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We present the geometric foundations and derivations of equations of motion for symmetric teleparallel
theories of gravity in the coincident gauge and covariant frameworks. We discuss the theoretical challenges
introduced by the auxiliary fields responsible for the covariantization procedure. We elucidate a tetradic
structure interpretation behind this covariant formulation. Regarding the effect of covariantization at the
level of the equations of motion, we explicitly show that the only physical change, in case of setting an
arbitrary energy-momentum tensor to the right-hand side, resides in the requirement of the fulfillment of the
covariant conservation laws. Also, we have explicitly introduced the fundamental covariantly conserved
teleparallel tetrad for the symmetric teleparallel frameworks.
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I. INTRODUCTION

Current theoretical research is actively engaged in explor-
ing modifications of general relativity (GR). While tradi-
tional modifications rely on curvature-based approaches
like fðRÞ gravity and others, alternative geometric founda-
tions have recently gained significant attention. In particular,
there is intensive activity in gravitational theories based
on the teleparallel framework, also denoted as metric
teleparallel, which describe gravity in terms of the torsion
of a metric affine connection [1,2]. A less explored, but
equally interesting option of modifying gravity is the
symmetric teleparallel approach which instead makes use
of a curvatureless and torsionless connection with non-
vanishing nonmetricity [3–5].
In this paper, we will give a general introduction to and

make some new research steps in the symmetric teleparallel
framework. This approach encompasses the symmetric
teleparallel equivalent of general relativity (STEGR), which
is a formulation alternative to the Einstein-Hilbert action
for gravity regarding the nonmetricity scalar built up
from the nonmetricity tensor. The form of the action of
STEGR in the so-called coincident gauge is identical to

the usual expression quadratic in the connection, that is, the
historical ΓΓ action of Einstein. It lacks proper covariance
under diffeomorphisms, unlike the elegant action found
by Hilbert that includes the partial derivatives of the
connection. Therefore, the simple generalizations of the
STEGR action break diffeomorphisms, the same way as
local Lorentz invariance gets broken in modified metric
teleparallel models [6].
Given this break-down of diffeomorphisms, a natural

question arises of how to formally restore such symmetry in
modified symmetric teleparallel models, similar to what
had been done in metric teleparallelism [7]. This can
actually be implemented by simply promoting the coor-
dinates which correspond to zero connection coefficients to
a set of scalar fields on the manifold, and then allowing for
otherwise arbitrary coordinates. Of course, it is nothing but
a formal Stückelberg procedure which does not remove the
difference in the amount of symmetries between STEGR
and modified models, the same as it was in the case of the
teleparallel equivalent of general relativity (TEGR) and its
modifications.
At this stage, we find a controversial issue concerning

the covariantization procedure, which regards the initial
model as a gauge-fixed version of the covariantized one. It
is well known that gauge-fixing directly inside the action
might give undesired outcomes. However, in the metric
teleparallel framework, at least if no matter directly couples
to the spin connection, the covariantized action does give
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equations of motion that are fully equivalent to those
coming from the noncovariant approach [7,8], and con-
sequently the same number of propagating degrees of
freedom (dof) [9]. The trick is to rewrite the physical
tetrad in terms of an arbitrary one, which is endowed with
the same physical content [10]. Nonetheless, an important
point is that the gauge fixing is of a purely algebraic nature
in the metric teleparallel.
In symmetric teleparallel, it is crucial to realize that the

broken symmetry extends beyond a purely algebraic
nature. Moreover, covariant rewriting of modified sym-
metric teleparallel theories brings second-order derivatives
into the action, in a nontrivial way. Fixing such gauges
right inside the action is not always an innocent deed, with
many worrisome examples coming from the diffeomor-
phisms themselves. As an example, let us imagine fixing
the lapse and shift, N ¼ 1 and Ni ¼ 0, directly inside the
ADM action, a choice that would be consistent with the
primary constraints π0μ, while then missing the presence of
the Hamiltonian and momenta constraints (which are
secondary constraints). In other words, gauge fixing too
early does not allow diffeomorphism symmetries to “hit
twice” [11] and the counting of dof would end up with 6
instead of 2 dof.
On the other hand, the process of covariantization can be

understood as a Stückelberg procedure which in principle
should not change the physical content of the model. In
numerous papers the covariant symmetric teleparallel
theories are taken as just a fully equivalent rewriting of
the coincident-gauge ones, without rigorously proving this
statement. At the same time, some other works do treat
modified covariant STEGR and modified ΓΓ gravity as
different models [12,13]. All in all, the matter at hand
seems rather nontrivial, with no consensus in the literature.
Consequently, this point urgently needs clarification.
Our aim in this paper is to exhibit the structure of

symmetric teleparallel theories, to explain the geometry
behind, and to show how the proposed covariantization [14]
actuallyworks. One importantmessagewe have to convey is
that the covariantization fields ξμðxÞ cannot be taken as
components of a vector. To the contrary, theymust be treated
as a set of scalars, for they represent a possible choice of
coordinates. Based on that, we also expose the fundamental
(nonorthonormal) tetrads, i.e., the sets of covariantly con-
stant vectors for symmetric teleparallel frameworks. This is
an important result which provides the symmetric tele-
parallel models with a description similar to the pure-tetrad
approach to metric teleparallel ones.
As to the effects of covariantization, we explicitly show,

both in general and in simple examples, that the equations
of motion in vacuum are not modified, while in case
of coupling to matter in terms of an arbitrary energy-
momentum tensor, the covariantized theory only requires it
to be covariantly conserved. This raises a challenging
question of whether the covariantization is worth pursuing.

On one hand, for covariantly conserved types of matter, it
finally brings no change. Therefore, it only prohibits using
nonconserved matter content which is possible in non-
covariant modified symmetric teleparallel models.
At the same time, one more price to pay for the covariant

approach is an action principle with second derivatives of
the additional fields ξμ, and therefore fourth order equations
of motion. A potential Hamiltonian description of the
modified covariantized theory requires then to utilize the
Ostrogradski procedure, or alternatively to introduce
Lagrange multipliers. In comparison with modified metric
teleparallel gravity [9], it is expected to be significantly
harder to fully analyse even the set of primary constraints.
An important feature of the fundamental tetrads we propose
is that they allow one to avoid the higher derivatives by
explicitly constraining torsion to be zero.
We structure this manuscript as follows. We prepare our

conventions and the mathematical background for the
symmetric teleparallel geometry in Sec. II. We present
the derivation of the equations of motion for a general
model in Sec. III. The covariantization procedure is
introduced in Sec. IV, and then we present examples of
its usage in a toy model in Sec. V. We present a similar
analysis on the well-known fðQÞ model in Sec. VI. Some
discussion concerning the implications of the covariant
procedure is presented in Sec. VII. We end up with the
conclusions in Sec. VIII.

II. SYMMETRIC TELEPARALLEL
FRAMEWORK

In order to work in a symmetric teleparallel geometry, we
will consider a manifold endowed with a metric structure
given by the metric tensor gμν and an affine connection Γα

μν

defining the notion of parallel transport along the manifold.
Then the underlying geometry will be determined by the
properties of the connection, which we will consider to
have nontrivial nonmetricity only. This means that, in
particular, the torsion tensor is zero, i.e., the connection
is symmetric, in addition to the requirement that the
Riemann tensor is zero which defines the notion of tele-
parallel structure. In this way, the connection describing the
symmetric teleparallel geometry takes the form

Γα
μν ¼ Γ̊α

μν þ Lα
μν: ð1Þ

In this equation the usual GR connection (Levi-Civita) is
Γ̊α

μν, and all the other quantities related to it will also be
denoted by a ring on top of them. The disformation tensor
Lα

μν in Eq. (1) is given by

Lαμν ¼
1

2
ðQαμν −Qμαν −QναμÞ ð2Þ

in terms of the nonmetricity tensor
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Qαμν ≡∇αgμν:

Using the formula (1) relating the two connections, it is
easy to derive the relationship among their curvature
tensors. In particular, if the connection is not only sym-
metric but also flat, denoting the Ricci scalars of Γ and Γ̊ by
R and R̊, respectively, we find that

0 ¼ R ¼ R̊þQþ B ð3Þ

where the following definitions have been made

Q¼ 1

4
QαμνQαμν−

1

2
QαμνQμαν −

1

4
QμQμþ 1

2
QμQ̃

μ; ð4Þ

B ¼ gμν∇̊αLα
μν − ∇̊βLα

αβ ¼ ∇̊αðQα − Q̃αÞ; ð5Þ

with the nonmetricity traces defined as

Qα ≡Qα
μ
μ and Q̃α ≡Qμ

μα:

The so-called nonmetricity scalar Q can also be written as

Q ¼ 1

2
PαμνQαμν;

with a superpotential defined as

Pαμν ¼Lαμνþ 1

2
gμνðQ̃α −QαÞþ 1

4
ðgαμQνþ gανQμÞ: ð6Þ

This superpotential, or the nonmetricity conjugate, is the
derivative of the nonmetricity scalar with respect to the
nonmetricity tensor, Pαμν ¼ δQ

δQαμν
.

Therefore, from the Eq. (3) we see that if the symmetric
connection is flat, then the scalar Q is different from −R̊
only by a boundary term, thus producing a model equiv-
alent to GR at the level of the action. As a matter of fact, the
simplest flat symmetric connection is given by Γα

μν ¼ 0 in
which case Qαμν ≡ ∂αgμν, and the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
·Q ð7Þ

is nothing but Einstein’s ΓΓ action, that is the part of the
Ricci scalar quadratic in the Levi-Civita connection. This is
the action for STEGR in the so-called coincident gauge.
Any different choice of this type of connection can, at least
locally, be transformed to the coincident gauge, that is zero,
by a coordinate change.
The STEGR action can be used as the starting point for

building alternative gravity theories, which we will con-
sider in the following, in the coincident gauge. However, it
is also possible to build such models in the symmetric

teleparallel framework for a general symmetric teleparallel
connection, which will be presented in Sec. IV.

A. Generalizations of STEGR

The breaking of diffeomorphism symmetry in STEGR is
harmless enough since it was restricted to the boundary
term B, therefore not influencing the equations of motion.
The same way as it happens in TEGR, we can talk about
STEGR as a diffeomorphism pseudo-invariant theory.
However, the story is different when considering nonlinear
modified models based on the STEGR Lagrangian. One of
the most important such models is fðQÞ gravity given by
the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
· fðQÞ:

The would-be boundary term is no longer just a boundary
term there, unless the function f is linear. Wewill discuss in
the next sections the consequences of this peculiar property.
A less trivial modification, called newer GR, takes an

alternative quadratic form of the nonmetricity tensor:

Q≡ 1

2
Eα1μ1ν1α2μ2ν2
ρ1σ1ρ2σ2ρ3σ3g

ρ1σ1gρ2σ2gρ3σ3Qα1μ1ν1Qα2μ2ν2 ; ð8Þ

with an arbitrary tensor Eα1μ1ν1α2μ2ν2
ρ1σ1ρ2σ2ρ3σ3 constructed purely

from Kronecker δμν-s. Note that, in this way, we do not
consider parity-odd terms. This form has some resemblance
with the premetric program for TEGR, see for instance
Refs. [15–17]. We present the most general nonmetricity
scalar here in this uncommon form for giving a general gist
of the model, but also for exhibiting in a compact way the
derivation of the equations of motion in the beginning of
the next section. For the convenience of that, we assume
that all the natural symmetries of this tensor are satisfied.
Namely, as is natural from the formula (8), we demand that
the following permutations leave the E tensor unchanged:
μi ↔ νi, ρi ↔ σi, ðρσÞi ↔ ðρσÞj, and ðαμνÞ1 ↔ ðαμνÞ2.
In particular, modulo different factors of 1

2
in the definitions,

the usual nonmetricity conjugate [18] is given by

Pαμν ¼ Eαμνα2μ2ν2
ρ1σ1ρ2σ2ρ3σ3g

ρ1σ1gρ2σ2gρ3σ3Qα2μ2ν2 : ð9Þ

Unfortunately, in any concrete example, it would be quite
cumbersome to explicitly symmetrize the E tensor.
Despite the mentioned difficulties of the total symmet-

rization, it still makes sense to explicitly keep the symmetry
among the two nonmetricity tensors while treating the three
inverse metrics individually, one by one. To this end, we
take the arbitrary scalar

2Q ¼ c1QαμνQαμν þ c2QαμνQμαν þ c3QμQμ

þ c4Q̃μQ̃
μ þ c5QμQ̃

μ ð10Þ
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which defines the so-called newer GR. Then we rewrite
it as

Q ¼ 1

2
PαμνQαμν;

with the nonmetricity conjugate given then by

Pαμν ¼ c1Qαμν þ c2
2
ðQμνα þQνμαÞ þ c3Qαgμν

þ c4
2
ðgαμQ̃ν þ gανQ̃μÞ

þ c5
4
ð2Q̃αgμν þ gαμQν þ gανQμÞ: ð11Þ

Newer GR models have been introduced in Ref. [3], and
although they propagate more dof than GR, they have the
limit of STEGR and are a starting point to explore modified
gravity based on the symmetric teleparallel framework.

III. EQUATIONS OF MOTION

In this Section we will present the equations of motion
for the modified symmetric teleparallel model given in
terms of an arbitrary nonmetricity scalar (10), or equiv-
alently a nonmetricity conjugate (11). We are still consid-
ering the coincident gauge, therefore Qαμν ≡ ∂αgμν.
As a warm-up, note that, for a general nonlinear theory

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
· fðQÞ; ð12Þ

taken in the form of (8), the variation of the tensor δE ¼ 0
vanishes because it has purely constant components.
Consequently, the equations of motion, from the δgμν
variation of the action (12) multiplied by −2, look very
simple:

2∂αð
ffiffiffiffiffiffi
−g

p
f0 ·Eαμνα2μ2ν2

ρ1σ1ρ2σ2ρ3σ3g
ρ1σ1gρ2σ2gρ3σ3Qα2μ2ν2Þ

þ ffiffiffiffiffiffi
−g

p ð3f0 ·Eα1μ1ν1α2μ2ν2
ρ1σ1ρ2σ2ρ3σ3g

ρ1μgσ1νgρ2σ2gρ3σ3Qα1μ1ν1Qα2μ2ν2

−fgμνÞ ¼ 0;

with the trouble mentioned above: it would be quite hard to
explicitly have the tensor E fully symmetrized.
Actually, working in the standard representation of the

formulas (10) or (11), the variations can also be done quite
nicely. For the sake of simplicity, let us start from the newer
GR, i.e., a unity function f in the action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
·Q:

By a direct inspection, term by term, one can easily see that

Qαμν · δPαμν ¼ Pαμν · δQαμν ð13Þ

from what it immediately follows that

δðPαμνQαμνÞ ¼ 2Pαμν · ∂αδgμν

− ðPμαβQν
αβ þ 2PαβμQαβ

νÞ · δgμν: ð14Þ

One can also note, by a direct calculation, thatPμαβQν
αβ þ

2PαβμQαβ
ν is automatically μ ↔ ν symmetric, so that no

more symmetrization is required, and the equation obtained
by varying the action can be written as

2ffiffiffiffiffiffi−gp ∂αð
ffiffiffiffiffiffi
−g

p
PαμνÞþPμαβQν

αβ þ 2PαβμQαβ
ν−Qgμν ¼ 0;

ð15Þ

upon having multiplied it by −2.
By lowering the indices under the derivative sign, we can

rewrite the equation with upper indices (15) as

2ffiffiffiffiffiffi−gp ∂αð
ffiffiffiffiffiffi
−g

p
Pαμ

νÞ þPμαβQναβ −Qδμν ¼ 0 ð16Þ

with the mixed position of indices, or

2ffiffiffiffiffiffi−gp ∂αð
ffiffiffiffiffiffi
−g

p
Pα

μνÞ þPμ
αβQναβ − 2PαβνQαβ

μ −Qgμν ¼ 0

ð17Þ

with all the indices down. It is worth noticing that the
expression of Pμ

αβQναβ − 2PαβνQαβ
μ in the Eq. (17)

corresponds to the qμν tensor of the previous works [18].
At the same time, the tensor with the mixed position of
indices (16), which can also be found there [18], though
obviously not symmetric in itself, takes the simple form of

PμαβQναβ ¼ c1QμαβQναβ þ c2QαβμQναβ þ c3QμQν

þ c4Qν
μαQ̃α þ

c5
2
ðQ̃μQν þQν

μαQαÞ: ð18Þ

The generalization of the equations of motion for the
general fðQÞ theory with the action given by (12) is then
straightforward:

2ffiffiffiffiffiffi−gp ∂αð
ffiffiffiffiffiffi
−g

p
f0ðQÞPαμ

νÞþf0ðQÞPμαβQναβ−fðQÞδμν ¼0;

ð19Þ

or equivalently, and in purely tensorial quantities when
substituting ∂α by ∇α,

2∂αðf0ðQÞPαμ
νÞ þ f0ðQÞðQαPαμ

ν þPμαβQναβÞ
− fðQÞδμν ¼ 0; ð20Þ
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while the matter can be put as −2Tμ
ν to the right hand side,

assuming the usual fundamental constants combination
of 8πG

c4 ¼ 1.

A. An independent check

As an independent check of the scheme developed
above, we can do all the variations explicitly term by term:

δðQαμνQαμνÞ ¼ 2Qαμν · ∂αδgμν

− ðQμαβQν
αβ þ 2QαβμQαβ

νÞ · δgμν; ð21Þ

δðQαμνQμανÞ ¼ ðQμαν þQναμÞ · ∂αδgμν
− ðQμαβQαβ

ν þQναβQαβ
μ

þQαβμQβα
νÞ · δgμν; ð22Þ

δðQαQαÞ¼ 2Qαgμν ·∂αδgμν− ðQμQνþ2QαμνQαÞ ·δgμν;
ð23Þ

δðQ̃αQ̃
αÞ¼ ðQ̃μgανþ Q̃νgαμÞ ·∂αδgμν

− ðQ̃μQ̃νþðQμναþQνμαÞQ̃αÞ ·δgμν; ð24Þ

δðQ̃αQαÞ ¼
�
Q̃αgμν þ 1

2
ðQμgαν þQνgαμÞ

�
· ∂αδgμν

−
�
QαμνQ̃α þ

1

2
ðQμνα þQνμαÞQα

þ 1

2
ðQ̃μQν þ Q̃νQμÞ

�
· δgμν; ð25Þ

with all the necessary symmetrizations explicitly imposed.
One can easily see that the brackets in front of δgμν, with the
proper ci coefficients, do sum up precisely to PμαβQν

αβ þ
2PαβμQαβ

ν in the Eq. (15).
Another way to look at this result is from the repre-

sentation with the E-tensor (8). Basically, the three terms,
PμαβQν

αβ, PαβμQαβ
ν, and PαμβQα

ν
β, come from the

variations of the three inverse metrics. We sum over these
three terms, which would be taken care of just by a factor of
3 in case of an explicitly symmetrized E-tensor. The
nontrivial aspect is that, in this shape, it is automatically
symmetric under the exchange μ ↔ ν, for what the precise
shape of the nonmetricity conjugate (11) is very important.

B. The case of STEGR and f ðQÞ
It is also interesting to check that in the case of STEGR,

c1 ¼ 1
2
, c2 ¼ −1, c3 ¼ − 1

2
, c4 ¼ 0, c5 ¼ 1, the equations

of motion reduce to the usual Einstein ones. For that, one
can take

Lα
μν ¼

1

2
ðQα

μν −Qμν
α −Qνμ

αÞ

and calculate, from Γ ¼ Γ̊þ L and RðΓÞ ¼ 0,

R̊μ
ν ¼ −∇̊αLαμ

ν þ ∇̊νLα
αμ − Lα

αρLρμ
ν þ LαβμLβαν:

In passing, note that using Lα
αμ ¼ − 1

2
Qμ an important

symmetry property follows:

∇̊νQμ ¼ ∇̊μQν ð26Þ

which can also be checked directly and is also valid without
taking the coincident gauge.
If we take the trace of R̊μ

ν , we can easily find that actually
R̊ ¼ −Q − B, with the quantities defined in the previous
section. A little bit more cumbersome a calculation, taking
into account the symmetry property (26) and an obvious
relation

1ffiffiffiffiffiffi−gp ∂αð
ffiffiffiffiffiffi
−g

p
Pαμ

νÞ ¼ ∇̊αPαμ
ν þ Γ̊ρ

ανPαμ
ρ − Γ̊μ

αρPαρ
ν;

shows also that

1ffiffiffiffiffiffi−gp ∂αð
ffiffiffiffiffiffi
−g

p
Pαμ

νÞþ
1

2
PμαβQναβ ¼−R̊μ

ν −
1

2
Bδμν : ð27Þ

Therefore, the equation of motion (16) we have derived
above in fact reduces to −2G̊μ

ν ¼ 0 in the case of STEGR.
It allows to rewrite the equations (19) for fðQÞ in the

following form (having divided those by −2):

f0G̊μ
ν þ

1

2
ðf − f0QÞδμν − f00Pαμ

ν∂αQ ¼ 0: ð28Þ

In particular, we see that, analogously to the fðTÞ gravity,
the constant Q solutions are just solutions of GR, with a
cosmological constant, and renormalized gravitational
constant.
It is evident that Eq. (28) can also be derived directly

from the fðQÞ action by using the simple fact that
Q ¼ −R̊ − B. For doing so, we would need the well-known
variation

δR̊ ¼ −R̊μνδgμν þ ð∇̊μ∇̊ν − gμν□̊Þδgμν
as well as another formula

δB ¼ ðgμν□̊ − ∇̊μ∇̊νÞδgμν − ∇̊αðPαμνδgμνÞ −
1

2
Bgμνδgμν

which can be derived (in the coincident gauge) from
implications of the relation Γ̊α

μν ¼ −Lα
μν together with

the elementary variational identity δΓα
μν ¼ 1

2
gαβð∇̊μδgβν þ

∇̊νδgβμ − ∇̊βδgμνÞ. It is worth acknowledging that pursuing
this approach does not yield significant simplification
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compared to the aforementioned brute-force method.
Nevertheless, this variation holds potential importance in
the realm of more generalized symmetric teleparallel
models of the fðQ;BÞ type, analogous to fðT ;BÞ in metric
teleparallelism.

IV. COVARIANTIZATION

In this section we will introduce the geometric properties
of the covariant approach in a symmetric teleparallel
framework, the consistent implementation at the level of
the equations of motion, and prepare for the following
sections with examples of cosmology.
Naturally, in the case of coincident gauge, the symmetry

under diffeomorphisms is not preserved. Specifically, when
considering a symmetric teleparallel connection that objec-
tively exists on the spacetime manifold, we can select
coordinates in which it vanishes entirely. Nonetheless, the
covariant approach defines the connection equal to

Γρ
μν ¼

∂
2ξα

∂xμ∂xν
·
∂xρ

∂ξα
: ð29Þ

These are the connection coefficients that we would get by
an arbitrary coordinate transformation from a frame with
zero connection. Then gμν and ξα are taken as independent
variables in the variations.

A. The geometric features

The connection given by Eq. (29) is evidently symmetric
in the lower indices, and it can also be readily verified that it
is flat. Furthermore, it is possible to represent every
connection of this sort in this manner, at least locally.
However, it is important to be accurate. It might seem
enticing to transform ξα as a vector, but it is easy to see that
in doing so the Eq. (29) would look far from being
covariant, as an expression for a connection coefficient.
The appropriate transformation for the quantities ξα

corresponds to treating them as a set of scalars. This is
motivated by the following rationale: ξα represents the
coordinates in which Γρ

μν ¼ 0. In other words, the con-
nection (29) in the coordinates x is such as it should be if it
was zero in coordinates ξðxÞ. Consequently, we must allow
ourselves the freedom of choosing our coordinates x, but it
would be reasonable to just fix the coordinates ξ in which
Γ ¼ 0. Once this fixing has been established, the ξ
coordinates manifest as a collection of real-valued func-
tions, specifically scalars, defined on the manifold.
Subsequently, it becomes evident that we have obtained

a set of 1-forms that form a basis

enμ ≡ ∂ξn

∂xμ
; ð30Þ

or a (co-)tetrad with zero spin-connection, and the space-
time connection coefficients (29) are

Γα
μν ¼ eαn∂μenν ð31Þ

with eαn being the matrix inverse of enα. The index of ξ was
changed to a Latin letter in order to stress that it is not a
component of a vector, and it simply numbers the coor-
dinates, or 1-forms of the tetrad.
Note that here we use a more general notion of a tetrad

than what is usually employed in GR. Namely, our tetrads
are not assumed to be orthonormal. In the standard gravity,
orthonormality is a natural and convenient requirement,
also needed for coupling fermionic fields as a way of
introducing the Lorentz group into the game. However, in
general teleparallel frameworks, and as a description of
tangent space bases, it is more natural to have arbitrary
tetrads. Moreover, a coordinate basis as a tetrad (30) of the
connection (31) would be orthonormal in the simple
(pseudo-)Euclidean spaces only.
Similar to the scenario in metric teleparallelism, we

obtain that the set of 1-forms (30) is covariantly conserved:

∇αenβ ¼ ∂αenβ − Γγ
αβenγ ¼ 0;

and moreover, the transformation behavior of the connec-
tion coefficients aligns genuinely with that of a connection.
Unlike in the metric case, there is no anholonomy, that is
∂μenν ¼ ∂νenμ, and therefore no torsion. On the other hand,
we can find again (compare with the Ref. [19]) that

δΓα
μν ¼ eαn∇μδenν ¼ ∇μðeαnδenνÞ: ð32Þ

This is how a variation of ξαðxÞ works in any symmetric
teleparallel model.
Let us summarize the main geometric feature of every

teleparallel gravity. A teleparallel geometry, i.e., zero
curvature, means that there exists a basis of covariantly
conserved vectors. It means ∇μeaν ¼ 0 in the sense of four
independent 1-forms, or equivalently a soldering form
which corresponds to zero spin connection. In metric
teleparallel, the usual approach is that this tetrad as a
dynamical variable is absolutely free (for sure, apart from
nondegeneracy), while the metric is defined as
gμν ¼ ηabeaμebν , so that an arbitrary tetrad is orthonormal
by definition. In the symmetric teleparallel, the tetrad is
holonomic, i.e., it is a basis of coordinate vectors eaμ ¼ ∂ξa

∂xμ,
while the metric is an independent variable.
These torsion-free covariantly constant tetrads (30) can

also be viewed as an additional geometric structure
allowing to rewrite a noncovariant notion in a covariant
form, compare with Ref. [20]. The situation of unimodular
gravity discussed in that Reference is similar to modified
symmetric teleparallel models. When we demand thatffiffiffiffiffiffi−gp ¼ 1, it leaves only the traceless part of Einstein
equations. However, as long as the matter is covariantly
conserved by itself, it is fully equivalent to GR. There
were some claims [21] however that the cosmological
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perturbations are different from that of GR because the
Newtonian gauge is not allowed. It is evident that such
statements are not reasonable, for otherwise the physical
GR predictions would depend on the choice of gauge. The
paper [20] elucidates the situation in yet another way by
introducing a fixed fiducial measure which then allows us
to work in any gauge. Analogously, we also break the
diffeomorphisms down, but it can be equivalently described
in a covariant way in terms of an additional geometric
structure. The difference is that we have destroyed much
more than in unimodular gravity, and therefore instead of a
simple fiducial measure we have to introduce a whole
fiducial basis of covariantly constant vectors.

B. Covariant equations of motion

Let us initially establish that the metric equation (20),
written in the covariant form

2∇αðf0ðQÞPαμ
νÞ þ f0ðQÞðQαPαμ

ν þPμαβQναβÞ
− fðQÞδμν ¼ 0; ð33Þ

remains unaffected by the process of covariantization. This
persistence is a fundamental property observed whenever a
tensorial equation has been found in a specific coordinate
system. Therefore, the majority of the derivation steps
previously introduced can be replicated with minimal
alterations. The key distinction arises from the variation
of the metric, yielding δgQαμν ¼ ∇αδgμν, with the covariant
derivative instead of the partial one.
The only slightly nontrivial step is the integration by

parts producing the new f0ðQÞQαPαμ
ν term. Or, in the

language of the classical papers [3,18,22], we need to
define the action of the covariant derivative onto the
tensorial densities such that

∇α
ffiffiffiffiffiffi
−g

p ≡ 1

2
Qα

ffiffiffiffiffiffi
−g

p

which also allows us to rewrite the Eq. (33) as

2ffiffiffiffiffiffi−gp ∇αð
ffiffiffiffiffiffi
−g

p
f0ðQÞPαμ

νÞþf0ðQÞPμαβQναβ−fðQÞδμν ¼ 0:

ð34Þ

In general, this choice of the rule of differentiating the
tensor densities can also be given as an abstract theorem
about the integration by parts, see also the Ref. [23] for the
purely metric teleparallel case:
Theorem. Given a connection Γα

μν ¼ Γ̊α
μν þ δΓα

μν, in
order for integration by parts with the measure of

ffiffiffiffiffiffi−gp
be

possible in the most naive way, one needs to define the
following action of the covariant derivative onto the tensor
densities:

∇α
ffiffiffiffiffiffi
−g

p ¼ −
ffiffiffiffiffiffi
−g

p
· δΓβ

βα ¼
ffiffiffiffiffiffi
−g

p
·

�
1

2
Qα − Tα

�

where Qα and Tα are the nonmetricity and torsion vectors
respectively.
Proof. It is evident that the only nontrivial question is

about the only tensorial index which is contracted with the
index of the derivative. Taking the partial differentiation of
the

ffiffiffiffiffiffi−gp
measure produces a Γ̊β

βα term, while what we
need is Γβ

βα. The difference is precisely what we have to
add compared to the case if our derivative was just the Levi-
Civita. ▪
Of course, if integration is treated in terms of differential

forms, so that
ffiffiffiffiffiffi−gp

is nothing but components of a volume
form, then this result follows from the purely tensorial
covariance and the Stokes theorem. However, in case of
viewing it as just an absolutely continuous measure with
the smooth density

ffiffiffiffiffiffi−gp
, we need to give some definition

as above, and this desired simple structure of integration by
parts makes the purely measure-theoretic definition
coincide with the differential forms approach.
Upon considering the metric equation in both versions of

the model, an additional equation emerges within the
framework of the covariant theory, namely the connection
equation. Naively, this equation appears as a genuinely
novel addition resulting from the variation

δξQαμν ¼ −gμβδΓβ
αν − gνβδΓβ

αμ

while preserving all other occurrences of the metric tensor.
In particular, around the coincident gauge, this equation
effectively corresponds to variations solely in ∂g, excluding
modifications to the metric g itself. The derivation of this
equation poses no substantial difficulty.
To start with, in the coincident gauge of the background

ξn ¼ xn, we have from the equation (29) the linear variation
δΓα

μν ¼ ∂
2

∂xμ∂xν δξ
α, and the ξ-variation of the action (12)

gives the new equation of the form

∂α∂μð
ffiffiffiffiffiffi
−g

p
f0 ·Pαμ

νÞ ¼ 0: ð35Þ

It is of the third derivative order. However, the new
information it might give can obviously be represented
in the second-derivative-order form, by simply subtracting
the divergence of the metric equations from it. Less
immediately obvious is that, as we will show soon, this
difference is an identical zero.
As before, the Eq. (35) can also be rewritten in a

covariant form as

�
∇α þ

1

2
Qα

��
∇μ þ

1

2
Qμ

�
ðf0 ·Pαμ

νÞ ¼ 0 ð36Þ

employing up to third derivatives of gμν and up to fourth
derivatives of ξn. When the connection is equal to zero, this
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equation (36) just coincides with the coincident gauge
equation (35). A tensorial equation having been derived in a
particular coordinate system must be valid in general. And
it is also quite simple to be checked by using the variation
of the connection (32). Indeed, we have

δξQ ¼ PαμνδQαμν ¼ −2Pαμ
νδΓν

αμ ¼ −2Pαμ
ν∇αðeνnδenμÞ

with δenμ ¼ ∂μδξ
n ¼ ∇μδξ

n, for ξnðxÞ being treated as a
collection of scalars, and∇μeνn ¼ 0. Then the integration by
parts deriving the connection equation goes precisely the
same way as around the coincident gauge and ends up with
the Eq. (36).

C. Some technical remarks

In this subsection, we would like to discuss the role of
Lagrange multipliers in the metric-affine approach to the
symmetric teleparallel models, as well as the structure of
primary constraints. The latter are only the first step of any
Hamiltonian analysis which is much more complicated in
full and goes beyond the scope of this paper.
Recall that the teleparallel connection enters the action

through the nonmetricity tensor components only, and
therefore its equation of motion is derived via

δQ ¼ −2Pαμ
ν · δΓν

αμ:

Recall also that, in the coincident gauge of the usual
covariant approach, we have

δΓα
μν ¼

∂
2

∂xμ∂xν
δξα

which produces the familiar equation (35)

∂α∂μð
ffiffiffiffiffiffi
−g

p
f0 ·Pαμ

νÞ ¼ 0:

Since the metric velocity and the connection components
come about inside one and the same structure Qαμν, the
corresponding momenta immediately satisfy some primary
constraints, precisely as in the case of metric teleparallel
models [9]. The complication of symmetric teleparallel
theories is in their higher-derivative nature. It means that
one needs to either use the formal procedure traditionally
attributed to Ostrogradsky, or equivalently to perform a
rewriting of the Lagrangian in terms of a new variable
vn ¼ ξ̇n such that

Lðξn; ξ̇n; ̈ξnÞ → Lðξn; ξ̇n; v̇nÞ þ λnðξ̇n − vnÞ:

In particular, the usual Ostrogradsky procedure for
higher derivative Lagrangians requires taking the two
different momenta of ξn:

pn ¼
∂L

∂ξ̇n
−

∂

∂t

�
∂L

∂ ̈ξn

�
; pn ¼

∂L

∂ξ̈n
: ð37Þ

Then, the second equation implies a primary constraint.
Indeed, the second order time derivatives of ξn are only
inside the following component of the nonmetricity tensor

Q00α ¼ Q0α0 ¼ ġ0α − gρα · ξ̈
ρ − g0ρ · ∂αξ̇

ρ; ð38Þ
therefore we get

pn ¼ −
∂L

∂Q00α
gnα ¼ −gnαπ0α ð39Þ

where π0α are the momenta of g0α. Note that here we have
abandoned the approach of ADM variables. Another
important remark is that we have fully imposed identifi-
cations of g0α ≡ gα0 and π0α ≡ πα0, and Q00α ≡Q0α0,
which is not convenient when doing tensorial calculations.
However, we need to expose the constraint here only as a
matter of principle.
In the Lagrange multiplier approach of putting vn ¼ ξ̇n,

we get pn as the momentum of vn, while the ξn has then
the momentum ∂L

∂ξ̇n
þ λn which upon substituting the

Hamiltonian equation of ṗn ¼ −λ turns into the momentum
pn of above.
The need of higher derivatives can be avoided also in

terms of our tetrad (31). However, then a Lagrange
multiplier term λn

μνð∂μenν − ∂νenμÞ ¼ λα
μνðΓα

μν − Γα
νμÞ

has to be added to the action in order to set the torsion
to zero, or to impose the form (30) of the tetrad. Using the
variation (32), it yields an equation for the tetrad,

2∂αð
ffiffiffiffiffiffi
−g

p
f0 ·Pαμ

νÞ − ∂αð
ffiffiffiffiffiffi
−g

p ðλναμ − λν
μαÞÞ ¼ 0:

Obviously, taking a divergence of this equation immedi-
ately produces the one which we had before (35). And
vice versa, the Eq. (35) states that the rank-2 tensor
2∂αð ffiffiffiffiffiffi−gp

f0 ·Pαμ
νÞ had zero divergence. At least locally,

it means that it can be represented in the shape of
∂αð ffiffiffiffiffiffi−gp ðλναμ − λν

μαÞÞ, similar to a divergenceless vector
being a curl of another one.
This is an example of how the Lagrange multiplier

approach works. Note also that this is a case when the
derivatives of Lagrange multipliers give us precisely
the physics we want. In this sense the claims of the recent
paper [24] that terms of this kind invalidate the Hamiltonian
analysis seem unsubstantiated. Although we must always
give accurate account of the counting of the degrees of
freedom, the terms with derivatives on Lagrange multipliers
can have a physical meaning behind.
The realization that the connection can be expressed in

the way (31) of a teleparallel tetrad also makes it possible to
present the covariant Hamiltonian analysis of symmetric
teleparallel theories in a nice form. It follows that the
canonical momenta are
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πμν ≔
∂L
ġμν

¼ ∂L
∂Q0μν

ð40Þ

and

Πn
ρ ≔

∂L
∂ėnρ

¼ ∂L
∂Q0μν

∂Q0μν

∂ėnρ
þ ffiffiffiffiffiffi

−g
p ðλn0ρ − λn

ρ0Þ

¼ −2πμνenλδ
ρ
ðμgνÞλ þ 2

ffiffiffiffiffiffi
−g

p
· λn½0ρ� ð41Þ

with the usual symbols of symmetrization and antisymmet-
rization, and with the usual way of treating the gμν and gνμ
components separately. This introduces the primary con-
straints

Cn
ρ ¼ Πn

ρ þ 2πμνenλδ
ρ
ðμgνÞλ − 2

ffiffiffiffiffiffi
−g

p
· λn½0ρ� ≈ 0; ð42Þ

on top of the obvious zero canonical momenta of the
Lagrange multipliers themselves.
In what concerns the full-fledged metric-affine approach,

fixing the torsion to zero by a Lagrange multiplier is not
necessary at all. We can just treat the connection as
symmetric in the lower indices Γα

μν ¼ Γα
νμ, similar to

how we always deal with the metric. At the same time, for
putting the curvature to zero, we add a new term, λαβμνRα

βμν

with λα
βμν ¼ −λαβνμ. Around the coincident gauge, and

remembering that the connection variation is symmetric,
we get

2
ffiffiffiffiffiffi
−g

p
f0 ·Pαμ

ν þ ∂ρð
ffiffiffiffiffiffi
−g

p ðλναρμ þ λν
μραÞÞ ¼ 0:

We immediately see that the shape of the second term is
precisely requiring that the double divergence of the first
term vanishes, i.e., the Eq. (35) we know. At the same time,
the primary constraints express the connection momenta in
terms of the Lagrange multipliers.

D. The covariant “conservation” laws

Unlike the covariantization process observed in metric
teleparallelism, the ξ-variation naively looks like a com-
pletely new procedure. It induces a transformation which
changes Qαμν without changing the metric itself. However,
it is a common nontrivial fact about the Noether identities
for diffeomorphisms. Normally, the Lagrangian density and
the measure have nonvanishing changes as explicit func-
tions of coordinates, while the action integral stays invari-
ant; a parallel that can be applied to the current context. Let
us perform, in a bounded region, a simultaneous change of
coordinates in the metric and the ξα represented by
δxμ ¼ ζμ, then the change corresponds to

δgμν ¼ −∇̊μζν − ∇̊νζμ and δξα ¼ −ð∂μξαÞ · ζμ:

With it, the Lagrangian density changes as a full-fledged
scalar, and therefore the action is automatically invariant.

Subsequently, we immediately find the following identical
relation between the equations:

2∇̊μ

�
δS
δgμν

�
− ð∂νξαÞ · δS

δξα
¼ 0: ð43Þ

We see that fulfillment of the connection equation implies
that the metric equation is automatically divergenceless.
And as long as the matrix of ð∂μξαÞ is invertible, as it must
always be, those two conditions are just equivalent.
Therefore, as long as we are dealing with the equations

of motion in vacuum, the connection equation does not
give us any new insights. If we incorporate an arbitrary
matter source to the right hand side, the connection
equation is simply equivalent to insisting on its covariant
“conservation.” In particular, for a model with the action
featuring modified symmetric teleparallel gravity and
matter which only interacts with the metric in a covariant
way, the covariantization changes nothing and the con-
nection equation gives no new information. At the same
time, this equivalence comes at the price of getting a
higher-derivative action.
Note in passing that options of gravity theories with

nonconserved matter have received a significant attention
in the literature, for example in the shape of Rastall
gravity [25]. At the same time, the latter is just a mere
superficial modification of gravity, or more precisely, no
modification at all [26,27], as the equations remain
identical while the energy-momentum tensor is redefined
by a trace subtraction. However, the noncovariantized
modified symmetric teleparallel gravity allows for more
meaningful deviations from covariant conservation laws.

E. The case of STEGR

It is rightful to also explicitly check that in STEGR no
equation follows from the variation of ξ, as it is expected
since this field enters only in the surface term. In the
coincident gauge, this equation (35) would be of the form

∂α∂μð
ffiffiffiffiffiffi
−g

p
Pαμ

νÞ ¼ 0

with the STEGR nonmetricity conjugate

Pαμν ¼
1

2
Qαμν −

1

2
Qμνα −

1

2
Qνμα −

1

2
gμνQα þ

1

2
gμνQ̃α

þ 1

4
gαμQν þ

1

4
gανQμ

¼ −
1

2
Qνμα −

1

4
gμνQα þ

1

2
gμνQ̃α þ

1

4
gαμQν

þ antisymmetric in α ↔ μ part: ð44Þ

Using basic formulas such asQμ ¼ 2
∂μ

ffiffiffiffi−gpffiffiffiffi−gp ; Qα
μν ¼ −∂αgμν;

Qμ
αμ ¼ Q̃α; we get
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ffiffiffiffiffiffi
−g

p
PðαμÞ

ν ¼
ffiffiffiffiffiffi
−g

p �
−
1

2
Qν

μα −
1

4
δðμν QαÞ

þ 1

2
δðμν Q̃αÞ þ 1

4
gαμQν

�

¼ 1

2

� ffiffiffiffiffiffi
−g

p
∂νgαμ − δðμν gαÞβ∂β

ffiffiffiffiffiffi
−g

p

−
ffiffiffiffiffiffi
−g

p
δðμν ∂βgαÞβ þ gαμ∂ν

ffiffiffiffiffiffi
−g

p �

from where it is easy to see that ∂2αμð ffiffiffiffiffiffi−gp
Pαμ

νÞ≡ 0, with
no extra tricks, by merely expanding the whole expression.
For example, one can collect the terms with 0, 1, 2, and 3
derivatives acting on

ffiffiffiffiffiffi−gp
separately, and see that they all

cancel each other.

V. A TOY MODEL EXAMPLE

Let us give an illustration of how the equations of motion
work. A simple model would be the one with only c1
nonzero. In the coincident gauge it has the following action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
·QαμνQαμν

¼
Z

d4x
ffiffiffiffiffiffi
−g

p
· ð∂α1gμ1ν1Þð∂α2gμ2ν2Þgα1α2gμ1μ2gν1ν2 ð45Þ

with the evident equations of motion

4∂αð
ffiffiffiffiffiffi
−g

p
QαμνÞ þ ð2QμαβQν

αβ þ 4QαμβQα
ν
β

−QαβρQαβρgμνÞ ¼ 0: ð46Þ
Wewill take them in a different form, with a mixed position
of indices as in Eq. (19):

4ffiffiffiffiffiffi−gp ∂αð
ffiffiffiffiffiffi
−g

p
Qαμ

νÞþ
ffiffiffiffiffiffi
−g

p ð2QμαβQναβ −QαβρQαβρδ
μ
νÞ ¼ 0:

ð47Þ
This model is not physically viable for sure, since it has
ghosts. Due to the metric not being positive definite, its
mixed components appear to have the sign of kinetic
energy opposite to that of the temporal and purely spatial
ones. Therefore, we will use it only for illustrative
purposes. Leaving aside the issue of ghosts, it is otherwise
perfectly healthy. As long as the metric is nondegenerate, it
does not have any constraints at all, and therefore no
changes in the symplectic structure.

A. Vacuum cosmology

Now we will investigate the behavior of the standard
spatially flat cosmology in vacuum in our previous toy
model. Substituting the metric ansatz

gμν ¼ diagðN2ðtÞ;−a2ðtÞ;−a2ðtÞ;−a2ðtÞÞ ð48Þ

we easily get the following equations (after having multi-
plied them by N2

4
):

2
N̈
N
− 3

Ṅ2

N2
þ 6

ȧ Ṅ
aN

þ 3
ȧ2

a2
¼ 0; ð49Þ

2
ä
a
þ ȧ2

a2
− 2

ȧ Ṅ
aN

−
Ṅ2

N2
¼ 0: ð50Þ

To start with, we notice the absence of time-reparametriza-
tion invariance. An attempt to establish it in the physical
time, N ¼ 1, immediately leads to Minkowski spacetime in
the first equation, as in the usual cosmology. And an
attempt of using the conformal time, a ¼ N, leads to the
same conclusion, now by combining the two equations.
Nevertheless, there are definitely some other solutions of
this system, as we prove in the following.
In effect, there is a nontrivial and simple vacuum

solution. If we assume that a ¼ Nk, it is a simple task
to find a cubic equation for k with the only real root of
k ¼ −1. Substituting the ansatz

N ¼ 1

a
;

the Eqs. (49) and (50) transform into −2ðäa þ ȧ2

a2Þ ¼ 0 and

2ðäa þ ȧ2

a2Þ ¼ 0, respectively. We then have a solution of a ∝ffiffi
t

p
with the metric

gμνdxμdxν ¼
1

t
· dt2 − t · dx⃗2

which is a constant-rate expansion a ∝ T in the physical
time T ∝

ffiffi
t

p
.

Note that, for the solution we have just found, the
connection equation (35)

4∂α∂μð
ffiffiffiffiffiffi
−g

p
Qαμ

νÞ ¼ 0

is also satisfied. Indeed, the equation takes the following
form

∂
2
0

�
a3Ṅ
N2

�
¼ ∂

2
0ða3ȧÞ ¼ 0 ð51Þ

which, given a ∝
ffiffi
t

p
, states that the second derivative of a

linear function is actually zero.

B. Cosmology with matter

With matter, we need to put N2Tμ
ν to the right hand side

of the equations above (a constant prefactor, in particular
with the gravitational constant, is not of any importance for
us now). Assuming again that

N ¼ 1

a
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we get

�
ä
a
þ ȧ2

a2

�
¼ ρ

a2
;

−
�
ä
a
þ ȧ2

a2

�
¼ −

p
a2

:

We see that this ansatz allows only for superstiff matter
with an equation of state p ¼ ρ. In this case, if we want to
impose covariant energy conservation, it means to set the
energy density to

ρ ∝
1

a6
:

When we substitute this behavior of p ¼ ρ to the right-
hand sides,

�
ä
a
þ ȧ2

a2

�
∝

1

a8
;

there is a straightforward solution of a ∝ t1=4. Meanwhile,
the information encoded in the connection equation (51), in
the case of N ¼ 1

a, simply states that ∂30a
4 ¼ 0, which is

evidently true.
Moreover, note that the equation

aäþ ȧ2 ∝
1

a6
;

or the cosmology with N ¼ 1
a and superstiff matter of

ρ ¼ p ∝ 1
a6
, looks like requiring quite some (mild) effort to

be fully solved. However, the connection equation (51) in
this case has the obvious solution of

aðtÞ ¼ ðc1t2 þ c2tþ c3Þ14:

And we immediately see that this is precisely the solution
for the metric equation since, upon substitution, we get

aäþ ȧ2 ¼ 4c1c3 − c22
8a6

;

reproducing also the aðtÞ ∝ ffiffiffiffiffiffiffiffiffiffiffi
t − t0

p
vacuum solution

when c2 ¼ �2
ffiffiffiffiffiffiffiffiffi
c1c3

p
.

All in all, we confirm that the covariantization procedure
does not introduce any substantial changes, given that the
matter content satisfies the covariant conservation laws.
The covariant version of symmetric teleparallel gravity
simply prohibits the inclusion of a source with ∇̊μTμν ≠ 0
to the right hand side. On the other hand, similar to the
potential benefits of a nonzero spin connection in metric
teleparallel gravity [19], the covariant version can also be
technically advantageous, even in absence of nontrivial ξμ.
In particular, in the example above, solving the connection

equation was much easier than working directly with the
metric equation, despite being fully equivalent in the end.

VI. COMMENTS ON THE CASE OF f ðQÞ
Precisely as in the case of fðTÞ theory, the simplest

nonlinear generalizations of STEGR do have an accidental
gauge symmetry in the weak gravity limit. Indeed, for
fluctuations around gμν ¼ ημν in the coincident gauge, the
nonzero nonmetricity tensor appears only in perturbations.
Therefore, theQ scalar is quadratic in perturbations, and we
must take a linear approximation to the function fðQÞ in the
quadratic action thus coming back to STEGR or just GR. In
other words, the linear weak gravitational waves in fðQÞ
are no different from the case of GR. As we see, this is
immediately obvious and makes detailed investigations of
these matters [28] look rather strange.
Beyond the weak gravity limit, let us start with the

standard cosmology [18] in fðQÞ, which is a very peculiar
case. We can take the metric

ds2 ¼ N2ðtÞdt2 − a2ðtÞðdx2 þ dy2 þ dz2Þ ð52Þ

in the coincident gauge. The only nonzero components
of the nonmetricity and the superpotential are then
Q000 ¼ 2NṄ, Q0ij ¼ −2aȧδij, Q0 ¼ 2 Ṅ

N þ 6 ȧ
a, Q̃0 ¼ 2 Ṅ

N,

P0ij ¼ 2aȧδij, Pi0j ¼ Pij0 ¼ −a2ðṄN þ 2 ȧ
aÞδij. In particu-

lar, the nonmetricity scalar

Q ¼ −6
ȧ2

a2N2

appears to be a genuine, time-reparametrization-invariant,
scalar.
The temporal equation yields the condition f ¼ 2Qf0 in

vacuum. Except when f ∝
ffiffiffiffiffiffiffi
−Q

p
, this condition requires

thatQ is constant. Generically, if fð0Þ ¼ 0 then Minkowski
is a solution with Q ¼ 0, though other constant Q con-
figurations are possible also for different functions, result-
ing in a de Sitter geometry. Remarkably, it is observed that
Q turns out to be time-reparametrization invariant, and is
constant for de Sitter. Consequently, these solutions cor-
respond to pure GR solutions with an effective cosmo-
logical constant.
Considering the inclusion of matter, a very interesting

aspect is that its covariant conservation is automatically
required in this case. Since only the time-dependence is
there, we see that the connection equation takes the form of

∂
2
0ðf0

ffiffiffiffiffiffi
−g

p
P00

μÞ ¼ 0: ð53Þ

This equation is trivially satisfied because P00μ ¼ 0 iden-
tically. A fundamental reason of this result is the following:
due to rotational symmetry, we cannot have nonzero P00i,
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while P000 ¼ 0 is akin to having the lapse nondynamical
in GR.
Actually, the fulfillment of the connection equation as an

identity, or identical divergencelessness of the metric
equation, is a more general statement. It is analogous to
the statement in fðTÞ gravity which states that any diagonal
tetrad, whose components depend on only one of the
coordinates in which it is diagonal, automatically solves
the antisymmetric part of the equations of motion [29]. We
can formulate a similar property as an additional theorem
Theorem. The fðQÞ connection equation (and the Levi-

Civita divergence of the metric equation) gets automatically
satisfied upon substitution of a metric ansatz which, in the
coincident gauge, is diagonal and with the components
depending on only one of the chosen coordinates.
Proof. In effect, we have only diagonal metric compo-

nents gμμ ¼ F μðxχÞ (no summation) where χ is the index of
the only coordinate on which the metric depends. Then the
equation ∂

2
χχð ffiffiffiffiffiffi−gp

f0Pχχ
μÞ ¼ 0 is automatically satisfied

simply because Pχχμ ≡ 0 for every index μ including χ
itself, as can be checked by direct inspection. ▪
Due to this reason, the role of the connection equation

cannot be illustrated in simple fðQÞ cosmology, unlike our
toy model example above. However, it would be instructive
to explicitly see how it works in general. Such a statement
has already been made in Ref. [30], although in a much less
transparent way.
Let us consider the metric equation of motion in the

geometric form given in Eq. (28). Then its divergence reads

f00G̊μ
ν∂μQ −

1

2
f00Q∂νQ − ∇̊μðf00Pαμ

ν∂αQÞ:

By using an expression for the Einstein tensor, see the
Eq. (27),

G̊μ
ν ¼ −

1ffiffiffiffiffiffi−gp ∂αð
ffiffiffiffiffiffi
−g

p
Pαμ

νÞ −
1

2
PμαβQναβ þ

1

2
Qδμν

and a simple observation (straightforwardly transforming
the term with Γ̊β

μν) of

∇̊μðf00Pαμ
ν∂αQÞ ¼ 1ffiffiffiffiffiffi−gp ∂μð

ffiffiffiffiffiffi
−g

p
f00Pαμ

ν∂αQÞ

−
1

2
f00QνμβPαμβ

∂αQ;

we obtain the equations’ divergence as

− f00
�
∂μQffiffiffiffiffiffi−gp ∂αð

ffiffiffiffiffiffi
−g

p
Pαμ

νÞ þ
∂αQffiffiffiffiffiffi−gp ∂μð

ffiffiffiffiffiffi
−g

p
Pαμ

νÞ
�

− f000Pαμ
νð∂αQÞð∂μQÞ:

At the same time, if in the connection equation (35)

1ffiffiffiffiffiffi−gp ∂α∂μð
ffiffiffiffiffiffi
−g

p
f0Pαμ

νÞ ¼ 0

we take into account that for the STEGR superpoten-
tial ∂α∂μð ffiffiffiffiffiffi−gp

Pαμ
νÞ≡ 0, it also acquires (minus) the

same shape.
As a relatively simple example of this statement in fðQÞ

theories, one can take a look at the unusual cosmologies
which have been studied recently [31,32]. To the best of our
knowledge, their explicit coincident gauge form is not
presented anywhere, except for the first family of con-
nections which corresponds to the standard cosmology we
mentioned above. However, without discussing how cos-
mological the other two families of solutions really are, let
us have a look at the ones which correspond to their second
family of connections. Its equations of motion are
Eqs. (11)–(13) in Ref. [32]. One can do the following
steps. (1) Differentiate their Eq. (11) with respect to time.
(2) Find Ḣ from their Eq. (12) and substitute it into the time
derivative obtained. (3) In place of the nondifferentiated
entrance of the nonmetricity scalar, substitute its expression
from just above the formulas. (4) Note that what it yields is
precisely 3

2
γ times their Eq. (13). Contemplating this

procedure a bit, one can see that the connection equation
was indeed obtained by taking a Levi-Civita divergence of
the metric equation.

VII. DISCUSSION

An important concern that the implementation of the
additional variable ξμ raises is that its appearance in the
Lagrangian for any modified symmetric teleparallel gravity
goes with second order derivatives. Although for STEGR
this is harmless, in the case of modified symmetric tele-
parallel gravities such terms give fourth order equations of
motion for the ξ field, and third order for the metric. We
would like to discuss some theoretical issues that have not
been posed in the previous literature.
Degrees of freedom. In order to have a rough sketch on

the counting of degrees of freedom for the geometric trinity
of gravity, we refer the reader to Fig. 2 in [22]. Here we
would like to improve the naive counting of degrees of
freedom presented there from the point of view of con-
strained Hamiltonian systems. As it was presented else-
where [9], in the covariant version of TEGR there are 16
independent variables from the tetrad, and additional 6
components of the Lorentz matrices Λa

b that introduce the
so-called “inertial” connection. Their appearance introdu-
ces 6 primary first-class constraints C0

ab in the covariant
version of the model, while in both approaches there are 6
other constraints, Cab or Ccov

ab , coming from the pseudo-
Lorentz invariance of the TEGR Lagrangian with respect to
pure tetrad rotations [9]. They have incidentally been
called, respectively, Lorentz transformations of type I
and II [10]. In addition to them, 4 primary constraints
Π0

a coming from the absence of time derivatives of the ea0
components of the tetrad (equivalent to the nondynamical
character of the lapse and shift functions) produce 4
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secondary constraints, the well-known Hamiltonian and
momenta constraints C0 and Ci. Since all constraints are
first class, the counting of degrees of freedom in TEGR
goes as follows. The number of pairs of canonical variables
is 16þ 6 ¼ 22, and the number of first class constraints is
20. Therefore, we obtain 22 − 20 ¼ 2 propagating degrees
of freedom.
The STEGR Lagrangian written in an arbitrary gauge

has 10þ 4 independent components coming from gμν and
ξμ. The theory has 4 primary constraints associated with the
absence of dynamics for lapse and shift in the Lagrangian,
which at the same time generate 4 secondary constraints
reflected in one Hamiltonian C0 and three momenta Ci

constraints. The introduction of ξμ would generate four
additional first-class constraints, if this variable appeared
with first order derivatives in the Lagrangian. However,
since it actually comes with second order derivatives, it is
necessary to either introduce the Ostrogradsky procedure,
or to formulate the problem in terms of Lagrange multi-
pliers and auxiliary tetrad fields as discussed in Sec. IV C.
We foresee that eight primary (first-class) constraints would
appear from such a procedure, four for the components ξμ

and four for its time derivatives ξ̇μ. Then the counting goes
as follows: from the 10þ 4þ 4 ¼ 18 pairs of canonical
variables we must remove 4þ 4 constraints from lapse and
shift nondynamical behavior and consequent secondary
constraints, plus 4þ 4 constraints associated with the
gauge symmetries produced by the variables ξμ and ξ̇μ

inducing the covariantization. Therefore, the physical
number of dof is 18 − 4 × 4 ¼ 2, the same as in GR
and TEGR.
Summarizing it once more, the covariant procedure for

simultaneous diffeomorphisms introduces four new canoni-
cal fields which in theory should introduce four new
primary constraints. The nature of these constraints is
the same as for metric teleparallel gravities: they represent
the freedom in the connection that is removed when going
to the coincident gauge. The problem, as it might already be
clear, is that the ξμ is introduced with second order
derivatives in the action. As shown explicitly in Sec. IV C,
for counting of degrees of freedom in the nonlinear case,
four new primary constraints can be found [see Eq. (42)] at
the cost of introducing Lagrange multipliers. Alternatively,
one can rely on the Ostrogradsky procedure. For both
options the Hamiltonian analysis will be more intricate
compared to the metric teleparallel case.
Equivalence classes of solutions. In metric teleparallel

gravity we can define an equivalence class of solutions of
the covariant theory in the following way. Consider the
field equations of a metric teleparallel theory in the
Weitzenböck gauge with the solution eaμ. Then the couple
febμΛb

a;ωa
bμg where ωa

bμ is defined with the same
Lorentz matrix Λ is considered as part of the same
equivalence class of solutions. Of course, this is nothing
but just calling configurations obtained by a gauge

symmetry transformation equivalent. For trivial Λ we have
the solution febμ; 0g as one solution in this equivalence
class, and the findings of [8,10] show that a solution of the
form febμΛb

a;ωa
bμg is basically the same solution after a

change of variables. Of course, in TEGR even isolated
transformations of the metric only, or of the spin connection
only, still do not influence the equations at all.
Note that in modified metric teleparallel theories, like

fðTÞ or NGR, we can sometimes find that both febμ; 0g
and febμLb

a; 0g are solutions for some specific tetrad e and
Lorentz matrix L. They are, thus, two different solutions
belonging to different equivalent classes of solutions,
febμΛb

a;ωa
bμg and fecμLc

bΛb
a;ωa

bμg respectively. This
led to the interest in study of so-called “nontrivial
Minkowski solutions” in [33]. To some extent, these
nonequivalent solutions with the same metric are related
with the so-called remnant symmetries, which are an
interesting topic which goes beyond this paper.
In symmetric teleparallel gravity the mapping of sol-

utions goes as follows. We consider the field equations of a
symmetric teleparallel theory in the coincident gauge
where, for a particular choice of coordinates ξμ ¼ xμ the
affine connection vanishes. A solution of the equations of
motion is then represented by the couple fgμν; 0g, since the
nonmetricity tensor directly depends on it: Qαμν ¼ ∂αgμν,
while the connection just vanishes. A change of coordinates
applied simultaneously to the metric and the affine con-
nection modifies both, and now the same solution is
represented by the pair fg̃μν;Γρ

μνðξμÞg. Note that some-
times it might be easier to find a solution to the field
equations of the latter form, and in principle one may then
always relate this to the coincident gauge case by finding
the correct coordinate transformation [34].
Analogous to [10] we can here also talk about diffeo-

morphisms of type I and type II. Type I, which is always a
gauge symmetry of these models, is defined as simultaneous
transformation of both gμν as a tensor and ξμ as a collection
of scalars. Type II, invariance under which is fully there only
in STEGR, is defined as transformations of the tensor gμν
alone. Combining the type I with type II, one can also get
transformations of the ξμ scalars alone. In modified sym-
metric teleparallel models, one can then talk about the
mystery of remnant symmetries as has already been vividly
discussed in the case of metric teleparallel theories [35].
General teleparallel theories. Finally, we would like to

mention some thoughts regarding the case of general
teleparallel theories written in terms of tetrads. In this
case, there also exists a frame for which the spin connection
vanishes. It can be obtained simply because, by the very
meaning of vanishing curvature, there exists a basis of
covariantly constant vectors. However, the affine connec-
tion on the manifold cannot be made equal zero since
generically there is torsion. In these general teleparallel
theories we must treat the tetrad and the metric as two
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independent variables. If the metric is restricted by the
tetrad being pronounced orthonormal (or with some other
fixed matrix of its scalar products [8]), then we are back to
the metric teleparallel. If the tetrad is restricted to be
composed of coordinate vectors (i.e., no anholonomy), then
we are back to symmetric teleparallel. Note though that, in
the most general case, the discussion of type I and type II
symmetries becomes then a bit more involved since we do
have nontrivial incarnations of both diffeomorphisms and
local linear transformations of tetrads.
Let us also note in passing that, as we saw in Sec. IV C, a

possible non-Ostrogradskian way to get rid of the higher
derivatives in the covariant symmetric teleparallel frame-
work would be towrite the action with the metric gμν and the
connection coefficient Γα

μν ¼ eαn∂μenν in terms of an arbitrary
tetrad, therefore having both the metric and the tetrad as
dynamical variables, and then to add a constraint term
λμνn ð∂μenν − ∂νenμÞ, which guarantees that the vectors en can
bewritten as gradients of some scalars.Of course, the price to
pay then is the necessity of working with the Lagrange
multipliers, in front of the nonintegrable constraint.

VIII. CONCLUSIONS

In this work, we have provided an overview of sym-
metric teleparallel gravity models and the covariantization
procedure which turns out to only impose covariant
conservation on otherwise arbitrary matter source. The
introduction of the set of four scalars ξμ for this purpose
presents both advantages and theoretical challenges.
Regarding the latter, the appearance of the additional
fields ξμ with second order derivatives in the Lagrangian
blurs a clean physical interpretation as in the case of
covariance in teleparallel gravity. Nonetheless, it is
possible to circumvent this issue by the introduction of
(nonorthonormal) tetrads. Namely, any teleparallel

geometry can be characterized by a covariantly constant
tetrad, or a tetrad with zero spin connection in the fully
covariant language.
In other words, we have given a Weitzenböck-like

description of a general teleparallel geometry. Of course,
it has no curvature. In the symmetric teleparallel case, there
is no torsion either, ∂μenν − ∂νenμ ¼ 0, which means that the
tetrad takes the form of a gradient: enμ ¼ ∂ξn

∂xμ. Basically, the
symmetric teleparallel connection describes the parallel
transport of a Minkowski spacetime, with ξn being its
Cartesian coordinates, and with the teleparallel tetrad
constructed from the coordinate vectors of those coordi-
nates. The covariant rewriting of the framework switches it
to arbitrary coordinates, while the “Cartesian” ones become
some scalar functions on the manifold.
We have exhibited the behavior of the equations ofmotion

in the covariant formulation in a FLRW cosmology, for two
symmetric teleparallel models: the first as a toy model that
considers only one term of the quadratic combination of the
nonmetricity tensor making up the nonmetricity scalar, and
the second model consisting of fðQÞ gravity. In both cases
we have given an explicit illustration for our general proof
that the only effect of the covariantization comes in the
requirement of covariant conservation for the matter source.
Consequently, we raise the pertinent question whether it is
worthwhile pursuing the covariant approach. On one hand,
there is a demand for nonconserved theories in nowadays
research in modified gravity. But on the other hand, this
prohibition costs higher derivatives in the action, with all the
potential consequences.
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