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The Friedmann equations of Cotton gravity provide a simple parametrization to reproduce, by tuning a
single function, the Friedmann equations of several extensions of gravity, such as f(R), modified Gauss-
Bonnet f(G), teleparallel f(T'), and more. It also includes the recently proposed conformal Killing gravity
and mimetic gravity in Friedmann-Robertson-Walker space-times. The extensions generally have the form
of a Codazzi tensor that may be associated to the dark sector. Fixing it by a suitable equation of state
accomodates most of the postulated models that extend ACDM, as the Chevallier-Polarski-Lindler model.
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I. INTRODUCTION

In recent years there has been a flourishing of extended
theories of gravity to address the problem of the dark sector.
They modify the Einstein equations by adding a term H j;
to the energy-momentum tensor 7 ;; of matter:

1
Rjk_igij:K(Tjk'f'ij)‘ (1)

The term originates from a new form of gravitational action
or new particles.

Large-scale cosmology is staged in Friedmann-
Robertson-Walker (FRW) space-times, where the Weyl
tensor Cjy,, 1s zero. This fact ushers Codazzi tensors.

If vajklm = 0, then

R
R;; - Egij =Sij— gijSkIw (2)
where the Schouten tensor §;; = R;; — %Rg,- ; 1s a Codazzi
tensor, i.e., V;S; = V;S;.

This means that 7'j; + H j; has the same decomposition.
The Codazzi condition ensures that V¥(Ty, + Hy,;) = 0.

Moreover, in a FRW space-time the sum must have the
perfect fluid structure of the Einstein tensor.

The vast majority of extended models of gravity in FRW
space-times specify this property for the radiation-matter
sector, with conservation. This entails a Codazzi decom-
position of the perfect fluid tensor. Then, necessarily,
despite the often complex structure of the tensor Hy;, the
dark sector is perfect fluid and conserved.
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For these models:

Hj, =Cy —guCP,. (3)

V,»Cjk - VJC,k (4)

The aim of this work is to uncover this common
structure, albeit the different origins of the various cosmo-
logical models. We explicitly show this in plenty of well
studied extended gravity models in FRW space-times:
f(R), Gauss-Bonnet f(G), teleparallel f(T), Einsteinian
cubic f(P), conformal Killing gravity, Lovelock.

An inclusive and simple model which they fit in, stems
from Cotton gravity.

In 2021 Junpei Harada [1] introduced a modification of
general relativity (GR) named “Cotton gravity” (CG), with
field equations

1
Cjkl = vakl - vajl - g (leva - !leva)' (5)
T}, is the matter energy-momentum tensor with trace 7 and

Cju is the Cotton tensor:

R R
Ciu=V; <Rkl - ggkz) - Vi (le - gflﬂ) . (6)

where C;y = —2V,,C;,™. The property ¢"Cj; =0
implies that V?T;, = 0. Cotton gravity was devised so
that any solution of GR is a solution of CG.

Soon after, Harada applied his theory to describe the
rotation curves of 84 galaxies without assuming the
presence of dark matter [2]. A wide class of spherically
symmetric static vacuum solution was then obtained
by Gogberashvili and Girvliani [3], with a long range
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modification of Newton’s law. A static solution of Cotton
gravity with electric and magnetic charges was obtained
in [[4], Eq. (80)]

An important progress was made in [5] in showing
that the equations of Cotton gravity are equivalent to the
standard GR equations corrected by an arbitrary Codazzi
tensor

1
Ry — Engl =Tu+Cu—gulC,
VjCkl = kaﬂ. (7)

In the frame of FRW solutions, this is precisely the
statement in Eq. (3). Cotton gravity exhibits the maximal
freedom in specifying Hy,. We refer to Eq. (7) as the
“Codazzi parametrization.”

While Harada’s equations have third order derivatives of
the metric, the equivalent equations (7) are second order.

Sussman and Najera [6] used (7) to produce FRW
solutions of Cotton gravity. They posed a modified
Friedmann equation with a scalar function C(z) and
obtained the components of a perfect fluid Codazzi tensor
for which Eq. (7) is satisfied. Very recently, they published
a paper [7] with several nontrivial CG solutions that
generalize the well known GR solutions: FLRW, Lemaitre-
Tolman-Bondi, and Szekeres, as well as static perfect fluid
spherically symmetric solutions (with application to galac-
tic rotation curves) and nonstatic shear-free.

Also motivated by this result, we propose a general
discussion based upon Theorem 2.1 in [5]: a FRW space-
time always contains a perfect fluid Codazzi tensor that
displays a freedom in its parameters.

In Sec. II we write the Friedmann equations for Cotton
gravity in a FRW space-time.

In Sec. III we recognize that some of the most important
extended theories of gravity have the following intriguing
property: their Friedmann equations coincide with those of
Cotton gravity by a suitable choice of the Codazzi tensor.
We show this explicitly by providing the specific Codazzi
tensor for f(R) gravity, Gauss-Bonnet f(G) gravity, f(T)
gravity, cubic Einsteinian and f(P) gravity, Lovelock.

These findings are well corroborated by the generic
gravity theory by Giirses and Heydarzade [8], whose very
general form of gravitational action incorporates many
extended gravity theories. They show that the field equations
differ from the standard FRW ones by a perfect-fluid term.

In Sec. IV we show that the Codazzi parametrization
of CG extends the recently introduced conformal Killing
gravity [9-11], at least in FRW space-times.

In Sec. V we prove that the field equations of mimetic
gravity become the Cotton equations if and only if the
hosting space-time is generalized Robertson Walker, and
FRW space-times are a special case.

In Sec. VI the dark sector is fixed by requesting an
equation of state (EOS). It accommodates the best known

redshift dependent models, such as the Chevallier-Polarski-
Lindler model.

Notation. i, j, k,...=0,1,2,3, y,v,... =1,2,3. Adot
operator X = u*V, X is the time derivative in the comoving
frame defined by u® =1, w* =0. Xy is the cyclic
sum Xijk + inj + Xjki'

II. FRIEDMANN EQUATIONS OF COTTON
GRAVITY IN FRW SPACE-TIMES

Generalized Robertson Walker space-times (GRW) are
Lorentzian manifolds that extend FRW space-times with
the metric

ds? = —di* + a(t)?gp, (X)dx*dx, (8)

where g, (x) is a positive definite metric and a(t) is the
scale factor. A covariant characterization is the existence of
a vector field ukuk = —1 that is shear-free, vorticity-free,
and acceleration-free, and the eigenvector of the Ricci
tensor [12], i.e.,

Vi, = H(gjx + ujuy), )
R,]uj = fui, (10)

where H = a/a is Hubble’s parameter, & = 3(H? + H) =
3d/a. The condition (10) is equivalent to V,;H = —Hu ;o Its
divergence and the contracted Bianchi identity give

R —2& = —2H(R - 4¢) (11)

whose solution is [13]
R* ,
R =—+12H* + 6H (12)
a

where R* is the spatial curvature. In d = 4 and whenever
Cjumu™ = 0 the GRW spacetime is a FRW space-time.
In a FRW space-time the natural form of the Codazzi
tensor in Eq. (7) is perfect fluid. Agy; with a constant A, is
trivially a Codazzi tensor.
This simple result is proven in [5] (Theorem 2.1).

Proposition 1. In a FRW space-time the tensor

A
Cu = Awgu; + Bgyy + 3 9k (13)

is Codazzi provided that V; A = —Auj, VB = —Buj,

B=-HA. (14)

Proof. The first two conditions mean that A = A(r)
and B = B(t). Equation (14) requires B # 0. Next, with
V,A=~-Au;, V,B=-Bu,, Egs. (9) and (14) it is

V,Cuy = _ujukul(-A +2B) - B(“lgjk + upgj 4 uigu).
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Therefore (13) is a Codazzi tensor for any choice of the
scale factor. u
It implies that any FRW space-time is a solution of
Cotton gravity with (13), and leaves an interesting degree
of freedom B in choosing the Codazzi tensor.
Equation (7) is written with the input (13), the general
form of the Ricci tensor of a FRW space-time

Ry = %(R — 4&)uuy +%(R = &)gu

and the stress energy tensor 7, = (i + p)ujuy + pgy with

energy density x4 and pressure p of ordinary matter.
Contractions with u*u’ and ¢* and a simple rearrange-

ment provide the Friedmann equations of Cotton gravity in

a FRW space-time

R
Ku=5—E=3B-A, (15)

Kp = —

o=
W o

B
+3B+ 4 +A. (16)

They are the standard Friedmann equations of GR aug-
mented by the Codazzi terms. Such terms naturally
correspond to the dark sector:

Hy = (Augu; + Bgy) — gu(48 — A),
= (up + pp)utt; + guPp- (17)

The function 5(¢) parametrizes the energy density and the
pressure of the dark sector:

pup = 3B, (18)
pp = —3B—B/H. (19)
It implies the conservation law jp = —3H(pp + up)

coming from V,H* j = 0 or the equivalent Codazzi con-
dition for Au,u; + By, in FRW spacetimes.

III. REPRODUCING THE FRIEDMANN
EQUATIONS OF EXTENDED THEORIES

We show that the Friedmann equations (15) and (16) of
Cotton gravity may reproduce the Friedmann equations of
other extended theories in absence of cosmological con-
stant. With Eq. (12) and & = 3(H? + H ) we write them as

R*
KU = 2—az+ 3H2 - 36, (20)
R* . B

The comparison with the Friedmann equations of other
theories selects the function 53(¢) that reproduces them.

In Ref. [8] Giirses and Heydarzade introduced the
generic gravity theory. It is characterized by a very general
form of gravitational action, with a scalar function F of
the metric tensor, the Riemann tensor and its covariant
derivatives at any order:

R —-2A
K

- [

+ F(g,Riem, VRiem, VVRiem, ...)| + Sy (22)

The theory contains all modified theories of gravity
based on curvature such as f(R), f(G), f(P) theories.

The authors prove a theorem for generic gravity in
FLRW cosmology ([8], Theorem 5): the field equations
always take the form Gy, =Ty, + Hy, where Hy =
Agy; + Buyu; accounts for the contribution of all afore-
mentioned higher order terms. The explicit expressions for
A and B was given for the Einstein-Lovelock and for
generalized FEinstein-Gauss-Bonnet theories. In [14] the
explicit analysis is extended to quadratic gravity.

In this general setting, we note the following:

Lemma 2. In a FLRW space-time if Hy; = Agy; + Buy,
is divergence-free then it is

Hy = Cy — 91Cp

with Cy; being a Codazzi tensor.

Proof. The divergence-free condition is 3HB = A — B.
Let A=B and B=1(B—A), then B=-HA. By
Proposition 1 the tensor Cy; = Auyu; + Bgy, satisfies the
Codazzi condition. [
Thus we may state that in FLRW cosmology Cotton gravity
is equivalent to any generic gravity theory.

A. f(R) gravity

Perhaps it is the best known extended theory of gravity.
It was introduced by Buchdahl in 1970 [15] and gained
popularity with the works on cosmic inflation by
Starobinsky [16]. Recently f(R) theories are possible
candidates to explain the observed cosmic acceleration.

Investigations to explain both dark energy and inflation
were pursued in the papers by Cognola et al. [17], Nojiri
and Odintsov [18,19]. Capozziello considered f(R) to
discuss the issue of quintessence [20]. For general reviews
on f(R) see [21-23].

The action of f(R) gravity is

1

S =50 [ dirvas(R) + s,
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where S is the matter term. With fr = df/dR, the field
equations are [23]

SrRi — ]%gkl - ViV —guO)fr =«Ty.  (23)

They can be rewritten in the form (1). In [24] it was proven
that in a FRW space-time the resulting term H j; is a perfect
fluid tensor.

For the spatially flat (R* = 0) FRW space-time the
Friedmann equations of f(R) gravity are [[23], Egs. (75)
and (76)]:

1 .
K/‘:3fRH2_§(RfR_f)+3HRfRR’ (24)
(3H? +2H)fr = — |kp + R*frrg + 2HR f g
. 1
+RfRR+§(f_RfR) . (25)
In comparing (24) with (20) we identify

B=H(1~ fg) + ¢ (Rfx~ )~ HRfge. (26)

In computing B we note that f(R) = fx(R)R, fr(R) =
SFrrR, frr = frrrR, so that

R R R . ,
B=2HH(1— fg) + frr <E—H—H2)R
_HRfRR - HR2fRRR-

The restriction R* =0 in (12) gives R = 12H* + 6H.
We obtain —A:
B o
- 2H(1 = fr) + (HR = R)frg — R°frrr- (27)
Using now (21) we obtain (25).
Proposition 3. The Friedmann equations of Cotton

gravity with the perfect fluid Codazzi tensor (13) are the
Friedmann equations of f(R) gravity with the choice (26).

B. f(G) gravity

A second well-known extended theory that tries to solve
the problem of dark energy is the Gauss-Bonnet gravity,
alias f(G) gravity [25-27]:

S = /d“x\/:‘g'[%qu(G)} + §0m),

where G =R?>—4RyR" + R, R/ is the Gauss-Bonnet
invariant.

The field equations may be written in the form
Ry —3Rgy = k(Ty + Hy) with the following divergence-
free tensor Hy; [8,28]:

1
Hy = Egklf —2fG(RRy — 4R R} + 2R, P4"R,,.,)
—4fGRPIR g + 2R(ViV f 6 — gu0f )
- 4RV, Vifo+RPV,V f6) +4(0f6)Ry
+4(RPgy — RV, fo, (28)
where f; = df/dG. In a FRW space-time it is a perfect
fluid tensor. For the spatially flat case, the Gauss-Bonnet
invariant is G = 24(HH? + H*) and the Friedmann equa-
tions of f(G) gravity are expressible as [Eq. (5) in [29]]
ku=3H* —k(Gfg — [ = 24HGfsg),  (29)
kp = =3H* —=2H +k(Gfg — f)
—16xkH(H + H)fg — 8xH>f . (30)
With f = f;G we obtain f; = f5;G and the first equation

rewrites as ku=3H> —k(Gfg—f—24Hf5).
Comparison with (20) gives the following identification:

B=x«(Gfg— f—24H3f;). (31)
After straightforward calculations we infer
B oo
—A:ﬁng[fG(H —2HH) — H*fg]. (32)

Thus from (21) we obtain Eq. (30).

Proposition 4. The Friedmann equations of Cotton
gravity with the perfect fluid Codazzi tensor (13) are the
Friedmann equations of Gauss-Bonnet f(G) gravity with
the choice (31).

C. f(T) gravity
In the framework of gravity theories with torsion,
the “teleparallel equivalent of general relativity” is the best

known one. It is widely discussed in [30] and briefly
reviewed in [31]. It is based on the action [[31] Eq. (2.5)]:

S = ZiK / d*x\/=g[T + f(T)] + S,

The field equations are Eq. (263) in [30] or Eq. (2.6) in [31].
For the spatially flat FRW space-time, the Friedmann
equations of f(7) gravity are expressible as [Egs. (2.9)
and (2.10) in [31] or Egs. (267) and (268) in [30] ]:

kK f
H?> =—pu—=—2frH>, 33
3ﬂ 6 fr (33)

L k(ptw)
21+ fr—12H?f1p
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The torsion scalar is 7 = —6H?* [Eq. (269) in [30]], and
fr =df/dT. Comparing with Eq. (20) we identify

B= ¢ f(T) =2/ (). (35)

Note that f(T)= f;T =—12HHf;, fr=frT =
—12HH f77. Thus B = —2HH 7 + 24H>H 77 and
B .
-A= = —2Hf(T)+24H*Hfr(T). (36)
Summing the Friedmann equations (20) and (21) of Cotton
gravity we get

o) =—H Ao (37)

2H'
Inserting (36) in (37) gives Eq. (34).
Proposition 5. The Friedmann equations of Cotton
gravity with the perfect fluid Codazzi tensor (13) are the
Friedmann equations of f(7') gravity with the choice (35).

D. Einsteinian cubic and f(P) gravity

In [32] an extended theory is proposed, based on an
invariant P constructed with cubic contractions of the
Riemann tensor. The theory was subjected to three con-
straints: (1) the spectrum should be identical to that of GR
(whence the name); (2) it is neither topological nor trivial in
d =4; (3) it is independent of the dimension.

The action is

R—-2A
_ 4y =
S/dx\/ g[ o

P =—pR;" R RIS+ PRy Ry PIR

- P] + S,

+ ﬂ3Rijpqrjqurk + ﬂ4qurstqu + ﬁﬁRjkqukpqu

+ BsRIRLRE + B7RR ,,RPT + B3R®. (38)

The aforementioned constraints impose three linear rela-
tions among the coefficients f;.

In [33] the cosmological applications of Einsteinian cubic
gravity at early and late times were investigated. In [34] the
viability of the theoretical model is analyzed, by considering
observational features such as cosmic chronometers data,
baryon acoustic oscillations, and supernovae.

The field equation may be written in the form
Ry — %ngl + Agu = k(Ty + Hy), where Hy, is an
involved symmetric tensor containing contractions of the
Riemann and the Ricci tensor.

The Friedmann equations are Eqs. (11) and (12) in [33]:

3H? = k(u + 6afH®) + A, (39)

3H? +2H = —«x[p — 6apH*(H*> + 2H)| + A, (40)

with = —f, + 4p, + 2p; + 8f,. Comparison with (20)
yields

B = 6xBH®. (41)

Then —A = B/H = 12kpH*H. From Eq. (21) we get
Eq. (40).

Proposition 6. The Friedmann equations of Cotton
gravity with the perfect fluid Codazzi tensor (13) are the
Friedmann equations of cubic Einsteinian gravity with
the choice (41).

In the same paper [33] the authors proposed the f(P)
extension of Einsteinian cubic gravity:

§= / d*x\/=g [i + f(P)} + S0,

The field equations are still of the type Ry, —%ngz =

k(Ty + Hy;), where Hy, is quite more involved. The
Friedmann equations are Eqgs. (26) and (27) in [33]:

3H? = ku — kf — 18xpH*(HO, — H> — H)fp,  (42)

3H? 4+ 2H = —xP — kf — 6kapH>
x [Ho? + 2(H* + 2H)0, — 3H? — SHH|fp,
(43)

where fp = df/dP and P = 6pH*(H? + 2H).
It is simple to identify

B = —«f — 18xpH*(Hfp — H*fp — Hfp). (44)

Now f(P)=fpP=18BH>(4H*H +4H*>+HH)fp. After
tedious but straightforward calculations it is

D GpHr I f, — [ (4~ H2) ~ Hfp). (45)

Thus from (21) we get (43).

Proposition 7. The Friedmann equations of Cotton
gravity with the perfect fluid Codazzi tensor (13) are the
Friedmann equations of f(P) gravity with the choice (44).

E. Regularized cubic Lovelock gravity

In Sec. 3 of [35] the authors focused on the cubic
Lovelock gravity in a four-dimensional FRW space-time.
They obtained the following Friedmann equations

kp = 3J2(1 + aJ? + pJ*), (46)

*

k(p +p) =2 <H —%) (142072 +3pJ%),  (47)

044059-5
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where J? = H? + é%. We dropped their cosmological

constant and the stress energy tensor is multiplied by a
factor of 2 to match our notation. We state the following:
Lemma 8. 1If in (21) we put —B = F(J?), where F is a

smooth arbitrary function of J? = H? + é%, then

*

() ==(H= g )+ L (8)

N A

a

where F; = dF/dJ>. o
Proof. From (21) we have & (p +u) = g;a*z - H—|—%. If
—B = F(J?), then B = —2F ;JJ. On the other hand JJ =

H(H - %) so that % =—(H- é%)sz and the Lemma is
proven. "

Choose F;(J?) = aJ? + pJ* and (46), (47) are recovered.

F. Sussman Najera model in Cotton gravity

In [6,7] the authors introduced the following modified
Friedmann equation:

K R* v
H?> = —pu———5K(1), 49

FH =g K0 (49)
with an arbitrary dimensionless function () and a
constant y. Then they computed the components of the
Codazzi tensor that solves Cotton gravity. Comparison
of (49) with (20) gives B whence A is computed:

p--M0 (50)
a
_ B _yK() _2rK()
A= H a*H a* 51
The expression of the Cotton tensor
yK(r) 2yK(1) yK(1)
Cu= [a2H - 2 U — 2 ki (52)

compares with the components in Eq. (19) evaluated in [7].

IV. COMPARISON WITH CONFORMAL
KILLING GRAVITY

After Cotton gravity, Harada introduced a new theory
of gravity to explain the present accelerated phase of the
Universe without explicit introduction of dark energy [9]:

1 1
ViR — gv[/'ngl] = V[T - EVUTgkI]' (53)

The equations are manifestly of third order in the deriv-
atives of the metric tensor.

Shortly after in [11] we introduced a parametrization
of the theory by showing that (53) is equivalent to the

Einstein’s equation in which the stress-energy tensor is
augmented by a divergence-free conformal Killing tensor:

1
Ry — Engl =Ty + Ky, (54)

1
V(K = gv[ngkz]v (55)
where K = g?“K ,,. We named this theory conformal Killing
gravity.

The second equation defines a divergence-free con-
formal Killing tensor. They are deeply investigated in
differential geometry and in physics [36-39].

We proved existence of a conformal Killing tensor in
any FRW space-time, obtaining two modified Friedmann
equations that allow for the presence of a dark sector. When
applied to a simple toy model, this theory reveals a
phantom dark fluid with EOS parameter w = —5/3 [11].

In a second paper [10] Harada developed an interesting
cosmological analysis confirming in general that the dark
energy predicted by the conformal Killing gravity has the
same EOS parameter.

Here we investigate the connections between Cotton and
conformal Killing gravity.

To this end, consider a generic space-time endowed with
a (0, 2) symmetric tensor satisfying the relation

ijkl = a;Gi — bkgjl - blgjk- (56)

We call such tensors Sinyukov-like (see [39,40]). If Ky, is
the Ricci tensor, then we recover the Sinyukov manifolds,
investigated for example in [41].

Here we consider divergence-free Sinyukov-like tensors:

VK
18

VK
18

V,K
18

ijkl =35 Gkl — gji — YGjks (57)
where K = K? ,. They satisfy the condition (55) that defines
divergence-free conformal Killing tensors [38].

A space-time with a Sinyukov-like divergence-free
tensor is a solution of conformal Killing gravity (54).

On the other hand (57) implies the Codazzi condition

K K
\Z |:Kkl - 39k1] =V, [sz - 3Qﬂ] : (58)

Then Cy; = Ky —1K gy, is a Codazzi tensor with C} = — 1 K.
From Ry, — %ngl = T + Ky, we recover the paradigm (7)
with the same stress-energy tensor.

Proposition 9. A space-time with a divergence-free
Sinyukov-like tensor (57) is a solution both of conformal
Killing gravity (54) and of Cotton gravity (7), with the
same stress-energy tensor.

We show that, rather surprisingly, any FRW space-time
is equipped with a Sinyukov-like tensor.
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We recall that a vector Z; is a conformal Killing vector
[38] (CKV for short) if the following condition holds:

where the scalar function y is called conformal factor.

Let Z; = Fu; with u;u/ = —1 and F a scalar function.
The following result holds:

In a GRW space-time Fu; is a CKV if and only if
F=HF =y and V,F = —u,F; i.e., F depends only on
time. ([42] Theorem 2.1, [43] Theorem 1)

In this case, since H = a/a, we obtain F(t) = ka(t) for
some constant k. According to Rani et al. [38], the CKV
originates a conformal Killing tensor

Kij:quiuj+Flgij (60)

for arbitrary scalar function F;. Let us choose F in order
that 0 = V,K?;. A simple evaluation using (9) shows that
V,F, = —=5FFu;. Then F, depends only on time, and
F| = 5FF. An integration gives F; =3 F? — A being A a
constant. Now

5
Kj = F2 (Mjl/tk +§gjk> _Agjk~ (61)

Next evaluate V,Kjk = HF*(=5u;gji + gijux + gixlt;)-

Contraction with ¢/*: V,K = —18HF?u;. It turns out

that K satisfies (57); i.e., it is divergence-free and

Sinyukov-like. =
The associated Codazzi tensor C; = Ky — %gkl is

1 A
C,I:F2<u,uj—§g,/) +§gl/ (62)

We have proven the following:

Proposition 10. Any GRW space time, and thus any
FRW space-time, is a solution of both Cotton and con-
formal Killing gravity with the same stress-energy tensor.

The Codazzi tensor (62) is not as general as (13), since it
is fixed up to a constant. In fact the condition (14) is more
general than £ = HF. In a FRW space-time Cotton gravity
is more general than conformal Killing gravity.

The conformal Killing tensor (61) is used in [I1]
to obtain the Friedmann equations of conformal Killing
gravity. The eigenvalue equation K;;u’ = Au; gives 1 =
%F 2 — A and thus K = 61 + 2A. We rewrite the tensor as

24+ 2A S5A+2A
= u4u.+

ij 3 iU 3 Gij- (63)

Note that 24 = 3F2 — 2A = 3k2a2(1) — 2A.

V. COMPARISON WITH MIMETIC GRAVITY

In 2013, Chamseddine and Mukhanov [44-46] proposed
a modification of GR where the conformal degree of
freedom is distinguished. This is done by parametrizing
the physical metric tensor g;; in terms of an auxiliary metric
i and a scalar field ¢, called mimetic field:

gkl(g’ d)) = _(gpqvp¢vq¢)§kl’ (64)

where g7 = (g7'),,. Then ¢ =—(571V,pV,¢)~'5".

The compatibility condition follows:
9'VipVip = ~1. (65)

A conformal transformation of the auxiliary metric
T, = QG leaves the physical metric invariant. Mimetic
gravity may be viewed as a conformal extension of Einstein
theory, which is locally Weyl invariant: this fact was
pointed out by Barvinsky [47].

The gravitational action depends upon the auxiliary
metric and the mimetic field. Alternatively, it depends
on the physical metric but with the constraint (65):

5= / dxy/ =GR + C(g71Y ¢V b + 1) — V()] + S,
(66)

V(¢) is a potential and ¢ is a Lagrange multiplier. For a
thorough review of mimetic gravity see [48].

The first field equation is obtained by minimizing with
respect to the metric:

1
Rkl - Engl = Tkl + ZCvk¢vl¢ + gklv(¢) (67)

It has the form of an extended theory with dark sector
explicitly represented by the mimetic field (whence the
name of “mimetic dark matter” in the literature).

The trace and the constraint give 20 = R + T + 4V. The
covariant divergence of (67) is

2IVKEV i + (VA 9V, + V,V = 0, (68)

where we used VRf,—1V,R=0, V'T;;=0 and
V,(VP¢V ) = 0.

Variation of the action with respect to the mimetic field
gives

ov
2VP(EV ) = ——. 69
(V) = =5 (69)

Since ¢gP?V ,¢V ¢ = —1 the vector field uy = -V, is
unit timelike and closed, i.e., V;u; = Viu;. Then it is
vorticity-free and acceleration-free:

Viu, = H(gjx + ujuy) + oy (70)
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with ¢, being the shear tensor. The corresponding metric is
(see [44,46,49])

ds* = —dr* + gp, (%, 1)dx"dx". (71)

By fixing the hypersurfaces of constant time of (71)
to be of constant ¢, the solution of the constraint
g7V ,¢pV ¢ = —1 may be written (see [44] and refer-
ences therein or [46]):

¢ = %t + const. (72)

Thereby choosing ¢ =t and using u, = =V, ¢, it is
uy = —1, u, = 0.

We then conclude that the general metric for mimetic
gravity is (71). In this context V = V/(t), while in general {
is a function of x and .

The field equations take the form

1
Ry — §R9k1 = T + 20uu; + Vg, (73)

and (68) becomes V,V = —2(¢ + 3H{)u,. Transvecting it
with u! gives the interesting relation

V =2+ 6HC, (74)

where we used Vpup = 3H derived from (70).
Now note that (73) may be rewritten as in Cotton gravity
Ry — %ngl =Ty + Cy — guCr, with

1
Crr = 28ugu; + ggkz(zC -V). (75)

It is a perfect fluid tensor with A =2 and 38 =2{ -V
but in general it is not Codazzi. Nevertheless, in view
of (74), it is always

B 1. )

7= 3H(V 20) =2 =A.
We report Theorem 2.1 in [5] restricted to the case
of vanishing acceleration:

The perfect fluid tensor Cy; = Auyu; + Bgy, is Codazzi
if and only if (1) Vuy, = H(g;x + uuy), (2) V;H = —Huj,
(3) V;A=-Au; and V;B = —Bu;, and (4) H = B/ A.
This can be rephrased as follows:

Proposition 11. The field equation (67) of mimetic
gravity is the field equation of Cotton gravity if and only
if the space-time is GRW, V =V(r) and { ={(¢). In
particular, in a FRW space-time the field equations (67)
are the Cotton equations.

Cotton gravity can include other versions of mimetic
gravity. As noted in [45] (see also the review [35]) in order
to have viable cosmological perturbations the action (66)

has to include higher derivative terms. For example it is
possible to add 1 y(CJ¢)* being y a constant. The new field
equations are [Eq. 110 in [35]]:

1
Ry — §R9k1 =T+ gulV(p) + 71V, VP

+20VipV 1 — y[VipV iy + Vix Vgl
(76)

where [¢ = y. The background is a FRW space-time.
Since u;, = —V ¢ we get 3H = —[J¢p. Moreover, recalling
that V,H = —Hu,, it is V,y = =3V, H = 3Hu, and the
previous equation rewrites as

1 . .
Ry — Engl =T+ 2(¢ + 3yH)uu; + gi[V(9) + 3yH].

(77)

Thus we recognize
. 1 .
Cu = 2(¢ + 3yH)uu, +§gk1(2C -V +3yH). (78)

This is again perfect fluid, with A = 2(¢ + 3yH) and 3B =
2¢ — V + 3yH being in this context V = V() and { = {(¢).
The covariant divergence of (77) gives the conservation law

2[BHC+9yHH + & +3yHu,+V,V+3yV,H=0.  (79)
Transvecting this with u’ gives

yH = 2H(C + 3yH) - %5 4 g (80)

Thus 38 = 2 — V + 3yH and using (80) it is 8 =2(¢ +
3yH) = —A and (78) is a Codazzi tensor.

We have proven the following:

Proposition 12. In a FRW space-time the field equa-
tions (77) are the Cotton equations.

A Lagrangian containing also a term proportional to
(ViV,)?* was investigated by Casalino et al. [50]. Its
viability was tested in the light of the multi messenger
detection of the gravitational wave event GW170817 and
its optical counterpart [51]. As a result, the coefficient
multiplying this term was shown to be < 10~!%; thus the
term should be suppressed.

In closing, we recall that Nojiri and Odintsov [52]
introduced mimetic f(R) gravity.

VI. FIXING THE DARK SECTOR

From the above discussion it is clear that the dark sector
is described by the Codazzi terms and emerges from
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geometry. In Cotton gravity the term 3 remains unfixed, so
that further restrictions are needed.

We make a standard cosmological analysis by supposing
that the content of energy in T j is from radiation (r) and
matter (m): 4 = u, + u,,, where

U, = Hro 0 = Ko
" (a/ap)* " (a)ay)?
By Setting % = 1/”69 Qr’o = l,{r’o/l,{c’ Qm70 = /’lm,O//"c’
Qo = —ﬁ, and Q) = ﬁ, we get
H 9, Q, Q B
_ .0 0 k,0 . + QA n

Hy ~ (a/ag)* " (ajag)’ " (a/ap)

In terms of redshift 1 4+ z = ay/a the equation becomes

H2
? = Qr,O(l + Z)4 + Qm,O(l + Z)3
0

B
Fouit et o (s
0

If B =0, then the standard ACDM model is recovered.

It is quite remarkable that we only need to assume
the presence of matter and radiation, while the theory
provides the term that can be interpreted as a dark
sector. As Harada argued, the dark sector appears as a
purely geometric effect due to the presence of the
Codazzi tensor.

Let us write the condition B = —H.A as a function of
the redshift. With z=—(1+2z)H it is B=49;=
—48(1 + z)H. The condition becomes

aB
A:d—Z(IJrz). (82)

In this representation .4 does not depend on the Hubble
parameter.

Now recall Eqgs. (18) and (19): xup = 3B and kpp =
—3B — B/H. Suppose that an EOS p;, = w(z)up is valid,
where the parameter w may be redshift dependent.

In general the dark sector is characterized by w < —1/3.
The regime —1 <w < —1/3 is usually called “quintes-
sence,” while the one with w < —1 is called “phantom.”
The consequences of a phantom energy in the Universe
were pointed out in the seminal paper [53].

The EOS and (82) imply the equation

dB

3B(1 +w(z)) = (1 +Z)d—z,

with solution

B(z) = Byexp [3 Ale—i_TWSI)dZ’} (83)

Inserting this in (81) we have

HZ
H Q,o(14+2)* +Qu0(1 +2)° + Qo1 +2)
0

B, 21+ w(2)
Q a7 |. 4
+ A—i-H%exp [3A T Z (84)

This is substantially Eq. (14) in [54] with the difference that
here A is not dynamical. We also note the balance

1 = Qr,O + Qm.O + kag + -QA + QD,os (85)

where Qp = B,/ H% is the present-time dark energy
density.

This analysis generalizes the considerations in [10,11].
In particular, if w(z) = w is constant, we get the wCDM
model, which generalizes the ACDM model with w # —1,
and is reviewed in [54]:

B(z) = By(1 + z)30+w), A(z) = 3(1 +w)B(z).

Reversing to cosmic time we get

By
B(t) = ———F—, 86
) G a o
A(1) =3(1 +w)B(1). (87)
In the case w = —5/3 we recover the phantom term typical

of conformal Killing gravity discovered in [9-11]. The
Codazzi tensor becomes

B,

Cp=— -9
ki (a/a0)3(1+w>

B(1 + w)ugu; + gul- (88)

There are many redshift-dependent models that para-
metrize the shape of dark energy: they were used for
example in [54] to test deviations from the ACDM model.
More recently they were discussed on the base of JWST
results [55]. The same parametrizations can be used to fix B
and A using (83). We recall some of them here.

A. Chevallier-Polarski-Linder (CPL) model

It is one of the most used redshift-dependent para-
metrization and was introduced in [56,57]. It supposes that

Z
w(z) =wyg+w, ——,

( ) 0 a7 Tz
where wy is the present time dark energy EOS parameter
and the correction describes its evolution. It features a good
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behavior at high z and it is linear at low z (see [55,58] for
details). From (83) we obtain
3w,z
), (89
1+ Z> (89)

A(z) = 3B(z) (1 w4+ et ) (90)

B(Z) e BO(] + Z)3(1+W0+Wa> exp <_

1+z

The CPL model has a counterpart in the Codazzi para-
metrization of Cotton gravity.

In [58] the authors observe that the recent data
from JWST reveal a very large number of massive
galaxies at high redshift. This fact poses challenges to
the standard ACDM model. Based on the CPL model
and testing with the new datasets, they propose a
scenario in which the dark sector consists of a negative
cosmological constant. A similar model was considered
in [59].

B. Jassal-Bagla-Padmanabhan model

In Ref. [60] Jassal et al. introduce the following
expression for the EOS parameter, claiming that it solves
some issues present in the CPL model (see [55] and
references therein):

Z

w(z) :Wo‘l‘Wam-

From (83) we easily obtain

3 2
B(@) = Bo(1+ 27 e 35| o)

A(z) = 3B(2) [1 +wo -+ Wz] . (92)

(1+2)°

Also this model has a counterpart in the Codazzi para-
metrization of Cotton gravity, without explicit introduction
of dark energy.

VII. CONCLUSIONS

Cotton gravity offers a simple setting to reproduce the
Friedmann equations of well-known extended theories. In
all cases the dark sector arising from geometry is described
by a Codazzi tensor with the proper choice of a single
function. We also showed that the recently proposed
conformal Killing gravity is absorbed in Cotton gravity
at least for cosmological FRW space-times; this is also true
for mimetic gravity. The dark sector may be fixed request-
ing an EOS: this can accommodate in a unified description
the best known redshift dependent models.
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