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With recent advancements in observing supermassive black holes with the Event Horizon Telescope,
there has been persistent exploration into what the images can reveal about fundamental physics, including
space-time geometries and astrophysical emission sources. Inspired by Penrose’s aberration formula for a
rigid sphere, which clarified that increased speed does not flatten the appearance of the sphere, we extend
the studies to the behavior of the images of accretion emissions. This paper examines the impact of
aberration effects on the images of a thin accretion disk around Kerr–de Sitter black holes for finite distant
observers, specifically focusing on the primary, secondary, and n ¼ 2 images. We employ the analytical
ray-tracing scenario and extend the astrometric approach to investigate the images in the presence of
aberration. This study is nontrivial because we do not assume a specific form of the aberration formula;
instead, all aberration effects emerge from a coordinate-independent and tetrad-independent framework
referred to as the astrometric approach. Our study finds that the shapes of the lower-order images get highly
distorted for finite observers in motion, and the shapes and sizes of primary images are more sensitive to
aberration than those of the n ¼ 2 images. This finding suggests that the primary images could theoretically
be distinguished from the shadow based on their distinctive variations.

DOI: 10.1103/PhysRevD.109.044057

I. INTRODUCTION

Since the images of the supermassive black holes at
horizon scale were taken by the Event Horizon Telescope
(EHT) [1–4], what the images can reveal about fundamental
physics, including space-time geometries, or astrophysical
emissions sources, has been persistently explored [5–11].
The gravitational bending of light in the vicinity of a black

hole could give rise to the multiple imaging of emission
sources, which are known as primary, secondary, and
generally nth-order images [12–14]. The higher-order
images of the emissions, which also result in the boundary
of black hole shadow [15], were shown to be insensitive to
emission sources and thus can theoretically be utilized
to reflect the gravity of a black hole [5,15,16]. In this
context, the shadows of various physically motivated
black holes were studied, with the aim of establishing a
connection between black hole parameters and EHT obser-
vations [17–20] or exploring the possibility of testing
Einstein’s theory of gravity [7,8]. However, because of
the current precision of the EHT, the shadow may not be
visible in the images [9,21]. The black hole images, captured
through primary or secondary emissions, might suggest that
considering the properties of the emission sources is
inevitable [6]. As known, the shadow corresponds to the
center dark region of the images for spherical accretion

emission [5,10,15], while it is not the casewhen considering
accretion disk emissions [6,11,21]. The investigation into
the behaviors of lower-order images for given emissions,
even in the cases of non-Kerr black holes, appears to bewell
motivated [22–30].
To study the lower-order images, there could be an

influence from the aberration of light. Half a century ago,
Penrose derived the aberration formulas for a rigid sphere
[31], indicating that the appearance of the sphere would not
appear to be flattened as the speed increases. Recently,
similar results have been found for the black hole shadow in
the view of observers in motion [32,33]. The difference is
that, in the presence of gravity, the shape of the shadow was
shown to be observer dependent. Hence, it is reasonable to
anticipate that information about space-time geometries can
be gleaned from the aberration effect. While the aberration
effect might be considered ignorable because there seem to
be no physical mechanisms that can provide such high
speeds, recent studies have pointed out that observers
comoving with the expansion of the universe at spatial
infinity can still observe a finite-size shadow [34–36]. In
this case, the aberration effect cannot be ignored because
the size of the shadow increases with comoving speeds,
offsetting the decrease in distance.
In this paper, we investigate the behaviors of primary,

secondary, and n ¼ 2 images of the thin accretion disk
around a Kerr–de Sitter black hole, considering the
aberration effect for finite distant observers. In addition*zhuqh@cqu.edu.cn
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to comoving observers, we explore the variations of the
images concerning observers in radial and axial motions.
On the technical aspects, we present an alternative form of
the transfer functions in the analytical ray-tracing scenario
developed by pioneers [37–40]. We also extend the
astrometric approach to establish observers’ celestial
sphere [33,41]. Notably, our approach avoids assuming a
specific form of the aberration formula; instead, all aberra-
tion effects emerge from the astrometric approach. As
anticipated, our study shows that the shapes of lower-order
images become distorted in the view of observers in
motion. The variations in image sizes align with
Penrose’s aberration formulas overall. Our results indicate
that the variation of primary and secondary images is more
sensitive to observers’ motion than n ¼ 2 images. This
finding suggests that primary or even secondary images
could theoretically be distinguished from the shadow.
The rest of the paper is organized as follows. In Sec. II,

we present the geodesic equations of light and evaluate
them using hyperbolic and trigonometric coordinates to
derive the transfer function. Section III focuses on estab-
lishing the observers’ celestial sphere through the utiliza-
tion and extension of the astrometric approach. In Sec. IV,
we simplify the transfer functions, taking into account the
thin accretion disk. The qualitative and quantitative results
of the aberration effect on the primary, secondary, and
n ¼ 2 images of the thin accretion disk are presented in
Sec. V. Finally, Sec. VI provides a summary of conclusions
and discussions.

II. RAY-TRACING EQUATIONS

In this section, we follow the analytical ray-tracing
scenario developed by pioneers [37–39]. To address turning
points on the trajectories of light, we employ hyperbolic
and trigonometric coordinates as an alternative for evalu-
ating the transfer functions. As mentioned in the
Introduction, our focus is on the images of emissions
concerning both finite distant observers and comoving
observers. Thus, the Kerr–de Sitter black hole is considered
in this context.

A. Geodesic equations

Kerr–de Sitter metric can describe a rotating black hole
with mass M and spin a in the presence of cosmological
constant Λ, which is given by

ds2 ¼ −
Δr

Σ
ðdt − asin2 θdϕÞ2

þ Δθsin2 θ
Σ

ðadt − ðr2 þ a2ÞdϕÞ2

þ Σ
Δr

dr2 þ Σ
Δθ

dθ2; ð1Þ

where

ΔrðrÞ ¼ −
1

3
Λr2ðr2 þ a2Þ þ r2 − 2Mrþ a2; ð2aÞ

ΔθðθÞ ¼ 1þ 1

3
Λa2cos2 θ; ð2bÞ

Σ ¼ r2 þ a2cos2 θ: ð2cÞ

For the stationary black hole, the event horizon can be
determined by the equation ΔrðrÞ ¼ 0. Besides the horizon
at r ≃M, there is an outer horizon due to the cosmological
constant Λ. In comoving coordinates, the outer horizon
could be understood as the cosmological horizon.
Additionally, there could be alternative coordinates of time
t̃ and azimuth angle ϕ̃ defined by t̃ ¼ Ξt and ϕ̃ ¼ Ξϕ,
where Ξ ¼ 1þ 1

3
Λa2 [42]. We will clarify later that the

coordinate choice does not affect the results in this paper.
Employing the Hamilton-Jacobi method for geodesic

equations, the action can be obtained in the form of

S ¼ −Etþ Lϕ�r

Z
dr

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððr2 þ a2ÞE − aLÞ2 − ΔrK

p
Δr

�

�θ

Z
dθ
�

1

Δθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔθK −

ðaEsin2θ − LÞ2
sin2θ

s �
; ð3Þ

where E, L, and K are integral constants due to the intrinsic
symmetry of the space-time. Using the action S, one can
derive the 4-momentum of light with pμ ¼ ∂S=∂xμ, which
leads to

pt ¼ −E; ð4aÞ

ðprÞ2 ¼
ðEðr2 þ a2Þ − aLÞ2 − ΔrK

Δ2
r

; ð4bÞ

ðpθÞ2 ¼
1

Δ2
θ

�
ΔθK −

ðL − Easin2 θÞ2
sin2 θ

�
; ð4cÞ

pϕ ¼ L: ð4dÞ

Because E, K, and L are constants in S, namely,
∂S=∂E ¼ ∂S=∂K ¼ ∂S=∂L ¼ 0, we can rewrite the geo-
desic equations in terms of integrals, namely,

0 ¼ −tþ I t þ a2
�
1þ 1

3
Λða2 − aλÞ

�
Gt; ð5aÞ

0 ¼ −ϕþ Iϕ þ λGϕ þ
1

3
Λa3Gt; ð5bÞ

0 ¼ Gθ − Ir; ð5cÞ
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where the indefinite integrals are given by

IrðrÞ≡�r

Z
drffiffiffiffiffiffiffiffiffiffi
RðrÞp ; ð6aÞ

I tðrÞ≡�r

Z
dr

8<
:
r2Δr þ

�
1
3
Λr2ðr2 þ a2Þ þ 2Mr

�
ðr2 þ a2 − aλÞ

Δr

ffiffiffiffiffiffiffiffiffiffi
RðrÞp

9=
;; ð6bÞ

IϕðrÞ≡�r

Z
dr

�
að2Mr − aλ − 1

3
Λr2ðr2 þ a2ÞÞ

Δr

ffiffiffiffiffiffiffiffiffiffi
RðrÞp �

; ð6cÞ

GθðθÞ≡�θ

Z
dθffiffiffiffiffiffiffiffiffiffi
ΘðθÞp ; ð6dÞ

GtðθÞ≡�θ

Z
dθ

�
cos2 θ

Δθ

ffiffiffiffiffiffiffiffiffiffi
ΘðθÞp �

; ð6eÞ

GϕðθÞ≡�θ

Z
dθ

�
csc2 θ

Δθ

ffiffiffiffiffiffiffiffiffiffi
ΘðθÞp �

: ð6fÞ

In above equations, we have let quantities λ≡ L=E and
κ ≡ K=E2, and

RðrÞ≡ ðr2 þ a2 − aλÞ2 − Δrκ; ð7aÞ

ΘðrÞ≡ Δθκ −
ðλ − asin2 θÞ2

sin2 θ
: ð7bÞ

It should be noted that �r and �θ in Eqs. (6) are not
constant. They transition from � to ∓ when a light ray
encounters a turning point in propagation. Specifically, �r
changes when the light ray reaches its minimum distance to
the black hole, and �θ changes when the light ray
completes half an orbit.

B. Transfer functions

From the emission regions to the observers (image
plane), one can employ Mino time τ for evaluating the
geodesic equations,

τ≡Gθðθo; θsÞ ¼ GθðθoÞ − GθðθsÞ; ð8Þ

where θo and θs denote the inclination angles of observer
and emission source. The Mino time τ is monotonic as the
propagation of light, whereas the polar angle θ might not
be. Based on Eqs. (5c) and (8), radial location of emission
rs can be reversely ray traced from the location of observers
ro, namely,

rs ¼ I−1r ðro; τÞ; ð9Þ

where Irðro; rsÞ≡ IrðrsÞ − I rðroÞ. Based on Eqs. (5a) and
(5b), one can obtain azimuth angle ϕs and time ts at the
emission regions as

ϕs¼ϕo−Iϕðro;rsÞ−λGϕðθo;θsÞ−
Λ
3
a3Gtðθo;θsÞ; ð10Þ

ts¼ to−Itðro;rsÞ−a2
�
1þΛ

3
ða2−aλÞ

�
Gtðθo;θsÞ; ð11Þ

where ϕo and to are azimuth angle and time of observers,
respectively; G�ðθo;θsÞ≡G�ðθoÞ−G�ðθsÞ; and I�ðθo; θsÞ≡
I�ðθoÞ − I�ðθsÞ. Equations (9)–(11) are also referred to as
transfer functions [39]. These functions canmap the location
of observers ðro; θo;ϕoÞ to the emission regions ðrs; θs;ϕsÞ.
Unlike the transfer functions for Kerr black holes [37–39], it
is found that Eqs. (10) and (11) include an additional angular
integral Gtðθo; θsÞ due to the cosmological constant.
To conduct a reverse ray-tracing procedure based on

Eqs. (8)–(11), we have following steps:
(i) Compute the Mino time τ for given polar angles θo

and θs and the number of half-orbits n.
(ii) Obtain rs for given radial location of observers ro

with the known Mino time τ.
(iii) Compute the azimuth angle ϕs and time ts of

emissions for given ϕo and to with the known polar
angles ðθo; θsÞ and radial locations ðro; rsÞ.

In the following, we present explicit expressions of Eqs. (8)
and (9) for studying axisymmetric emission models. To
address the turning points mentioned in Sec. II A, we
alternatively utilize hyperbolic and trigonometric coordi-
nates for evaluating the transfer functions.
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1. Computation of Gθðθo; θsÞ
Based on Eqs. (6d) and (8), the integral Gθ here can be

rewritten as

Gθðθo; θsÞ ¼ �θ

Z
θo

θs

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ B cot2 θ þ C cos2 θ

p ; ð12Þ

whereA ¼ κ − ðλ − aÞ2,B ¼ −λ2, andC ¼ a2ð1þ Λκ=3Þ.
The �θ changes into ∓θ when the light encounters tuning
points. To deal with the turning points, we introducevariable
χ such that

cos θ ¼ ffiffiffiffiffiffi
uþ

p
cos χ; ð13Þ

where the u� are given by the roots of the equation
ΘðθÞ ¼ 0, namely,

u� ≡ cos2 θ� ¼ Cþ B −A�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCþ B −AÞ2 − 4AC

p
2C

:

ð14Þ

For a given null geodesicwith fixed κ and λ, the polar angle θ
on the geodesic varies between − ffiffiffiffiffiffi

uþ
p

and
ffiffiffiffiffiffi
uþ

p
, while the

variable χ can monotonically increase or decrease. By
making use of the above variable substitution, the integral
in Eq. (12) reduces to

Gθ ¼ �
Z

χo

χs

dχffiffiffiffi
C

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþcos2 χ − u−

p
¼ � 1ffiffiffiffi

C
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uþ − u−
p F

�
χ;

uþ
uþ − u−

�				χo
χs

; ð15Þ

where� is constant, andFða; bÞ is the Bessel function of the
first kind. By inversely solving Eq. (13), we can obtain

χo ¼ arccos

�
1ffiffiffiffiffiffi
uþ

p cos θo

�
; ð16aÞ

χs ¼
�
mþ 1 − ð−1Þm

2

�
π þ ð−1Þm arccos

�
1ffiffiffiffiffiffi
uþ

p cos θs

�
:

ð16bÞ

Here, we adopt the convention χo ∈ ½0; π�. The integerm can
be related to the number of half-orbits with respect to the
initial locations.

2. Computation of Irðro; rsÞ
From Eq. (6a), the integral Ir can be rewritten as

Irðro; rsÞ ¼ �r

Z
rs

rs

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðr4 þAr2 þ Brþ CÞ

p ; ð17Þ

where C ¼ a−2C, A ¼ a2C − κ − 2aλþ a2, B ¼ 2κM,
and C ¼ −a2ðκ − ðλ − aÞ2Þ. Similar to �θ, the �r transi-
tions into ∓r when the light encounters tuning points. To
address the turning points of RðrÞ at r ¼ r4, we introduce
variable ξ such that

r ¼ r4cosh2 ξ; ð18Þ

where r4 is given by the roots of equation RðrÞ ¼ 0,
namely,

r1;2;3;4¼�ð�Þ1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g−

2A
3

r
�ð⋆Þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∓ð�Þ 2Bffiffiffiffiffiffiffiffiffiffiffiffi

g− 2A
3

q −
4A
3

−g

vuut ;

ð19Þ

and the �ð�Þ and �ð⋆Þ are independent, thereby resulting in
four distinct roots denoted by the subscripts 1,2,3,4, and

g ¼ 1

3

�
2
1
3

�
q
w

�
þ 2−

1
3w

�
; ð20aÞ

w ¼
�
2A3 þ 27B2 − 72AC

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4q3 þ ð2A3 þ 27B2 − 72ACÞ2

q �1
3; ð20bÞ

q ¼ A2 þ 12C: ð20cÞ

We let r4 and r3 represent the two largest real roots, and
r4 ≥ r3. By making use of the variable substitution, the
integral in Eq. (17) reduces to

Ir ¼ � 2

r4
ffiffiffiffi
C

p
Z

ξo

ξs

cosh ξdξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
cosh2 ξ − r3

r4

��
cosh2 ξ − r2

r4

��
cosh2 ξ − r2

r4

�r

¼ � 2ffiffiffiffi
C

p ffiffiffiffiffiffiffiffiffiffiffiffi
r31r42

p F

0
B@arcsin

0
B@ sinh ξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r41
r31

�
cosh2 ξ − r3

r4

�r
1
CA;

r32r41
r42r31

1
CA
								
ξo

ξs

; ð21Þ
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where � is constant and rij ≡ ri − rj. By inversely solving
Eq. (18), we obtain

ξ� ¼ �arccosh
� ffiffiffiffiffi

r�
r4

r �
; for � ¼ o; s: ð22Þ

The choice of � in Eq. (22) can represent different
situations. For example, there would be a turning point,
if ξsξo < 0.
Finally, we obtain the transfer function in Eq. (9) based

on the inverse function of Eq. (21), namely,

rs¼ r3þ
r4−r3

1− r41
r31
sn2
�
�
ffiffiffiffiffiffiffiffiffiffiffi
Cr31r32

p
2

ðI rðξoÞ−Irðξo;ξsÞÞ;r32r41r42r31

� ;
ð23Þ

where snða; bÞ is Jacobi elliptic function.

III. TRANSFER FUNCTIONS
FOR THIN ACCRETION DISK

To investigate the influence of light aberration on the
lower-order images of emissions, we employ an ideal and
phenomenological emission model, specifically the thin
accretion disk. For both optically thin and geometrically
thin accretion flows, the observed intensity IobsðimageÞ on
the image plane is determined by the accumulation of
redshifted emission intensity [43],

IobsðimageÞ ¼
X
γ



1þ zðxsðγÞÞ

�
3IemtðxsðγÞÞ; ð24Þ

where γ is the trajectories of light rays within emission
regions and the redshift can be given by

1þ zðxsÞ ¼
uμpμjxo
uμpjxs

: ð25Þ

For the given image plane, the observer’s location xo is
fixed at the moment, and the source location xs is
throughout the entire emission regions. The configuration
of the image plane for observers situated at a finite distance
will be introduced in the subsequent section. The distri-
butions of emission intensity for the thin accretion disk
IemtðxÞ can be derived from a specific physical emission
model [3,21,39]. Here, we consider a phenomenological
form of the intensity, namely,

IemtðxÞ ¼
�
fdðrÞΘðrd;þ − rÞΘðr − rd;−Þ θ ¼ π

2

0 θ ≠ π
2

; ð26Þ

where fðrÞ is the distribution of emission intensity and the
width of the disk is rd;þ − rd;−.

Because of the axisymmetries in the thin disk emission
IemtðxsÞ ¼ Iemtðrs; θsÞ, one can employ the ray-tracing
procedure presented in Sec. II B with the essential equa-
tions summarized as

τ ¼ 1

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðuþ − u−Þ

p F

�
χ;

uþ
uþ − u−

�				χo
χs

; ð27aÞ

rs¼ r3þ
r4−r3

1− r41
r31
sn2
�
�
ffiffiffiffiffiffiffiffiffiffiffi
Cr31r32

p
2

ðI rðξoÞ−τÞ; r32r41r42r31

� ; ð27bÞ

θs ¼ arccos ð ffiffiffiffiffiffi
uþ

p
cos χsÞ; ð27cÞ

where the Ir, ξo, u�, ri, rij, C, and χo have been defined in
Sec. II B and χs can be further simplified by substituting
θs ¼ π=2 in Eq. (16b), namely,

χs ¼ π

�
mþ 1

2

�
; ð28Þ

where the m is an integer that can determine the order of
images. In Table I, we provide instances to illustrate the
relations among m, χs, and the nth-order images. Since
there is no relevance with the time and azimuth angle in the
transfer functions, the renormalized coordinate t̃ and ϕ̃
cannot affect our results.
By utilizing variables χ and ξ, the transfer functions

presented in Eqs. (27) may offer a more concise form than
those in pioneering studies [37–39]. However, its advantage
in the ray-tracing procedure has yet to be demonstrated.

IV. OBSERVERS’ CELESTIAL SPHERE WITH
ASTROMETRIC OBSERVABLES

The previous section showed that the ray-tracing equa-
tions can describe the propagation of light from the
emission regions to observers. However, up to this point,
there has been no mention of imaging. Theoretically, black
hole images are generated through the application of
geometric optics, where the direction of light is utilized
to determine the relative position on the image plane.
In this section, we establish the celestial sphere for

observers using astrometric observables. It was first proposed
for investigating the black hole shadow in a coordinate-
independent and tetrad-independent manner [41]. Here, we
will present an extension of the approach.

TABLE I. The values of χs and m for nth-order images.

Images jχsj m

Primary (direct), n ¼ 0 π=2 0;−1
Secondary, n ¼ 1 3π=2 1;−2
� � � � � � � � �
nth order, n ≥ 0 πðnþ 1=2Þ n, −n − 1
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A. Integral constants for finite distant observers

To ensure that the light ray can reach the location
of the observers ðro; θoÞ, the following conditions must
be satisfied:

RðroÞ⩾ 0; ΘðθoÞ⩾ 0: ð29Þ

It can restrict the ranges of the constants κ and λ through the
following inequality:

ΔθðθoÞκ −
ðλ − asin2 θoÞ2

sin2 θo
⩾ 0; ð30Þ

ðr2o þ a2 − aλÞ2 − ΔrðroÞκ ⩾ 0: ð31Þ

For observers approaching the outer horizon, the ΔrðroÞ
has an opposite sign separated by the outer horizon.
For simplification, we introduce the polar coordinates

ðρ;φÞ, which are defined via

ρ2 ≡ Δθκ − ðλ − aÞ2 þ λ2 þ a2cos2 θo; ð32Þ

cosφ≡ −
λ

ρ sin θo
; ð33Þ

such that Eq. (30) can reduce to an trivial inequality
ρ2sin2 φ⩾ 0 and Eq. (31) is evaluated to be

0⩾ ða2Δθcos2 φsin2 θo − ΔrÞρ2
− 2a cosφ sin θoðΔr − Δθðr2o þ a2ÞÞρ
þ ðr2o þ a2Þ2Δθ − a2Δrsin2 θo: ð34Þ

For distant observers situated beyond the outer horizon
ro → ∞, the above equation reduces to

ðρþacosφcosθÞ2þ 3

Λ
þa2ð1−cos2φsin2θÞ ⩾ 0: ð35Þ

It is evident that the inequality in Eq. (34) holds as ro → ∞,
implying no constraint on ρ and φ in this case. However,
it does not indicate that the images of a Kerr–de Sitter
black hole are well defined for all distant observers.
The counterexample is that the 4-velocities of static
distant observers beyond the outer horizon cannot be
obtained [34,35]. Thus, the above result shows that the
ranges of ρ and φ can only determine the reach of light, but
they are not direct observables.

B. Astrometric approaches

Since ρ and φ are mathematically derived from the
integral constants κ and λ, the images represented by ðρ;φÞ
are not direct observables in general. Currently, two distinct
approaches can be employed to elucidate the black hole
images that we observe. The first approach involves

establishing a local reference frame at an observer’s
location, where a set of ideal tetrads is used to locate
the light rays. For simplicity, the local frame of zero-
angular-momentum observers is often adopted for studying
shadows [16] or for conducting ray tracing [39]. However,
for a finite distant observer, this frame does not move
geodesically, making it somewhat artificial. The second
approach involves locating light rays using astrometric
observables [41]. Previous studies have shown that the
shadow can be sketched with the relative angular distance
to a set of reference light rays. Thus, it is in a tetrad-
independent manner. However, this approach has only been
applied for calculating the shadow to date [32,33,41,44].
As mentioned above, the astrometric approach relies on

the choices of reference light rays. In the previous studies,
the authors selected the light rays with its 4-momenta,
pθjxo ¼ 0. Namely, the references are two light rays
originating from the edges of the photon sphere, which
can be formulated as

k ¼ pjðκðrc;minÞ;λðrc;minÞÞ; ð36Þ

w ¼ pjðκðrc;maxÞ;λðrc;maxÞÞ; ð37Þ

where the 4-momentumof lightpμ has been given inEqs. (4)
and rc denotes the location of the photon sphere. With the
criteria for critical curves, namely, RðrÞ ¼ R0ðrÞ ¼ 0,
the integral constants κ and λ for the light rays on the
photon sphere can be given by

κðrcÞ ¼ −
12r2cða2ðr2cΛ − 3Þ þ rcðr3cΛ − 3rc þ 6MÞÞ

ð3M þ rcð2r2cΛþ a2Λ − 3ÞÞ2 ;

ð38Þ

λðrcÞ ¼
3r2cðrc − 3MÞ þ a4rcΛþ a2ðr3cΛþ 3rc þ 3MÞ

að3M þ rcð2r2cΛþ a2Λ − 3ÞÞ :

ð39Þ

And theminimum andmaximumof rc can be determined by
ΘðθoÞjðκðrcÞ;λðrcÞÞ ¼ 0 for given θo. Because the equation of
ΘðθoÞ is a sextic equation with respect to the rc, here, the
rc;min and rc;min are obtained numerically.
The angle between two light rays a and b is also known

as the astrometric observable [41,45] and can be defined
with

ψ ¼ Angleða; bÞ≡ arccos

�
γ�a · γ�b
jγ�ajjγ�aj

�

¼ arcos

�
1þ a · b

ðu · aÞðu · bÞ
�
; ð40Þ

where γ� is spatial induced metric, u is the 4-velocities of
observers, and the · represent the index contraction with
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metric in Eq. (1). Thus, it is in a coordinate-independent
manner. With the reference light rays k andw, we can locate
the relative position of light ray p via

α ¼ Angleðp; kÞ; ð41Þ

β ¼ Angleðp;wÞ; ð42Þ

The schematic diagram is presented in Fig. 1. Utilizing the
angular distance α, β and γð≡Angleðk; wÞÞ, the location of
p can be rewritten as celestial coordinates,

Ψ ¼ arccos

 
sin β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
cos α − cos β cos γ

sin β sin γ

�
2

s !
; ð43Þ

Φ ¼ arccos

�
cos β
sinΨ

�
: ð44Þ

However, the above formalism cannot distinguish
between the northern and southern hemispheres on the
celestial sphere. In previous studies [33,41], the authors
employed two distinct parameter regions, φ∈ ½0; π� and
φ∈ ½π; 2π�, to distinguish between the hemispheres.
However, this trick is only applicable for sketching the
shadow. To address this flaw, we introduce the third
reference light rays l on the northern hemispheres and
obtain the criterion for determining which hemisphere of a
light ray is located, namely,

ϒ ¼ signðcos δ − cosðΦ −ΦlÞ sinΨ sinΨlÞ; ð45Þ

where δ ¼ Angleðp; lÞ, Φl ≡Ψjp¼l, and Ψl ≡Ψjp¼l. If a
light ray is located in the northern hemisphere, we
have ϒ ¼ 1.
Additionally, to show the results in a two-dimensional

plane, we utilize the stereographic projection,

Y ¼ −
2 sinΦ sinΨ

1þ cosΦ sinΨ
; ð46Þ

FIG. 1. A schematic diagram illustrating the astrometric ap-
proach for locating light ray p with respect to the reference w
and k.

FIG. 2. Primary (dashed), secondary (dot-dashed), and n ¼ 2 images of the thin accretion disk around a Kerr black hole with a spin
parameter a ¼ 0.99M for selected static observers on the celestial sphere and projection plane. The observers are located at ro ¼ 10M,
θo ¼ 2π=5 (top-left panel), ro ¼ 10M, θo ¼ π=5 (top-right panel), ro ¼ 100M, θo ¼ π=25 (bottom-left panel), and ro ¼ 100M,
θo ¼ π=25 (bottom-right panel), respectively.
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Z ¼ 2 cosΨ
1þ cosΦ sinΨ

: ð47Þ

The images on the projection plane ðY; ZÞ might have
unphysical image distortion if the observers are too close to
the black hole. In this case, the reliable results should be
given with the celestial coordinate ðΨ;ΦÞ.
Besides the new equalities δ and ϒ and reference light l,

the framework of the astrometric approach has already been
introduced in previous studies [33,41].

V. LOWER-ORDER IMAGES FOR
FINITE-DISTANT OBSERVERS

Because of the aberration of light, the shadow can be
distorted or resized for finite-distant observers in motion
[33]. In this study, we extend the investigation into the
behavior of primary, secondary, and n ¼ 2 images, asso-
ciating it with Penrose’s aberration formula [31]. Previous
studies have shown that comoving observers at spatial
infinity can still observe the shadow [34–36]. Moreover, the
shadow of a Kerr black hole appears round in the view of
corotating observers [32]. Therefore, we anticipate that
nontrivial outcomes for the lower-order images can also
be found.
To investigate the aberration effect, our starting point is

to consider observers in motion, which is generally
described by the 4-velocities of timelike geodesic, namely,

ut ¼ E
�
1

N
−

A
G3

ðAþ LÞ
�
; ð48aÞ

ur ¼ σr
Σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ðf1ðr;LÞ −KÞ − r2

q
; ð48bÞ

uθ ¼ σθ
Σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ðf2ðθ;LÞ þKÞ − a2cos2 θ

q
; ð48cÞ

uϕ ¼ EðAþ LÞ
G3

; ð48dÞ

where σr; σθ ¼ �, the above quantities are defined with
N ≡ −g00, G3 ≡ g33 − g203=g00, A≡ g03=g00, and

f1ðr;LÞ ¼
ða2 þ r2 − aLÞ2

Δr
; ð49aÞ

f2ðθ;LÞ ¼ −
1

Δθ

�
a sin θ −

L
sin θ

�
2

: ð49bÞ

Here, we adopt the parametrization scenario for the time-
like 4-velocities used in Ref. [33]. There are three integral
constantsK, L, and E. As Penrose’s aberration formula was
to quantify the apparent shapes and sizes of a rigid sphere,
we also strict our attention on the shapes and sizes
of the primary, secondary and n ¼ 2 images of the thin
accretion disk. For illustration, we consider rd;− ¼ 4M and
rd;þ ¼ 10M in Eq. (26) as the representative case.

FIG. 3. Primary (dashed), secondary (dot-dashed) and n ¼ 2 images of the thin accretion disk around a Kerr black hole with spin
parameter a ¼ 0.1M for selected static observers on the celestial sphere and projection plane. The observers are located at ro ¼ 10M,
θo ¼ 2π=5 (top-left panel), ro ¼ 10M, θo ¼ 2π=5 (top-right panel), ro ¼ 100M, θo ¼ π=25 (bottom-left panel), and ro ¼ 100M,
θo ¼ π=25 (bottom-right panel), respectively.
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A. Images in the view of static observers
and comoving observers

To present the variation of the lower-order images for
observers in motions, we sketch the images for static
observers and comoving observers at first. The 4-velocities
of static observers can be given by

ustc ¼
�

1ffiffiffiffi
N

p ; 0; 0; 0

�
: ð50Þ

The above 4-velocity is not a tangent vector of geodesics. It
should be understood as instantaneous velocities with
respect to a specific location. Figures 2 and 3 show the

lower-order images in the view of near and distant static
observers for given black hole parameters. For observers at
inclination angle θo ¼ 2π=5, the primary images in the
view of near observers are enlarged and cover the secon-
dary and n ¼ 2 images.
In the presence of the cosmological constant, consid-

eration of images with respect to comoving observers is
necessary. This is because (i) there is no doubt that the
comoving frame serves as the physical reference frame and
(ii) the 4-velocity ustc is no longer well defined beyond the
outer horizon. The latter implies that black hole images
cannot be obtained for static observers. Letting the integral
constants be κ ¼ a2, λ ¼ 0 and E ¼ 1, we have

FIG. 4. Primary (dashed), secondary (dashed-dotted), and n ¼ 2 images of the thin accretion disk around a Kerr–de Sitter black hole
with a cosmological constant Λ ¼ 0.01M−2 and spin parameters a ¼ 0.99M (left panels) and a ¼ 0.1M (right panels). The observers
are set as ingoing freely falling observers (top panels), static observers (center panels), and outgoing comoving observers (bottom
panels), all inclined at an angle θo ¼ 2π=5.
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uc ¼
�
1

N
−
A2

G3

; σr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf1ðr; 0Þ − ða2 þ r2ÞÞΔr

p
Σ

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf2ðr; 0Þ þ a2sin2 θÞΔθ

p
Σ

;
A
G3

�
: ð51aÞ

If letting σr ¼ −1, we have an ingoing 4-velocity.
It can describe the motion of freely falling observers.
The freely falling observers are shown to be frozen at both
the inner and outer horizons. One can check the coordinate
3-velocities ur=ut ¼ uθ=ut ¼ 0 at the horizons. Despite
this, it does not indicate that the freely falling observers are
not well defined when crossing the horizon. One can obtain
correct trajectories using Mino time, for examples. In the
case of Λ ¼ a ¼ 0, the comoving observer moves radially.
And for distant observers r → ∞, we have

urc ¼ r

ffiffiffiffi
Λ
3

r
þOð1Þ; ð52aÞ

uθc ¼ uϕc ¼ O
�
M2

r2

�
: ð52bÞ

From the 4-velocity, one can read Hubble’s law in the low-
redshift limit, since redshift z ≃ ur and Hubble’s constant
H0 ≡

ffiffiffiffiffiffiffiffiffi
Λ=3

p
in de-Sitter space-time. Figures 4 and 5

show the images of Kerr–de Sitter black hole for radially
freely falling observers and static observers. The
outgoing observers would see a larger image of the
emission, which is consistent with the picture that comov-
ing observers in the spatial infinity could still see the
shadow [34,35]. In the bottom panels of Figs. 4 and 5,

FIG. 5. Primary (dashed), secondary (dashed-dotted), and n ¼ 2 images of the thin accretion disk around a Kerr–de Sitter black hole
with a cosmological constant Λ ¼ 0.01M−2 and spin parameters a ¼ 0.99M (left panels) and a ¼ 0.1M (right panels). The observers
are ingoing freely falling observers (top panels), static observers (center panels), and outgoing comoving observers (bottom panels), all
positioned at the inclination angle θo ¼ π=25.
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one might find the unphysical image distortion on the
projection plane ðY; ZÞ. In this case, reliable results of the
images should be given with the celestial coordinate
ðΨ;ΦÞ.

B. Observing black hole images
with moving-telescope networks

The consideration of static observers and comoving
observers does not encompass all observers in motion.
These particular observers were chosen in the preceding
sections because they serve as references for defining
relative motions.
Suppose telescopes are launched from the reference

frame with respect to the static observers or comoving
observers, and they are launched with high speed.
Each telescope might observe different images of the
emissions. The key question is whether the distinctions
in the images induced by the aberration effect are
simply kinematic effects or can reflect the space-time
geometries.

Here, we introduce the relative 3-speed of u in the form of

υ≡ jγ�uj
uref · u

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

ðuref · uÞ2
s

; ð53Þ

where uref is the 4-velocity of the reference frame. We
would clarify that the quantity υ here is employed for
distinguishing 4-velocities u in a coordinate-independent
manner. And we do not assume that it has robust physical
meanings so far.
Figures 6 and 7 show the images in the view of near and

distant observers in motion with respect to the static frame.
The 4-velocities of moving observers are defined with

uðr;�;sÞ ¼ E

 
1

N
;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δr

Σ

�
1

N
−

1

E2

�s
; 0; 0

!
; ð54aÞ

uðθ;�;sÞ ¼ E

 
1

N
; 0;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δθ

Σ

�
1

N
−

1

E2

�s
; 0

!
; ð54bÞ

FIG. 6. Primary (dashed), secondary (dot-dashed), and n ¼ 2 images of the thin accretion disk around a Kerr black hole with a spin
parameter a ¼ 0.99M for selected moving observers with respect to the static frame. Specifically, the moving observers are located at
distances ro ¼ 10M and 100M, with the inclination angle θo ¼ 2π=5 and 4-velocities uðr;�;sÞ, uðθ;�;sÞ, and uðϕ;�;sÞ at a speed of υ ¼ 0.5,
respectively.
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uðϕ;�;sÞ ¼
 
E
N

∓ A
G3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G3

�
E2

N
− 1

�s
; 0; 0;

� 1

G3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G3

�
E2

N
− 1

�s !
: ð54cÞ

The 4-velocities are also instantaneous velocities and are
derived from a specific choice of κ and λ, depending on a
given xo. For near observers, the shapes of the primary
images become highly distorted compared to the secondary
and n ¼ 2 images. Additionally, a tailing behavior is
observed along the direction of motion. This behavior
can be further illustrated in the case of observers at the

FIG. 7. Primary (dashed), secondary (dot-dashed), andn ¼ 2 images of the thin accretiondisk aroundaKerr blackholewith a spinparameter
a ¼ 0.99M for selected moving observers with respect to the static frame. Specifically, the moving observers are located at distances
ro ¼ 10M and 100M, with the inclination angle θo ¼ π=25 and 4-velocities uðr;�;sÞ, uðθ;�;sÞ, and uðϕ;�;sÞ at a speed of υ ¼ 0.5, respectively.

FIG. 8. Left panel: the E-υ relations for 4-velocity with respect to static frame near a Kerr black hole with a ¼ 0.99M. Center panel: the
E-υ relations for 4-velocity with respect to the comoving frame near a Kerr black hole with a ¼ 0.99M. Right panel: the E-υ relations for
4-velocity with respect to the comoving frame near a Kerr–de Sitter black hole with a ¼ 0.99M and Λ ¼ 0.01M−2. All these frames are
located at ro ¼ 10M and θo ¼ 2π=5.
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inclination angle θo ¼ π=25. Specifically, the outer edge
of primary images is shown to be less sensitive to the
speed υ compared to the inner one. Furthermore, for
observers at the same speed υ located far away from the
black holes, the distortion of primary images is shown to be
suppressed. It might indicate that the aberration effect is

influenced by the gravity environment of the observers.
Previous studies on black hole shadow also obtained
similar results [33].
Similarly, we consider the 4-velocities of moving

observers with respect to the comoving frame, which are
defined with

uðr;�;cÞ ¼
 
E
N
−
A2

G3

;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δrðf2ðθ; 0Þ − ða2 þ r2Þ þ N−1ΣðE2 − 1ÞÞ

p
Σ

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δθðf2ðθ; 0Þ þ a2sin2 θÞ

p
Σ

; 0

!
; ð55aÞ

uðθ;�;cÞ ¼
 
E
N
−
A2

G3

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δrðf2ðθ; 0Þ − ða2 þ r2ÞÞ

p
Σ

;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δθðf2ðθ; 0Þ þ a2sin2θ þ N−1ΣðE2 − 1ÞÞ

p
Σ

; 0

!
; ð55bÞ

uðϕ;�;cÞ ¼
 
E
N

∓ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðG3ðE2 − 1Þ þ A2NÞ

p
G3N

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δrðf2ðθ; 0Þ − ða2 þ r2ÞÞ

p
Σ

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δθðf2ðθ; 0Þ þ a2sin2 θÞ

p
Σ

;

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðG3ðE2 − 1Þ þ A2NÞ

p
G3N

!
: ð55cÞ

FIG. 10. Primary (dashed), secondary (dot-dashed), and n ¼ 2 images of the thin accretion disk around a Kerr–de Sitter black hole
with the spin parameter of a ¼ 0.99M and the cosmological constant of Λ ¼ 0.01M−1 for moving observers. Specifically, the moving
observers are located at the distance of ro ¼ 100M and the inclination angle of θo ¼ 2π=5 (top panels) and θo ¼ π=25 (bottom panels)
with 4-velocities uðr;þ;cÞ, uðθ;�;cÞ, and uðϕ;�;cÞ at a speed of υ ¼ 0.2, respectively.

FIG. 9. The E-υ relations for observers located at ro ¼ 15M (left panel), 20M, (center panel), and 100M (right panel). In all these
cases, comoving frames are situated at θo ¼ 2π=5 in a Kerr–de Sitter space-time with the spin of a ¼ 0.99M and the cosmological
constant of Λ ¼ 0.01M−2, resulting in an outer horizon at rH ≃ 16.2M.
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The above instantaneous velocities can provide a picture of
the establishment of moving telescope networks. It is
known that our Earth is comoving with respect to distant
supermassive black holes, such as the M87. By launching
telescopes into space with different velocities formulated
by Eqs. (55), one can test whether the distinctions in the
images from different telescopes are consistent with the
theoretical predictions here, in principle.
The initial launching speed υ is determined by a constant

E. To determine the proper E, even beyond the outer
horizon, we establish relations between the quantities υ
and E. Figure 8 displays the E-υ relations for different
4-velocities presented in Eqs. (54) and (55). It shows that
for observers in the vicinity of the Kerr black hole or within
the outer horizon of the Kerr–de Sitter black hole it is
always possible to launch telescopes at a 3-speed υ within
and approaching the speed of light. It might enhance our
confidence in regarding υ as a physical quantity. Figure 9
depicts the υ-E relations for observers located at different
distances from Kerr–de Sitter black holes. It is found that
there are upper bounds on υ for the axial and ingoing
velocities if the observers are beyond the outer horizons.

Further details on the upper bound will be discussed in the
final part of this section. In Fig. 10, we present the lower-
order images for distant observers in motion with respect to
the comoving frame. Despite the observers being situated
in a nonflat space-time, the aberration effect on the
images is suppressed by the distance. Additionally,
compared with the distant observers in Fig. 6, it is evident
that in the presence of a cosmological constant (i) the
size of primary and secondary images is smaller and
(ii) the distortion of the images is more sensitive to the
motions of observers. The latter suggests that the
observer dependence of the images would be more sig-
nificant than expected if the expansion of the universe is
considered.
One might also be interested in the lower-order images

for observers near the outer horizons. Figures 11 and 12
show the lower-order images for observers with respect to
the comoving frame. It is evident that the degree of
distortion is reduced as the distance increases, once again.
There appears to be no additional effect for observers near
the outer horizon. For comparison, we also consider the
images for moving observers with respect to the static

FIG. 11. Primary (dashed), secondary (dot-dashed), and n ¼ 2 images of the thin accretion disk around a Kerr–de Sitter black hole
with the spin parameter of a ¼ 0.99M and the cosmological constant of Λ ¼ 0.01M−2 for moving observers with respect to the
comoving frame. Specifically, the moving observers are located at the distance of ro ¼ 16M and the inclination angle of θo ¼ 2π=5 (top
panels) and θo ¼ π=25 (bottom panels) with 4-velocities uðr;�;cÞ, uðθ;�;cÞ, and uðϕ;�;cÞ at a speed of υ ¼ 0.5, respectively.
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frame in Fig. 13. This reproduces the results in previous
studies indicating that the size of the black hole image tends
to vanish when approaching outer horizons [34,35]. For
the cases shown in Figs. 11 and 13, we let the moving
observers have the same locations but be situated in
different frames. It is found that the variation of the images
is more sensitive to the motions of observers in the
comoving frame.

C. Aberration formula

In the previous sections, we qualitatively studied the
variation of lower-order images of the thin accretion disk for
observers in motion. Here, we will present several quanti-
tative results regarding the size of lower-order images.
Figure 14 displays the images for ingoing observers at

different speeds υ. It is evident that the size of the images
decreases with increasing υ. Additionally, we also consider
observers in axial motion in Figs. 15 and 16. In addition to
variations in the image size, we find that the relative
distortion between primary, secondary, and n ¼ 2 images
tends to remain fixed as υ approaches the speed of light. To

quantitatively study the aberration effect, we introduce the
relative size on the projection plane ðY; ZÞ, namely,

Zsize ≡ ðZmax − ZminÞjυ
ðZmax − ZminÞjυ¼0

: ð56Þ

On the other hand, the Penrose aberration formula takes the
form of tanΨ0 ¼ tanΨ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − υÞð1þ υÞp
[31], where the

angular diameter Ψ0 and Ψ can be defined using celestial
coordinates in different frames. Therefore, by providing a
stereographic projection on the observer’s celestial sphere,
we can relate the quantity defined in Eq. (56) with
Penrose’s aberration formula due to Zsize ¼ tanΨ0= tanΨ.
In Figs. 17–19, we present Zsize as functions of the

speeds υ based on the cases given in Figs. 14–16,
respectively. It shows that the factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − υÞð1þ υÞp
can overall describe the variation of the primary, secondary,
or n ¼ 2 images. The consistency indicates that quantities
υ can at least function as a relative 3-speed in physics.
Based on Zsize=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − υÞð1þ υÞp
in the right panels of

Figs. 17–19, there is a deviation from Penrose’s aberration

FIG. 12. Primary (dashed), secondary (dot-dashed), and n ¼ 2 images of the thin accretion disk around a Kerr–de Sitter black hole
with the spin parameter of a ¼ 0.99M and the cosmological constant of Λ ¼ 0.00029M−2 for moving observers with respect to the
comoving frame. Specifically, the moving observers are located at the distance of ro ¼ 100M and the inclination angle of θo ¼ 2π=5
(top panels) and θo ¼ π=25 (bottom panels) with 4-velocities uðr;�;cÞ, uðθ;�;cÞ, and uðϕ;�;cÞ at a speed of υ ¼ 0.5, respectively.
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FIG. 13. Primary (dashed), secondary (dot-dashed), and n ¼ 2 images of the thin accretion disk around a Kerr–de Sitter black hole
with the spin parameter of a ¼ 0.99M and the cosmological constant of Λ ¼ 0.01M−2 for moving observers with respect to the static
frame. Specifically, the moving observers are located at the distance of ro ¼ 16M and the inclination angle of θo ¼ 2π=5 (top panels)
and θo ¼ π=25 (bottom panels) with 4-velocities uðr;�;sÞ, uðθ;�;sÞ, and uðϕ;�;sÞ at a speed of υ ¼ 0.5, respectively.

FIG. 14. Primary (dashed), secondary (dot-dashed), and n ¼ 2 images of the thin accretion disk around a Kerr–de Sitter black hole
(top panel) or a Kerr black hole (center and bottom panels) with a spin parameter of a ¼ 0.99M and a cosmological constant of
Λ ¼ 0.01M−2 for ingoing observers. Specifically, the observers are located at ro ¼ 10M (top and center panels) and ro ¼ 100M (bottom
panels) and an inclination angle of θo ¼ π=25 and a 4-velocity uðr;−;cÞ at speeds υ as υ as 0, 0.1, 0.3, 0.6, 0.9, 0.99, 0.999, 0.99999.
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formula, which might be understood as the influence
from the gravity environment of observers. For radial
motions, the deviation is shown to be larger for near
observers. And the variation of the secondary and n ¼ 2
images is hardly distinguishable in the view of near
observers compared to the case of distant observers. We
also quantitatively find the asymptotical behavior of the
images, namely, the relative distortion between primary,
secondary, and n ¼ 2 images tends to be fixed as υ
approaches 1. For axial motions shown in Figs. 18 and 19,
the deviation does not vary monotonically with the speed υ,
which is different from the cases of radial motions.
Additionally, one might also find the frame-dragging effect
by comparing the right panels of Fig. 18.

D. Upper bound of speed?

The above results suggest that the quantities υ can be
used as a physical 3-speed for interpreting the aberration
formula. However, as shown in Fig. 9, it was found that
there is an upper bound of υ for observers beyond the outer

horizon in axial motions. For illustration, we present the
maximum speeds υmax as a function of the observers’
distance to the Kerr–de Sitter black hole in Fig. 20. As the
reference frame approaches the outer horizon, the maxi-
mum speed is recovered to the speed of light.
As mentioned before, the 4-velocities in Eqs. (55)

are instantaneous velocities. For example, the uðr;�;cÞ
is obtained by substituting integral constants κðxoÞ
and λðxoÞ in Eqs. (48), such that ðuðr;�;cÞ;θ−uθcÞjxo ¼
ðuðr;�;cÞ;ϕ−uϕc Þjxo ¼0. Thus, Eqs. (55) merely provides
the expressions of the 4-velocities at xo. There seems to
be no problem when considering the observers within the
outer horizon. The naive approach seems sufficient for
obtaining representative 4-velocities in various directions.
However, we still believe that the upper bound of speed has
no clear physical origin due to the coordinate-dependent
nature of the above approach. We cannot exclude the
possibility that the 4-velocities are ill defined here when
they are beyond the outer horizon of the Kerr–de Sitter
black hole.

FIG. 15. Primary (dashed), secondary (dot-dashed) and n ¼ 2 images of the thin accretion disk around Kerr–de Sitter black hole with
spin parameter a ¼ 0.99M and cosmological constant Λ ¼ 0.01M−2 for observers in axial ϕ motions. Specifically, the observers are
located at ro ¼ 10M and inclination angle θo ¼ π=25with 4-velocity uðϕ;−;cÞ (top panels) and uðϕ;þ;cÞ (bottom panels) in the speeds υ as
0, 0.1, 0.3, 0.6, 0.9, 0.99, 0.999, 0.99999, respectively.

FIG. 16. Primary (dashed), secondary (dot-dashed), and n ¼ 2 images of the thin accretion disk around Kerr–de Sitter black hole with
spin parameter a ¼ 0.99M and cosmological constant Λ ¼ 0.01M−2 for observers in axial θ motions. Specifically, the observers are
located at ro ¼ 10M and inclination angle θo ¼ π=25 with 4-velocity uðθ;−;cÞ (top panels) and uðθ;þ;cÞ (bottom panels) in the speeds υ as
0, 0.1, 0.3, 0.6, 0.9, 0.99, 0.999, 0.99999, respectively.
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The thought experiment concerning the launch of tele-
scopes, as discussed in Sec. V B, should be distinguished
from the procedure for obtaining 4-velocities relative to the
comoving frame. The latter only involves technical aspects.
Since υ is a coordinate-independent quantity, the method
used to determine axial 4-velocities may not significantly
impact the outcomes of studying the variations of lower-
order images. Obtaining a proper axial 4-velocity may be
beyond the scope of this study and would be addressed in
future research.

VI. CONCLUSIONS AND DISCUSSIONS

This paper studied the primary, secondary, and n ¼ 2
images of the thin accretion disk in the view of finite distant
observers in motions with the astrometric approach.
Specifically, we considered static observers, comoving
observers, as well as observers in radial and axial motions
with respect to the static frame or comoving frame. The
study revealed that the shapes of lower-order images get

distorted for observers in motion. Notably, the variation in
primary images was shown to be more sensitive than that of
the n ¼ 2 images. We also quantitatively studied the
aberration effect on the size of the lower-order images
and compared it with Penrose’s aberration formula.
Although the aberration formula can describe the variation
of the image sizes, overall, one can still find slight
deviations for primary, secondary, and n ¼ 2 images.
Specifically, the behaviors of primary images exhibit the
most pronounced deviations from the aberration formula.
We anticipate that the distinct behaviors of different-order
images might offer a novel approach to investigating both
space-time geometries and emissions separately.
On technique aspects, the astrometric approach provides

a coordinate-independent and tetrad-independent method
for establishing observers’ celestial spheres. In previous
studies, it was solely employed for calculating the black
hole shadow [32,33,41,44]. Here, we expanded the frame-
work to include lower-order images of emissions.
Additionally, we introduced an alternative form of transfer

FIG. 17. Left panel: the relative size of images as functions of the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − υÞð1þ υÞp

. Right panel: deviation of the relative size as
functions of the v. These plots are based on the case given in Fig. 14.
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FIG. 18. Left panel: the relative size of images as functions of the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − υÞð1þ υÞp

. Right panel: deviation of the relative size as
functions of the v. These plots are based on the case given in Fig. 15.

FIG. 19. Left panel: the relative size of images as functions of the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − υÞð1þ υÞp

. Right panel: deviation of the relative size as
functions of the v. These plots are based on the case given in Fig. 16.
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functions for the analytical ray-tracing scenario pioneered
by others [37–39]. This alternative formulation showed
that the nth-order images of the thin accretion disk
can be obtained by substituting the new variable jχsj ¼
πðnþ 1=2Þ into our transfer functions.
We presented numerous intuitive results in Sec. V.

However, in Sec. V B, the exploration of the distorted
shapes of the primary, secondary, and n ¼ 2 images is
primarily qualitative due to the absence of a robust quantity
formulating the shapes. Perhaps, further studies may delve
into addressing this aspect.
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APPENDIX: GALLERY OF INTENSITY IMAGES

To show the robustness of our results, we present the
intensity images of the thin accretion disk regarding the
observers in motions. Theoretically, it has no relevance to
the aberration effect we have studied in this paper.
In Figs. 21 and 22, we let the distribution of emissions

intensity in Eq. (26) be a constant function, namely,
fdðrÞ ¼ 1. It indicates IemtðxÞ ¼ 1; 2; 3 for primary, sec-
ondary, and n ¼ 2 images, respectively. Here, the gradual
variations in colors are determined by the redshift formu-
lated in Eq. (25). One should be cautious, as there could be
unphysical image distortion in the images in the view of the
near observers shown in Fig. 21. In this case, one can
reference the reliable results shown in the bottom panels of
Figs. 6 and 11 on the celestial sphere.

FIG. 20. The maximum speeds of axial motions with respect to the comoving frame as a function of the distance to the Kerr–de Sitter
black hole. Left panel: the black hole parameter a ¼ 0.99M and Λ ¼ 0.01M−2. Right panel: the black hole parameter a ¼ 0.99M and
Λ ¼ 0.001M−2. In both panels, observers are situated at the inclination angle θo ¼ 2π=5.
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FIG. 21. Intensity images of thin accretion disk for Kerr(–de Sitter) black hole with respect to near observers.
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