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We study the classical quantum (CQ) hybrid dynamics of homogeneous cosmology from a Hamiltonian
perspective where the classical gravitational phase space variables and matter state evolve self-consistently
with full backreaction. We compare numerically the classical and CQ dynamics for isotropic and aniso-
tropic models, including quantum scalar-field induced corrections to the Kasner exponents. Our results
indicate that full backreaction effects leave traces at late times in cosmological evolution; in particular, the
scalar energy density at late times provides a potential contribution to dark energy. We also show that the
CQ equations admit exact static solutions for the isotropic, and the anisotropic Bianchi IX universes with
the scalar field in a stationary state.
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I. INTRODUCTION

The road to quantum gravity (QG), albeit long and full of
challenges, has provided some initial stepping stones. The
well-studied area of quantum fields propagating on curved
spacetime (QFCS) [1–3] may be considered a first step;
it applies where gravity is not dynamical. The next step
is a theory where the important issue of backreaction of
quantum matter on classical gravity is taken into account.
This requires an idea for classical quantum coupling. An
attempt toward incorporating backreaction is the semi-
classical Einstein equation

Gab þ Λgab ¼ 8πGhΨjT̂abðϕ̂; gabÞjΨi: ð1Þ

This is an equation for a semiclassical metric given a
(Heisenberg) state jΨi of matter. It requires for its formu-
lation a construction of the stress-energy tensor on an
apriori undetermined metric. It is also (manifestly) non-
linear in the state, unlike QFCS and QG—if it is presumed
to be like usual quantum theory. Other issues with this
proposal have been pointed out in the literature [4]. Despite
these shortcomings, there have been many investigations of
this equation (see, e.g., [5–8] and references therein). In
addition, its applications to cosmology have been studied
where the expectation value on the stress-energy tensor
includes higher derivative corrections [9]. There is also
recent work on this equation, again with higher derivative
corrections where the metric is chosen to be static [10]. The
standard approach used for studying (1) comes from noting

that its right hand side, suitably renormalized, is in general
a symmetric divergence free tensor FabðgÞ; this tensor
inevitably has higher derivative curvature terms [8] com-
puted to some order, with the accompanying issues that
come with higher time derivatives.
In contrast, the work we report here uses a canonical

approach starting from the Arnowitt-Deser-Misner (ADM)
Hamiltonian formulation for general relativity. The idea
is to formulate a “semiclassical geometrodynamics” with
effective constraints where the matter field is quantized and
the gravitational phase space variables remain classical;
the matter state evolves via a (functional) time dependent
Schrodinger equation, and the gravitational phase space
variables evolve via the effective constraints. As we show
below, this system is self-consistent and provides a method
to compute state and geometry evolution with full back-
reaction. The approach is similar to that used recently in the
so-called Friedmann-Schrödinger equation [11], where a
quantum state and scale factor evolve self-consistently from
initial data via the Friedmann equation and the time-
dependent Schrödinger equation.
To illustrate the approach and demonstrate its potential

usefulness, we consider the case of scalar field coupled to
homogeneous cosmology, both the isotropic and aniso-
tropic cases. The general case of the latter with three scale
factors moving in a potential has been the subject of much
classical study beginning with the pioneering work of
Belinskii, Lifshitz and Khalatnikov (BKL) [12]; further
classical work on these models appears in [13,14]; a survey
of Hamiltonian cosmology, mainly in vacuum with a view
to quantization appears in [15]. To date there is no
comprehensive study of the corresponding semiclassical
system, at least along the lines we present here.
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While our main interest in this paper is semiclassical
cosmological dynamics with full backreaction, we also
point out that there are static solutions of the classical
quantum equations. These are of interest in their own right
and also due to past work, both in general relativity and in
modified theories of gravity [16–21]; our approach may be
viewed as a “modified gravity theory,” but not one with
higher derivative terms.
We begin in Sec. II with a numerical study of the isotropic

case where we show the self-consistency of the classical
quantum (CQ) system, including preservation of the effec-
tive constraint under both state and geometric evolution, and
conservation of probability; we give dynamical solutions
numerically, and static semiclassical solutions that resemble,
but are different from the classical Einstein Static Universe;
lastly, we compare classical and semiclassical evolution from
comparable initial data. In Sec. III we generalize to the case
of anisotropic cosmology; we solve the semiclassical equa-
tions numerically to find quantum matter-induced correc-
tions to the Kasner exponents and their classical sum rules;
we also show that the Bianchi IX case admits static CQ
solutions. We conclude in Sec. IV with a summary and
discussion of further applications of this approach to semi-
classical geometrodynamics.

II. CLASSICAL-QUANTUM ISOTROPIC
COSMOLOGY

The system we consider arises as a symmetry reduction
of the Arnowitt-Deser-Misner (ADM) canonical action

S ¼
Z

dtd3x
�
πab ˙qab þ pϕϕ̇ − NðHG þHϕÞ

− Na
�
CG
a þ Cϕ

a
��

:

ðqab; πabÞ and ðϕ; pϕÞ are phase space variables for gravity
and the scalar field respectively; N is the shift, Na is the
lapse; CG

a and Cϕ
a are the diffeomorphism constraint func-

tions; HG and Hϕ are the components of the Hamiltonian
constraint:

HG ¼ 1ffiffiffi
q

p
�
πabπab −

1

2
π2
�
þ ffiffiffi

q
p ðΛ − Rð3ÞÞ

Hϕ ¼ 1

2

�
p2
ϕffiffiffi
q

p þ ffiffiffi
q

p
qab∂aϕ∂bϕ

�
þ ffiffiffi

q
p

VðϕÞ

CG
a ¼ −2Dbπ

b
a

Cϕ
a ¼ pϕ∂aϕ; ð2Þ

[∂a and Da are the spatial partial and covariant derivatives
and we have set 8πG ¼ 1 (to be reintroduced later)].
The reduced canonical action for the 3-sphere

Friedmann-Lemaitre-Robertson-Walker model is given
by the parametrization [15] qab ¼ a2ðtÞΣab and
πab ¼ ðpðtÞ=6aðtÞÞΣab

ffiffiffiffiffiffiffiffiffiffi
detΣ

p
, where

Σabdxadxb ¼ R2
�
σ21 þ σ22 þ σ23

� ð3Þ

is the 3-sphere metric of curvature κ ¼ 1=R2 defined
by the frame fields σ1 ¼ sinψ sin θdϕþ cosψdθ, σ2 ¼
cosψ sinθdϕ− sinψdθ, σ3¼ cosθdϕþdψ , with θ∈ ½0; π�,
ϕ∈ ½0; 2π�, ψ ∈ ½0; 4π�. The ADM action becomes

S ¼ V0

Z
dt
�
pȧþ pϕϕ̇ − NðHG þHϕÞ

� ð4Þ

HG ¼ −
p2

24a
þ Λa3 − κa; ð5Þ

Hϕ ¼ p2
ϕ

2a3
þ a3VðϕÞ ð6Þ

where V0 ¼
R ffiffiffiffiffiffiffiffiffiffi

detΣ
p ¼ R3

R
σ1 ∧ σ2 ∧ σ3.

Under the rescaling R → lR, we have κ → κ=l2,
V0 → l3V0, and the phase space variables scale as

a→ a=l; p→ p=l2; ϕ→ ϕ; pϕ → pϕ=l3; ð7Þ

(the latter because pϕ is a density of weight one). Therefore
it is useful to define the scale invariant variables

a → aðV0Þ1=3; κ → κðV0Þ2=3;
p → pðV0Þ2=3; pϕ → V0pϕ; ð8Þ

and the invariant volume V ≡ V0a3; the rescaled a has
dimension length and the rescaled κ is dimensionless. The
fundamental Poisson bracket becomes fa; pg ¼ 1. We use
these variables in the following.
Let us first see if there are classical static solutions. The

equations of motion (with 8πG reintroduced) are

H≡HG þ 8πGHϕ ¼ 0; ð9Þ

ȧ ¼ fa;Hg ¼ −
p
12a

; ð10Þ

ṗ ¼ fp;Hg ¼ −
p2

24a2
− 3Λa2 þ κ

þ 24πG

�
p2
ϕ

2a4
− a2VðϕÞ

�
ð11Þ

ϕ̇ ¼ fϕ;Hg ¼ pϕ

a3
; ð12Þ

ṗϕ ¼ fpϕ;Hg ¼ −a3V 0ðϕÞ: ð13Þ

Let us consider the static ansatz

a ¼ R ¼ constant > 0;

ϕ ¼ ϕ0 ¼ constant; p ¼ pϕ ¼ 0: ð14Þ
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Then Eq. (13) requires V 0ðϕ0Þ ¼ 0, i.e. ϕ0 must be an
extremum of the potential, or the potential is a constant in
a domain around ϕ0. With v0 ≡ Vðϕ0Þ Eqs. (9) and (11)
become

ΛR2 − κ þ 8πGR2v0 ¼ 0;

−3ΛR2 þ κ − 24πGR2v0 ¼ 0; ð15Þ

These have the solution

Λ ¼ −8πGv0; κ ¼ 0; ð16Þ

that is, the cosmological constant is fixed by the potential
at an extremum value ϕ ¼ ϕ0; this is of course flat space
interpreted as an exact cancellation of the cosmological
constant with Vðϕ0Þ. However, if the potential is quadratic,
VðϕÞ ¼ m2ϕ2=2, Eq. (13) requires ϕ0 ¼ 0 due to the static
ansatz (14), and Eqs. (15) have no nontrivial solutions.
To summarize the classical situation, we have seen that

there are flat static solutions for nonquadratic potentials,
but no solutions for the quadratic potential. We will see that
the latter is not the case for the classical quantum equations
we propose.

A. Classical quantum equations: FRW

We now describe the coupling of classical gravity with a
quantized scalar field with quadratic potential. A canonical
version for the model may be defined in the Schrödinger
picture by starting with an effective Hamiltonian constraint
where the scalar field is quantized, and deriving dynamics
from such a constraint [11]; the scalar field Hamiltonian
operator is

Ĥϕ ¼ p̂2
ϕ

2a3
þ 1

2
a3m2ϕ̂2: ð17Þ

The proposed equations for the classical quantum
theory are

Heff ≡ −
p2

24a
þ Λa3 − κaþ 8πGhψ jĤϕjψi

¼ 0; ð18Þ

ijψ̇i ¼ Ĥϕjψi; ð19Þ

ȧ ¼ fa;Heffg ¼ −
p
12a

; ð20Þ

ṗ ¼ fp;Heffg

¼ −
p2

24a2
− 3Λa2 þ κ − 8πG

∂

∂a
hψ jĤϕjψi: ð21Þ

The last term of (21) may be expanded to give

∂

∂a
hψ jĤϕjψi ¼

1

ȧ

	
hψ̇ jĤϕjψi þ hψ jĤϕjψ̇i



þ hψ j ∂

∂a
Ĥϕjψi

¼ −
3

2

�hp̂2
ϕiψ
a4

− a2m2hϕ̂2iψ
�
; ð22Þ

the first term is zero by (19) and the last expression is a
direct calculation from the scale factor dependence of Ĥϕ

in (17). It is readily checked that the equations of motion
ensure conservation of the effective Hamiltonian constraint
Heff (18):

d
dt

Heff ¼
∂Heff

∂a
ȧþ ∂Heff

∂p
ṗþ 8πG

�hψ̇ jĤϕjψi þ hψ jĤϕjψ̇i
�

¼ −
�
−

p2

24a2
− 3Λa2 þ κ − 8πG

∂

∂a
hψ jĤϕjψi

��
−

p
12a

�
þ
�
−

p
12a

�

×

�
−

p2

24a2
− 3Λa2 þ κ − 8πG

∂

∂a
hψ jĤϕjψi

�
þ 8πG

�
ihψ jĤ2

ϕjψi − ihψ jĤ2
ϕjψi

�
¼ 0: ð23Þ

It is also readily shown that probability is conserved.
This ensures that the proposed system of equations is
self-consistent.
Initial data for this classical quantum system at some

t ¼ t0 is the set faðt0Þ; pðt0Þ; jψiðt0Þg subject to the
constraint Heff ¼ 0; such data may be constructed by

choosing aðt0Þ and jψiðt0Þ, and solving Heff ¼ 0 for
pðt0Þ. In this way the pðt0Þ is state dependent, and the
free data is faðt0Þ; jψiðt0Þg. In contrast, the constraint-free
data for the classical system is faðt0Þ;ϕðt0Þ; pϕðt0Þg, with
p determined by solving the Hamiltonian constraint.
Conservation of the semiclassical constraint (shown above)
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ensures, as in classical theory, that the evolved data
continues to satisfy the constraint; we verify this explicitly
in the numerical solutions presented below.

B. Static classical quantum solutions

Existence of static solutions of the classical quantum
equations may be checked by setting a¼ R¼ constant> 0

and p ¼ 0, and jψi ¼ jni, an eigenstate of Ĥϕ (17). For
fixed a ¼ R,

Ĥϕjni ¼ Enjni ¼ mðnþ 1=2Þjni: ð24Þ

This reduces the evolution equations (18)–(21) to

ΛR3 − Rκ þ 8πGmðnþ 1=2Þ ¼ 0; ð25Þ

− 3R2Λþ κ ¼ 0 ð26Þ

jψiðtÞ ¼ e−iEnðt−t0Þjni; ð27Þ

where the first equation comes from (18), the second from
(21), and the third is the stationary state solution of the
TDSE; Eq. (20) holds identically. Viewing the first two
equations as conditions on Λ and κ gives the solutions

κn ¼ 12π
Gm
R

�
nþ 1

2

�
¼ 12πGR2hnjρ̂ϕjni; ð28Þ

Λn ¼ 4π
Gm
R3

�
nþ 1

2

�
¼ 4πGhnjρ̂ϕjni; ð29Þ

where ρ̂ ¼ Ĥϕ=R3; [recall that κ is dimensionless in the
scale invariant variables (8)].
Thus, unlike the classical case with quadratic potential,

static semiclassical solutions arise with set values of both
the cosmological constant and curvature; there are no static
solutions with either κ or Λ being zero. The reason there
is a semiclassical static solution and no classical one is that
the expectation value hnjĤϕjni is independent of the scale
factor (unlike the classical Hϕ), therefore the Poisson
bracket fp; hnjĤϕjnig ¼ 0; this simplifies the ṗ ¼ 0 con-
dition and permits a solution. Intuitively, an apparent
reason is that there is a state of the massive scalar field
in a 3–sphere universe which does not spread due to the
values of the cosmological constant and curvature.
If the effective Hamiltonian constraint (18) is calculated

in a coherent state jαi of the scalar field, then hαjĤϕjαi ¼
mjαj2 þ 1=2, and again fp; hαjĤϕjαig ¼ 0; thus, the static
semiclassical solution still arises, but now with (25)–(27)
replaced by

ΛR3 − Rκ þ 8πGmðjαj2 þ 1=2Þ ¼ 0; ð30Þ

−3R2Λþ κ ¼ 0 ð31Þ

jαiðtÞ ¼ e−jαj2=2
X∞
n¼0

e−iEnðt−t0Þ αnffiffiffiffiffi
n!

p jni: ð32Þ

The solution is the same as (28)–(29) with n replaced by
jαj2, and unlike the eigenstate case it allows any real values
of κ and Λ, but with both dependent on jαj.
In summary, we see that there are no static solutions for

coupling to a classical massive scalar field, but there are for
the classical quantum case. For comparison, let us recall the
static Friedmann equations ða ¼ RÞ for perfect fluid
equation of state P ¼ σρ:

−
4πGρ
3

ð1þ 3σÞ þ Λ
3
¼ 0 ð33Þ

8πGρ
3

þ Λ
3
−

κ

R2
¼ 0; ð34Þ

which lead to

Λ ¼ 4πGρð1þ 3σÞ; ð35Þ

κ ¼ 4πGρR2ð1þ σÞ: ð36Þ

It is therefore evident that classical static solutions arise for
Λ ¼ 0 and κ > 0 if σ ¼ −1=3; and Λ > 0 and κ ¼ 0 if
σ ¼ −1; the R × S3 Einstein static Universe is the case
Λ > 0, κ > 0 for any σ ≥ 0.
In contrast, the classical quantum static solutions require

Λ > 0 and κ > 0 from Eqs. (28)–(29); these exist for
coherent states and any linear combination of energy
eigenstates of the scalar field. Thus, these are like the
Einstein static Universe but with Λ and κ determined by the
scalar field state.
In summary, for the massive scalar field, there are no

classical static solutions, but there are classical quantum
static solutions.

C. Linear stability analysis

To check linear stability of the static solution (a ¼ R,
pa ¼ 0, and jψi ¼ jni), let

aðtÞ ¼ Rþ ϵa1ðtÞ þOðϵ2Þ
pðtÞ ¼ 0þ ϵp1ðtÞ þOðϵ2Þ

jψiðtÞ ¼ jni þ ϵjχiðtÞ þOðϵ2Þ; ð37Þ

with

jχiðtÞ ¼
X
k

ckðtÞjki; ð38Þ

where jki are eigenstates at the static point a ¼ R; we insert
these into the equations of motion (18)–(21). The effective
constraint becomes
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Heff ¼ ΛR3 − κRþ 8πGmðnþ 1=2Þ
þ ϵ
�
3Λa1R2 − κa1 þ 8πG

�hnjĤð1Þ
ϕ jni

þhχjĤϕjni þ hnjĤϕjχi
��
; ð39Þ

where

Ĥð1Þ
ϕ ¼ 3

2

�
−
a1
R4

p̂2
ϕ þ a1R2m2ϕ̂2

�
: ð40Þ

The first order constraint and evolution equations are

Hð1Þ
eff ≡mð2nþ 1ÞRefcng ¼ 0; ð41Þ

ȧ1 ¼ −
p1

12R
; ð42Þ

ṗ1 ¼ −
�
6ΛRþ 9m

R2

�
nþ 1

2

��
a1 −

3m
R

gðnÞ; ð43Þ

iċk ¼ Ekck þ
3ma1
2R

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1Þ

p
δk;n−2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þðnþ 2Þ

p
δk;nþ2

�
; ð44Þ

where in (43)

gðnÞ ¼ Refcnþ2g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þðnþ 2Þ

p
þ Refcn−2g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1Þ

p
gðnÞ ¼ Re


X
k

ckðtÞ
�	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðk − 1Þ
p

δn;k−2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 1Þðkþ 2Þ

p
δn;kþ2



: ð45Þ

From (44) it is evident that only cn−2 and cnþ2 evolve with
a “source,” and all other perturbed state components
(k ≠ ðn − 2Þ; ðnþ 2Þ) satisfy ckðtÞ ¼ ckð0Þe−iEkt, Further-

more, the perturbed constraint Hð1Þ
eff ¼ 0 is solved for

all time if cnð0Þ ¼ 0; i.e., the state perturbation excludes
the static solution state jni, i.e., jχiðtÞ ¼Pk≠n ckðtÞjki.
Interestingly, this also ensures that probability is conserved
to first order:

hψ jψi ¼ hnjni þ ϵðhχjni þ hnjχiÞ þOðϵ2Þ
¼ 1þOðϵ2Þ: ð46Þ

For n ¼ 0 the above equations for linear perturbations
reduce to a coupled set for a1, p1 and c2; the equations for
c1 and ck; k > 2 have solutions ck ¼ expf−iEktgckð0Þ.
The three eigenvalues for the former set depend on the
values of the static solution parameters m, R and Λ;
a numerical check for a range of these parameters reveals
that two of these are growing modes, and one is a
decaying mode.

D. Comparison of exact classical quantum
and classical dynamics

In the last section we showed that there are exact static
solutions of the classical quantum system and discussed
their linear stability. We now present numerical solutions of
the full classical quantum equations (18)–(21) with initial
data that is a small perturbation of the static classical
quantum universe; we compare these with the evolution of
the classical system (9)–(13) with the same initial data.
Specifically, we track the evolution of energy density,
Hubble parameter, and acceleration in the two systems,
while checking the conservation of the respective
Hamiltonian constraints and the probability for the classical
quantum case.
Suppose fas; jni;Λn; κn;mg is a static solution of the

classical quantum equations. Then, the perturbed data we
consider is the set

fas þ Δa; jnig ð47Þ

for the same parameter values fΛn; κn;mg. Solving
Heff ¼ 0 (18) with this perturbed data gives the initial
value of p. From this we can compute initial values for the
observables of interest, the Hubble and acceleration param-
eters H ¼ ȧ=a and q ¼ ä=aH2, and energy density ρ ¼
hĤeffin=a3; the initial acceleration q is proportional to ṗ
and is determined by the right-hand side (rhs) of Eq. (21).
Initial data for the classical equations is the set

fas þ Δa;ϕ; pϕg, with p determined by solving the
Hamiltonian constraint. Matching the classical quantum
data requires the initial values of fϕ; pϕg from the state jni.
This is accomplished by setting

ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffi
hϕ̂2in

q
; pϕ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
hp̂2

ϕin
q

; ð48Þ

a choice that matches the initial energy densities ρ and
accelerations q for the CQ and C equations. The truncation
of the scalar field Hilbert space used for numerical
evolution is n ¼ 40, a number that does not affect prob-
ability conservation provided maximum evolution time is
not too large and the chosen initial state is close to the
ground state.
Figure 1 illustrates typical evolution for the classical

quantum and classical systems. Initial data is a0 ¼ as þ 5
with as ¼ 10 with the scalar field initially its ground state
jn ¼ 0i; m ¼ 10−3, Λ ¼ 2.5 × 10−10, and κ ¼ 7.5 × 10−6

(in Planck units) are fixed by the static solution for as ¼ 10.
It is evident that the CQ and C evolutions differ, with the
classical evolution of various quantities oscillating around
the CQ one, and that at late times the CQ and C approach
each other with small differences; the fifth frame shows the
excitation of higher states of the scalar field as the universe
expands (with cn ¼ c40, the truncation level of the oscil-
lator basis used; the last frame demonstrates numerical
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conservation of probability and the effective Hamiltonian
constraint.
Figure 2 shows a similar evolution to that in Fig. 1, the

only difference being the choice of initial state which is
now ð ffiffiffi

3
p

=2Þj0i þ ð1=2Þj1i. The comparative dynamics is
nearly identical, except for the excitation probabilities of
higher scalar field states. This occurs because the state
evolution also connects all odd states in addition to even
states as in Fig. 1. It is also evident that there is now also a
small excitation of the last level in the truncation of the
Hilbert space used for the numerical evolution.
A variety of initial data that are perturbations of the

semiclassical static solution yield qualitatively similar
evolution. The agreement of the classical and classical

quantum results at late times provides justification for the
classical quantum effective Hamiltonian constraint. Lastly,
instead of eigenstates of the scalar Hamiltonian, we can
also use coherent states, or arbitrary linear combinations
thereof. The results are again qualitatively similar. The
reason is that although the state evolves, hĤϕi does not; the
initial state only serves to fix the initial momentum p
conjugate to the scale factor via the effective constraint.

III. CLASSICAL QUANTUM ANISOTROPIC
COSMOLOGY

In this section we extend the approach used above to the
flat Kasner metrics

FIG. 1. A typical comparative evolution of the classical quantum (CQ) and classical (C) evolution with scalar field of mass 10−3

(Planck units) initially in its ground state j0i. Initial data is a perturbation of a static semiclassical solution; the first four frames show the
scale factor, Hubble parameter, acceleration, and density, relative to their initial values; the fifth frame shows the occupation probabilities
jcij2 of higher scalar field states (with cn ¼ c40); the last frame confirms conservation of probability and of the effective Hamiltonian
constraint.
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ds2 ¼ −N2ðtÞdt2 þ
X3
k¼1

�
akðtÞdxk

�
2 ð49Þ

With a scalar field the reduced ADM canonical action for
this metric is

S ¼
Z

dt

 X3
k¼1

πkȧk þ pϕϕ̇ − NðHK þHϕÞ
!
;

HK ¼ 1

4v

�X
k

λ2k −
1

2

�X
k

λk

�
2
�
þ Λv

Hϕ ¼ p2
ϕ

2v
þ vVðϕÞ; ð50Þ

where v ¼Qk ak and λk ¼ akπk.

For the vacuum case with Λ ¼ 0 and N ¼ 1, Hamilton’s
equations give

λ̇i ¼ fλi;HKg ¼ 0; ð51Þ

v̇ ¼ fv;HKg ¼ −
1

4

X
k

λk ≡ μ ð52Þ

hk ¼
ȧk
ak

¼ 1

2v
ðλk þ 2μÞ: ð53Þ

Thus, λi are constants of the motion,

vðtÞ ¼ μtþ v0 ð54Þ

and the solution for the scale factors is

FIG. 2. A typical comparative evolution of the classical quantum (CQ) and classical (C) evolution for the same data as in Fig. 1 but
with scalar field initial state ð ffiffiffi

3
p

=2Þj0i þ ð1=2Þj1i.
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akðtÞ ¼ akð0Þ½vðtÞ�pk; pk ¼ 1þ λk
2μ

: ð55Þ

It is readily verified from the definition of μ (52) that the
Kasner exponents pk satisfy

X
k

pk ¼ 1;
X
k

p2
k ¼ 1; ð56Þ

where the latter follows from the Hamiltonian constraint
HK ¼ 0. These steps summarize the derivation of the well-
known Kasner solution from the canonical equations. For
nonzero scalar field and Λ, λk are no longer constants of the
motion as fλk; vg ¼ −v.
To see if there are classical static solutions with scalar

field and nonzero Λ, we set ϕ ¼ ϕ0 ¼ constant, pϕ ¼
0 ¼ πk, and ak ¼ ak0 ¼ constants; in addition the right-
hand side (rhs) of ṗϕ and π̇k ¼ fπk;HK þHϕgmust be set
to zero. These conditions and the Hamiltonian constraint
respectively give

V 0ðϕÞjϕ0
¼ 0;

fπk; vg
�
Λþ Vðϕ0Þ

� ¼ 0;

v0
�
Λþ Vðϕ0Þ

� ¼ 0: ð57Þ

Hence, there are nontrivial static solutions provided the
potential has extrema ϕ0 ≠ 0 with tuned Λ ¼ −Vðϕ0Þ.
Such solutions would have at least one linearly stable mode
at extrema that are local minima, the double well being an
obvious example; there is no nontrivial static solution for
the purely quadratic potential.

A. CQ Kasner

We now consider a quantum scalar field coupled to
Kasner spacetime. As for the FRW case discussed above we
define the dynamics through an effective Hamiltonian
constraint

Heff ≡HK þ hψ jĤϕðvÞjψi: ð58Þ

The proposed semiclassical geometrodynamics equations
in the Schrodinger picture for the Kasner model are

Heff ¼ 0; ð59Þ

ijψ̇i ¼ ĤϕjψiðvÞ; ð60Þ

ȧk ¼ fak;HKg; ð61Þ

π̇k ¼
�
πk;HK þ hψ jĤϕðvÞjψi

�
: ð62Þ

The scalar field Hamiltonian operator is

Ĥϕ ¼ p̂ϕ

2v
þ vVðϕ̂Þ ð63Þ

Evolution of πk is explicitly state dependent through the
factor v in Ĥϕ, and that of the scale factors ak is implicitly
through πk. As for the FRW case above, state evolution is in
the Schrodinger picture in a truncated fixed oscillator
basis jψi ¼PN

k ckðtÞjki.
It is readily verified that Heff is conserved using the

evolution equations:

d
dt

Heff ¼
X3
k¼1

�
∂Heff

∂ak
ȧk þ

∂Heff

∂πk
π̇k

�

þ hψ̇ jĤϕjψi þ hψ jĤϕjψ̇i
¼ 0:

B. Numerical solution

Let us first note that there are no static solutions of the
above equations: setting the scale factors to constants and
their conjugate momenta to zero, the effective Hamiltonian
constraint in an eigenstate of Hϕ and the π̇k equations are

Λv0 þmðnþ 1=2Þ ¼ 0;

fπk;HKgjπk¼0 ¼ v0Λ=ak; ð64Þ

the first gives Λ ¼ −mðnþ 1=2Þ=v0 ≠ 0 while the second
requires Λ ¼ 0. This indicates that static solutions require
nonzero curvature; this is shown below for the Bianchi
IX case.
Of interest for a numerical study of Eqs. (59)–(62) is the

dynamics of Kasner exponents (55); these are constants of
the motions for the vacuum equations with Λ ¼ 0, but not
otherwise. In particular, it is of interest to compare their
dynamics in the classical and classical quantum cases as the
singularity is approached and as the universe expands and
approaches isotropy.
Numerical solutions of Eqs. (59)–(62) are shown in

Fig. 3 and 4 for the initial data a1 ¼ 15.0, a2 ¼ 14.0,
a3¼ 4.0, π1¼−0.2, π2 ¼ −0.1, withm¼ 0.001 and Λ¼ 0,
and initial scalar states j0i and ð ffiffiffi

3
p

=2Þj0i þ ð1=2Þj1i
respectively; π3 is determined by solving Heff ¼ 0, and
the initial data for the classical scalar field case is again
determined by Eq. (48). The first frame shows the evolving
Kasner exponents for the CQ case, including one of the
sum rules; isotropization occurs as the universe expands, as
for the classical case, but there are differences in both the
volume and density at large volume. The energy density
ρ=ρ0 for the CQ case approaches a constant at large volume
whereas the energy density of the C case continues to
decline. Both the volume and energy density are larger for
the CQ case at late times.
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Figure 5 shows the difference in the evolution of the C
and CQ exponents pC

k − pCQ
k , k ¼ 1, 2, 3 and the difference

between their sum of squares for the data used for Fig. 4;
while these differences are small, their cumulative effect on
volume and energy density is evident at late time in the
volume and scalar energy density mentioned above.
The differences between Figs. 3 and 4 arise solely from

the different initial states of the scalar field. In both cases
the expectation value of the scalar density ρ ¼ hĤϕi=v
differs from the classical ρ; the latter shows some oscil-
lation and decays to zero, whereas the former does not and
appears to decay at a much slower rate (up to the integration
times shown). This is potentially significant in that it
suggests the emergence of a “cosmological constant” or
equivalent “dark energy” apparently caused by excitation
of higher states of the scalar field at late times together with

isotropization. The other main difference is in the volume,
which at late times is larger than for the classical equations
for both initial scalar states.
Lastly, the other main difference between Figs. 3 and 4 is

the excitation of higher energy levels of the scalar field as
the universe expands. This is the homogeneous analog of
particle creation; the initial state j0i shows excitation of
only the even levels (since the Hamiltonian is quadratic in
creation/annihilation operators) whereas the initial stateffiffiffi
3

p
=2Þj0i þ ð1=2Þj1i shows excitation of all levels. The

Hilbert space truncation level used was n ¼ 50 for both
figures.

C. CQ Bianchi universes

The difference between Kasner and the other Bianchi
models is the addition of spatial curvature. This is best

FIG. 3. Numerical solution of the Kasner classical quantum equations with the scalar field starting in the vacuum j0i: the first frame
shows the (dynamical) Kasner exponents, followed by comparison graphs of volume and scalar field density; the forth frame shows
conservation of the effective constraint and probability; the last two frame show the excitation of the higher scalar states, and the
difference between the classical and classical quantum Kasner exponents.
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studied in Misner’s parametrization [22] where the uni-
verse’s volume is separated from its anisotropy variables;
the curvature arises as a function of the latter through
a gravitation potential term in the Hamiltonian con-
straint [15]. Misner’s parametrization is a transformation
of the metric variables ða1; a2; a3Þ to ðΩ; β−; βþÞ:

Ω ¼ −
1

3
ln ða1a2a3Þ ð65Þ

βþ ¼ 1

3
ln

�
a1a2
a23

�
; ð66Þ

β− ¼ 1ffiffiffi
3

p ln

�
a1
a2

�
: ð67Þ

The conjugate momenta are related by

pΩ ¼ −ðapa þ bpb þ cpcÞ; ð68Þ

pþ ¼ apa þ bpb − 2cpc; ð69Þ

p− ¼
ffiffiffi
3

p
ðapa − bpbÞ: ð70Þ

In terms of these variables, the CQ effective Hamiltonian
constraint is

FIG. 4. Numerical solution of the Kasner classical quantum equations with the scalar field starting in the state ð ffiffiffi
3

p
=2Þj0i þ ð1=2Þj1i:

the first frame shows the (dynamical) Kasner exponents for the CQ case, followed by comparison graphs of volume and scalar field
density; the last two frames show the excitation of the higher scalar states; cn ¼ c50 is the truncation level of the scalar field basis.
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Heff ¼
e3Ω

24
ðp2þ þ p2

− − p2
ΩÞ þ e−3ΩΛ

þ e−ΩVðβþ; β−Þ þ hĤϕiψ
¼ 0; ð71Þ

where

hĤϕiψ ¼ e3Ω

2
hp̂2

ϕiψ þ 1

2
m2e−3Ωhϕ̂2iψ : ð72Þ

The spatial curvature term is e−ΩVðβ−; βþÞ which is
determined by the Bianchi type summarized in the table
below. The canonical equations of motion are

Ω̇ ¼ fΩ; Hg ¼ −
e3Ω

12
pΩ ð73Þ

β̇� ¼ fβ�; Hg ¼ e3Ω

12
p� ð74Þ

ṗ� ¼ fp�; Hg ¼ −e−Ω
∂

∂β�
Vðβþ; β−Þ ð75Þ

ṗΩ ¼ fpΩ; Hg ¼ −3ðHK − e−3ΩΛÞ

þe−ΩVðβþ; β−Þ −
∂

∂Ω
hψ jĤϕjψi: ð76Þ

where the last term expands as

∂

∂Ω
hĤϕiψ ¼ 1

Ω̇
� ˙hψ jĤϕjψi þ hψ jĤϕ

˙jψi�þ�∂Ĥϕ

∂Ω

�
ψ

¼ 3

2

�
e3Ωhp̂2

ϕiψ −m2e−3Ωhϕ̂2iψ
�
: ð77Þ

Bianchi type Vðβþ; β−Þ
I 0

II e−8βþ

III 4e−ð2βþ−2
ffiffi
3

p
β−Þ

IV e4βþ
�
12þ e4

ffiffi
3

p
β−
�

V 12e4βþ

VIII e−8βþ þ 2e4βþ
�
cosh

�
4
ffiffiffi
3

p
β−
�
− 1
�

þ4e−2βþ cosh
�
2
ffiffiffi
3

p
β−
�

IX e−8βþ þ 2e4βþ
�
cosh

�
4
ffiffiffi
3

p
β−
�
− 1
�

−4e−2βþ cosh
�
2
ffiffiffi
3

p
β−
�

We now check if there are static solutions for any of the
Bianchi universes by setting metric functions constant and
all momenta zero:

Ω ¼ Ω0; βþ ¼ βþ; β− ¼ β̄−;

pΩ ¼ pþ ¼ p− ¼ 0; ð78Þ

in (71) and (73)–(76) with jψi ¼PN
k¼1 ckjki, a linear

combination of eigenstates of the quantum scalar field
Hamiltonian. This gives the conditions

e−3Ω0Λþ e−Ω0Vðβ̄þ; β̄−Þ

þm
XN
k¼0

jckj2ðkþ 1=2Þ ¼ 0; ð79Þ

V;β� ¼ 0; ð80Þ

3e−Ω0Λþ e−Ω0Vðβ̄þ; β̄−Þ ¼ 0; ð81Þ

all other equations vanish identically, as does the last
term in (76).
From this it is evident that static solutions of the CQ

equations require an extremum of the Bianchi potential V;
with this, the last equation fixes the value of Λ, and the first
fixes the expectation value of scalar Hamiltonian. Extrema
of the potential occurs only for the Bianchi IX potential,
and for this case, the extremum is a minimum. Hence, the
static solution is stable.
Lastly, we note that requiring a static solution of the

corresponding classical equations involves setting ϕ ¼
constant and pϕ ¼ ṗϕ ¼ 0. For the massive scalar field,
this imposes ϕ ¼ 0; hence there is no classical static
solution for the same Bianchi potential.
This result on the existence of static solutions of the

Bianchi IX model shows that there can be significant
differences between CQ and classical models. An intuitive
check of linear stability suggests that the directions

FIG. 5. The difference between the CQ and C dynamical
Kasner exponents for the data used for Fig. 4.
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corresponding to anisotropies are stable since the Bianchi
IX has a minimum at β� ¼ 0; however, like the FRW CQ
equations, there will be an unstable mode in the volume-
state variables. This discussion is a first step toward a more
complete numerical investigation of the Bianchi IX CQ
equations (to be pursued elsewhere).

IV. SUMMARY AND DISCUSSION

We studied a “semiclassical” hybrid geometrodynamics
defined by first-order Hamiltonian equations for classical
geometry coupled to time-dependent Schrodinger equation
for the state of a quantum scalar field. This system
incorporates full backreaction of the quantum matter on
classical geometry in a self-consistent manner.
We next applied the idea to study the dynamics of

homogeneous isotropic and anisotropic cosmology with a
truncation of the scalar field Hilbert space. We showed that
there are static solutions for both cases with certain
conditions, and that these solutions are linearly unstable.
That static spacetimes can arise in the semiclassical

Einstein equation is curious from the physical point of view.
It suggests that the backreaction of the (global) quantum
matter state on a classical spacetime, through the effective
Hamiltonian constraint, can create a static classical quantum
bound state. From a mathematical perspective, the fact that
the equations are nonlinear in the state opens up the
possibility of unusual solutions; such have been noted in
the semiclassical spin-oscillator model [23].
For the isotropic case we studied numerically the full

evolution of initial data that is a perturbation of the semi-
classical static universe parameters, for both the classical
quantum and classical equations. This revealed some
similarities and differences; the latter arise due to the
oscillations of the classical scalar field at early times,
and in the late time decay of the energy densities. Of
particular interest is that the free data for the classical
quantum system is the initial scale factor and scalar
quantum state. This raises the question of whether the
issue of fine tuning of scalar field initial data of the classical
system can be avoided in the classical quantum equations;
only an initial quantum state is required rather than initial
values of the scalar field and its momentum.
That the past of an inflationary classical quantum

universe has a static 3-sphere attractor in the past may
be compared with the purely classical “emergent universe”
model proposed in [19], where the scalar field has an
arbitrary scalar potential (unlike only the mass term here).
Our analysis provides a similar model for the origin of
inflation starting from a classical quantum model with full
backreaction.
It is useful to contrast our Friedmann-Lemaitre-

Robertson-Walker results with other works on the insta-
bility of emergent universes [24–26]: the first of these
works argues that in a minisuperspace quantization without
matter, an emergent universe would collapse; the second

rules out oscillating solutions in loop quantum cosmology
as the origin of an emergent universe; the third, unlike our
case, considers the evolution of a scalar field wave packet
on a fixed background (i.e., no backreaction). Including
nonperturbative backreaction (as we do here) results in a
static universe that has an unstable mode; it is this mode
that leads to inflation, while the other mode decays
exponentially back to the semiclassical static universe.
For the aniotropic case we show that unstable static

universes also arise for the Bianchi IX model; this is
because one of the conditions for static solutions is the
requirement of critical points of the curvature potential.
Thus, while we have shown that the semiclassical static

universe derived here can inflate or stay stable, the question
of how it might arise from quantum gravity remains,
as does the validity of the semiclassical Einstein equation
as a transitional theory between quantum gravity and
quantum theory on curved spacetime; a recent discussion
of this issue appears in [23], and a linear alternative is
proposed in [27].
The numerical evolution of the CQ equations for the

isotropic and Kasner cases shown in Figs. 1–4 show
significant differences from classical evolution, especially
concerning volume and energy density—for the CQ equa-
tions both quantities are larger than that for the classical
equations. In particular, the scalar energy density energy
tends to a constant, a fact following from the expression

hρ̂iψ ¼ hp̂2
ϕiψ

2v6
þm2

2
hϕ̂2iψ ; ð82Þ

the second term dominates at late times and does not
vanish, unlike for the classical scalar field. This suggests a
possible contribution to dark energy if the CQ equations
apply at sufficiently late times.
An important question is the domain of validity of the

CQ approximation. In the absence of a quantum theory of
gravity, this is hard to assess. However there is indication
from models such as the oscillator-spin [23] and the
oscillator-oscillator systems [28] that the CQ approxima-
tion is valid only for weak coupling and only for suffi-
ciently small times. In the quantum gravity of cosmological
models, which are solvable in several cases, a similar
comparative investigation of the full quantum and CQ
regimes is possible. (In field theory, the case of scalar
quantum electrodynamics provides another testing ground
for the regime of validity of CQ approximation: this has
been partially investigated in [29] in the case of an evolving
vacuum state.)
Beyond cosmological models, the Hamiltonian approach

to semiclassical theory applied here opens up the possibility
of studying the classical gravity-quantum scalar field
theory in spherical symmetry—a setting of particular
interest for gravitational collapse generalizing the classical
case [30], and for backreaction of Hawking radiation.
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A possible intuitive lesson from our study of the cosmo-
logical CQ system is that late time behavior can differ
significantly with full backreaction due to the expectation
values of the ϕ̂2.
Another possibility for further study concerns the CQ

equations themselves. Here these were postulated. Can
they be derived from the full quantum theory of the system
with reasonably justified approximations? The case of
coupled oscillators studied recently [28] provides an
approach to consider for constrained Hamiltonian systems
like gravity.
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