possible matter contributions. Denoting
the matter action by Sm, one defines Tμν by the metric
variation of Sm:

δSm ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
δgμνTμν: ðB8Þ

The Bianchi identity of the Riemann tensor Rλμνκ;η þ
Rλμην;κ þ Rλμκη;ν ¼ 0 implies that the energy-momentum
tensor is covariantly conserved,

∇μT
μ
ν ¼ 0: ðB9Þ

The action for a massless point particle is

Sm ¼ 1

2

Z
dλ η−1ẊμẊνgμνðXÞ; ðB10Þ

where dots denote differentiation with respect to λ, η is
the determinant of the metric along the worldline that
can be gauged away, and gμνðXÞ is the metric tensor
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of the background that the worldline XðσÞ is probing.
Functionally differentiating Eq. (B10) with respect to the
spacetime metric gμν gives the energy-momentum tensor
in Eq. (56).

2. Linearization of Einstein’s equations

Here, we present the linearization of Einstein’s equations
around the shockwave background in Eq. (38). One begins
by expanding out the metric as in Eq. (52). We will be
working throughout in the light-cone gauge

hμþ ¼ 0: ðB11Þ

After straightforward (though lengthy) algebra, we find
that the linearization of the Ricci scalar is given by
(h≡ hijδij below)

δR ¼ −ḡ−−∂2þhþ ∂
2þh−− − 2∂þ∂ih−i

þ 2∂þ∂−hþ ð∂k∂lhkl −□⊥hÞ; ðB12Þ
and the linearization of Einstein’s field equation gives (we
have suppressed factors of κ2 for clarity)

1

2
∂
2þh ¼ Tþþ; ðB13aÞ

1

2
ð∂2þh−− − ∂þ∂jh−j þ ∂þ∂−hÞ −

1

2
δR ¼ Tþ−; ðB13bÞ

1

2
ð∂2þh−i − ∂þ∂jhij þ ∂þ∂ihÞ ¼ Tþi; ðB13cÞ

1

2
ðḡ−−∂2þhij − 2∂þ∂−hij þ ∂þ∂ih−j þ ∂þ∂jh−i þ□⊥hij − ∂k∂ihkj − ∂k∂jhki þ ∂i∂jhÞ þ

1

2
δijδR ¼ Tij; ðB13dÞ

1

4
ð2ḡ−−∂2þh−− − ∂−ðḡ−−Þ∂þhþ 2□⊥h−− − 4∂−∂jh−j þ 2∂2−h

þ 2ð∂i∂jḡ−−Þhij þ 2ð∂iḡ−−Þ∂jhij þ 2ð∂iḡ−−Þ∂þh−i − ∂iðḡ−−Þ∂ihÞ −
1

2
ḡ−−δR ¼ T−−; ðB13eÞ

1

2

�
ḡ−−∂2þh−i þ□⊥h−i − ∂i∂jh−j þ ∂i∂−h − ∂j∂−hij − ∂þ∂−h−i

þ ∂þ∂ih−− −
1

2
∂þh∂iḡ−− þ ∂þhij∂jḡ−−

�
¼ T−i: ðB13fÞ

These are, respectively, the þþ;þ−;þi; ij;−−;−i components of Einstein’s equations. Furthermore, linearizing the
covariant energy-momentum conservation equations over the background in Eq. (39) give us

∂−Tþþ þ ∂þTþ− − ∂iTiþ ¼ g−−∂þTþþ; ðB14aÞ

∂−Tþ− þ ∂þT−− − ∂iTi− ¼ g−−∂þTþ− þ 1

2
ð∂−g−−ÞTþþ þ 1

2
□⊥g−−

1

∂þ
Tþþ; ðB14bÞ

∂þT−i þ ∂−Tþi − ∂jTji ¼
1

2
ð∂ig−−ÞTþþ þ g−−∂þTþi: ðB14cÞ

The conservation equations (B14) are not independent of Einstein’s equations (B13). The latter implies the former (which,
as mentioned earlier, is a consequence of the Bianchi identity). This can be seen upon diagonalizing (B13), which we
briefly outline below.
From the þþ component, we simply get

h ¼ 2

∂
2þ
Tþþ: ðB15Þ

Theþ i equation (B13c) together with Eq. (B15) gives a constraint relation
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∂jhij ¼ ∂þh−i þ
2∂i

∂
2þ
Tþþ −

2

∂þ
Tþi: ðB16Þ

Next, a simple manipulation reveals that the þ−
equation (B13) together with Eqs. (B15) and (B16) gives
the first energy-momentum conservation equation
Eq. (B14a). Upon using Eqs. (B15), (B16), and (B14a),
the trace of ij component Eq. (B13d) is found to give a
second constraint relation,

∂
2þh−− ¼ ∂i∂jh̃ij −

□⊥
∂
2þ
Tþþ þ T þ 2Tþ− − ḡ−−Tþþ;

ðB17Þ

where h̃ij is defined to be the traceless combination

h̃ij ≡ hij −
1

2
δijh: ðB18Þ

Inserting Eq. (B17) back into Eq. (B13d) finally gives the diagonalized equation for h̃ij:

ḡ−−∂2þh̃ij − 2∂þ∂−h̃ij þ□⊥h̃ij ¼ ð2∂i∂j −□⊥δijÞ
1

∂
2þ
Tþþ − 2δij

�
ḡ−−Tþþ −

∂−

∂þ
Tþþ

�

þ 2δijTþ− þ 2Tij − δijT −
2

∂þ
ð∂iTþj þ ∂jTþiÞ: ðB19Þ

Likewise, one can get the simplified form of the equations of motion for the remaining components hi− and h−− (which
couple to h̃ij). We record these below. For h−i, we get

ḡ−−∂2þh−i þ□⊥h−i − 2∂þ∂−h−i þ ∂þh̃ij∂jḡ−− ¼ 2T−i −
2∂−
∂þ

Tþi −
∂i

∂þ

�
ḡ−−Tþþ −

2∂−
∂þ

Tþþ þ T

�
; ðB20Þ

whereas for h−−, we get

ḡ−−∂2þh−− þ□⊥h−− − 2∂þ∂−h−− þ ð∂i∂jḡ−−Þh̃ij þ 2ð∂iḡ−−Þ∂jh̃ij
¼ ∂−ðḡ−−Þ

1

∂þ
Tþþ − ð□⊥ḡ−−Þ

1

∂
2þ
Tþþ þ ð∂iḡ−−Þ

∂i

∂
2þ
Tþþ þ 2∂−

∂þ

�
∂−

∂þ
Tþþ − ḡ−−Tþþ

�

þ ðḡ−−Þ2Tþþ þ 2T−− þ ḡ−−ðT − 2Tþ−Þ −
2∂−
∂þ

T − ð∂iḡ−−Þ
2

∂þ
Tþi: ðB21Þ

We emphasize that the equations for hi− and h−− cannot be
independent of the equation for h̃ij, since the two constraint
relations Eqs. (B16) and (B17) relate them. The two con-
straints and the three equations ofmotion, Eqs. (B19), (B20),
and (B21), should form a consistent system of equations.
One finds that this consistency is met only when energy-
momentum conservation [Eq. (B14)] is satisfied. Given the
complicated form of these equations, it is useful to perform
this (tedious) sanity check to ensure that the equations
obtained are free of any errors.

APPENDIX C: EVOLUTION OF THE
ENERGY-MOMENTUM TENSOR IN

SHOCKWAVE COLLISIONS

Here, we provide details behind the result Eq. (60) for the
evolved EM tensor in the dilute-dilute approximation. As
mentioned in the main text, in the point-particle approxi-
mation (consistent with the dilute-dilute approximation),

thanks to the formula in Eq. (56), the problem of computing
the energy-momentum tensor reduces to the problem of
computing null geodesics. These can be computed from
the geodesic equation Eq. (57) with the appropriate initial
conditions. The solution given in Eq. (59) is then used to
reconstruct the energy-momentum tensor.
From Eq. (56), we find the result

Tμν ¼ μLẊμðX−ÞẊνðX−Þδðxþ − XþÞδð2Þðx − XÞ; ðC1Þ

where, from (57) we have

Ẋ− ¼ 1; Ẋi ¼ −κ2μHΘðX−Þ ∂iρHðbÞ
□⊥

;

Ẋþ ¼ −κ2μHδðX−Þ ρHðbÞ
□⊥

þ κ4μ2H
2

ΘðX−Þ
�
∂iρHðbÞ
□⊥

�
2

:

ðC2Þ
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Equation (C1) is the exact result for the evolved energy-momentum tensor of particle 2 probing the shockwave background
Eq. (38) of particle 1. However, because we are working in the dilute-dilute approximation, the relevant expression for us is
the expansion of Eq. (C1) to order μHμL. The nonvanishing components of Tμν are

T−− ¼ μLδðxþÞδð2Þðx − bÞ þ κ2μHμLΘðx−Þ
�
δ0ðxþÞ ρHðbÞ

□⊥
δð2Þðx − bÞ þ x−δðxþÞ ∂iρHðbÞ

□⊥
∂iδ

ð2Þðx − bÞ
�
;

T−þ ¼ −κ2μHμLδðxþÞδðx−Þ
ρHðbÞ
□⊥

δð2Þðx − bÞ; T−i ¼ −κ2μHμLδðxþÞΘðx−Þ
∂iρHðbÞ
□⊥

δð2Þðx − bÞ: ðC3Þ

All the other components are of higher order. This
expansion is valid only for large enough impact factors
b and small enough times x−.
At this stage, this result can be generalized to a beam of

massless particles moving in the −z direction at various
impact factors by simply coarse graining δð2Þðx − bÞ →
ρLðxÞ. Although this generalization misses various “shear-
ing” and “expansion” effects of the null geodesic congru-
ence, for our purposes this replacement suffices. Another
limitation of the point-particle approximation is that under
generalization to extended transverse sources, it will miss
terms of the form ρHρL. In the point-particle approxima-
tion, such a term is proportional to δð2ÞðxÞδð2Þðx − bÞ ¼
δð2ÞðbÞδð2Þðx − bÞ, which vanishes for nonvanishing impact
parameters. In the generalized setup, such terms can be
present, as will be seen below.
In the dilute-dilute approximation, we also need to know

the corrections to the energy-momentum tensor of particle
1 due to the gravitational influence of particle 2. In the
light-cone gauge, the metric that particle 1 sees is the
(linearized) metric created by particle 2 (whose leading-
order energy-momentum tensor is T−− ¼ μLδðxþÞρL),
which is given by

ds2¼2dxþdx−−δijdxidxjþ2κ2μLxþΘðxþÞ
∂i∂j

□⊥
ρL: ðC4Þ

This follows from the previously computed result in
Eq. (63). To compute null geodesics in this metric, we
first compute the connection coefficients. These are found
to be

Γ−
ij ¼ −

1

2
∂þ∂i∂jgþþ; Γi

þj ¼ −
1

2
∂þ∂i∂jgþþ;

Γi
jk ¼ −

1

2
∂i∂j∂kgþþ; gþþ ¼ 2κ2μLδðxþÞ

ρL
□⊥

: ðC5Þ

The corresponding geodesic equations are

Ẍþ ¼ 0; Ẍ− þ Γ−
ijẊ

iẊj ¼ 0;

Ẍi þ Γi
jkẊ

jẊk þ 2Γi
þjẊ

þẊj ¼ 0: ðC6Þ

In the dilute-dilute approximation, it is sufficient for us to
solve this equation to linear order in ρL. By inspection, it
can be seen that the only solution with the appropriate
boundary condition is Xþ ¼ λ; X− ¼ 0;X ¼ b. As such, in
the light-cone gauge there is no correction to the energy-
momentum tensor of particle 1 in the dilute-dilute approxi-
mation. Hence, the total energy-momentum tensor after the
collision (with all components upper) is

T−− ¼ μLδðxþÞρL þ κ2μHμLΘðx−Þ
�
δ0ðxþÞ ρH

□⊥
ρL þ x−δðxþÞ ∂iρH

□⊥
∂iρL

�
; Tþþ ¼ ffiffiffiffiffi

s1
p

δðx−ÞρH;

T−þ ¼ −κ2μHμLδðxþÞδðx−Þ
ρH
□⊥

ρL; T−i ¼ −κ2μHμLδðxþÞΘðx−Þ
∂iρH
□⊥

ρL: ðC7Þ

Upon lowering the components with respect to the leading-order metric

ds2 ¼ 2dxþdx− − δijdxidxj þ 2κ2
ffiffiffiffiffi
s1

p
δðx−Þ ρH

□⊥
ðdx−Þ2 þ 2κ2μLxþΘðxþÞ

∂i∂j

□⊥
ρLdxidxj þOðρHρLÞ; ðC8Þ

we find the result in Eq. (60) of the main text. One can check the consistency of this result by verifying energy-momentum
conservation [Eq. (B14)]. We find that Eq. (60) violates energy-momentum conservation by a term proportional to ρHρL.
For point-particle sources, this corresponds to ρLρH ¼ δðxÞδðb − xÞ ¼ δðbÞδðb − xÞ, which therefore vanishes for our
regime of interest b ≫ RS. However, if one adds to Tþ− in Eq. (60) the term
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κ2μHμLΘðxþÞΘðx−ÞρHρL; ðC9Þ

it is curious to note that the energy-momentum conserva-
tion is restored even for vanishing impact parameter (albeit
a regime that cannot be probed in the approximation we are
working in). Conversely, energy-momentum conservation
enforces that Tþ− contains such a term.

APPENDIX D: DETAILS OF THE LIPATOV
VERTEX AND FOURIER TRANSFORMS

Our convention for the Fourier transform is (to avoid
clutter, we denote the function and its FT transform by the
same symbol)

fðxÞ ¼
Z

ddk
ð2πÞd e

ikμxμfðkÞ; fðkÞ ¼
Z

ddx e−ikμx
μ
fðxÞ:

ðD1Þ

This implies ∂μ → ikμ and ΘðxμÞ → −i=kμ [which follows
from ∂μΘðxμÞ ¼ δðxμÞ]. Finally, the FT of a product of
functions fðxÞgðxÞ is

F½fðxÞgðxÞ�ðkÞ≡
Z

ddx e−ikμx
μ
fðxÞgðxÞ

¼
Z

ddq
ð2πÞd fðk − qÞgðqÞ: ðD2Þ

Using these conventions, we next perform the Fourier
transform of Eqs. (B20) and (B21) in the dilute-dilute
approximation. [The analysis for Eq. (B19) was presented
in the main text.]
Inserting the leading-order result for h̃ij [from Eq. (63)]

and the energy-momentum tensor, a simple algebra gives
(where we restored factors of κ2 and used the freedom to
insert a contact term ρHρL in the second line below)

−□h−i ¼ 2κ4μHμLΘðxþÞ
�
xþΘðx−Þ∂i

�
∂kρH
□⊥

∂kρL þ ρHρL

�
− 2δðx−Þ ∂i∂jρL

□⊥
∂jρH
□⊥

�
; ðD3Þ

−□h−− ¼ 4κ4μHμLδðx−ÞxþΘðxþÞ
�
ρHρL −

∂i∂jρH
□⊥

∂i∂jρL
□⊥

�
: ðD4Þ

Taking the Fourier transform of these expressions (and using the momenta of the emitted graviton on-shell) gives

h−iðkÞ ¼
4κ4μHμL
k2 þ iϵk−

Z
d2q2
ð2πÞ2

1

kþ

�
ðq1 · q2Þ

�
q2i − ki

q22
k2

�
− ki

q21q
2
2

k2

�
ρH
q21

ρL
q22

; ðD5Þ

h−−ðkÞ ¼
4κ4μHμL
k2 þ iϵk−

Z
d2q2
ð2πÞ2

1

k2þ
½ðq1 · q2Þ2 − q21q

2
2�
ρH
q21

ρL
q22

: ðD6Þ

Equations (D5) and (D6) are the results quoted in the main text in Eq. (67).
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