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Simulations of binary collisions involving compact objects require initial data that satisfy the constraint
equations of general relativity. For binary boson star simulations it is common practice to use a super-
position of two isolated star solutions to construct an approximate solution to the constraint equations. Such
superposed data is simple to set up compared to solving these equations explicitly, but also introduces extra
constraint violations in the time evolution. In this work we investigate how physical observables depend on
the quality of initial data in the case of head-on boson star collisions. In particular we compare results
obtained from data prepared using four different methods: the standard method to superpose isolated stars,
a heuristic improvement to this superposition technique and two versions of this data where excess
constraint violations were removed through a conformal thin-sandwich solver. We find that differences in
the time evolutions are dominated by differences in the way the two superposition methods differ, whereas
additionally constraint solving the superposed data has smaller impact. The numerical experiments are
conducted using the pseudospectral code BAMPS. Our work demonstrates that BAMPS is a code suited
for generating high accuracy numerical waveforms for boson star collisions due to the exponential
convergence in the polynomial resolution of the numerical approximation.

DOI: 10.1103/PhysRevD.109.044058

I. INTRODUCTION

With the first successful numerical relativity (NR)
simulations of binary black hole (BH) collisions carried
out [1–5], an industry for engineering waveform templates
was founded which played a key role in the first gravita-
tional wave (GW) detections [6–8]. The late inspiral part
of GW templates are informed by NR simulations that
solve an initial-boundary-value problem posed by a Cauchy
formulation of the Einstein field equations (EFEs) of
general relativity (GR). Essential to such simulations is
the data described on an initial hypersurface which is then
propagated forward in time to trace out a foliation of
spacetime. This initial data should satisfy the Hamiltonian
and momentum constraint equations of GR. If the initial
data also involve matter models in the form of neutron stars
(NSs) then one must also ensure that each star is initially
in a state of quasiequilibrium, i.e., this should account for
effects like tidal deformations which are due to them
inspiraling on each other at a finite distance. Given the
difficulty of numerically solving the constraint equations
to generate such physically plausible data a variety of
formalisms and numerical methods have been developed

for collisions in the context of BHs and NSs (see [9] for a
review).
Almost a decade after the first GW detection the wave-

form template industry continues pushing forward analyti-
cal, computational, and phenomenological boundaries in
order to keep up with the advancing detector technology
and upcoming new experiments. Among these theoretical
advances is also considerable effort to study compact
objects described by exotic matter models that have been
developed as dark matter candidates and BH mimickers,
see [10,11] for status reports. Among those candidates are
boson stars (BSs), which were first theorized in [12],
and for which a variety of NR studies involving this
particular model have been conducted. These studies
uncovered a dynamical formation process termed gravita-
tional cooling [13], as well as the anatomy of the GW
signals from coalescences of such objects, see [14–19]
for head-on collisions and [20–28] for inspirals. Also see
the reviews [29–31] and references therein for studies
concerned with BSs in astronomy and which investigate
the possibility and viability of BSs as stellar objects, as
alternatives to BHs or as origin for dark matter, while
accounting observational constraints.
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Most of today’s understanding of BS collisions comes
from studies that use a superposition of isolated BSs as
initial data which does not satisfy the constraint equations.
Such data should be seen as approximate solutions to the
constraint equations. Its use can be justified when it is
explicitly verified that the error due to initial constraint
violations does not dominate the overall error budget of the
simulation. Only recently, work has started on refining the
initial data construction for BS encounters. In [15,16] a
heuristically motivated correction to the commonly used
method of superposition was developed by minimizing
initial constraint violations, with some still remaining. To
the best of our knowledge the first BS collisions using
constraint solved data were reported in [32], which dis-
cussed BS head-on encounters only to calibrate the BAM

code for evolutions of mixed NS-BS systems. In [28] a
generic constraint solver for BS initial data was developed,
which is an important contribution in order to catch up
with the state-of-the-art initial data construction techniques
commonly used for BH and NS simulations. Such con-
straint solved data was used to demonstrate that the
collision of two nonrotating BSs can yield a rotating
remnant [27].
As the sensitivity of the next generation of GW detec-

tors increases, the accuracy demands on GW templates
do as well. In anticipation of such a trend new NR codes
are developed and existing NR codes are upgraded
to improve the computational efficiency and the math-
ematical modeling of physical processes, e.g., BAM [33],
GR-ATHENA++ [34], DENDRO-GR [35], EINSTEIN-TOOLKIT [36],
EXAHYPE [37], GRCHOMBO [38], LEAN [39], MHDUET [40],
NMESH [41], NRPy+ [42], SACRA [43], SPEC [44],
SPECTRE [45], SPHINCS_BSSN [46], SPRITZ [47] (see also [48]
for an extended list). Among these research efforts is also
the BAMPS code [49–57] which employs a nodal pseudo-
spectral (PS) discretization for the spatial representation of
the solution. The promised efficiency and accuracy gain
of a PS method can be demonstrated best for problems
which admit smooth solutions. Since BSs lack a hard
surface (or boundary) and no shock fronts are formed
during mergers of such objects, which are common
obstacles for BH and NS simulations that spoil smoothness,
they represent an ideal testbed to develop and assess PS
methods in the context of GR. Theoretically, the solution
has exponential convergence when increasing the poly-
nomial resolution of the PS approximations. This translates
into a significantly reduced error budget that we attribute
to the time evolution, assuming high enough resolution.
Thus, for PS codes constraint violations in superposed
initial data can in principle dominate the total error budget
of our results, making the usage of superposed initial data
ill advised.
In this work we utilize the BAMPS code to perform binary

BS head-on collisions with axisymmetry and reflection

symmetry and investigate how physical observables
extracted from these simulations depend on the quality
of initial data. In particular, we compare results obtained
from data that was prepared using four different methods:
a simple superposition of isolated stars as defined in [15],
the heuristic improvement to the simple superposition
technique also reported in [15], and two versions of
constraint-solved data obtained from a conformal thin-
sandwich (CTS) solver and superposed free data. We
then assess the differences between evolutions done with
these data and the individual accuracy of each evolution
by using a mixture of constraint monitors, global (and
conserved) physical quantities, as well as gravitational
waves, and (self-)convergence tests involving those
quantities.
The rest of this work is structured as follows. First, we

review the theory under study as well as the formulation of
the equations of motion we use for the numerical simu-
lations in Sec. II. In Sec. III a summary about earlier
work on superposed initial data is given and we discuss
how we construct constraint-solved data for the compar-
isons. Details on the computational setting are provided
in Sec. IVand our numerical results are presented in Sec. V.
A summary of our findings is provided in Sec. VI. In
Appendix A and Appendix B we discuss details of our
GW analysis and comment on a problem specific to
head-on collisions and the reconstruction of the GW strain
h from the Newman-Penrose pseudoscalar Ψ4. We use
Latin indices starting from a to denote spacetime compo-
nents and Latin indices starting from i to denote spatial
components of tensors. We work in Planck units where
G ¼ c ¼ ℏ ¼ 1 so that all variables are automatically
dimensionless and we also set the scalar-field mass
(defined below) to μ ¼ 1. In Appendix C we show that
this choice of μ does not limit the generality of our results,
but instead corresponds to a particular rescaling of the
variables.

II. THEORY

A. Action and equations of motion

This work is concerned with scalar BSs in GR. They are
compact objects defined as solutions to the equations of
motion in a theory in which the Einstein-Hilbert action
for the gravitational field gab is minimally coupled to a
complex scalar field ϕ in the following way [29]

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p
 

ð4ÞR
16π

−
1

2

�
gab∇aϕ

�∇bϕþVðjϕj2Þ�
!
; ð1Þ

where g is the metric determinant, ð4ÞR the Ricci scalar
associated with gab and Vðjϕj2Þ is the scalar-field poten-
tial, and an asterisk refers to complex conjugation. The
above action gives rise to the following equations of
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motion, known as the Einstein-Klein-Gordon (EKG)
equations,

Gab ¼ 8πTab; ð2Þ

□ϕ ¼ ϕ
dV
djϕj2 ; ð3Þ

where Gab is the Einstein tensor, □≡ gab∇a∇b and the
stress-energy tensor is given by

Tab ¼ ∇ðaϕ�∇bÞϕ −
1

2
gab
�
gcd∇cϕ

�∇dϕþ Vðjϕj2Þ�: ð4Þ

BSs can come in different flavors determined by the form
of the potential Vðjϕj2Þ. In this work we restrict ourselves
to mini BSs for which the potential is that of a massive free
scalar field,

Vðjϕj2Þ ¼ μ2jϕj2; ð5Þ
where μ is the scalar field’s mass. For the rest of this work
we set μ ¼ 1.

B. 3 + 1 decomposition

The basis for NR simulations is laid by a covariant 3þ 1
decomposition of the spacetime metric gab, often written in
the form [58]

gabdxadxb ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ: ð6Þ

The variables α, βi, γij and Kij are called the lapse, shift,
spatial metric and extrinsic curvature, respectively, and are
referred to as the 3þ 1 variables. Within this framework the
EFEs are rewritten accordingly and this unveils the so-
called Hamiltonian and momentum constraint equations
(from here on only referred to as constraint equations) as
part of this system of nonlinear PDEs [58],

H ≔ Rþ K2 − KijKij − 16πρ ¼ 0; ð7Þ

Mi ≔ DjðKij − γijKÞ − 8πSi ¼ 0; ð8Þ

where R and Kij are the Ricci scalar and extrinsic curvature
associated with γij and a spatial hypersurface Σ that is
embedded in the surrounding spacetime ðM; gabÞ. The
quantities ρ ¼ nanbTab and Si ¼ −γianbTab are projec-
tions of the stress-energy tensor Tab onto ðΣ; γijÞ, where
na is the unit normal vector to Σ and γia ¼ gia þ nina.
These equations constrain the fields ðγij; KijÞ of a time
slice Σ such that the embedding of ðΣ; γij; KijÞ in
ðM; gabÞ is compatible with the covariant decomposition
of the EFEs.
The remainder of the decomposition of the EFEs is

complemented by how γij and Kij develop away from the

initial hypersurface Σ0. Augmenting these equations with
conditions on how the variables α and βi evolve completes
the system of nonlinear PDEs we aim to solve. In this work
we utilize the generalized harmonic gauge (GHG) formu-
lation of the EFEs [49,59]

∂tgab ¼ βi∂igab − αΠab þ γ1β
iCiab; ð9Þ

∂tΠab ¼ βi∂iΠab − αγij∂iΦjab þ γ1γ2β
iCiab

þ 2αgcd
�
γijΦicaΦjdb −ΠcaΠdb − gefΓaceΓbdf

�

− 2α

�
∇ðaHbÞ þ γ4Γc

abCc −
1

2
γ5gabΓcCc

�

−
1

2
αncndΠcdΠab − αncγijΠciΦjab þ αγ0ð2δcðanbÞ

− gabncÞCc − 16πα

�
Tab −

1

2
gabTc

c

�
; ð10Þ

∂tΦiab ¼ βj∂jΦiab − α∂iΠab þ γ2αCiab

þ 1

2
αncndΦicdΠab þ αγjkncΦijcΦkab; ð11Þ

where the evolved variables are the metric gab and the
time reduction variable Πab ¼ −nc∂cgab, Γa ¼ gbcΓa

bc and
Γabc ¼ gadΓd

bc are the Christoffel symbols associated with
gab. We would like to point out the extra minus sign in the
definition of Πab which was previously missing in [54] due
to a typo. The spatial reduction variable Φiab is associated
with the reduction constraint Ciab ¼ ∂igab −Φiab ¼ 0 and

Ca ¼ Ha þ Γa ¼ 0 ð12Þ

is the harmonic constraint, where Ha is a gauge source
function. Here we choose the gauge source function
introduced in [60] with RðtÞ ¼ WðxiÞ ¼ 1. The constraint
damping parameters are fixed to be αγ0 ¼ 1=10, γ1 ¼ −1,
αγ2 ¼ 1 and γ4 ¼ γ5 ¼ 1=2. The above evolution equations
are implemented in our numerical relativity code BAMPS

and more details on the computational setup are discussed
in Sec. IV.
To reduce the Klein-Gordon equation (3) to first order we

introduce the reduction variablesΠ ¼ na∂aϕ,Φi ¼ ∂iϕ and
the spatial reduction constraintBi ≔ ∂iϕ −Φi. The reduced
system of equations is then of the form

∂tϕ ¼ αΠþ βiΦi; ð13Þ

∂tΠ ¼ βi∂iΠþ γij
�
Φj∂iαþ α∂iΦj − αð3ÞΓk

ijΦk

�
þ αΠK þ σβiBi; ð14Þ

∂tΦi ¼ Π∂iαþ α∂iΠþΦj∂iβ
j þ βj∂jΦi þ σαBi: ð15Þ
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The evolved variables are ϕ, Φi and Π. ð3ÞΓk
ij refer to the

Christoffel symbols associated with γij and σ is a damping
parameter which we set in all our simulations such that
ασ ¼ 1, equivalent to our treatment of γ2.

III. INITIAL DATA

A. Binary boson star initial data from superposition
of isolated stars

The construction of initial data for simulations of
compact binary objects requires finding a solution
ðγij; KijÞ to the geometric constraints (7) and (8) on an
initial time slice Σ0, while simultaneously also preparing
the matter variables ρ and Si in a state of quasiequilibrium
determined through auxiliary conditions. In the following
discussion we neglect the latter aspect and focus only on
the geometric constraints, but we revisit it briefly below.
What defines physically plausible initial data is in general
not a question with a simple answer. The basis for binary
data construction is the existence of isolated star solutions,
which are often assumed to be at least axisymmetric and,
thus, simple to obtain numerically. Unfortunately, the
assumption of a star being in isolation is, in principle, in
contradiction with a star partaking in a binary collision,
unless they are displaced by an infinite distance. On a
physical basis this is clear, because the gravitational pull
of one star will be felt by its companion, causing tidal
deformations of it and, hence, influencing its gravitational
potential, which in turn modifies the initial star through its
own tidal forces. This is also reflected by the nonlinearity
of the constraint equations which in general prevents the
construction of new solutions as simple combinations of
isolated single star solutions—commonly referred to as
superposition.
As can be straightforwardly shown, the constraint

equations, if satisfied at one instant of time and evolved
exactly, will continue to hold at all times. Failing to satisfy
these constraints does not necessarily cause crashes in
numerical simulations, but results that do so are not solu-
tions to the EFEs. Realizing that NR can only ever produce
approximate numerical solutions to the continuum EFEs,
any numerical result will inevitably violate the constraints
to some degree. The goal of NR is to construct successive
numerical approximations in such a way that constraint
violations, as well as the evolved fields and other analysis
quantities, show a controlled convergence trend toward
the continuum EFEs in the limit of infinite resolution. We
emphasize that violations occurring in time evolutions do
not solely arise from the failure of the initial data to satisfy
the constraints, but can e.g., also grow dynamically through
numerical errors due to insufficient resolution, the appear-
ance of (coordinate) singularities or other pathologies. In
fact, constraint violations associated with the initial data
quality are conceptually even simpler to control, because
the mathematical problem of solving the constraint

equations for the initial data is completely decoupled from
solving the free evolution equations. Because of that,
dedicated codes have been developed to tackle the initial
data problem in GR (see [9] for a review of methods for BH
and NS binaries, see [27] for a constraint solver for BS
binaries).
Solving the constraint equations is a difficult task. Using

instead a superposition of isolated single star solutions
presents itself as an attractive shortcut to constructing initial
data that solve the constraints approximately.1 In studies
that use such data it is often argued that the approximation
is accurate enough when the inherited constraint violations
are at most of the same order as the error budget of the
time evolutionary part of a numerical code [22]. Such an
argument can be supported with convergence studies to
demonstrate that the numerical results approximate solu-
tions up to a controlled error, provided that one commits to
routinely verify that the above premise is satisfied. In the
case of BS simulations superposed data has been used
many times before as starting points for head-on and
inspiraling binary collisions [15–18,22–26]. The same
technique has also been employed for collisions involving
other exotic matter models like Proca stars [61–63],
l-boson stars [64], dark boson stars [65], axion stars [66],
neutron stars with bosonic cores [67] as well as mixed
mergers of an axion star and a black hole [68], a neutron
star and an axion star [68,69], and a boson star and a black
hole [70,71].
Focusing on pure scalar BS simulations, one recipe

employed in the literature to construct superposed data can
be summarized as follows. Let γAij, K

A
ij, αA and βiA denote

the 3þ 1 variables of spacetime and let ϕA and ΠA denote
the scalar-field variables of star A, likewise for star B. A
simple superposition (SSP) initial data construction involv-
ing stars A and B is then given by [15]

γij ¼ γAij þ γBij − δij; ð16Þ

Kij ¼ γmði
�
KA

jÞnγ
nm
A þ KB

jÞnγ
nm
B

�
; ð17Þ

ϕ ¼ ϕA þ ϕB; ð18Þ

Π ¼ ΠA þ ΠB; ð19Þ

where the data of the isolated stars is boosted such that the
superposition mimics a binary configuration where each star
carries initial momenta. This boosting itself is readily done
through Galilean or Lorentz boost transformations [15,22].
A slight variation of this recipe has been used in other

1We refer to [15] for a brief list of special cases in which the
superposition of solutions can solve the constraint equations
exactly.
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studies that fueled many important contributions to the
field [18,22–25].
The above construction disregards the constraint equa-

tions. Consequently, it comes as no surprise that in [15] it
has been demonstrated that the scalar-field amplitude can
admit artificial modulations. These effects can be strong
enough to trigger premature BH collapse in encounters of
BSs with a solitonic potential. Similar results were reported
earlier in [72] for the case of compact real-scalar solitons
(oscillatons). To tackle these symptoms, the same authors
came up with a heuristically motivated improvement to the
SSP construction, guided by minimizing initial constraint
violations, which we refer to as the constant volume
element (CVE) construction. Since the Ansatz (16) alters
the volume form inside a star depending on the displace-
ment of the companion star, it was adjusted to

γij ¼ γAij þ γBij − γAijðxBÞ: ð20Þ

Here γAijðxBÞ refers to the constant value of the components
of the induced metric of star A, γAij, evaluated at the center
of star B, xB. Note that in the case of equal mass BS binary
systems we have γAijðxBÞ ¼ γBijðxAÞ. Consequently, the
above ensures that γijðxAÞ ¼ γAijðxAÞ and likewise for B,
hence, it approximately restores the volume element form
around each star’s center to the value of an isolated star.
This simple correction was enough to cure premature
BH collapse, but at the same time, the correction led to
qualitative changes in the emitted GW signals [15].
Recently, [16] generalized the CVE construction to also
work with unequal mass binaries.
We now have two methods at our disposal to construct

superposed initial data and one might ask which of those
is preferred, given that their time evolutions can yield
different physical results. One might be inclined to prefer
the CVE construction, because it reduces constraint
violations and cures premature BH collapse. But whether
these differences are only caused by the improvement of
the constraint violations or are perhaps primarily due to
changes in physical characteristics of the initial data, like
for instance the local energy density, is yet unclear. To
further illustrate this point consider Fig. 1 which schemati-
cally shows how constraint violations (measured in some
norm) associated with initial data might propagate in time,
when using an evolution system with a built-in constraint
damping scheme like GHG. The CVE construction pro-
vides initial data with less constraint violations than the
initial data constructed with the SSP technique, which is
indicated by the two red dots lying on the space of all initial
data (orange) at t ¼ 0 while also being displaced vertically
from the space of constraint-satisfying data (green). The
two blue dots, on the other hand, represent two different
initial datasets (which are constructed in this work) where
all excess constraint violations (ignoring numerical error)

were removed from the superposed initial data. Performing
time evolutions will then trace out the dashed trajectories,
which indicate that constraint-satisfying initial data remain
constraint-satisfying throughout the evolution. Contrary
to this, evolutions starting from superposed initial data will
only gradually in time approach the space of constraint-
satisfying data. Note that the seemingly attractive character
of the space of constraint-satisfying data is usually due to
two factors: (1) the use of modified evolution equations that
include constraint damping terms and (2) the possibility
that constraint violations can propagate and eventually leave
the computational domain through a boundary. Further-
more, there is no guarantee that initially constraint-violating
data is going to converge with increasing resolution toward
constraint-satisfying data at late times. Instead one should
expect some excess violations to remain also for late times
t, which is illustrated by the trajectories ending up on
the yellow space that is displaced by ϵ from the space of
constraint-satisfying data. Besides this vertical displace-
ment at late times, it is also unclear whether two trajectories
that emanated from two initial datasets that are based on the
same superposition, but where one is constraint-violating
and one constraint-satisfying, will end up close to each
other. Below we investigate the qualitative behavior of the
sketched trajectories for the case of selected binary BS
configurations and study their behavior when varying
numerical resolution.
The above discussion as well as the rest of this work does

not account for the problem of the progenitors not being
initially in a state of quasiequilibrium, which is done to ease
this comparison. We want to highlight that the constraint
equations need to be satisfied regardless of the matter
model considered to study solutions to the EFEs, and
matter fields enter these equations only as source terms.

FIG. 1. Schematic representation of the space of initial data
(orange) and of constraint-satisfying data (green). The red dots
correspond to superposed initial data constructed with the SSP or
CVE technique. The blue dots correspond to a projection of SSP
and CVE data (in this work we use a CTS constraint solver for
this, see text) onto the space of constraint-satisfying data. Dashed
lines indicate the trajectories of the data when evolved through an
evolution system with a damping scheme. Initially constraint-
violating data might end up a distance ϵ displaced (yellow) and
never reach the space of constraint-satisfying data.
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On the other hand, the equations of motion of most matter
models, including BSs, do not provide any constraints,
meaning that, in principle, arbitrary matter configurations
could be used as initial data, provided the metric fields are
adjusted to satisfy the geometric constraints. Instead, one
requires additional assumptions to define a quasiequili-
brium, e.g., the existence of a helical Killing vector field for
binary inspiral configurations, as well as an understanding
of the matter model to derive (elliptic) equations that
equilibrate their fields accordingly. Special attention has
been given to the latter aspect of initial data construction in
the BH and NS literature, see [58,73–75]. First work in this
direction for binary BSs has started only recently in [28]
and we leave it to future work to further study the
importance of this facet.
In the next section we examine one possibility to remove

excess constraint violations from SSP and CVE initial data
by numerically solving the constraint equations using a
CTS solver, where the free data is constructed from the SSP
and CVE data. Subsequently, we perform time evolutions
using this data in order to answer the question of whether
differences in physical observables between SSP and CVE
initial data are caused by constraint violations. Along the
way we also conduct convergence studies to assess the
quality of our numerical results.

B. Constraint satisfying binary boson star initial data

Constraint satisfying binary BS initial data has been
constructed before in [32] as well as in [27,28] and was an
important ingredient in demonstrating that the collision of
two nonrotating BSs can form a rotating remnant. Below
we follow a similar procedure by using the CTS formu-
lation of the Hamiltonian and momentum constraints (7)
and (8), which read [76]

D̄2ψ −
1

8
ψR̄ −

1

12
ψ5K2 þ 1

8
ψ−7ĀijĀij ¼ −2πψ5ρ; ð21Þ

ðΔ̄LβÞi − ðL̄βÞijD̄j logðᾱÞ ¼ ᾱD̄jðᾱ−1ūijÞ þ
4

3
ᾱψ6D̄iK

þ 16πᾱψ10Si; ð22Þ

where

Āij ¼ 1

2ᾱ

�ðL̄βÞij − ūij
�
: ð23Þ

The above constitute a system of four elliptic PDEs for the
conformal factor ψ and the components of the shift vector
βi, where D̄ is the covariant derivative associated with the
conformal metric γ̄ij, R̄ is the Ricci scalar associated with
γ̄ij and [58]

ðΔ̄LβÞi ¼ D̄2βi þ 1

3
D̄iðD̄jβ

iÞ þ R̄i
jβ

j; ð24Þ

ðL̄βÞij ¼ D̄iβj þ D̄jβi −
2

3
γ̄ijD̄kβ

k; ð25Þ

are the conformal versions of the vector Laplacian and
vector gradient applied to βi, respectively. Once a solution
for ψ and βi is known, the remaining 3þ 1 variables can be
recovered from

γij ¼ ψ4γ̄ij; ð26Þ

Kij ¼ ψ−2Āij þ
1

3
γijK; ð27Þ

α ¼ ψ6ᾱ: ð28Þ

Equations (21) and (22) need to be complemented with
freely specifiable data for γ̄ij, its time derivative ūij ≔ ∂tγ̄ij,
the trace of the extrinsic curvature K and the conformal
lapse ᾱ. Because we want to test the influence of elimi-
nating constraint violations from superposed initial data,

denoted by ðγðsupÞij ; KðsupÞÞ, we use that data to setup the free
data for the CTS formulation, following [77],

γ̄ij ¼ γðsupÞij ; ð29Þ

ūij ¼ uðsupÞij ; ð30Þ

ūij ¼ γ̄ikγ̄jl
�
ūðsupÞkl −

1

3
γ̄mnūmnγ̄kl

�
; ð31Þ

K ¼ KðsupÞ; ð32Þ

ᾱ ¼ αðsupÞ ¼ det
�
γðsupÞij

�
−1=6; ð33Þ

βðsupÞi ¼ 0; ð34Þ

and

uðsupÞij ¼ ∂tγ
ðsupÞ
ij ¼ −2αðsupÞKðsupÞ þ LβðsupÞγ

ðsupÞ
ij ; ð35Þ

where LβðsupÞ denotes the Lie transport along the shift vector

βðsupÞi of the superposed data. The choices (33) and (34)
were adopted from [15]. Note that the difference in sign
in (31) when compared to [77] is due to a difference in
notation (see Appendix E).

The metric variables γðsupÞij , KðsupÞ, αðsupÞ, and βðsupÞi are
given by (16), (17), (33), and (34) or (20), (17), (33),
and (34), respectively. The matter source terms ρ and Si are

computed from γðsupÞij , KðsupÞ, αðsupÞ, βðsupÞi, and Tab given
by (4). The construction of the latter is done by using the
metric variables as well as the matter variables ϕ and Π as
given by (19) and (20). Note that, although the way the
scalar field is superposed by (18) and (19) is the same
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between the SSP and CVE method, the difference in the
superposition of the induced metric γij, given by (16)
and (20), then also translates into differences in the stress-
energy tensor between these two constructions.
The numerical solution of (21) and (22) is obtained using

the hyperbolic relaxation method [53], which is available
inside the BAMPS code. For the CTS solver we use
Robin boundary conditions to impose the asymptotic
behavior [53]

α ¼ ψ ¼ 1þOðr−1Þ; βi ¼ Oðr−1Þ: ð36Þ

To set up the free data for the solver we proceed as follows:
first, we compute spherically symmetric stationary solu-
tions of isolated BSs; two such stars are then each boosted
by a parameter v using a Lorentz transformation. For both
of these steps we follow closely the algorithms given
in [15] (also see Appendix D). We then use these stars
to construct SSP or CVE initial data following the
algorithms given in Sec. III A. These SSP and CVE data
are then used together with (29)–(35) to set up the free data
and sources for solving the CTS equations (21) and (22).
As an initial guess for the CTS solver we use

ψ ¼ 1; βi ¼ 0: ð37Þ

The hyperbolic relaxation of the CTS solver terminates
once the sum of the L1 norm of the right-hand side (rhs) of
equations (21) and (22) is smaller than 1=10th the sum of
the L1 norm of the residuals of those equations, or when
the L1 norm of the residual of the equations falls below
10−8 × #NDOF × 4, where NDOF is the total number of grid
points on the target resolution. The resulting constraint-
satisfying data is referred to as CTSþ SSP and CTSþ
CVE data for the rest of this work.
When we consider evolutions of constraint-satisfying

data below, for which we fix the grid structure and the
polynomial resolution n in each cell, but we vary n between
different runs, the initial data is computed using the hyper-
bolic relaxation method on the very same grid structure and

with the same polynomial resolution. In particular, no
extra interpolation step is needed to convert the solution of
the BAMPS internal CTS solver into initial data for the
evolution.
For evolutions of superposed data we utilize (33)

and (34) as initial data for α and βi. For the case of
constraint-solved data we use instead the solutions obtained
from the CTS equations (21), (22) and the relation (28) to
set up α and βi.

IV. COMPUTATIONAL SETUP

BAMPS [50–54] is a numerical code that has been used
successfully to study critical collapse [49,55–57]. It uses
a pseudospectral collocation method for the spatial dis-
cretization of the EFEs and an explicit fourth-order
Runge-Kutta time stepping algorithm. BAMPS utilizes
distributed memory parallelization based on the message
passing interface (MPI) standard and, recently, has been
complemented with an adaptive mesh refinement (AMR)
feature [54]. However, in this work we do not make use
of the AMR feature in order to facilitate the comparison.
This means that we are using the same static computational
grid structure between different simulations and we use
the same polynomial resolution in all grid cells. In Table I
we summarize important parameters of our computa-
tional setup.
The GHG formulation (9)–(11) of the EFEs to evolve the

gravitational field and the first order reduction of the Klein-
Gordon equation (13)–(15) to evolve the complex scalar
field are implemented in BAMPS. The code employs
radiation-controlling and constraint-preserving boundary
conditions as described in [49,59,78]. The scalar field uses
a maximally dissipative boundary condition on the physical
degrees of freedom and constraint preserving boundary
conditions for the reduction constraints [52]. We note that
these boundary conditions were initially designed for real
massless scalar-field evolutions and were adapted for this
study to also work for massless complex scalar fields. In
particular, they do not account for a scalar-field potential

TABLE I. Summary of the grid configuration used for all the results presented in this work. The highest resolved configuration
(n ¼ 21 and 48 outer shells) uses 423360 degrees of freedom (already accounting for axisymmetry and reflection symmetry).

Parameter Value Description

grid.cube.max 80 1=2 side length of inner cube
grid.sub.xyz 16 Number of subdivisions in inner cube
grid.cubedsphere.max.x 160 Outer radius of cube-to-sphere patch
grid.cubedsphere.sub.x 8 Number of radial subdivisions in cube-to-sphere patch
grid.sphere.max.x [400,800] Outer radius of sphere path
grid.sphere.sub.x [24,48] Number of radial subdivisions in sphere patch
grid.dtfactor 0.25 CFL factor
grid.cartoon xz Double cartoon method
grid.reflect z Reflection symmetry across z ¼ 0 plane
grid.n.xyz n ≔ ½7; 9; 11; 13; 15; 17; 19; 21� Number of points per grid and per dimension

BOSON STAR HEAD-ON COLLISIONS WITH CONSTRAINT- … PHYS. REV. D 109, 044058 (2024)

044058-7



Vðjϕj2Þ, which is likely the cause for some of the artifacts
we report below. We leave it for future work to improve
these conditions. After extensive testing we found that the
combination of the GHG formulation with the constraint
damping parameters as given in Sec. II together with the
grid parameters reported in Table I and the above boundary
conditions allow us to perform long-time stable and
convergent evolutions of binary BS head-on collisions.

V. RESULTS

We focus exclusively on head-on collisions of equal
mass mini BSs. Some of the key properties of the particular
stationary and isolated BS solution we used as the basis for
the initial data construction are summarized in Table II.
In the head-on configurations we study we vary the initial
boost parameter v as well as the initial separation d between
the stars. Similar configurations were discussed already
in [15] and a slight variation thereof, with nonzero impact
parameter, was investigated in [17]. All collisions for which
we report results below culminate in a single perturbed and
nonspinning BS remnant with zero bulk motion with
respect to the coordinate origin and where the gravitational
and scalar fields continue to oscillate. The latter process
causes a continued emission of GWs and scalar-field
radiation, which lasts for much longer than the head-on
impact. The GWs emitted due to the oscillating remnant are
referred to as the gravitational afterglow of BSs [17]. This
afterglow radiation is characterized by an amplitude that is
comparable with the GW burst that is due to the initial
head-on impact. See Fig. 10 below for an example of GW
afterglow obtained from a long-time evolution.
Besides the intended direct comparison of the initial data

quality, we repeat some of the experiments reported in [15]
to perform calibration tests with our NR code BAMPS, as it
is the first time it is used for BS evolutions. Given that
BAMPS employs a PS method for the spatial discretization
of the fields, whereas [15] used the LEAN code [39] and
the GRCHOMBO code [38,79] which both work with finite-
differencing methods, the presented results also provide
an (indirect) benchmark between different numerical

methods for the simulation of spacetimes with smooth
matter fields.
To gauge differences in numerical evolutions for the

comparison of constraint-satisfying and violating initial
data one can use various quantities. Below we focus on
a mixture of constraint monitors, global (and conserved)
physical quantities, as well as local field values and
gravitational waves. Studying these quantities also allows
us to assess the accuracy and reliability of the PS scheme
employed. This is important to our work, because the
equations of motion of the matter (Klein-Gordon equation)
can be rewritten to mimic a balance law (i.e., a conserva-
tion law with an inhomogeneity) for which a plethora of
numerical methods have been developed in the computa-
tional fluid dynamics literature and are often employed in
the context of general relativistic hydrodynamics simula-
tions. On the other hand the PS method developed in [49]
was solely designed to conserve energy within a particular
approximation and so it is of interest to us to see how well
the scheme can balance matter fields over long times.
During binary BS evolutions we compute:
(i) The constraint monitor Cmon defined in [49]. It

summarizes violations of the constraint subsystem
of GHG, among which are the Hamiltonian and
momentum constraints (7) and (8) as well as the
harmonic gauge constraint (12). In the continuum
limit Cmon ¼ 0 throughout the evolution. In practice
we observe nonzero values for Cmon and they serve
as a proxy to gauge to which accuracy the EFEs can
be solved.

(ii) The dynamical behavior of the stars and spacetime
are monitored through the maximum of the scalar-
field amplitude AmaxðtÞ and the value of the Ricci
scalar at the coordinate origin Rðt; x ¼ 0Þ. These
quantities together with Cmon are used to distinguish
physical signatures from numerical artifacts in our
analysis.

(iii) The Noether charge associated with the global Uð1Þ
symmetry of (1) is given by [29]

N ¼
Z
V
dx3

ffiffiffiffiffiffi
−g

p
jt; ð38Þ

ja ¼ i
2
gabðϕ�∇bϕ − ϕ∇bϕ

�Þ; ð39Þ

where ja is the Noether current and integration is
performed over the whole computational domain V.
N can be related to the total number of bosonic
particles [29,80]. This quantity is also conserved,
provided no matter leaves the domain through a
boundary, and, thus, its time evolution allows us to
gauge the accuracy of the evolution of the Klein-
Gordon equation.

TABLE II. Properties of the stationary, isolated and spherically
symmetric mini BS solution that is used as the basis for all the
binary BS initial data constructions presented in this work. The
same configuration has been studied in [15]. Actr is the central
scalar-field amplitude, ω is the stationary angular frequency of
the harmonic time dependence of the scalar field, MBS is the
ADM mass of the system and r99 is the radius in which 99% of
the ADM mass are contained. We use MBBS ¼ 2MBS ¼ 0.79 as
an estimate for the initial ADM mass of the binary system.

Model Actr ω MBS r99

mini1 0.0124 0.97(1) 0.39(5) 22.(6)
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(iv) The ADM mass of the spacetime [58]

MADM¼ 1

16π
lim
r→∞

Z
∂Σr

dSN kγijð∂jgik−∂kgijÞ; ð40Þ

where N m is the outward pointing unit normal
vector to a 2-hypersurface ∂Σr of a spatial slice Σ.
In theory, this quantity is conserved in time and we
monitor its temporal evolution to benchmark our
results. Note that the results of MADM we report
below were obtained without taking the limit r → ∞
and instead computed at a finite radius. In this sense
all references of MADM in the following refer to an
approximation of the ADM mass. In fact, this
approximation of MADM is also not necessarily
conserved and can show a decrease in time, in
particular when matter leaves the computational
domain.

(v) A total mass number [17]

Mtot ¼
Z
V
dx3

ffiffiffi
γ

p
ρ; ð41Þ

where integration is performed over the whole
computational domain V. This is a coordinate
dependent quantity and it is not necessarily con-
served.

(vi) Gravitational radiation represented through the cur-
vature pseudoscalar field Ψ4. This (or rather inte-
grals thereof) is the only accessible observable with
which binary BS encounters could be experimen-
tally detected. In particular, we only focus on the
dominant l, m ¼ 2, 0 mode. We leave out a
discussion of the GW strain h due to unacceptably
large uncertainties introduced in the reconstruction
procedure, see Appendix A.

(vii) The radiated GW energy E associated with Ψ4;20 as
recorded by an asymptotic observer over a fixed time
interval. This quantity was also studied in [15] to
analyze the behavior of the long-lived oscillating
remnant. The error bars we provide account for
errors due to finite resolution, errors in the extrapo-
lation to null infinity and errors in the reconstruction
of E from Ψ4;20. For details on this analysis, see
Appendix A.

(viii) The detector-noise-weighted Wiener product

WðΨð1Þ
4;20;Ψ

ð2Þ
4;20Þ between two GW signals. This

quantity gives a measure of how similar two
GWs are, while accounting for detector sensitivity.
To evaluate W one has to assume a value for scalar-
field mass μ in order to convert the results to SI units.
Because we use a noise-sensitivity curve of Ad-
vanced LIGO [81] to weight the Wiener product,
we fix μ ¼ 1 × 10−11 eV so that the frequency of the

dominant component of the PSD of Ψ4;20 falls into
the most sensitive region of the detector, which is at
Oð100 HzÞ [82]. For details see Appendix B.

A. Constraint violations

A comparison of the convergence behavior of Cmon
obtained from runs that used SSP data vs. CTSþ SSP
data with initial separation d ¼ 80, boost parameters
v ¼ 0.05; 0.1; 0.15; 0.2 and varying polynomial resolutions
n is provided in Fig. 2.
First, we compare the values of Cmon at t ¼ 0 between the

constraint-violating SSP data (left columns) and constraint-
satisfying CTSþ SSP data (right columns). The figure
shows that all SSP evolutions start from an initial violation
Cmon ≈ 10−4, which is independent of the resolution and
initial boost. On the other hand, the CTSþ SSP data starts
off at Cmon ≈ 10−5 and decreases with n and independent of
v to Cmon < 10−10. Because we solve the CTS equations for
each resolution n separately, instead of solving them once
for a high resolution and then using interpolation to obtain
data on a lower resolution, this behavior of Cmon demon-
strates that our CTS solver is capable of removing excess
constraint violations with increased resolution.
Focusing on the time evolution of Cmon of CTSþ SSP

data, one observes a clear convergence pattern in resolu-
tion. We want to emphasize the rate by which Cmon
decreases by pointing to the exponential improvement of
Cmon from 100 down to 10−12 while the polynomial
resolution n increases linearly in steps of two from 7 to
19 (see color coding in legend). For boost values v ¼ 0.1,
0.15, and 0.2 one observes that with resolutions n ≥ 15

the violations are bounded by Cmon ≲ 10−10 when 0 ≤
t ≤ 4000, except around the merger which occurs at
t ≈ 350, 260, and 210, respectively. For the runs using
v ¼ 0.05 one would need to increase the resolution beyond
n ¼ 19 to achieve the same level of violations in the
afterglow signal, which is computationally well within
reach even without AMR. Comparing now with the
violations from evolutions of SSP data one can also see
that Cmon decreases for all simulations independent of v.
However, the results for v ¼ 0.05, 0.1 and 0.15 show that
this trend eventually halts when n≳ 13 and for v ¼ 0.2 no
improvement occurs beyond n ¼ 11 in the afterglow. From
this we conclude that evolutions of nonconstraint-solved
SSP data bear a residual constraint violation Cmon ≳ 10−8

when 0 ≤ t ≤ 4000 for this configuration in our code. Note
that this result does not imply that these evolutions are not
convergent, because a numerical value of order Oð10−8Þ is
usually not regarded as numerically zero. Instead one must
treat this data series as a series that approaches a nonzero
residual value and conduct a self-convergence test, which is
done further below.
Studying now the behavior of Cmon around merger one

observes that the constraint monitor continues to improve
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FIG. 2. Side by side comparison of the time evolution of Cmon for simulations based on SSP data (left column) and CTSþ SSP data
(right column) for fixed initial separation d ¼ 80, varying resolutions and different values of the boost parameter v ¼ 0.05; 0.1; 0.15; 0.2
(from top to bottom). Vertical dashed lines indicate time of merger as determined by the time of the maximum value of AmaxðtÞ from the
highest resolution.

FIG. 3. Side by side comparison of the time evolution of Cmon for simulations based on CVE data (left column) and CTSþ CVE data
(right column) for fixed initial separation d ¼ 80, varying resolutions and different values of the boost parameter v ¼ 0.05, 0.1, 0.15, 0.2
(from top to bottom). Vertical dashed lines indicate time of merger as determined by the time of the maximum value of AmaxðtÞ from the
highest resolution.
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with increasing n, even when Cmon was already saturated
away from merger. This behavior is independent of the
boost parameter v and occurs for SSP and CTSþ SSP data.
The reason for this is that the merger phase typically
involves higher field amplitudes and gradients compared to
less extreme field configurations before and after merger,
which translates into a need for locally higher polynomial
approximations to resolve the solutions accurately, due
to aliasing effects in the PS expansion being amplified by
the nonlinearity of the EFEs. As a side note, we mention
that the use of AMR could potentially bring down these
constraint violations around merger to the same level away
from the merger, while at the same time improve computa-
tional efficiency by distributing the available resources
where numerical resolution is needed. We leave this test to
future work as it will certainly become of relevance for
inspiral simulations.
Figure 3 shows the same comparison of Cmon, but for

evolutions that started with constraint-violating CVE data
vs. constraint-satisfying CTSþ CVE data and the same
initial distance and boost parameters. The overall behavior
of the results is similar to the one from Fig. 2: at t ¼ 0 the
CVE data comes with an initial violation Cmon ≈ 10−6 that
is independent of n and v, whereas the CTSþ CVE data
starts at Cmon ≈ 10−5 and continuously decreases with
increasing resolution to Cmon < 10−10. The time evolution
of CTSþ CVE data also displays a convergence pattern
with exponential decrease when increasing n, and the
constraint violations are reduced to Cmon < 10−10 when

0 ≤ t ≤ 4000, except around merger. Also similar is the
behavior of the results from constraint-violating CVE
initial data where it is evident that increasing n decreases
Cmon. The plot also shows that the constraint monitor
saturates for Cmon > 10−10 when v ¼ 0.05, 0.1, and 0.15.
When v ¼ 0.15 or 0.2 we also observe that the lower bound
on Cmon additionally decreases over time and approaches a
value of ≈10−10 at t ¼ 4000. As for the merger phase,
increasing n also reduces Cmon for both CVE and CTSþ
CVE data.
In Fig. 4 a self-convergence test of Cmon using the

constraint-violating data presented in Fig. 2 (left columns)
and Fig. 3 (left columns) is depicted. With such a test one
can study the convergence of a series without knowing the
exact result the series is converging to. This method is
applied to Cmon here, because for constraint-violating data
Cmon does not approach zero, but it attains limiting values
Cmon ≳ 10−8 and Cmon ≳ 10−10 for SSP and CVE data,
respectively. Figure 4 demonstrates that the differences of
Cmon between consecutive resolutions decrease exponen-
tially with increasing resolution, thus, confirming the claim
made earlier that Cmon is also convergent for evolutions of
initially constraint-violating data.
A direct comparison of the analysis quantities CmonðtÞ,

Rðt; x ¼ 0Þ and AmaxðtÞ obtained from evolutions starting
from constraint-violating and constraint-solved initial data,
based on a configuration with initial separation d ¼ 80,
initial boost v ¼ 0.1 and polynomial resolution n ¼ 11, is
provided in Fig. 5. Focusing on the results obtained with

FIG. 4. Self-convergence test of the constraint monitor Cmon. Left: results obtained from evolutions of SSP data. Right: results obtained
from evolutions of CVE data. The initial separation is fixed to d ¼ 80 and initial boost values are v ¼ 0.05; 0.1; 0.15; 0.2. Vertical
dashed lines indicate time of merger as determined by the time of the maximum value of AmaxðtÞ from the highest resolution.
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the SSP construction method (left column), it is evident that
Cmon is always smaller for the evolution of CTSþ SSP data
than the evolution of SSP data when 0 ≤ t ≤ 4000. The
difference in Cmon between these evolutions gradually
decreases over time and there is considerable overlap in
the afterglow phase of the evolution. However, this overlap
does not continue to hold with increasing polynomial
resolution n, because Cmon for the runs with SSP data
eventually levels off at a nonzero value, as demonstrated
previously. Comparing vertically CmonðtÞ (top, left) vs.
Rðt; x ¼ 0Þ (middle, left) vs. AmaxðtÞ (bottom, left) one
can see that the times at which the constraint monitors
overlap correspond to times where Rðt; x ¼ 0Þ and AmaxðtÞ
each show local maxima. This allows us to conclude that
the increase in Cmon around merger, as well as the
oscillations in the afterglow, are caused by physical
processes. Studying the time evolutions of Rðt; x ¼ 0Þ
and AmaxðtÞ closer one can observe good agreement
between SSP and CTSþ SSP until t ≈ 2800, after which
these quantities start to dephase (see insets). This dephasing
persists when increasing the resolution. Not visible in this
plot is that AmaxðtÞ also shows deviations during the infall
phase when 0 ≤ t ≤ 500, because they are about a factor of
10 smaller than the differences that appear at late times and
we revisit this further below.
The comparison of Cmon from runs with constraint-

violating and constraint-solved initial data based on the
CVE construction is displayed in Fig. 5 (right column).

Similar to the case of evolutions of SSP data, one observes
that, prior to merger, Cmon is always smaller for the
evolutions using CTSþ CVE data compared to evolutions
of CVE data. We see that at this resolution the evolution of
Cmon after the merger is independent of the initial value of
Cmon and, therefore, it is only dominated by violations that
occur during the merger. Also similar is the temporal
alignment in the extrema between CmonðtÞ, Rðt; x ¼ 0Þ
and AmaxðtÞ. The evolutions of Rðt; x ¼ 0Þ and AmaxðtÞ also
show that no dephasing occurs for these quantities for late
times at this resolution (as well as resolutions n ¼ 9; 13; 15,
but not shown) and, thus, one can conclude that the
reduction in initial constraints did not have a noticeable
influence on these observables. Comparing the late time
behavior of Rðt; x ¼ 0Þ and AmaxðtÞ between SSP data (left
column) and CVE data (right column) one can see from
the insets that the amplitudes of these quantities show a
difference, in particular the strength of the oscillations is
reduced for the CVE data. This observation suggests that
the effect of constraint-solving data has less impact on
physical observables than the way in which the super-
positions are constructed.
Figure 6 shows another comparison of the evolution of

AmaxðtÞ as presented in Fig. 5, but now with an emphasis on
the infall phase of the head-on collision where 0 ≤ t ≤ 500.
This plot is added to make a connection with [15] where the
authors found that, in head-on collisions of solitonic BSs,
the use of SSP data causes premature BH collapse, i.e., an

FIG. 5. Direct comparison of evolution quantities Cmon (top), Rðt; x ¼ 0Þ (middle), and AmaxðtÞ (bottom) obtained from binary BS
evolutions of superposed initial data (dashed) vs. constraint-solved data (solid). The stars were prepared with boost parameter v ¼ 0.05
and initial distance d ¼ 80 and polynomial resolution was n ¼ 11. Left: comparison between SSP data vs. and CTSþ SSP data. Right:
comparison between CVE vs. and CTSþ CVE data. The vertical dashed lines indicate time of merger as determined by the time of the
maximum value of AmaxðtÞ.
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apparent horizon is detected before the center of the stars
even meet. This behavior is preceded by a growth of the
central scalar field amplitude before the collapse. In their
work, the evolutions of CVE initial data with the same
solitonic BSs did not show this phenomenon, and instead
the central scalar field amplitude remained to good
approximation constant during all of the infall phase, only
changing after the star’s centers merged and before the first
apparent horizon was detected. In Fig. 6 one can see that
also for a head-on collision of two mini BSs, which is based
on SSP initial data, AmaxðtÞ shows a growth during the
infall phase. Furthermore, it is evident that AmaxðtÞ grows
strongly even for CTSþ SSP data. In contrast to this,
AmaxðtÞ obtained from the evolution of CVE and CTSþ
CVE initial data agrees very well between these two setups,
and it remains roughly constant during the infall phase.
Evenutally, at t ≈ 300 one can see that AmaxðtÞ drops down
and then increases again right before the time of merger at
t ≈ 510. Some oscillations of AmaxðtÞ are also visible, but
they are likely due to the fact that neither initial data
construction accounts for any quasiequilibrium conditions.
Although the mini BS evolutions considered in this work
do not undergo BH formation, the plot shows a similar
qualitative behavior of the scalar field amplitude as
reported in [15], which is also independent of resolution
(not shown). Since we are interested in studying how two
initially noninteracting stars fall in on each other, we expect
on physical grounds that the scalar field amplitude is not
drastically altered before the stars’ centers get close to each
other. For the case at hand, the isolated stars have a radius
of r99 ≈ 22 and are initially well separated by a distance
d ¼ 80. Because AmaxðtÞ is less for the CVE and CTSþ
CVE data than for SSP and CTSþ SSP data, we conclude

that this result favors the use of the two former initial
datasets for mini BS head-on collisions, assuming no
additional considerations regarding quasiequilibrium con-
ditions are involved.
During testing we found that some observables can be

polluted with artificial high frequency noise for late times.
As an example see Cmon in Fig. 5 for SSP data (top, left) and
CVE (top, right) which shows this noise starting to appear
at t ≈ 2000. These artifacts are not physical, but depend on
parameters like the initial separation and boost of the stars,
and numerical resolution and are caused by the scalar field
interacting with the outer boundary conditions, which
happens because part of the scalar field is ejected from
the central region during and after merger. This hypothesis
is confirmed by redoing these simulations with a grid setup
where the outer domain boundary is moved from radius
R ¼ 400 to R ¼ 800. Results of this test are displayed in
Fig. 7, which shows the spatial distribution of the scalar-
field amplitude Aðt; xÞ (top) extracted at coordinate time
t ≈ 2000 for the two differently sized domains. It is evident
that Aðt ≈ 2000; xÞ in the smaller domain displays notice-
able radial oscillations, whereas they are absent from the
scalar-field profile evaluated at the same coordinate time
in the larger domain, which reveals these oscillations as
artifacts. The comparison of the time evolutions of Cmon
(bottom) extracted from these two simulations shows that

FIG. 6. Direct comparison of AmaxðtÞ obtained from binary BS
evolutions that used constraint-violating SSP and CVE data
(solid) and constraint-satisfying CTSþ SSP and CTSþ CVE
data (dashed). The stars were prepared with boost parameter
v ¼ 0.05, initial distance d ¼ 80 and polynomial resolution was
n ¼ 11. This is a zoomed in plot of the AmaxðtÞ results presented
in Fig. 5. The vertical dashed and dotted lines indicate time of
merger as determined by the time of the maximum value of
AmaxðtÞ from the CTSþ SSP and CTSþ CVE data, respectively. FIG. 7. Results from evolution of CTSþ CVE data with initial

distance d ¼ 80 and boost parameter v ¼ 0.05 for polynomial
resolution p ¼ 11 and two differently sized computational
domains. Top: comparison of the spatial distribution of scalar-
field amplitude Aðt ≈ 2000; xÞ, domain radius R ¼ 400 (left)
and domain radius R ¼ 800 (right). Bottom: comparison of the
evolution of Cmon for the differently sized computational do-
mains. The vertical dashed line indicates the time of merger as
determined by the time of the maximum value of AmaxðtÞ.
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around t ≈ 2000 the data is free of noise when the boundary
is placed at R ¼ 800. We note that this strategy of moving
the boundary out further and further is in general not a
reliable solution when interested in artifact-free long-time
evolutions, because the associated computational costs
eventually start to become prohibitive. Although it might
be possible to mitigate the computational costs by using
AMR with properly tuned hp refinement, a more sustain-
able solution would be to investigate how our boundary
conditions need to be adjusted to work with massive
complex scalar fields. We leave this task to future work.
In the following discussion of global quantities and
gravitational waves we show results that were obtained
with R ¼ 800.

B. Global quantities

In Fig. 8 we continue the comparison started in Fig. 5
by studying how relative differences in global quantities
develop for evolutions that used constraint-violating vs.
constraint-satisfying initial data with initial separation
d ¼ 80, boost v ¼ 0.05 and resolution n ¼ 11. It is evident
from the plot that the relative differences in Noether charge
ΔN, ADMmass ΔMADM and total massΔMtot are constant
in time to a good approximation. The differences between
CVE vs. CTSþ CVE data evolutions forΔN andΔMtot are
of the order 0.01%MBBS, whereas the differences between
SSP vs. CTSþ SSP evolutions are below 0.1% MBBS. The
differences in ΔMADM are of order 0.1% MBBS and 1%

MBBS for CVE vs. CTSþ CVE and SSP vs. CTSþ SSP,
respectively. We want to emphasize that the utilized
resolution n ¼ 11 is rather coarse and computationally
inexpensive, but the observed differences are already very
small for both datasets.
Figure 9 displays the time evolutions of N, Mtot, and

MADM (top) as well as a self-convergence study of the same
quantities (bottom). These results were obtained from
evolutions of runs done with the CTSþ CVE data with
initial separation d ¼ 80 and boost parameter v ¼ 0.05.
Focusing first on the upper panel and the top plot which
shows NðtÞ=Nð0Þ one can see that for resolution n ¼ 13
the relative deviation from the initial value Nð0Þ is well
below 1% when 0 ≤ t ≤ 2000, indicating that NðtÞ is
numerically conserved. On the other hand, for t≳ 2000
the Noether charge starts to decrease until ≈98% of the

FIG. 8. Relative differences of global quantities N (top), Mtot
(middle),MADM (bottom) between results from evolutions of SSP
data vs. CTSþ SSP and evolutions of CVE data vs. CTSþ CVE
data. The stars were prepared with initial boost parameter
v ¼ 0.05 and initial separation d ¼ 80 and the differences were
computed at polynomial resolution n ¼ 11. MADM was extracted
at a sphere with coordinate radius rext ¼ 720. The vertical dashed
line indicates the time of merger as determined by the time of the
maximum value of AmaxðtÞ.

FIG. 9. Top: time evolution of the global quantities N,Mtot, and
MADM obtained from a simulation with resolution n ¼ 13.
Bottom: self-convergence test of those variables. Results are
from simulations of CTSþ CVE data with initial separation
d ¼ 80 and initial boost parameter v ¼ 0.05. MADM was ex-
tracted at a sphere with coordinate radius R ¼ 720. The vertical
dashed lines indicate the time of merger as determined by the time
of the maximum value of AmaxðtÞ from the highest resolution.
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initial value is left at t ¼ 4000. Similar behavior is observed
in the evolution ofMADMðtÞ=MADMð0Þ, i.e., the ADMmass
is conserved well below 1% over the time range 0 ≤
t ≤ 2000, after which it starts to decrease until it reaches a
final value below 97% at t ¼ 4000. On the other hand,
MtotðtÞ=Mtotð0Þ is by definition not a conserved quantity
and this is reflected in its time evolution, because it shows
significant oscillations already for t ≤ 2000. Note also that
this quantity shows a decreasing trend for late times. We
verified that the apparent loss in N, MADM and Mtot is due
to the scalar field getting absorbed by the outer boundary
conditions, much like the artificial oscillations of A that we
discussed in Fig. 7.
Regarding the self-convergence tests displayed in the

lower panel, the differences in ΔN decrease with increasing
resolution, confirming thatN is indeed convergent. We note
that the differences are noticeably increased through the
merger, but overall remain roughly constant in time. The
differences in ΔMADM show more variations in time, but
one can still recognize a convergence trend in this data.
We attribute this behavioral difference to the fact that N
and MADM are computed through a volume and surface
integral, respectively, and the latter being more susceptible
to numerical errors, because its computation involves less
degrees of freedom than that of a volume integral. The
differences in ΔMtot also behave similarly to ΔN in the way
that they show a convergence pattern, the differences remain
roughly constant over time and they are increased through
the merger. These plots demonstrate that also global quan-
tities like ΔN and ΔMtot converge exponentially.

C. Gravitational waves

Figure 10 shows results of a long-time evolution of a BS
head-on with initial separation d ¼ 80 and initial boost
parameter v ¼ 0.05. The plot shows that the run with the

lowest resolution n ¼ 7 crashed, but starting with n ≥ 9 a
stable convergence pattern can be observed where the
exponential improvement between resolutions is main-
tained also for late times. One can also recognize a growth
of Cmon over time, which might become troublesome for
even longer evolutions; however, we were able to evolve
to at least t=MBBS ¼ 50000 without problems and there
remains the possibility to adjust the GHG damping system
through the parameter γ0 in combination with adjustments
to the local grid widths. The Ψ4;20 strain extracted from the
highest resolved run with n ¼ 17 displays the characteristic
afterglow signature of these kinds of collisions, where the
remnant scalar-field cloud is continuing to oscillate and
emit gravitational radiation with an amplitude that is of the
same order as the merger spike [17]. The dominant
amplitude in the frequency spectrum of Ψ4;20 is located at

fdom ≈ 7.7 × 10−3
�

μ

6.582 × 10−16 eV

�
Hz:

Assuming a scalar-field mass μ ¼ 1 × 10−11 eV this trans-
lates into fdom ≈ 117 Hz. Furthermore, the plot shows that
the afterglow lasts at least for time

Tglow ≳ 18750

�
μ

6.582 × 10−16 eV

�
−1

s;

which corresponds to Tglow ≳ 1.2 s, assuming the same
scalar-field mass.
We want to highlight that our computational setup does

not involve angular momentum, because the head-on
collisions proceed with zero impact parameter and the
simulations are carried out in axisymmetry and with
reflection symmetry, and yet we do observe a noticeable
afterglow signature in Fig. 10. Our results therefore
demonstrate that the emission of GW afterglow radiation

FIG. 10. Time evolution of Cmon (top) for simulations based on CTSþ CVE data with boost v ¼ 0.05 and initial separation d ¼ 80 for
different resolutions n. Unprocessed Ψ4;20 signal (bottom) obtained from the simulation with n ¼ 17 and extracted on a sphere of radius
rext ¼ 720. The vertical dashed line indicates the time of merger as determined by the time of the maximum value of AmaxðtÞ from the
highest resolution.
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in BS collisions is not solely tied to the presence of angular
momentum in the initial data or the remnant.
In [15] a comparison between Ψ4;20 signals extracted

around the time of merger and obtained from runs using
SSP and CVE initial data was already carried out. The
binary BS head-on configuration studied in there used the
same isolated BS solution as we do for the superposition.
The initial boost parameter was fixed to v ¼ 0.1. In Fig. 11
we reproduce their results for resolution n ¼ 15, but using
instead CTSþ SSP initial data (top, left) and CTSþ CVE
initial data (top, right). Furthermore, we also evolved SSP
and CVE initial data and we plot the absolute differences
between the Ψ4;20 signals obtained from SSP vs. CTSþ
SSP data (bottom, left) and CVE vs. CTSþ CVE data
(bottom, right). The data was extracted at spheres with
radius rext ¼ 720. Focusing on rawΨ4;20 data first (top, left
and right), one can observe the same qualitative differences
between CTSþ SSP and CTSþ CVE data that were
reported for SSP and CVE data in [15]. The maximum
amplitude of Ψ4;20 shows a dependence on the initial
separation d between the two stars for the runs that used
CTSþ SSP data, whereas the CTSþ CVE results show
almost constant maximum amplitude and the wave’s shape
is roughly independent of d. Furthermore, for d ¼ 80 the
GW signal arrives later byΔt=MBBS ≈ 14 from CTSþ SSP
data compared to the CTSþ CVE data and this time delay
decreases to Δt=MBBS ≈ 10 for d ¼ 140. From the plot
showing the differences of Ψ4;20, one can read off that the
GW signal differs at most by 10−4 for SSP vs. CTSþ SSP
data and at most by 10−5 for CVE vs. CTSþ CVE data.
When normalized by the maximum amplitude of the Ψ4;20

signal, these differences translate into a maximum

deviation of ≈10% for SSP vs. CTSþ SSP and ≈2%
CVE vs. CTSþ CVE data, respectively.
Fig. 12 presents a self-convergence test using Ψ4;20

signals extracted from evolutions of CTSþ CVE initial

FIG. 11. Top: Ψ4;20 signals obtained from evolutions of CTSþ SSP initial data (left) and CTSþ CVE initial (right) with polynomial
resolution n ¼ 15, initial boost parameter v ¼ 0.1 and for varying initial distance d. Bottom: differences of Ψ4;20 signals between SSP
vs. CTSþ SSP (left) data and between CVE vs. CTSþ CVE data (right). TheΨ4;20 data was extracted on a sphere of radius rext ¼ 720.
The vertical dashed lines indicate the times where the extrema of Ψ4;20 appear for each separation d.

FIG. 12. Self-convergence test of MBBSrextΨ4;20 obtained from
evolutions of CVE data with initial separation d ¼ 80 and boost
parameter v ¼ 0.05. Signals were extracted at coordinate radius
rext ¼ 720. The solid and dashed lines display differences
between two consecutive resolutions of Ψ4;20. For visualization
purposes the data has been interpolated onto a common time grid
for the difference computation and then postprocessed using a
moving average filter (see Appendix F). The dotted gray line is
the raw difference computed between resolutions n ¼ 19 and 21,
which illustrates that the moving average accurately represents
the trend of the data. The vertical dashed line indicates the time
of merger as determined by the time of the maximum value of
AmaxðtÞ from the highest resolution.
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data with initial separation d ¼ 80 and boost parameter
v ¼ 0.05. The signals were extracted at spheres with co-
ordinate radius rext ¼ 720 and the results are plotted
against retarded time u. Similar to the self-convergence
test of the global quantities N, Mtot and MADM, one can
observe a clear decrease in the differences ΔΨ4 with
increasing polynomial resolution, indicating an exponen-
tially convergent result. The differences increase notably
through the merger by roughly two orders of magnitude.
The differences between the two highest resolved runs with
n ¼ 17 and 19 can be interpreted as an error bound on the
numerical accuracy of Ψ4;20 and we infer that the results
are accurate up to 10−5 for the studied configuration. This
bound is conservative, because, as the trend of this conver-
gence test indicates, any differences obtained between two
consecutive resolutions that are each higher than n ¼ 19
will be smaller than this difference.
In Fig. 13 we compare the radiated gravitational wave

energy E=MBBS emitted over a retarded time span of
u∈ ½100; 3000� from evolutions of SSP, CTSþ SSP,
CVE, and CTSþ CVE initial data, where we fix the initial
separation d ¼ 80 and polynomial resolution n ¼ 15 and
vary the boost parameter v. First, the plot shows a differ-
ence in E depending on whether SSP or CVE initial data is
evolved and this difference decreases with increasing v.
On the other hand, the difference between E obtained from
SSP vs. CTSþ SSP and CVE vs. CTSþ CVE is com-
paratively negligible. Taking into account the error bars the
conclusion is that one cannot distinguish superposed initial
data from constraint-solved data by the amount of radiated
energy emitted over this time span. Regarding the depend-
ence on v, it is evident that E decreases with increasing v.
From a physical perspective this is counter intuitive,
because increasing v increases the energy of the binary
system in the initial slice. Furthermore, with larger v the

time to merger is reduced and, thus, there would be more
time left for GWs to radiate away from merger till
u ¼ 3000. This behavior is in contrast with a similar
experiment that was conducted for BH head-on collisions
in [83], where indeed the radiated GW energy increases
when increasing v. Nevertheless, these results are in
accordance with what was observed in [15], where E also
decreases when the initial separation d between the stars is
increased, which also corresponds to an increase of the total
energy in the initial slice.
Analysis of 1D and 2D output from simulations that

were used for Fig. 13 shows that with increasing v the
gravitational and scalar field both display decreasing
amplitudes. To this end, consider Fig. 14 where the time
evolution of EðuÞ=MBBS, Rðt; x ¼ 0Þ, AmaxðtÞ NðtÞ and
MADMðtÞ is shown for simulations of CTSþ CVE data
with initial separation d ¼ 80 and resolution n ¼ 15, but
we vary the boost parameter v. First, one can read off the
values of E=MBBS at u=MBBS ≈ 4050which were shown in
Fig. 13 for the CTSþ CVE data. The plot displays that the
initial burst of radiation is responsible for a significant
increase in E=MBBSðuÞ. When contrasted with the evolu-
tions of Rðt; x ¼ 0Þ and AmaxðtÞ, it is apparent that this is
caused by the merger where these quantities peak.
Furthermore, one observes that with increasing v the first
burst is emitted at earlier times, but the strength of the burst
also decreases. However, at the same time the flux of
EðuÞ=MBBS radiated in the afterglow phase decreases when
v increases. During that phase Rðt; x ¼ 0Þ and AmaxðtÞ also
display a continued decrease in the amplitude of the
oscillations. The evolutions of NðtÞ and MADMðtÞ show
that until t=MBBS ≈ 2000 the quantities N and MADM are
both conserved to good approximation. The difference in
MADM when 0 ≤ t=MBBS ≤ 2000 between different values
of v reflects the fact that an increase in the initial momenta
of the stars corresponds to initially more energetic con-
figurations. Eventually, both NðtÞ and MADMðtÞ decrease,
because the scalar field leaves the computational domain
through the boundary. We note that this decrease sets in
earlier and proceeds faster when v ¼ 0.2 than v ¼ 0.0,
which we verified by studying dN=dt (not shown). This
allows one to conclude that the larger v, the faster energy is
carried away through the scalar field being ejected. As a
consequence, the produced remnant will be lighter for
larger v.
Figure 15 shows the (complementary) Wiener product

W̄ ≔ 1 −WðΨ4;20
ð1Þ;Ψ4;20

ð2ÞÞ computed between two sig-
nals Ψ4;20

ð1Þ and Ψ4;20
ð2Þ and obtained from different initial

data constructions. The initial distance was fixed to d ¼ 80,
we vary the polynomial resolution n and we show results
for boost values v ¼ 0.05, 0.1, and 0.15. We used the
T1800044-v5 Advanced LIGO sensitivity design
curve [81] to weight the product and the complex scalar
field’s mass was fixed to μ ¼ 1 × 10−11 eV. W was
computed using data that was extrapolated to null infinity

FIG. 13. Dependency of the radiated GW energy E=MBBS on
the initial boost parameter v obtained from evolutions of SSP,
CTSþ SSP, CVE and CTSþ CVE initial data and fixed initial
distance d ¼ 80 and polynomial resolution n ¼ 15. The error
bars account for finite resolution errors and uncertainties in the
postprocessing.

BOSON STAR HEAD-ON COLLISIONS WITH CONSTRAINT- … PHYS. REV. D 109, 044058 (2024)

044058-17



with different orders Nextrp. We remind the reader that a
value W̄ ¼ 1−WðΨ4;20

ð1Þ;Ψ4;20
ð2ÞÞ ¼ 0means that Ψ4;20

ð1Þ

and Ψ4;20
ð2Þ are identical if they would appear in a detector

with the provided noise sensitivity curve. The plot shows,
independent of v, that W̄ is always smallest when compar-
ing Ψ4;20 from evolutions of CVE data vs. CTSþ CVE
data, meaning that these waveforms are the closest to each
other among those we compare. The difference between
GWs received from SSP data vs. CTSþ SSP data is bigger
than the one from CVE data vs. CTSþ CVE data. W̄ is

biggest when comparing either SSP data vs. CVE data or
CTSþ SSP data vs. CTSþ CVE data. We note that these
qualitative results are to very good agreement independent
of the numerical resolution n. Furthermore, the results are
independent of the extrapolation order Nextrp, because
Fig. 15 already shows the results obtained from analyses
where Nextrp was varied too, however, the obtained curves
all overlap with one another. Overall this picture is consis-
tent with the discussions of other comparisons in this work
where it turned out that any apparent differences between
analysis quantities are more pronounced when comparing
results from SSP data vs. CTSþ SSP data than comparing
results from CVE data vs. CTSþ CVE data.

VI. CONCLUSION

In this manuscript we reported results of long-time stable
and accurate binary head-on BS collisions obtained using a
PS method as implemented in BAMPS. We studied varia-
tions of a mini BS configuration which was already
investigated in [15], but differed in the way the initial data
was constructed: two of the datasets (SSP, CVE) were
obtained from a superposition of isolated stars and thus
carried initial constraint violations, whereas the other two
datasets (CTSþ SSP, CTSþ CVE) were obtained by
numerically solving the CTS equations and with free data
based on SSP and CVE data, using the hyperbolic

FIG. 15. Analysis of the complementary Wiener product

W̄ðΨð1Þ
4;20;Ψ

ð2Þ
4;20Þ between GWs Ψð1Þ

4;20 and Ψð2Þ
4;20 obtained from

two initial datasets and for varying numerical resolution n. The
initial stars were prepared with a separation d ¼ 80 and boost
parameters v ¼ 0.05 (top), v ¼ 0.1 (middle), v ¼ 0.15 (bottom).

FIG. 14. Top: time evolution of EðuÞ=MBBS vs. retarded time
u=MBBS obtained from evolutions of CTSþ CVE initial data
with fixed initial separation d ¼ 80 and resolution n ¼ 15, but
varying boost parameter v. Bottom: time evolution of Rðt; x ¼ 0Þ,
AmaxðtÞ, NðtÞ, andMADMðtÞ vs. coordinate time t=MBBS from the
same simulations. Note that E=MBBS stops growing when
u=MBBS ≳ 3800 for all values of v, which is due to the use of
a window function in the postprocessing of the data (see
Appendix A for details). The vertical dashed lines indicate the
time of merger as determined by the time of the maximum value
of AmaxðtÞ.

FLORIAN ATTENEDER et al. PHYS. REV. D 109, 044058 (2024)

044058-18



relaxation method presented in [53]. In our work we did not
enforce quasiequilibrium conditions to ease our compari-
son with previous work in [15]. This effort was undertaken
to answer the question of how much of a difference one can
expect physical observables to vary when numerically
evolving constraint-violating and satisfying data.
In summary we found that the differences in the

discussed analysis quantities computed during evolutions,
among which is also the constraint monitor of BAMPS, are
always bigger between SSP vs. CTSþ SSP data when
compared to CVE vs. CTSþ CVE data. We demonstrated
that evolutions of SSP and CVE data bear residual con-
straint violations above 10−8 and 10−10, respectively,
despite being self-convergent. On the other hand, we could
reduce and preserve the constraint violations for CTSþ
SSP and CTSþ CVE data well below 10−10 using a
reasonable resolution, which demonstrates the capabilities
of PS approximations as viable methods for next generation
NR codes targeted at smooth solutions. A study of global
analysis quantities showed that conserved variables like
Noether charge N and ADM mass MADM can be preserved
well below 1% of their initial value already starting with
comparatively small polynomial order n ¼ 9 per grid, as
long as the scalar field does not leave the computational
domain, while at the same time also displaying exponential
decrease in a self-convergence study.
A direct comparison of the Ricci scalar at the collision

center Rðx ¼ 0Þ and the scalar field amplitude Amax
between results obtained from SSP vs. CTSþ SSP showed
that these quantities eventually start to dephase after
merger. No such deviations were observed when comparing
results from evolutions of CVE vs. CTSþ CVE initial data.
The main motivation for the development of the CVE
method in [15] was that for head-on collisions of solitonic
BSs Amax obtained from SSP data displayed an artificial
growth during the infall phase and eventually lead to
premature BH collapse. This growth was avoided by the
use of the CVE construction, which also delayed the BH
formation after the stars’ centers merged. Although, this
work was concerned with mini BS collisions for which no
BH collapse occurs, we find a qualitatively similar behavior
for Amax when evolving SSP and CVE data. Furthermore,
the constraint-solved CTSþ SSP data did not cure this
artificial growth premerger. On the other hand, the evolu-
tion of Amax obtained from CTSþ CVE data is to good
approximation identical to the CVE data, i.e., Amax remains
approximately constant during infall when the centers of
the stars are well separated. This latter observation serves as
an argument which favors the use of CVE and CTSþ CVE
data over SSP and CTSþ SSP data, in particular, when the
goal is to model the coalescence of initially noninteracting
stars that fall in on each other.
We reproduced the Ψ4;20 signals of the mini BS head-on

collisions that were reported in [15] for SSP and CVE data
and compared these findings with signals obtained from

CTSþ SSP and CTSþ CVE data. We found that con-
straint solving does not significantly alter the qualitative
differences that were discussed in [15]. These results are
robust, as we demonstrated exponential decrease in
differences of Ψ4;20 signals in a self-convergence study.
We then computed the radiated energy from these kinds of
head-on collisions while also varying the initial boost
parameter v and found, again, a difference that is domi-
nated by the way in which the isolated stars are superposed.
For this quantity differences due to constraint solving the
initial data are negligible and indistinguishable when
accounting for errors in postprocessing. The analysis of
the errors required special attention due to the lack of a
heuristic cutoff frequency for signals originating from
head-on collisions and which is used to suppress nonlinear
drifts in the GW reconstruction (see Appendix A).
An interesting physical result is that the radiated energy

emitted during a fixed interval of coordinate time decreases
when the initial momenta of the stars is increased, which is
in opposition to BH head-on collisions where increasing
the progenitors initial momenta leads to more energy being
radiated gravitationally [83]. However, these findings are
conceptually in agreement with results presented in [15]
where for fixed boost parameter v the radiated energy also
decreases when the initial distance between two BSs is
increased, which also corresponds to an increase of the total
energy of the system. This qualitative behavior is inde-
pendent of the quality of the initial data, but quantitative
differences in total radiated energy could be observed.
We quantified the difference in the shape of the GW

signals by computing the Wiener product between results
of SSP, CVE, CTSþ SSP, and CTSþ CVE initial data and
varying resolutions, while taking into account detector
noise. Here we found that signals obtained from CVE vs.
CTSþ CVE data are more similar to one another than
signals obtained from SSP vs. CTSþ SSP data. Comparing
signals between SSP vs. CVE and CTSþ SSP vs. CTSþ
CVE showed that the way in which the superposition of
stars is done dominates any effects due to constraint vio-
lations, which is in agreement with the rest of our findings.
Overall we can conclude that all the differences we

observed in the analysis quantities we studied, and for
the particular BS head-on configuration we considered,
are dominated by the way in which the SSP and CVE
constructions differ. Differences in physical observables
due to constraint violations were comparatively negligible,
and marginally relevant when accounting for errors. This
result is reassuring for theoretical predictions that were
made based on BS simulations that used superposed data
and for which it was verified that the initial constraint
violations were reasonably small. Nevertheless, we recom-
mend the use of constraint-satisfying over constraint-
violating initial data for multiple reasons. First, solutions
to the EFEs satisfy the constraint equations exactly at all
times, which includes the initial slice, and, thus, the goal for
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numerical approximations of these solutions should be to
satisfy these equations as well as possible. In practice it is
also easier to preserve small initial constraint violations in
time than having to rely on large initial constraint violations
being reduced in time through a damping scheme, or
having to rely on them to leave the computational domain
through a boundary. Furthermore, it is not uncommon in
long-time evolutions to find that constraint violations
eventually start to grow for late times. In such a scenario,
constraint-satisfying data will likely allow us to evolve for
longer times than constraint-violating data would, because
the former leaves more room for the growth of violations
during the evolution until the result becomes dominated by
errors or the simulation crashes.
This work established the basis for future studies of BS

evolutions with the BAMPS code. With the addition of AMR
support in BAMPS [54] and the nice convergence behavior
demonstrated in this work, we are confident that our code
will be able to perform high-resolution and long-time-
stable simulations of binary inspiraling BS collisions to
produce quality GW signals. A future goal is to eventually
build a waveform template bank for a targeted search of
merger signals involving exotic compact objects. Another
avenue worth exploring would be the problem of the
construction of quasiequilibrium initial data for which first
work has started in [28]. In particular the hyperbolic
relaxation method used to solve the CTS equations in
the present paper is directly implemented in BAMPS and, as
such, it can profit from all optimizations that are added to
the evolution code, which should enable generation of high
quality initial data with a moderate amount of computa-
tional resources.

The data that support the findings of this study will be
made available in the CORE database [33,84].
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APPENDIX A: GRAVITATIONAL WAVE
ANALYSIS

Below we outline the GW analysis used in BAMPS and
describe the postprocessing techniques used for the analy-
sis of the data presented in the main text.
The BAMPS code employs the Newman-Penrose formal-

ism [91] to compute the curvature pseudo-scalar field Ψ4,
which measures radially outgoing gravitational radiation.
The actual implementation follows the standard procedure
outlined in [92] (see also [93] for a review), where Ψ4 is
first computed from the Weyl tensor and an orthonormal
null tetrad, which itself is constructed from an orthonormal
basis adapted to the normal direction of spheres centered
around the collision region. Taking into account the
pseudoscalar characteristic of Ψ4, it is then decomposed
into a modal expansion of spin-weighted spherical har-
monics −2Ylm with complex coefficients Ψ4;lm, where
l ≥ 2; m ¼ −l;…; l.
For the analysis of head-on collisions, which take place

in axisymmetry, only the expansion coefficients with l even
and m ¼ 0 are nonzero, and are purely real [83]. In this
work we only analyze the dominant l, m ¼ 2, 0 mode.
The GW flux and strain is reconstructed from [92]

drh20
dt

ðtÞ ¼ lim
r→∞

Z
t

−∞
dt0rΨ4;20ðt0; rÞ; ðA1Þ

rh20ðtÞ ¼ lim
r→∞

Z
t

−∞
dt0
Z

t0

−∞
dt00rΨ4;20ðt00; rÞ; ðA2Þ

and the radiated energy associated with Ψ4;20 is computed
from

EðtÞ ¼
Z

t

−∞
dt0

dEðt0Þ
dt

; ðA3Þ

dE
dt

ðtÞ ¼ lim
r→∞

1

16π

				
Z

t

−∞
dt0rΨ4;20ðt0; rÞ

				
2

: ðA4Þ

In order to carry out the limit r → ∞ above we utilize the
peeling property ofΨ4 [91] and perform an extrapolation in
radius r before integration. To this end, we introduce the
retarded time coordinate
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uðtÞ ¼ u�ðtÞ − t�;

¼ t − r − 2MBBS log

�
r

2MBBS
− 1

�
− t�; ðA5Þ

where t� is a constant that is added in order to correct the
retarded Schwarzschild time coordinate u� to account for a
potential time dependence of the lapse and the radial
coordinate in the far field zone, as well as for the fact
that the r used in our simulations is in general not an areal
coordinate in our gauge [94]. t� is determined numerically
by aligning multiple Ψ4;20 data streams extracted at differ-
ent radii rext at the first zero before the merger spike. We
note that in [94,95] more sophisticated expressions for
determining t� were provided which can also account for
departures of the standard tortoise Schwarzschild coordi-
nate. Their method requires extra simulation output, but we
found that numerically determining t� in a postprocessing
step can also improve the quality of the extrapolation to null
infinity to a satisfying degree, as we discuss next.
The so obtained time alignedΨ4;20 data streams recorded

at N different extraction radii rext;1 ≤ … ≤ rext;N are then
fitted to the Ansatz

rΨ4;20ðuÞ ¼ r∞Ψ4;20ðuÞ þ
XNextrp

n¼1

αnðuÞ
rn

; ðA6Þ

using the linear least squares method to determine the time
dependent coefficients r∞Ψ4;20 and αn. The desired
extrapolated curvature scalar for the evaluation of (A1),
(A2), and (A4) is then given by r∞Ψ4;20. We note that the
quality of the extrapolated result depends (1) on the number
and range of extraction radii rext;N − rext;1 on which data is
recorded (the more, the better), (2) the extrapolation order
Nextrp, and (3) the time alignment through the correction t�.
All results involving Ψ4;20 and presented in this work were
obtained from simulations where the outermost boundary
was located at R ¼ 800 and we recorded Ψ4;20 data on 48
spheres with equally spaced increments between rext;1 ¼
200 and rext;N ¼ 800. The extrapolations to null infinity of
r∞Ψ4;20 were only used for Fig. 13, Fig. 14, and Fig. 15, for
which we verified that the results are stable between
extrapolations that used different orders Nextrp ¼ 1;…; 5.
The last ingredient for the analysis is the numerical

evaluation of time integrals appearing in the reconstruction
formulas. To this end we first preprocess the r∞Ψ4;20 data
by limiting it to a range u∈ ½uL; uR� with

wðu; ū; σÞ ¼ 1

2
ðtanhðσðu − ūÞÞ − 1Þ; ðA7Þ

r∞Ψ0
4;20ðuÞ ¼ r∞Ψ4;20ðuÞwðu; uL; σÞwðu; uR;−σÞ: ðA8Þ

We used σ ¼ 1=10, uL ¼ 100 and uR ¼ 3000 for all our
analysis to make the signal periodic in u, which avoids

additional artifacts when Fourier analyzing the signal later
on. We note that the choice of uL is such that the dominant
spike in the analysis of all studied GW signals is not
affected by the windowing, even when the boost parameter
is v ¼ 0.2. Given the windowed data, we then evaluate the
integrals using a variation of the fixed frequency method
(FFI) [96], which requires a choice for the cutoff frequency
fcut to remove spurious nonlinear drifts and we comment
on this further below. In our variation to the FFI method
we first apply a discrete Fourier transform (DFT) to the
windowed data to obtain F ðr∞Ψ4;20Þ, we then apply a
high-pass Butterworth filter of order N ¼ 10 with transfer
function HNðf; fcutÞ to obtain

F 0ðr∞Ψ4;20Þ ¼ F ðr∞Ψ4;20ÞjHNðf; fcutÞj; ðA9Þ

and finally perform the FFI integration with F 0ðr∞Ψ4;20Þ
and cutoff fcut to compute (A1), (A2) and (A4). Lastly,
to compute E via (A3) we resort to using a standard
trapezoidal rule, since EðtÞ will be monotonically increas-
ing and the FFI method can only be used for oscillating
signals.
Figure 16 shows an example of an extrapolated and

windowed Ψ4;20 data stream, reconstructions dh4;20=dt and
h4;20, as well as the respective power spectral densities
(PSDs), that were computed with three different values for
fcut (see legend). The PSD of the dh4;20=dt results show
that the integration amplified small frequency components
and the additional processing via a Butterworth high-pass
filter exponentially suppresses this growth for frequencies
below fcut. The choice of fcut appears to have a mild impact
on the time domain signal dh4;20=dt. On the other hand, the
PSD of h4;20 demonstrates that for too small values of fcut
low frequency components are amplified to a level that they
become comparable to components above fcut. This trans-
lates into a strong dependence of the time domain signal on
the choice of fcut, even when using the Butterworth filter.
From this test we conclude that dh4;20=dt is robust enough
for the computations of dE=dt and E via (A4) and (A3),
whereas the quality of h4;20 in our analysis is not sufficient
for further studies and we leave it to future work to improve
on this.
In [96] it was established that a good choice for the cutoff

frequency for the ðl; mÞ ¼ ð2; 2Þ mode for binary inspiral
simulations is given by fcut ≈ 2forb, where forb is the initial
orbital frequency of the stars. Unfortunately, we are not
aware of a similar heuristic for head-ons due to the absence
of orbital motion and the time domain signal displaying a
dominant pulse due to the merger. The three values of fcut
given in Fig. 16 are used for all computations of E for
which results are shown in the main text (including varying
the boost parameter). The associated error bars account for
(1) finite resolution errors and (2) uncertainties due to
variation in the extrapolation order Nextrp and variation in
fcut. To estimate those contributions we proceed as follows.
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We compute E for two resolutions n ¼ 13 and n ¼ 15 and
for all combinations of Nextrp and fcut. The contribution
(1) is taken to be the maximum of all differences of E
between results of resolution n ¼ 13 and n ¼ 15, but the
same values of Nextrp and fcut. For contribution (2) we
compute the average of all E results obtained for n ¼ 15
and all combinations ofNextrp and fcut. The associated error
is then defined as the maximum of all differences of E and
the average of E. These two errors are then combined in
quadrature and added in Fig. 13. We note that the finite
resolution error is on average two orders of magnitude
smaller than the error due to the uncertainties involved in
the postprocessing.

APPENDIX B: COMPARISON OF WAVEFORMS

For GW analysis and parameter estimation studies one
often assumes Gaussian noise distribution, which motivates
the definition of a detector-noise-weighted inner product
(Wiener product) [97,98] to study the space of real time
signals aðtÞ and bðtÞ. It is defined as

ðajbÞSn;½0;∞Þ ¼
Z

∞

0

df
ãðfÞb̃�ðfÞ
SnðfÞ

; ðB1Þ

where ãðfÞ and b̃ðfÞ are the respective Fourier trans-
forms and SnðfÞ is the PSD of the noise nðtÞ. This product

defines a norm which is positive-definite and assigns an
Euclidean structure to the vector space of real signals [97].
If one is given two normalized signals â and b̂, such that
ðâ; âÞSn;½0;∞Þ ¼ 1 and analogously for b̂, then a result of

ðâ; b̂ÞSn;½0;∞Þ that is close to 1 indicates that a and b are
close to each other.
In practice, one often utilizes the GW strain h together

with (B1) for parameter studies. However, the recon-
struction of h from Ψ4 can suffer from uncertainties and
even render an analysis based on h useless. Recently, in the
context of Proca star head-on collision it was shown in [85]
that an analysis using Ψ4 data together with (B1) and
second differenced Gaussian noise PSD SΨ4

is equivalent to
the more commonly practiced analysis based on h and Sn,
while at the same time it removes the uncertainties due
to free parameters in the h reconstruction procedure. For
the results presented in the main text we adopted this
analysis which requires additional (but parameter free)
processing. In particular, given two Ψ4;20ðuÞ data streams
we compute [85] (in practice we use the extrapolated
r∞Ψ4;20 data)

Ψ̃0
4;20½k� ¼

1 − cosð2πkΔfΔtÞ
2π2ðkΔfΔtÞ2 Ψ̃4;20ðkΔfÞ;

k ¼ 0;…; Nd − 1; ðB2Þ

FIG. 16. r∞Ψ4;20 (top) signal and its PSD extrapolated to null infinity with Nextrp ¼ 3 and data obtained from a simulation of
CTSþ CVE initial data with polynomial resolution n ¼ 15, initial separation d ¼ 80 and boost parameter v ¼ 0.05. Gray shaded areas
indicate where the windowing (A8) was applied. dh=dt (middle) and h (bottom) are results obtained with the methods discussed in the
text: modified FFI method (solid, with extra Butterworth high-pass filtering), standard FFI method (dashed). Vertically dashed-dotted
lines correspond to the different cutoff frequencies used and vertically dashed-double-dotted lines correspond to the frequency of the
maximum amplitude in PSDðMBBSrextΨ4;20Þ.
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where Ψ̃4;20ðfÞ is the DFT of Ψ4;20, Nd is the length of the
output data stream, Δt is the time resolution of Ψ4;20 and
Δf ¼ 1=ðNdΔtÞ. This transformation relates the second
differenced Fourier transform Ψ̃0

4;20 with the Fourier trans-

form of the second derivative Ψ̃4;20 ¼ ˜ḧ. In this work we
exclusively used the T1800044-v5 Advanced LIGO
sensitivity design curve [81] for Sn which is also processed
through [85]

SΨ4
½k� ¼ 1

ðΔtÞ4
�
6 − 8 cos

�
2πk
Nd

�
þ2 cos

�
4πk
Nd

��
Sn½k�:

ðB3Þ

Given these quantities we then compute the Wiener product

between two signals Ψð1Þ
4;20 and Ψð2Þ

4;20 by

W
�
Ψð1Þ

4;20;Ψ
ð2Þ
4;20

�
≔
�
Ψ̂ð1Þ

4;20jΨ̂ð2Þ
4;20

�
SΨ4 ;½fmin;fmax�; ðB4Þ

where we limited the integration to the range ½fmin; fmax� ¼
½5 Hz; 1000 Hz� for practical purposes, since the detector
PSD is only sampled for a finite frequency range. The
numerical evaluation of the integral is carried out by using a
cubic interpolation to map Ψ̃4;1, Ψ̃4;2, and SΨ4

to a common
frequency grid and then use a trapezoidal quadrature rule to
compute the integral in (B1). We verified that the results
presented in Fig. 15 are insensitive to the choice of
frequency range. We want to point out that care must be
taken when evaluating (B2) and (B3), since a limited
frequency range ½fmin; fmax� also limits the range of k
indices to use for numerical integration, because fk ¼ kΔf.
The results in the main text are presented in Planck units

and with a particular choice of rescaling of all quantities
(see Appendix C). Because of that, the obtained results
depend on the experimentally unknown scalar-field mass μ.
The choice of μ influences, e.g., the timescale with which
physical processes take place and, thus, controls the
frequency of the GW signals when converted to SI units.
Since we are only interested in directly comparing GWs
obtained from different initial data construction techniques,
we decided to fix μ ¼ 1 × 10−11 eV for all computations.
With this choice the GW’s spectrum falls roughly into the
sensitive region of the detector for the range of boost
parameters v we study, i.e., the frequencies of the dominant
amplitudes of the PSD of Ψ4;20 are then Oð100 HzÞ [82].

APPENDIX C: UNIT SYSTEMS

Let l, t, m and A denote length, time, mass and scalar-
field amplitude and let l̂, t̂, m̂, and Â be the numerical
values given with respect to reference values l0, t0, m0,
and A0, i.e.,

l ¼ l̂l0; t ¼ t̂t0; m ¼ m̂m0; A ¼ ÂA0: ðC1Þ

In the main text we use the Planck unit system in which
G ¼ c ¼ ℏ ¼ 1. From the definition of the Planck length,
time, and mass

LPl ¼
ffiffiffiffiffiffiffi
ℏG
c3

r
; TPl ¼

ffiffiffiffiffiffiffi
ℏG
c5

r
; MPl ¼

ffiffiffiffiffiffi
ℏc
G

r
; ðC2Þ

respectively, we then infer that LPl ¼ TPl ¼ MPl ¼ 1 holds
in such a system. Furthermore, all quantities effectively
lose their physical dimensions and l0, t0, m0, and A0 now
merely serve as dimensionless rescalings. One possible
choice for reference values in which this is realized is

l0 ¼ 1=μ; t0 ¼ 1=μ; A0 ¼ 1; ðC3Þ

where μ is the scalar-field mass introduced in the main text,
and we fix m0 further below. The numerical values of
Planck length and time then read L̂Pl ¼ T̂Pl ¼ μ. This is a
convenient choice, because it eliminates μ from all equa-
tions without loss of generality. To see this, consider the
action (1), which is the fundamental object of the theory
under study. Using (C3) we can rewrite it as

S ¼ ŜS0 ¼
1

μ2

Z
d4x̂

ffiffiffiffiffiffi
−g

p

×

�ð4ÞR̂
16π

−
1

2
ðgab∇̂aϕ̂

�∇̂bϕ̂þ jϕ̂j2Þ
�
; ðC4Þ

where we omit carets from
ffiffiffiffiffiffi−gp

and gab, since they are
rescaled together with d4x and ð∇a·Þð∇b·Þ, respectively.
Choosing S0 ¼ 1=μ2 as the reference value for the action
then eliminates all factors of μ, such that (C4) is formally
equivalent to (1) when also setting μ ¼ 1 in (5), which was
done in the main text.
We note that m0 need not be specified in order to obtain

(C4). Instead, one way to fix it is by demanding

1 ¼ ℏ̂S0 ¼ ℏ ¼ MPlL2
Pl

TPl
¼ M̂PlL̂

2
Pl

T̂Pl

m0l20
t0

; ðC5Þ

so that

ℏ̂ ¼ M̂Plμ; S0 ¼
1

μ2
¼ m0l20

t0
; ðC6Þ

which implies

m0 ¼ 1=μ: ðC7Þ

In summary, (C3) and (C7) are the reference values one can
adopt to eliminate all occurrences of μ from all equations
when working with Planck units and BSs.
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Another set of units commonly found in the literature are
the natural units in which ℏ ¼ c ¼ 1. From (C2) one then
obtains the relations LPl ¼ TPl ¼ 1=MPl and the Einstein-
Hilbert term in the action also attains an extra factor of
1=G ¼ M2

Pl. Thus, when working in such units we recom-
mend the choice

l0 ¼ 1=μ; t0 ¼ 1=μ; A0 ¼ MPl; ðC8Þ

as reference values. This then allows us to adopt S0 ¼
M2

Pl=μ
2 as the reference value for the action so that all

occurrences of μ and MPl are eliminated from it. Again, to
arrive at S0 we need not specify m0. Instead the latter is
fixed by a similar argument as used for (C5) and (C6),
which yields

m0 ¼
M2

Pl

μ
: ðC9Þ

In summary, (C8) and (C9) are a convenient choice of
reference values one can adopt when working with natural
units and BSs to eliminate all factors of μ andMPl from the
equations.
We note that [15,99] also works with natural units

but uses

l0 ¼ 1=μ; t0 ¼ 1=μ; m0 ¼ 1=μ; A0 ¼ MPl:

ðC10Þ

This set of reference values also removes all factors of μ
and MPl from the action. However, we find that this choice
is not compatible with other parts of our analysis. As an
example consider the grr component in (D1) which, when
expressed in natural units and nonrescaled variables,
must read

1

grr
¼ 1 −

2Gm
r

¼ 1 −
2m
M2

Plr
; ðC11Þ

since grr is dimensionless. Performing a rescaling using our
convention (C8) and (C9) eliminates MPl, whereas using
(C10) does not.
Yet another set of units that is commonly used are

geometric units in which G ¼ c ¼ 1. From (C2) one
obtains LPl ¼ TPl ¼ MPl and now only the term involving
the scalar-field potential in the action attains an extra factor
of 1=ℏ2 ¼ 1=M4

Pl. For this setup we recommend the choice

l0 ¼ M2
Pl=μ; l0 ¼ M2

Pl=μ; A0 ¼ 1: ðC12Þ

This then allows us to adopt S0 ¼ M4
Pl=μ

2 to eliminate all
factors of μ andMPl from the action. By a similar argument
we used before, we fix now m0 through

M2
Pl ¼ ℏ ¼ ℏ̂S0 ¼ ℏ̂

m0l20
t0

; ðC13Þ

and find

m0 ¼ M2
Pl=μ: ðC14Þ

In summary, (C12) and (C14) are a convenient choice of
reference values one can adopt when working with geo-
metric units and BSs to eliminate all factors of μ and MPl
from the equations.

APPENDIX D: CONSTRUCTION OF ISOLATED
BOSON STARS IN 1D

In this appendix we fix a typo from [15] in the equations
that describe stationary, spherically symmetric and isolated
BS models. The starting point for the construction of such
stars are Ansätze for the metric and scalar field which are of
the form

ds2 ¼ −e2Φdt2 þ
�
1 −

2m
r

�
−1
dr2

þ r2ðdθ2 þ sinðθÞ2dφ2Þ; ðD1Þ

ϕðt; rÞ ¼ AðrÞeiωt; ðD2Þ

where A, ω are the amplitude and harmonic angular
frequency of the scalar field. Inserting these into the
EKG system yields

∂rΦ ¼ m
rðr − 2mÞ þ

2πr2

r − 2m
ðη2 þ ω2e−2ΦA2 − VÞ; ðD3Þ

∂rm ¼ 2πr2ðη2 þ ω2e−2ΦA2 þ VÞ; ðD4Þ

∂rA ¼
�
1 −

2m
r

�
−1=2

η; ðD5Þ

∂rη ¼ −2
η

r
− η∂rΦþ

�
1 −

2m
r

�
−1=2

ðV 0 − ω2e−2ΦÞA;

ðD6Þ

where V0 ¼ dV=dA2. In [15] a factor r=ðr − 2mÞ was
missing in the second term on the rhs in (D3).
This system of equation is subjected to the boundary

conditions

Að0Þ ¼ Actr; mð0Þ ¼ 0; ηð0Þ ¼ 0; ðD7Þ

∂rΦð0Þ ¼ 0; lim
r→∞

AðrÞ → 0: ðD8Þ

The asymptotic behavior of A is given by
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A ∼
1

r1þϵ e
−r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ω2e−2Φ

p
; ðD9Þ

where ϵ is a noninteger correction that was already reported
in [12] and recently discussed in [99].
Our numerical implementation uses the same shooting

algorithm as [15], where integration starts at r ¼ 0 and
proceeds radially outward. The asymptotic behavior is
used for patching the solution at a radius rm, determined
dynamically during integration, beyond which the scalar
field is no longer integrated, but instead frozen to the
behavior (D9). Results presented in this work do not
account for the ϵ correction, as we were simply not aware
of it when doing the analysis. However, we implemented
the correction in hindsight and found that our single star
solutions are only altered in A and η in the far-field regime
by Oð10−10Þ, which is negligible when compared to other
error sources.

APPENDIX E: CONFORMAL METRIC
AND ITS TIME DERIVATIVE

We note a difference in notation between [77] and our
work which is mainly based on [58]. In particular, [58]
defines the time derivative of the conformal metric γ̄ij as

ūij ≔ ∂tγ̄ij ¼ −γ̄ikγ̄jl∂tγ̄kl: ðE1Þ

Its indices are also raised with the conformal metric,

ūmn ¼ γ̄imγ̄jnūij: ðE2Þ

Using (E1) we obtain

ūmn ¼ −∂tγ̄mn: ðE3Þ

On the other hand, [77] does not work with (E3), but
instead uses

˙̄γij ≔ ∂tγ̄ij; ˙̄γij ≔ ∂tγ̄
ij: ðE4Þ

To make the connection with their notation we had to set
ūmn ¼ − ˙̄γmn, which explains the change in sign in (31).

APPENDIX F: MOVING AVERAGE

The differences between Ψ4;20 obtained from different
resolutions n are postprocessed for the purpose of dem-
onstrating self-convergence in Fig. 12. To this end, the data
is interpolated to a common time grid using cubic splines
and N ¼ 2000 points, after which differences between
consecutive resolutions are computed. To suppress the
artificial noise due to zero crossings introduced by inter-
polation errors, and which are amplified on a logarithmic
scale, we apply a moving average filter to these differences.
In particular, let ΔΨ4;i; i ¼ 1;…; N be the difference
between two interpolated data streams and let w be an
averaging window width, assumed to be even and positive.
We define the moving average as

avg½ΔΨ4;i� ¼
1

w

Xw
j¼1

ΔΨ4;i−w=2þj; i∈


1þ w

2
; N −

w
2

�
;

avg½ΔΨ4;i� ¼ avg½ΔΨ4;w=2�; i∈


1;…;

w
2

�
;

avg½ΔΨ4;i� ¼ avg½ΔΨ4;N−w=2�; i∈


N −

w
2
þ 1; N

�
:

For the data presented in this work we chose w ¼ 20.
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