
Friedmann equations in the Codazzi parametrization of Cotton
and extended theories of gravity and the dark sector

Carlo Alberto Mantica * and Luca Guido Molinari †
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The Friedmann equations of Cotton gravity provide a simple parametrization to reproduce, by tuning a
single function, the Friedmann equations of several extensions of gravity, such as fðRÞ, modified Gauss-
Bonnet fðGÞ, teleparallel fðTÞ, and more. It also includes the recently proposed conformal Killing gravity
and mimetic gravity in Friedmann-Robertson-Walker space-times. The extensions generally have the form
of a Codazzi tensor that may be associated to the dark sector. Fixing it by a suitable equation of state
accomodates most of the postulated models that extend ΛCDM, as the Chevallier-Polarski-Lindler model.
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I. INTRODUCTION

In recent years there has been a flourishing of extended
theories of gravity to address the problem of the dark sector.
They modify the Einstein equations by adding a term Hjk

to the energy-momentum tensor Tjk of matter:

Rjk −
1

2
gjkR ¼ κðTjk þHjkÞ: ð1Þ

The term originates from a new form of gravitational action
or new particles.
Large-scale cosmology is staged in Friedmann-

Robertson-Walker (FRW) space-times, where the Weyl
tensor Cjklm is zero. This fact ushers Codazzi tensors.
If ∇mCjkl

m ¼ 0, then

Rij −
R
2
gij ¼ Sij − gijSkk; ð2Þ

where the Schouten tensor Sij ¼ Rij − 1
6
Rgij is a Codazzi

tensor, i.e., ∇iSjk ¼ ∇jSik.
This means that Tjk þHjk has the same decomposition.

The Codazzi condition ensures that ∇kðTkl þHklÞ ¼ 0.
Moreover, in a FRW space-time the sum must have the

perfect fluid structure of the Einstein tensor.
The vast majority of extended models of gravity in FRW

space-times specify this property for the radiation-matter
sector, with conservation. This entails a Codazzi decom-
position of the perfect fluid tensor. Then, necessarily,
despite the often complex structure of the tensor Hkl, the
dark sector is perfect fluid and conserved.

For these models:

Hjk ¼ Cjk − gjkCpp; ð3Þ

∇iCjk ¼ ∇jCik: ð4Þ

The aim of this work is to uncover this common
structure, albeit the different origins of the various cosmo-
logical models. We explicitly show this in plenty of well
studied extended gravity models in FRW space-times:
fðRÞ, Gauss-Bonnet fðGÞ, teleparallel fðTÞ, Einsteinian
cubic fðPÞ, conformal Killing gravity, Lovelock.
An inclusive and simple model which they fit in, stems

from Cotton gravity.
In 2021 Junpei Harada [1] introduced a modification of

general relativity (GR) named “Cotton gravity” (CG), with
field equations

Cjkl ¼ ∇jTkl −∇kTjl −
1

3
ðgkl∇jT − gjl∇kTÞ: ð5Þ

Tkl is the matter energy-momentum tensor with trace T and
Cjkl is the Cotton tensor:

Cjkl ≡∇j

�
Rkl −

R
6
gkl

�
−∇k

�
Rjl −

R
6
gjl

�
; ð6Þ

where Cjkl ¼ −2∇mCjkl
m. The property gklCjkl ¼ 0

implies that ∇pTjp ¼ 0. Cotton gravity was devised so
that any solution of GR is a solution of CG.
Soon after, Harada applied his theory to describe the

rotation curves of 84 galaxies without assuming the
presence of dark matter [2]. A wide class of spherically
symmetric static vacuum solution was then obtained
by Gogberashvili and Girvliani [3], with a long range
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modification of Newton’s law. A static solution of Cotton
gravity with electric and magnetic charges was obtained
in [[4], Eq. (80)]
An important progress was made in [5] in showing

that the equations of Cotton gravity are equivalent to the
standard GR equations corrected by an arbitrary Codazzi
tensor

Rkl −
1

2
Rgkl ¼ Tkl þ Ckl − gklCrr;

∇jCkl ¼ ∇kCjl: ð7Þ

In the frame of FRW solutions, this is precisely the
statement in Eq. (3). Cotton gravity exhibits the maximal
freedom in specifying Hkl. We refer to Eq. (7) as the
“Codazzi parametrization.’’
While Harada’s equations have third order derivatives of

the metric, the equivalent equations (7) are second order.
Sussman and Nájera [6] used (7) to produce FRW

solutions of Cotton gravity. They posed a modified
Friedmann equation with a scalar function KðtÞ and
obtained the components of a perfect fluid Codazzi tensor
for which Eq. (7) is satisfied. Very recently, they published
a paper [7] with several nontrivial CG solutions that
generalize the well known GR solutions: FLRW, Lemaitre-
Tolman-Bondi, and Szekeres, as well as static perfect fluid
spherically symmetric solutions (with application to galac-
tic rotation curves) and nonstatic shear-free.
Also motivated by this result, we propose a general

discussion based upon Theorem 2.1 in [5]: a FRW space-
time always contains a perfect fluid Codazzi tensor that
displays a freedom in its parameters.
In Sec. II we write the Friedmann equations for Cotton

gravity in a FRW space-time.
In Sec. III we recognize that some of the most important

extended theories of gravity have the following intriguing
property: their Friedmann equations coincide with those of
Cotton gravity by a suitable choice of the Codazzi tensor.
We show this explicitly by providing the specific Codazzi
tensor for fðRÞ gravity, Gauss-Bonnet fðGÞ gravity, fðTÞ
gravity, cubic Einsteinian and fðPÞ gravity, Lovelock.
These findings are well corroborated by the generic

gravity theory by Gürses and Heydarzade [8], whose very
general form of gravitational action incorporates many
extended gravity theories. They show that the field equations
differ from the standard FRW ones by a perfect-fluid term.
In Sec. IV we show that the Codazzi parametrization

of CG extends the recently introduced conformal Killing
gravity [9–11], at least in FRW space-times.
In Sec. V we prove that the field equations of mimetic

gravity become the Cotton equations if and only if the
hosting space-time is generalized Robertson Walker, and
FRW space-times are a special case.
In Sec. VI the dark sector is fixed by requesting an

equation of state (EOS). It accommodates the best known

redshift dependent models, such as the Chevallier-Polarski-
Lindler model.
Notation. i; j; k;… ¼ 0, 1, 2, 3, μ; ν;… ¼ 1, 2, 3. A dot

operator Ẋ ¼ uk∇kX is the time derivative in the comoving
frame defined by u0 ¼ 1, uμ ¼ 0. X½ijk� is the cyclic
sum Xijk þ Xkij þ Xjki.

II. FRIEDMANN EQUATIONS OF COTTON
GRAVITY IN FRW SPACE-TIMES

Generalized Robertson Walker space-times (GRW) are
Lorentzian manifolds that extend FRW space-times with
the metric

ds2 ¼ −dt2 þ aðtÞ2g⋆μνðxÞdxμdxν; ð8Þ
where g⋆μνðxÞ is a positive definite metric and aðtÞ is the
scale factor. A covariant characterization is the existence of
a vector field ukuk ¼ −1 that is shear-free, vorticity-free,
and acceleration-free, and the eigenvector of the Ricci
tensor [12], i.e.,

∇juk ¼ Hðgjk þ ujukÞ; ð9Þ
Rijuj ¼ ξui; ð10Þ

where H ¼ ȧ=a is Hubble’s parameter, ξ ¼ 3ðH2 þ ḢÞ ¼
3ä=a. The condition (10) is equivalent to∇jH ¼ −Ḣuj. Its
divergence and the contracted Bianchi identity give

Ṙ − 2ξ̇ ¼ −2HðR − 4ξÞ ð11Þ
whose solution is [13]

R ¼ R⋆

a2
þ 12H2 þ 6Ḣ ð12Þ

where R⋆ is the spatial curvature. In d ¼ 4 and whenever
Cjklmum ¼ 0 the GRW spacetime is a FRW space-time.
In a FRW space-time the natural form of the Codazzi

tensor in Eq. (7) is perfect fluid. Λgkl with a constant Λ, is
trivially a Codazzi tensor.
This simple result is proven in [5] (Theorem 2.1).
Proposition 1. In a FRW space-time the tensor

Ckl ¼ Aukul þ Bgkl þ
Λ
3
gkl ð13Þ

is Codazzi provided that ∇jA ¼ −Ȧuj, ∇jB ¼ −Ḃuj,

Ḃ ¼ −HA: ð14Þ
Proof. The first two conditions mean that A ¼ AðtÞ

and B ¼ BðtÞ. Equation (14) requires Ḃ ≠ 0. Next, with
∇jA ¼ −Ȧuj, ∇jB ¼ −Ḃuj, Eqs. (9) and (14) it is

∇jCkl ¼ −ujukulðȦþ 2ḂÞ − Ḃðulgjk þ ukgjl þ ujgklÞ:

MANTICA and MOLINARI PHYS. REV. D 109, 044059 (2024)

044059-2



Therefore (13) is a Codazzi tensor for any choice of the
scale factor. ▪
It implies that any FRW space-time is a solution of

Cotton gravity with (13), and leaves an interesting degree
of freedom B in choosing the Codazzi tensor.
Equation (7) is written with the input (13), the general

form of the Ricci tensor of a FRW space-time

Rkl ¼
1

3
ðR − 4ξÞuluk þ

1

3
ðR − ξÞgkl

and the stress energy tensor Tkl ¼ ðμþ pÞuluk þ pgkl with
energy density μ and pressure p of ordinary matter.
Contractions with ukul and gkl and a simple rearrange-

ment provide the Friedmann equations of Cotton gravity in
a FRW space-time

κμ ¼ R
2
− ξ − 3B − Λ; ð15Þ

κp ¼ −
R
6
−
ξ

3
þ 3B þ Ḃ

H
þ Λ: ð16Þ

They are the standard Friedmann equations of GR aug-
mented by the Codazzi terms. Such terms naturally
correspond to the dark sector:

Hkl ¼ ðAukul þ BgklÞ − gklð4B −AÞ;
≡ ðμD þ pDÞukul þ gklpD: ð17Þ

The function BðtÞ parametrizes the energy density and the
pressure of the dark sector:

μD ¼ 3B; ð18Þ

pD ¼ −3B − Ḃ=H: ð19Þ

It implies the conservation law μ̇D ¼ −3HðpD þ μDÞ
coming from ∇kHk

j ¼ 0 or the equivalent Codazzi con-
dition for Aukul þ Bgkl in FRW spacetimes.

III. REPRODUCING THE FRIEDMANN
EQUATIONS OF EXTENDED THEORIES

We show that the Friedmann equations (15) and (16) of
Cotton gravity may reproduce the Friedmann equations of
other extended theories in absence of cosmological con-
stant. With Eq. (12) and ξ ¼ 3ðH2 þ ḢÞ we write them as

κμ ¼ R⋆

2a2
þ 3H2 − 3B; ð20Þ

κp ¼ −
R⋆

6a2
− 3H2 − 2Ḣ þ 3B þ Ḃ

H
: ð21Þ

The comparison with the Friedmann equations of other
theories selects the function BðtÞ that reproduces them.
In Ref. [8] Gürses and Heydarzade introduced the

generic gravity theory. It is characterized by a very general
form of gravitational action, with a scalar function F of
the metric tensor, the Riemann tensor and its covariant
derivatives at any order:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R − 2Λ

κ

þ F ðg;Riem;∇Riem;∇∇Riem;…Þ
�
þ Smat: ð22Þ

The theory contains all modified theories of gravity
based on curvature such as fðRÞ, fðGÞ, fðPÞ theories.
The authors prove a theorem for generic gravity in

FLRW cosmology ([8], Theorem 5): the field equations
always take the form Gkl ¼ κTkl þHkl, where Hkl ¼
Agkl þ Bukul accounts for the contribution of all afore-
mentioned higher order terms. The explicit expressions for
A and B was given for the Einstein-Lovelock and for
generalized Einstein-Gauss-Bonnet theories. In [14] the
explicit analysis is extended to quadratic gravity.
In this general setting, we note the following:
Lemma 2. In a FLRW space-time if Hkl ¼ Agkl þ Bukul

is divergence-free then it is

Hkl ¼ Ckl − gklC
p
p

with Ckl being a Codazzi tensor.
Proof. The divergence-free condition is 3HB ¼ Ȧ − Ḃ.

Let A ¼ B and B ¼ 1
3
ðB −AÞ, then Ḃ ¼ −HA. By

Proposition 1 the tensor Ckl ≡Aukul þ Bgkl satisfies the
Codazzi condition. ▪
Thus we may state that in FLRW cosmology Cotton gravity
is equivalent to any generic gravity theory.

A. f ðRÞ gravity
Perhaps it is the best known extended theory of gravity.

It was introduced by Buchdahl in 1970 [15] and gained
popularity with the works on cosmic inflation by
Starobinsky [16]. Recently fðRÞ theories are possible
candidates to explain the observed cosmic acceleration.
Investigations to explain both dark energy and inflation

were pursued in the papers by Cognola et al. [17], Nojiri
and Odintsov [18,19]. Capozziello considered fðRÞ to
discuss the issue of quintessence [20]. For general reviews
on fðRÞ see [21–23].
The action of fðRÞ gravity is

S ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ þ SðmÞ;
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where SðmÞ is the matter term. With fR ¼ df=dR, the field
equations are [23]

fRRkl −
f
2
gkl − ð∇k∇l − gkl□ÞfR ¼ κTkl: ð23Þ

They can be rewritten in the form (1). In [24] it was proven
that in a FRW space-time the resulting termHjk is a perfect
fluid tensor.
For the spatially flat (R⋆ ¼ 0) FRW space-time the

Friedmann equations of fðRÞ gravity are [[23], Eqs. (75)
and (76)]:

κμ ¼ 3fRH2 −
1

2
ðRfR − fÞ þ 3HṘfRR; ð24Þ

ð3H2 þ 2ḢÞfR ¼ −
�
κpþ Ṙ2fRRR þ 2HṘfRR

þ R̈fRR þ 1

2
ðf − RfRÞ

�
: ð25Þ

In comparing (24) with (20) we identify

B ¼ H2ð1 − fRÞ þ
1

6
ðRfR − fÞ −HṘfRR: ð26Þ

In computing Ḃ we note that ḟðRÞ ¼ fRðRÞṘ, ḟRðRÞ ¼
fRRṘ, ḟRR ¼ fRRRṘ, so that

Ḃ ¼ 2HḢð1 − fRÞ þ fRR

�
R
6
− Ḣ −H2

�
Ṙ

−HR̈fRR −HṘ2fRRR:

The restriction R⋆ ¼ 0 in (12) gives R ¼ 12H2 þ 6Ḣ.
We obtain −A:

Ḃ
H

¼ 2Ḣð1 − fRÞ þ ðHṘ − R̈ÞfRR − Ṙ2fRRR: ð27Þ

Using now (21) we obtain (25).
Proposition 3. The Friedmann equations of Cotton

gravity with the perfect fluid Codazzi tensor (13) are the
Friedmann equations of fðRÞ gravity with the choice (26).

B. f ðGÞ gravity
A second well-known extended theory that tries to solve

the problem of dark energy is the Gauss-Bonnet gravity,
alias fðGÞ gravity [25–27]:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ

þ fðGÞ
�
þ SðmÞ;

where G¼R2−4RklRklþRjklmRjklm is the Gauss-Bonnet
invariant.

The field equations may be written in the form
Rkl − 1

2
Rgkl ¼ κðTkl þHklÞwith the following divergence-

free tensor Hkl [8,28]:

Hkl ¼
1

2
gklf − 2fGðRRkl − 4RkqR

q
l þ 2Rk

pqrRlpqrÞ
− 4fGRk

pq
lRpq þ 2Rð∇k∇lfG − gkl□fGÞ

− 4ðRl
p∇p∇kfG þ Rk

p∇p∇lfGÞ þ 4ð□fGÞRkl

þ 4ðRpqgkl − Rk
pq

lÞ∇p∇qfG; ð28Þ
where fG ¼ df=dG. In a FRW space-time it is a perfect
fluid tensor. For the spatially flat case, the Gauss-Bonnet
invariant is G ¼ 24ðḢH2 þH4Þ and the Friedmann equa-
tions of fðGÞ gravity are expressible as [Eq. (5) in [29]]

κμ ¼ 3H2 − κðGfG − f − 24H3ĠfGGÞ; ð29Þ
κp ¼ −3H2 − 2Ḣ þ κðGfG − fÞ

− 16κHðH þ ḢÞfG − 8κH2f̈G: ð30Þ
With ḟ ¼ fGĠwe obtain ḟG ¼ fGGĠ and the first equation
rewrites as κμ¼3H2−κðGfG−f−24H3ḟGÞ.
Comparison with (20) gives the following identification:

B ¼ κðGfG − f − 24H3ḟGÞ: ð31Þ
After straightforward calculations we infer

−A ¼ Ḃ
H

¼ 8κ½ḟGðH3 − 2HḢÞ −H2f̈G�: ð32Þ

Thus from (21) we obtain Eq. (30).
Proposition 4. The Friedmann equations of Cotton

gravity with the perfect fluid Codazzi tensor (13) are the
Friedmann equations of Gauss-Bonnet fðGÞ gravity with
the choice (31).

C. f ðTÞ gravity
In the framework of gravity theories with torsion,

the “teleparallel equivalent of general relativity” is the best
known one. It is widely discussed in [30] and briefly
reviewed in [31]. It is based on the action [[31] Eq. (2.5)]:

S ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p ½T þ fðTÞ� þ SðmÞ:

The field equations are Eq. (263) in [30] or Eq. (2.6) in [31].
For the spatially flat FRW space-time, the Friedmann
equations of fðTÞ gravity are expressible as [Eqs. (2.9)
and (2.10) in [31] or Eqs. (267) and (268) in [30] ]:

H2 ¼ κ

3
μ −

f
6
− 2fTH2; ð33Þ

Ḣ ¼ −
1

2

κðpþ μÞ
1þ fT − 12H2fTT

: ð34Þ
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The torsion scalar is T ¼ −6H2 [Eq. (269) in [30]], and
fT ¼ df=dT. Comparing with Eq. (20) we identify

B ¼ −
1

6
fðTÞ − 2fTðTÞH2: ð35Þ

Note that ḟðTÞ ¼ fTṪ ¼ −12HḢfT , ḟT ¼ fTTṪ ¼
−12HḢfTT . Thus Ḃ ¼ −2HḢfT þ 24H3ḢfTT and

−A ¼ Ḃ
H

¼ −2ḢfTðTÞ þ 24H2ḢfTTðTÞ: ð36Þ

Summing the Friedmann equations (20) and (21) of Cotton
gravity we get

κ

2
ðpþ μÞ ¼ −Ḣ þ Ḃ

2H
: ð37Þ

Inserting (36) in (37) gives Eq. (34).
Proposition 5. The Friedmann equations of Cotton

gravity with the perfect fluid Codazzi tensor (13) are the
Friedmann equations of fðTÞ gravity with the choice (35).

D. Einsteinian cubic and f ðPÞ gravity
In [32] an extended theory is proposed, based on an

invariant P constructed with cubic contractions of the
Riemann tensor. The theory was subjected to three con-
straints: (1) the spectrum should be identical to that of GR
(whence the name); (2) it is neither topological nor trivial in
d ¼ 4; (3) it is independent of the dimension.
The action is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R − 2Λ

2κ
þ P

�
þ SðmÞ;

P ¼ −β1Rj
pq

kRp
rs
qR

j
rs
k þ β2Rjk

rsRrs
pqRpq

jk

þ β3Rj
kRpqrjRpqrk þ β4RpqrsRpqrs þ β5RjkpqRkpRjq

þ β6R
p
kR

j
pRk

j þ β7RRpqRpq þ β8R3: ð38Þ

The aforementioned constraints impose three linear rela-
tions among the coefficients βi.
In [33] the cosmological applications of Einsteinian cubic

gravity at early and late times were investigated. In [34] the
viability of the theoretical model is analyzed, by considering
observational features such as cosmic chronometers data,
baryon acoustic oscillations, and supernovae.
The field equation may be written in the form

Rkl − 1
2
Rgkl þ Λgkl ¼ κðTkl þHklÞ, where Hkl is an

involved symmetric tensor containing contractions of the
Riemann and the Ricci tensor.
The Friedmann equations are Eqs. (11) and (12) in [33]:

3H2 ¼ κðμþ 6αβ̃H6Þ þ Λ; ð39Þ

3H2 þ 2Ḣ ¼ −κ½p − 6αβ̃H4ðH2 þ 2ḢÞ� þ Λ; ð40Þ

with β̃ ¼ −β1 þ 4β2 þ 2β3 þ 8β4. Comparison with (20)
yields

B ¼ 6κβ̃H6: ð41Þ

Then −A ¼ Ḃ=H ¼ 12κβ̃H4Ḣ. From Eq. (21) we get
Eq. (40).
Proposition 6. The Friedmann equations of Cotton

gravity with the perfect fluid Codazzi tensor (13) are the
Friedmann equations of cubic Einsteinian gravity with
the choice (41).
In the same paper [33] the authors proposed the fðPÞ

extension of Einsteinian cubic gravity:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ

þ fðPÞ
�
þ SðmÞ:

The field equations are still of the type Rkl − 1
2
Rgkl ¼

κðTkl þ H̃klÞ, where H̃kl is quite more involved. The
Friedmann equations are Eqs. (26) and (27) in [33]:

3H2 ¼ κμ − κf − 18κβ̃H4ðH∂t −H2 − ḢÞfP; ð42Þ

3H2 þ 2Ḣ ¼ −κP − κf − 6καβ̃H3

× ½H∂
2
t þ 2ðH2 þ 2ḢÞ∂t − 3H3 − 5HḢ�fP;

ð43Þ

where fP ¼ df=dP and P ¼ 6β̃H4ðH2 þ 2ḢÞ.
It is simple to identify

B ¼ −κf − 18κβ̃H4ðHḟP −H2fP − ḢfPÞ: ð44Þ

Now ḟðPÞ¼fPṖ¼18β̃H3ð4H2Ḣþ4Ḣ2þHḦÞfP. After
tedious but straightforward calculations it is

Ḃ
H

¼ 6κβ̃H3½2HḢfP − ḟPð4Ḣ −H2Þ −Hf̈P�: ð45Þ

Thus from (21) we get (43).
Proposition 7. The Friedmann equations of Cotton

gravity with the perfect fluid Codazzi tensor (13) are the
Friedmann equations of fðPÞ gravity with the choice (44).

E. Regularized cubic Lovelock gravity

In Sec. 3 of [35] the authors focused on the cubic
Lovelock gravity in a four-dimensional FRW space-time.
They obtained the following Friedmann equations

κμ ¼ 3J2ð1þ αJ2 þ βJ4Þ; ð46Þ

κðpþ μÞ ¼ −2
�
Ḣ −

R⋆

6a2

�
ð1þ 2αJ2 þ 3βJ4Þ; ð47Þ
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where J2 ¼ H2 þ R⋆

6a2. We dropped their cosmological
constant and the stress energy tensor is multiplied by a
factor of 2 to match our notation. We state the following:
Lemma 8. If in (21) we put −B ¼ FðJ2Þ, where F is a

smooth arbitrary function of J2 ¼ H2 þ R⋆

6a2, then

κ

2
ðpþ μÞ ¼ −

�
Ḣ −

R⋆

6a2

�
½1þ FJðJ2Þ�; ð48Þ

where FJ ¼ dF=dJ2.
Proof. From (21) we have κ

2
ðpþ μÞ ¼ R⋆

6a2 − Ḣ þ Ḃ
2H. If

−B ¼ FðJ2Þ, then Ḃ ¼ −2FJ2JJ̇. On the other hand JJ̇ ¼
HðḢ − R⋆

6a2Þ so that Ḃ
2H ¼ −ðḢ − R⋆

6a2ÞFJ2 and the Lemma is
proven. ▪
Choose FJðJ2Þ ¼ αJ2 þ βJ4 and (46), (47) are recovered.

F. Sussman Nájera model in Cotton gravity

In [6,7] the authors introduced the following modified
Friedmann equation:

H2 ¼ κ

3
μ −

R⋆

6a2
−

γ

a2
KðtÞ; ð49Þ

with an arbitrary dimensionless function KðtÞ and a
constant γ. Then they computed the components of the
Codazzi tensor that solves Cotton gravity. Comparison
of (49) with (20) gives B whence A is computed:

B ¼ −
γKðtÞ
a2

; ð50Þ

A ¼ −
Ḃ
H

¼ γK̇ðtÞ
a2H

−
2γKðtÞ
a2

: ð51Þ

The expression of the Cotton tensor

Ckl ¼
�
γK̇ðtÞ
a2H

−
2γKðtÞ
a2

�
ukul −

γKðtÞ
a2

gkl ð52Þ

compares with the components in Eq. (19) evaluated in [7].

IV. COMPARISON WITH CONFORMAL
KILLING GRAVITY

After Cotton gravity, Harada introduced a new theory
of gravity to explain the present accelerated phase of the
Universe without explicit introduction of dark energy [9]:

∇½jRkl� −
1

3
∇½jRgkl� ¼ ∇½jTkl� −

1

6
∇½jTgkl�: ð53Þ

The equations are manifestly of third order in the deriv-
atives of the metric tensor.
Shortly after in [11] we introduced a parametrization

of the theory by showing that (53) is equivalent to the

Einstein’s equation in which the stress-energy tensor is
augmented by a divergence-free conformal Killing tensor:

Rkl −
1

2
Rgkl ¼ Tkl þ Kkl; ð54Þ

∇½jKkl� ¼
1

6
∇½jKgkl�; ð55Þ

whereK¼gpqKpq. We named this theory conformal Killing
gravity.
The second equation defines a divergence-free con-

formal Killing tensor. They are deeply investigated in
differential geometry and in physics [36–39].
We proved existence of a conformal Killing tensor in

any FRW space-time, obtaining two modified Friedmann
equations that allow for the presence of a dark sector. When
applied to a simple toy model, this theory reveals a
phantom dark fluid with EOS parameter w ¼ −5=3 [11].
In a second paper [10] Harada developed an interesting

cosmological analysis confirming in general that the dark
energy predicted by the conformal Killing gravity has the
same EOS parameter.
Here we investigate the connections between Cotton and

conformal Killing gravity.
To this end, consider a generic space-time endowed with

a (0, 2) symmetric tensor satisfying the relation

∇jKkl ¼ ajgkl − bkgjl − blgjk: ð56Þ

We call such tensors Sinyukov-like (see [39,40]). If Kkl is
the Ricci tensor, then we recover the Sinyukov manifolds,
investigated for example in [41].
Here we consider divergence-free Sinyukov-like tensors:

∇jKkl ¼ 5
∇jK

18
gkl −

∇kK
18

gjl −
∇lK
18

gjk; ð57Þ

whereK¼Kp
p. They satisfy the condition (55) that defines

divergence-free conformal Killing tensors [38].
A space-time with a Sinyukov-like divergence-free

tensor is a solution of conformal Killing gravity (54).
On the other hand (57) implies the Codazzi condition

∇j

�
Kkl −

K
3
gkl

�
¼ ∇k

�
Kjl −

K
3
gjl

�
: ð58Þ

Then Ckl¼Kkl− 1
3
Kgkl is a Codazzi tensor with Crr ¼ − 1

3
K.

From Rkl − 1
2
Rgkl ¼ Tkl þ Kkl we recover the paradigm (7)

with the same stress-energy tensor.
Proposition 9. A space-time with a divergence-free

Sinyukov-like tensor (57) is a solution both of conformal
Killing gravity (54) and of Cotton gravity (7), with the
same stress-energy tensor.
We show that, rather surprisingly, any FRW space-time

is equipped with a Sinyukov-like tensor.
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We recall that a vector Zj is a conformal Killing vector
[38] (CKV for short) if the following condition holds:

∇jZi þ∇iZj ¼ 2ψgij; ð59Þ

where the scalar function ψ is called conformal factor.
Let Zj ¼ Fuj with ujuj ¼ −1 and F a scalar function.

The following result holds:
In a GRW space-time Fuj is a CKV if and only if

Ḟ ¼ HF ¼ ψ and ∇iF ¼ −uiḞ; i.e., F depends only on
time. ([42] Theorem 2.1, [43] Theorem 1)
In this case, since H ¼ ȧ=a, we obtain FðtÞ ¼ kaðtÞ for

some constant k. According to Rani et al. [38], the CKV
originates a conformal Killing tensor

Kij ¼ F2uiuj þ F1gij ð60Þ

for arbitrary scalar function F1. Let us choose F1 in order
that 0 ¼ ∇pKp

j. A simple evaluation using (9) shows that
∇iF1 ¼ −5FḞui. Then F1 depends only on time, and
Ḟ1 ¼ 5FḞ. An integration gives F1 ¼ 5

2
F2 − Λ being Λ a

constant. Now

Kjk ¼ F2

�
ujuk þ

5

2
gjk

�
− Λgjk: ð61Þ

Next evaluate ∇iKjk ¼ HF2ð−5uigjk þ gijuk þ gikujÞ.
Contraction with gjk: ∇iK ¼ −18HF2ui. It turns out
that Kjk satisfies (57); i.e., it is divergence-free and
Sinyukov-like. ▪
The associated Codazzi tensor Ckl ¼ Kkl − K

3
gkl is

Cij ¼ F2

�
uiuj −

1

2
gij

�
þ Λ

3
gij: ð62Þ

We have proven the following:
Proposition 10. Any GRW space time, and thus any

FRW space-time, is a solution of both Cotton and con-
formal Killing gravity with the same stress-energy tensor.
The Codazzi tensor (62) is not as general as (13), since it

is fixed up to a constant. In fact the condition (14) is more
general than Ḟ ¼ HF. In a FRW space-time Cotton gravity
is more general than conformal Killing gravity.
The conformal Killing tensor (61) is used in [11]

to obtain the Friedmann equations of conformal Killing
gravity. The eigenvalue equation Kijui ¼ λuj gives λ ¼
3
2
F2 − Λ and thus K ¼ 6λþ 2Λ. We rewrite the tensor as

Kij ¼
2λþ 2Λ

3
uiuj þ

5λþ 2Λ
3

gij: ð63Þ

Note that 2λ ¼ 3F2 − 2Λ ¼ 3k2a2ðtÞ − 2Λ.

V. COMPARISON WITH MIMETIC GRAVITY

In 2013, Chamseddine and Mukhanov [44–46] proposed
a modification of GR where the conformal degree of
freedom is distinguished. This is done by parametrizing
the physical metric tensor gkl in terms of an auxiliary metric
g̃kl and a scalar field ϕ, called mimetic field:

gklðg̃;ϕÞ ¼ −ðg̃pq∇pϕ∇qϕÞg̃kl; ð64Þ

where g̃pq ≡ ðg̃−1Þpq. Then gkl ¼ −ðg̃pq∇pϕ∇qϕÞ−1g̃kl.
The compatibility condition follows:

gkl∇kϕ∇lϕ ¼ −1: ð65Þ
A conformal transformation of the auxiliary metric
g̃0kl ¼ Ω2g̃kl leaves the physical metric invariant. Mimetic
gravity may be viewed as a conformal extension of Einstein
theory, which is locally Weyl invariant: this fact was
pointed out by Barvinsky [47].
The gravitational action depends upon the auxiliary

metric and the mimetic field. Alternatively, it depends
on the physical metric but with the constraint (65):

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½Rþ ζðgpq∇pϕ∇qϕþ 1Þ − VðϕÞ� þ SðmÞ:

ð66Þ
VðϕÞ is a potential and ζ is a Lagrange multiplier. For a
thorough review of mimetic gravity see [48].
The first field equation is obtained by minimizing with

respect to the metric:

Rkl −
1

2
Rgkl ¼ Tkl þ 2ζ∇kϕ∇lϕþ gklVðϕÞ: ð67Þ

It has the form of an extended theory with dark sector
explicitly represented by the mimetic field (whence the
name of “mimetic dark matter” in the literature).
The trace and the constraint give 2ζ ¼ Rþ T þ 4V. The

covariant divergence of (67) is

2½∇kζ∇kϕþ ζ∇k∇kϕ�∇lϕþ∇lV ¼ 0; ð68Þ

where we used ∇kRk
l − 1

2
∇lR ¼ 0, ∇kTkl ¼ 0 and

∇jð∇pϕ∇pϕÞ ¼ 0.
Variation of the action with respect to the mimetic field

gives

2∇pðζ∇pϕÞ ¼ −
∂V
∂ϕ

: ð69Þ

Since gpq∇pϕ∇qϕ ¼ −1 the vector field uk ¼ −∇kϕ is
unit timelike and closed, i.e., ∇juk ¼ ∇kuj. Then it is
vorticity-free and acceleration-free:

∇juk ¼ Hðgjk þ ujukÞ þ σjk; ð70Þ
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with σjk being the shear tensor. The corresponding metric is
(see [44,46,49])

ds2 ¼ −dt2 þ g⋆μνðx; tÞdxμdxν: ð71Þ

By fixing the hypersurfaces of constant time of (71)
to be of constant ϕ, the solution of the constraint
gpq∇pϕ∇qϕ ¼ −1 may be written (see [44] and refer-
ences therein or [46]):

ϕ ¼ �tþ const: ð72Þ

Thereby choosing ϕ ¼ t and using uk ¼ −∇kϕ, it is
u0 ¼ −1, uμ ¼ 0.
We then conclude that the general metric for mimetic

gravity is (71). In this context V ¼ VðtÞ, while in general ζ
is a function of x and t.
The field equations take the form

Rkl −
1

2
Rgkl ¼ Tkl þ 2ζukul þ Vgkl; ð73Þ

and (68) becomes ∇lV ¼ −2ðζ̇ þ 3HζÞul. Transvecting it
with ul gives the interesting relation

V̇ ¼ 2ζ̇ þ 6Hζ; ð74Þ

where we used ∇pup ¼ 3H derived from (70).
Now note that (73) may be rewritten as in Cotton gravity

Rkl − 1
2
Rgkl ¼ Tkl þ Ckl − gklCrr, with

Ckl ¼ 2ζukul þ
1

3
gklð2ζ − VÞ: ð75Þ

It is a perfect fluid tensor with A ¼ 2ζ and 3B ¼ 2ζ − V
but in general it is not Codazzi. Nevertheless, in view
of (74), it is always

−
Ḃ
H

¼ 1

3H
ðV̇ − 2ζ̇Þ ¼ 2ζ ¼ A:

We report Theorem 2.1 in [5] restricted to the case
of vanishing acceleration:
The perfect fluid tensor Ckl ¼ Aukul þ Bgkl is Codazzi

if and only if (1)∇juk ¼ Hðgjk þ ujukÞ, (2)∇jH ¼ −Ḣuj,
(3) ∇jA ¼ −Ȧuj and ∇jB ¼ −Ḃuj, and (4) H ¼ −Ḃ=A.
This can be rephrased as follows:
Proposition 11. The field equation (67) of mimetic

gravity is the field equation of Cotton gravity if and only
if the space-time is GRW, V ¼ VðtÞ and ζ ¼ ζðtÞ. In
particular, in a FRW space-time the field equations (67)
are the Cotton equations.
Cotton gravity can include other versions of mimetic

gravity. As noted in [45] (see also the review [35]) in order
to have viable cosmological perturbations the action (66)

has to include higher derivative terms. For example it is
possible to add 1

2
γð□ϕÞ2 being γ a constant. The new field

equations are [Eq. 110 in [35]]:

Rkl −
1

2
Rgkl ¼ Tkl þ gkl½VðϕÞ þ γ∇pχ∇pϕ�

þ 2ζ∇kϕ∇lϕ − γ½∇kϕ∇lχ þ∇kχ∇lϕ�;
ð76Þ

where □ϕ ¼ χ. The background is a FRW space-time.
Since uk ¼ −∇kϕ we get 3H ¼ −□ϕ. Moreover, recalling
that ∇kH ¼ −Ḣuk, it is ∇kχ ¼ −3∇kH ¼ 3Ḣuk and the
previous equation rewrites as

Rkl −
1

2
Rgkl ¼ Tkl þ 2ðζ þ 3γḢÞukul þ gkl½VðϕÞ þ 3γḢ�:

ð77Þ

Thus we recognize

Ckl ¼ 2ðζ þ 3γḢÞukul þ
1

3
gklð2ζ − V þ 3γḢÞ: ð78Þ

This is again perfect fluid, withA ¼ 2ðζ þ 3γḢÞ and 3B ¼
2ζ − V þ 3γḢ being in this context V ¼ VðtÞ and ζ ¼ ζðtÞ.
The covariant divergence of (77) gives the conservation law

2½3Hζþ9γHḢþ ζ̇þ3γḦ�ulþ∇lVþ3γ∇lḢ¼0: ð79Þ

Transvecting this with ul gives

γḦ ¼ 2Hðζ þ 3γḢÞ − 2ζ̇

3
þ V̇

3
: ð80Þ

Thus 3Ḃ ¼ 2ζ̇ − V̇ þ 3γḦ and using (80) it is Ḃ
H ¼ 2ðζ þ

3γḢÞ ¼ −A and (78) is a Codazzi tensor.
We have proven the following:
Proposition 12. In a FRW space-time the field equa-

tions (77) are the Cotton equations.
A Lagrangian containing also a term proportional to

ð∇k∇lϕÞ2 was investigated by Casalino et al. [50]. Its
viability was tested in the light of the multi messenger
detection of the gravitational wave event GW170817 and
its optical counterpart [51]. As a result, the coefficient
multiplying this term was shown to be < 10−15; thus the
term should be suppressed.
In closing, we recall that Nojiri and Odintsov [52]

introduced mimetic fðRÞ gravity.

VI. FIXING THE DARK SECTOR

From the above discussion it is clear that the dark sector
is described by the Codazzi terms and emerges from
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geometry. In Cotton gravity the term B remains unfixed, so
that further restrictions are needed.
We make a standard cosmological analysis by supposing

that the content of energy in Tjk is from radiation (r) and
matter (m): μ ¼ μr þ μm, where

μr ¼
μr;0

ða=a0Þ4
; μm ¼ μm;0

ða=a0Þ3
:

By setting 8πG
3H2

0

¼ 1=μc, Ωr;0 ¼ μr;0=μc, Ωm;0 ¼ μm;0=μc,

Ωk;0 ¼ − R⋆

6H2
0
a2
0

, and ΩΛ ¼ Λ
3H2

0

, we get

H2

H2
0

¼ Ωr;0

ða=a0Þ4
þ Ωm;0

ða=a0Þ3
þ Ωk;0

ða=a0Þ2
þ ΩΛ þ B

H2
0

:

In terms of redshift 1þ z ¼ a0=a the equation becomes

H2

H2
0

¼ Ωr;0ð1þ zÞ4 þΩm;0ð1þ zÞ3

þΩk;0ð1þ zÞ2 þ ΩΛ þ BðzÞ
H2

0

: ð81Þ

If B ¼ 0, then the standard ΛCDM model is recovered.
It is quite remarkable that we only need to assume

the presence of matter and radiation, while the theory
provides the term that can be interpreted as a dark
sector. As Harada argued, the dark sector appears as a
purely geometric effect due to the presence of the
Codazzi tensor.
Let us write the condition Ḃ ¼ −HA as a function of

the redshift. With ż ¼ −ð1þ zÞH it is Ḃ ¼ dB
dz ż ¼

− dB
dz ð1þ zÞH. The condition becomes

A ¼ dB
dz

ð1þ zÞ: ð82Þ

In this representation A does not depend on the Hubble
parameter.
Now recall Eqs. (18) and (19): κμD ¼ 3B and κpD ¼

−3B − Ḃ=H. Suppose that an EOS pD ¼ wðzÞμD is valid,
where the parameter w may be redshift dependent.
In general the dark sector is characterized by w < −1=3.

The regime −1 < w < −1=3 is usually called “quintes-
sence,” while the one with w < −1 is called “phantom.”
The consequences of a phantom energy in the Universe
were pointed out in the seminal paper [53].
The EOS and (82) imply the equation

3Bð1þ wðzÞÞ ¼ ð1þ zÞ dB
dz

;

with solution

BðzÞ ¼ B0 exp

�
3

Z
z

0

1þ wðz0Þ
1þ z0

dz0
�
: ð83Þ

Inserting this in (81) we have

H2

H2
0

¼ Ωr;0ð1þ zÞ4 þΩm;0ð1þ zÞ3 þ Ωk;0ð1þ zÞ2

þΩΛ þ B0

H2
0

exp

�
3

Z
z

0

1þ wðz0Þ
1þ z0

dz0
�
: ð84Þ

This is substantially Eq. (14) in [54] with the difference that
here Λ is not dynamical. We also note the balance

1 ¼ Ωr;0 þΩm;0 þ Ωk;0 þΩΛ þ ΩD;0; ð85Þ

where ΩD;0 ¼ B0=H2
0 is the present-time dark energy

density.
This analysis generalizes the considerations in [10,11].

In particular, if wðzÞ ¼ w is constant, we get the wCDM
model, which generalizes the ΛCDM model with w ≠ −1,
and is reviewed in [54]:

BðzÞ ¼ B0ð1þ zÞ3ð1þwÞ; AðzÞ ¼ 3ð1þ wÞBðzÞ:

Reversing to cosmic time we get

BðtÞ ¼ B0

ðaðtÞ=a0Þ3ð1þwÞ ; ð86Þ

AðtÞ ¼ 3ð1þ wÞBðtÞ: ð87Þ

In the case w ¼ −5=3 we recover the phantom term typical
of conformal Killing gravity discovered in [9–11]. The
Codazzi tensor becomes

Ckl ¼
B0

ða=a0Þ3ð1þwÞ ½3ð1þ wÞukul þ gkl�: ð88Þ

There are many redshift-dependent models that para-
metrize the shape of dark energy: they were used for
example in [54] to test deviations from the ΛCDM model.
More recently they were discussed on the base of JWST
results [55]. The same parametrizations can be used to fix B
and A using (83). We recall some of them here.

A. Chevallier-Polarski-Linder (CPL) model

It is one of the most used redshift-dependent para-
metrization and was introduced in [56,57]. It supposes that

wðzÞ ¼ w0 þ wa
z

1þ z
;

where w0 is the present time dark energy EOS parameter
and the correction describes its evolution. It features a good
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behavior at high z and it is linear at low z (see [55,58] for
details). From (83) we obtain

BðzÞ ¼ B0ð1þ zÞ3ð1þw0þwaÞ exp
�
−
3waz
1þ z

�
; ð89Þ

AðzÞ ¼ 3BðzÞ
�
1þ w0 þ

waz
1þ z

�
: ð90Þ

The CPL model has a counterpart in the Codazzi para-
metrization of Cotton gravity.
In [58] the authors observe that the recent data

from JWST reveal a very large number of massive
galaxies at high redshift. This fact poses challenges to
the standard ΛCDM model. Based on the CPL model
and testing with the new datasets, they propose a
scenario in which the dark sector consists of a negative
cosmological constant. A similar model was considered
in [59].

B. Jassal-Bagla-Padmanabhan model

In Ref. [60] Jassal et al. introduce the following
expression for the EOS parameter, claiming that it solves
some issues present in the CPL model (see [55] and
references therein):

wðzÞ ¼ w0 þ wa
z

ð1þ zÞ2 :

From (83) we easily obtain

BðzÞ ¼ B0ð1þ zÞ3ð1þw0Þ exp
�
3

2

waz2

ð1þ zÞ2
�
; ð91Þ

AðzÞ ¼ 3BðzÞ
�
1þ w0 þ

waz
ð1þ zÞ2

�
: ð92Þ

Also this model has a counterpart in the Codazzi para-
metrization of Cotton gravity, without explicit introduction
of dark energy.

VII. CONCLUSIONS

Cotton gravity offers a simple setting to reproduce the
Friedmann equations of well-known extended theories. In
all cases the dark sector arising from geometry is described
by a Codazzi tensor with the proper choice of a single
function. We also showed that the recently proposed
conformal Killing gravity is absorbed in Cotton gravity
at least for cosmological FRW space-times; this is also true
for mimetic gravity. The dark sector may be fixed request-
ing an EOS: this can accommodate in a unified description
the best known redshift dependent models.
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