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Spacetime perturbations due to scalar, vector, and tensor fields on a fixed background geometry can be
described in the framework of Teukolsky’s equation. In this work, wave scattering is treated analytically,
using the Green’s function method and solutions to the separated radial and angular differential equations in
combination with a partial wave technique for a scalar and monochromatic perturbation. The results are
applied to analytically describe wave-optical imaging via Kirchhoff-Fresnel diffraction, leading to, e.g., the
formation of observable black hole shadows. A comparison to the ray-optical description is given,
providing new insights into wave-optical effects and properties. On a Kerr–de Sitter spacetime, the
cosmological constant changes the singularity structure of the Teukolsky equation and allows for an
analytical, exact solution via a transformation into Heun’s differential equation, which is the most general,
second-order differential equation with four regular singularities. The scattering of waves originating from
a point source involves a solution in terms of the so-called Heun’s function Hf. It is used to find angular
solutions that form a complete set of orthonormal functions similar to the spherical harmonics. Our
approach allows to solve the scattering problem while taking into account the complex interplay of Heun’s
functions around local singularities.
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I. INTRODUCTION

The first-ever images of the black hole (BH) shadows in
M87 and Sgr A� [1,2] stand as remarkable milestones.
These images not only visualized strong gravity regimes
but also the underlying theory and cutting-edge technology
that were developed over several years have provided an
innovative tool for testing general relativity (GR) and the
nature of our Universe.
The sheer magnitude of effort invested in capturing these

unprecedented images is unparalleled. Central to this
achievement is the pioneering technology of the very long
baseline interferometry (VLBI) network, called the “Event
Horizon Telescope” (EHT). Using the power of multiple
strategically positioned radio telescopes aimed at M87 and
Sgr A�, this network allows observations in the extended
wavelength regime of radio waves. The strength of this
technique lies in the interference of discrete measurements,
resulting in a cohesive visual representation.
One common way to validate and test different theories

of gravity is to carefully assess the parameters that

characterize black holes at the centers of galaxies. Great
interest, however, lies in studying the shadow of a black
hole. Theoretical results based on lightlike geodesics in
various spacetime geometries are given in, e.g., Refs. [3–6].
The foundation of theoretical black hole imaging emerges

from the perturbation of established spacetime models. The
literature extensively examines a variety of methods to
address this complex task, including analytical techniques,
approximations, and numerical approaches [7–11]. These
investigations involve the use of numerical solutions of
differential equations via finite-differencemethods, harness-
ing phase-shift analysis via Prüfer transformations, and
utilizing Runge-Kutta algorithms. The weak gravitational
scenario has been explored byKanai [11],while a discussion
of the Schwarzschild and Ellis wormhole spacetimes can be
found in the work of Nambu [8]. In addition, the case
of Kerr black holes has been addressed by Glampedakis
[12]. For approximate solutions, Andersson [13] introduced
the phase-integral method applied to the Schwarzschild
spacetime. Furthermore, the widely usedWentzel-Kramers-
Brillouin approximation has been used byNambu [7] to treat
high-frequency scalar wave scattering in a Schwarzschild
spacetime. In a comprehensive review, Andersson [14]
provided an introduction to the field of perturbations,
approaching it from various angles. In the present work,
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the focus is on exact solutions for scalar perturbations within
various spacetime contexts.
A significant part of the aforementioned studies focuses on

differential cross sections, as well as the emergence of
backscattering and rainbow scattering [8,15,16]. The for-
malism employed in these works also provides a means of
exploring wave-optical imaging on an observer plane [7,11].
Within the weak-field regime, imaging concepts can be

extended to cover various celestial objects. Turyshev [9,10]
examined imaging possibilities for stars, while Feldbrugge
[17] applied these ideas to binary systems. The use of
imaging techniques also extends to gravitational waves in
the microlensing regime, as explored by, e.g., Cheung [18].
In this context, rays that carry phase information, which
undergo curvature-induced alterations [19], introduce an
additional observable for wave scattering. The wave-optical
approach complements the ray-optical approach, which is
based on tracing lightlike geodesics, and provides theo-
retical and analytical support of prospective observations.
However, it is important to note that despite the various

advances, currently no exact and analytical derivation is
available in the field of wave-optical imaging. Thus, the
purpose of this paper is to remedy this fact.
There are several approaches that discuss linear perturba-

tions of a black hole induced by exterior sources. One key
method involves the Teukolsky partial differential equation
and the associated separated radial and angular ordinary
differential equations. However, the boundary conditions for
the radial equation present a challenge, especially at spatial
infinity. Thus, there has not been an explicit analytical
solution found for most black hole spacetimes yet, leading
to the necessity of approximations mentioned above.
Interestingly, when a cosmological constant is present,

the radial equation can be supplemented by a well-defined
boundary condition [20]. This insight is made possible by
an involved discussion of Heun’s equation [21–29]. It is the
general, second-order, linear differential equation with four
regular singularities. This framework with its singularity
structure and known solutions provides an analytical tool to
solve the separated Teukolsky equations on BH spacetimes
in the presence of a cosmological constant.
The primary goal of this work is to study the exact wave-

optical imaging of a point source emitting scalar waves in a
Kerr–de Sitter spacetime. The results allow us to reproduce
and validate the established shadow formulas for black
holes within the realm of wave optics.
In Sec. II themetric of interest, theKerr–de Sittermetric, is

introduced as a special case of the Plebanski-Demianski
metric, the most general metric of Petrov type-D spacetimes
in GR. The presence of a (positive) cosmological constantΛ
introduces some modification of the horizon structure
compared to the Kerr spacetime around rotating black holes.
The Teukolsky master equation, a second-order linear

differential equation that describes linear perturbations
in the Newman-Penrose formalism, is introduced in
Sec. III. Necessary expressions for the derivation are given,

resulting in separated radial and angular equations. After a
transformation, they can be solved by (i) the so-called local
Heun functions Hl and (ii) the Heun functions Hf covered
in Sec. IV. However, we focus on the extension by the
Heun functionHf because of its importance for the angular
Teukolsky equation.
Of paramount significance, an orthogonality relation for

the solutions can be constructed, closely related to the Sturm-
Liouville eigenvalue problem. It plays a crucial role in the
normalization of the angular solutions and leads to a
complete set of orthonormal functions, similar to the nor-
malization of associated Legendre functions in the context of
spherical harmonics. On the basis of this, in Sec. V solutions
of the separated angular and radial equations are given in
terms of solutions to Heun’s equation. For the angular case,
the focus lies on the eigenvalue problem. In terms of theHeun
function, the non-Kerr limit is discussed,which leads to spin-
weighted spherical harmonics. On the other hand, the radial
solution requires an involved discussion of the boundary
condition. Its solution in terms of the Heun function is
derivedmainly from [20], which is why it will only be briefly
revised here.
The Green’s function method is used with corresponding

solutions that follow naturally from the solution to Heun’s
equation using the physical boundary conditions. It enables a
description of wave scattering and the resulting interference
at arbitrary locations around a black hole. The aforemen-
tioned normalization becomes particularly crucial in the final
stages.
Finally, Sec. VI treats wave-optical imaging for scalar

waves and an arbitrarily placed observer plane. Point
sources around a Kerr–de Sitter and Schwarzschild–de
Sitter (SdS) black hole are considered, respectively. Images
are constructed for different Kerr parameters a and wave
frequencies ω. The results are compared to known results
and properties of black holes, e.g., the formation of the
Einstein ring in an appropriate setup, frame dragging in the
presence of spinning black hole, ray-optical shadows of
black holes requiring multiple point sources, and finally the
appearance of splitting images in a particular alignment of
source and observer.

II. KERR–DE SITTER SPACETIME (KdS)

The Plebanski-Demianski (PB) spacetime is the most
general axial-symmetric and stationary spacetime in general
relativity and describes the geometry around a rotating black
hole in the presence of a cosmological constant Λ, a spin
parameter a, the Taub-NUT charge l, an acceleration para-
meter α, a charge β ¼ q2e þ q2m including the electric and
magnetic monopole charges qe, qm, respectively, and finally
a mass parameter M. The spacetime admits two Killing
vector fields ∂t and ∂ϕ and can be classified as a Petrov
type-D geometry [30]. In Boyer-Lindquist coordinates and
G ¼ c ¼ 1 it is represented by
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ds2 ¼ 1

Ω2

�
1

Σ
ðΔr − a2Δθsin2θÞdt2

þ 2

Σ
ðΔrχ − aðΣþ aχÞΔθsin2θÞdtdϕ

−
1

Σ
½ðΣþ aχÞ2Δθsin2θ − Δrχ

2�dϕ2

−
Σ
Δr

dr2 −
Σ
Δθ

dθ2
�
: ð1Þ

The metric functions of the PB metric are

Ω≕Ωðr; θÞ ¼ 1 −
αP
ωP

ðlþ a cos θÞr; ð2aÞ

Σ≕Σðr; θÞ ¼ r2 þ ðlþ a cos θÞ2; ð2bÞ

χ≕ χðθÞ ¼ a sin2 θ − 2lðcos θ þ CÞ; ð2cÞ
Δθ ≕ΔθðθÞ ¼ 1 − a3 cos θ − a4 cos2 θ; ð2dÞ
Δr≕ΔrðrÞ ¼ b0 þ b1rþ b2r2 þ b3r3 þ b4r4; ð2eÞ

where the coefficients of the Δθ and Δr polynomials are

a3 ¼ 2
αP
ωP

aM − 4al
�
α2P
ω2
P
ðkþ βÞ þ Λ

3

�
; ð3aÞ

a4 ¼ −a2
�
α2P
ω2
P
ðkþ βÞ þ Λ

3

�
; ð3bÞ

and

b0 ¼ kþ β; ð4aÞ
b1 ¼ −2M; ð4bÞ

b2 ¼
k

a2 − l2
þ 4

αP
ωP

lM − ða2 þ 3l2Þ
�
α2P
ω2
P
ðkþ βÞ þ Λ

3

�
; ð4cÞ

b3 ¼ −2
αP
ωP

�
kl

a2 − l2
− ða2 − l2Þ

�
αP
ωP

M − l
�
α2P
ω2
P
ðkþ βÞ þ Λ

3

���
; ð4dÞ

b4 ¼ −
�
α2P
ω2
P
kþ Λ

3

�
: ð4eÞ

The abbreviated definitions k, ωP, and β, appearing in
Eqs. (3a) and (4), are

k ¼
1þ 2 αP

ωP
lM − 3l2

�
α2P
ω2
P
β þ Λ

3

�
1þ 3

α2P
ω2
P
l2ða2 − l2Þ

; ð5aÞ

ωP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ l2

p
: ð5bÞ

In this work we reduce to the Kerr–de Sitter (KdS) case,
in which the spacetime is described by the black holes
angular moment, its mass and the (positive) cosmological
constant, or rather the (positive) constant global curvature.
Thus αP ¼ β ¼ l ¼ 0. Written in terms of the PB repre-
sentation, the KdS metric is

ds2 ¼ 1

ΣΞ2
ðΔr − a2Δθsin2θÞdt2

þ 2

ΣΞ2
ðΔrχ − aðΣþ aχÞΔθsin2θÞdtdϕ

−
1

ΣΞ2
½ðΣþ aχÞ2Δθsin2θ − Δrχ

2�dϕ2

−
Σ
Δr

dr2 −
Σ
Δθ

dθ2: ð6Þ

An additional rescaling of dt → dt
Ξ and dϕ → dϕ

Ξ is consid-
ered here, with Ξ ≔ 1þ α and α ≔ Λ

3
a2, see Ref. [30]. As a

result, the metric near the axis is well behaved, and conical
singularities are resolved. A convenient explanation can be
found in [31]. The metric functions are given by

ρ ¼ −
1

r − ia cos θ
; ð7aÞ

Σ ¼ 1

ρρ�
¼ r2 þ a2 cos2 θ; ð7bÞ

χ ¼ a sin2 θ; ð7cÞ

Δr ¼ a2 − 2Mrþ
�
1 −

Λa2

3

�
r2 −

Λ
3
r4; ð7dÞ

Δθ ¼ 1þ α cos2 θ: ð7eÞ

Here, Δr encodes an important physical property of black
holes. Its zeros give the radii of possible horizons. In the
case of KdS, Δr ¼ 0 is a fourth-order polynomial. Thus, it
can also be written as

ΔrðrÞ ¼ −
3

Λ
ðr − r0−Þðr − r−Þðr − rþÞðr − r0þÞ: ð8Þ
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Comparing Eq. (7d) (8) results in the identity

r0− þ r− þ rþ þ r0þ ¼ 0: ð9Þ

Since the polynomial is of fourth order, the expressions for
its zeros in the full analytic representation are quite lengthy.
However, an expansion up leading order in Λ yields

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
þOðΛ1Þ; ð10aÞ

r0� ¼ �
ffiffiffiffi
3

Λ

r
þOðΛ0Þ; ð10bÞ

revealing more physical context. rþ is the event horizon, r−
the inner Cauchy horizon, r0þ the (positive) cosmological
horizon, and r0− its negative counterpart.
For the following discussion, it is assumed that the four

possible zeros of Δr are all of real and distinct nature, and
hence r0− < 0 < r− < rþ < r0þ. This assumption guaran-
tees the existence of the mandatory horizon structure
required in Sec. V B 1. By examining the discriminant
of Δr, an inequality defines the parameter ranges of M, a,
and Λ that satisfy this assumption [32],

α < 7 − 4
ffiffiffi
3

p
; ð11aÞ

Mc;− < M < Mc;þ; ð11bÞ

where

Mc;� ¼ ð1 − αÞ3=2
3

ffiffiffiffiffiffi
2Λ

p ffiffiffiffiffiffiffiffiffiffiffi
1� γ

p
ð2∓ γÞ; ð12aÞ

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

12α

ð1 − αÞ2
s

: ð12bÞ

The interested reader is referred to [31] for a discussion of
this range in the KdS spacetime. One remarkable conse-
quence is the possible exceeding of the critical Kerr
parameter a ¼ M, for which the horizon structure is still
preserved in a de Sitter spacetime due to the cosmological
drift. The new upper limit is derived from Eq. (11), where
the inequality is replaced by an equality. This implies, for
example, that for a → 0 there are no nonrotating black
holes with the required horizon structure for ΛM2 > 1=9.
Increasing Λ causes the upper and lower bounds of the
Kerr parameter a to converge until the horizon structure
collapses for larger parameter choices, exposing a naked
curvature singularity.

III. KdS TEUKOLSKY EQUATIONS

Scattering involves a perturbation of the underlying
spacetime and is conveniently approached in a first step
by examining linear perturbations. Thus, these perturba-
tions can be described by gμν ¼ g̃μν þ hμν, where g̃μν is
the background spacetime to be considered, e.g. the KdS
spacetime, and hμν is the linear perturbation term. This
approach led, for example, to the derivation of differential
equations whose solution yields quasinormal modes for the
Schwarzschild spacetime as background [33]. The problem
can also be considered in the Newman-Penrose (NP)
formalism, introducing the spinor formalism to GR [34].
All NP formalism-dependent expressions are linearly
perturbed, leading to an analog differential equation, as
shown by Teukolsky [35]. This so-called Teukolsky
master equation (TME) is a second-order linear partial
differential equation. Examples of the Kerr TME can be
found in [35,36]. Reference [37] shows a TME for the
Kerr-Taub-NUT spacetime. The TME for KdS, expressed
in a representation similar to Teukolsky’s, is

Δ−s
r

∂

∂r

�
Δsþ1

r
∂Ψ
∂r

�
þ 1

sin θ
∂

∂θ

�
Δθ sin θ

∂Ψ
∂θ

�
− ð1þ αÞ2

�
a2

Δr
−
csc2θ
Δθ

�
∂
2Ψ
∂ϕ2

þ ð1þ αÞ2
�
2aðΣþ aχÞ2

Δr
−
csc2θχ2

Δθ

�
∂
2Ψ
∂t2

þ 2ð1þ αÞ2
�
aðΣþ aχÞ

Δr
−
csc2θχ
Δθ

�
∂
2Ψ

∂t∂ϕ

þ sð1þ αÞ
�
a
Δ0

r

Δr
þ i csc θ

�
2 cot θ þ Δ0

θ

Δθ

��
∂Ψ
∂ϕ

þ sð1þ αÞ
�
4

ρ�
þ ðΣþ aχÞΔ

0
r

Δr
þ iχ csc θ

�
2 cot θ þ Δ0

θ

Δθ

��
∂Ψ
∂t

−
�
2

3
ΛΣþ 1

2
sΔ00

r − s2
�
4

3
Λr2 þ ð1þ α2Þ cot

2θ

Δθ

��
Ψ ¼ 4πΣT; ð13Þ

where s is the spin weight, T describes the source terms,
and Ψ ≔ Ψðt; r;ϕ; θÞ is the corresponding field quantity.
The actual expressions of Ψ and T depend on the choice
of s, see [35] for more details. The apostrophes on Δr

and Δθ denote derivatives with respect to the respective

independent variable. The final differential equation for
the scalar case s ¼ 0 coincides with the Klein-Gordon
equation in de Sitter spacetimes ð□ − R

6
ÞΦ ¼ 0. Moreover,

all bosonic and fermionic perturbations, e.g., solutions
to Maxwell’s equations on this background, can be
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constructed based upon solutions of the TME. However, in
the following, the vacuum case (T ¼ 0) will be considered.
The TME can be solved by a separation of variables,

resulting in ordinary rather than partial differential equations.
The separability of Petrov type-D geometries and their TME
is shown for s∈ f0;�1=2;�1;�2g in [25]. With

sΨlmðt; r;ϕ; θÞ ¼ sRlmðrÞsSlmðθÞe−iωteimϕ; ð14Þ

where l, m are the multipole expansion indices, the TME is
separated into radial and angular equations,

Δ−s
r

d
dr

�
Δsþ1

r
d
dr sRlmðrÞ

�
þ sV

ðradÞ
lm ðrÞsRlmðrÞ ¼ 0 ð15Þ

and

1

sin θ
d
dθ

�
sin θΔθ

d
dθ sSlmðθÞ

�
þ sV

ðangÞ
lm ðθÞsSlmðθÞ ¼ 0:

ð16Þ

The radial Teukolsky equation for KdS is characterized
by the potential term [20]

sV
ðradÞ
lm ðrÞ ¼ K2

mðrÞ − isKmðrÞΔ0
rðrÞ

ΔrðrÞ
þ 2isK0

mðrÞ

−
2α

a2
ðsþ 1Þð2sþ 1Þr2 þ sð1 − αÞ − sλlm

ð17Þ
with

KmðrÞ ¼ ð1þ αÞðða2 þ r2Þω − amÞ: ð18Þ

This differential equation has five regular singularities
fr0−; r−; rþ; r0þ;∞g, of which the first four coincide with
the radii of the horizons and sλlm is the separation constant
related to an eigenvalue problem in the context of the
Sturm-Liouville theory.
In the case of the angular equation [Eq. (16)] it is

more convenient to introduce a new variable x ≔ cos θ.
Consequently, its domain transforms to x∈ ½−1; 1� and the
differential equation becomes

d
dx

�
Δx

d
dx sSlmðxÞ

�
þ sV

ðangÞ
lm ðxÞsSlmðxÞ ¼ 0; ð19Þ

where ΔxðxÞ ¼ ð1 − x2ÞΔθðarccos xÞ. The characterizing
term of Eq. (19) is now

sV
ðandÞ
lm ðxÞ ¼ − sG2

mðxÞ
ΔxðxÞ

− 2αx2 þ sλlm

þ s
4xð1þ αÞðmα − cð1þ αÞÞ

ΔθðxÞ
; ð20Þ

with

sGmðxÞ ¼ ð1þ αÞðmþ sx − aωð1 − x2ÞÞ: ð21Þ

The regular singularities of the angular Teukolsky equation
are

x1 ¼ −i=
ffiffiffi
α

p
; x2 ¼ i=

ffiffiffi
α

p
; x3 ¼ −1; x4 ¼ 1: ð22Þ

The separated radial and angular differential equations
each have five regular singularities. In both cases, the
singularities at infinity are removable and can be eliminated
by a suitable transformation. The solution of these equa-
tions can be conveniently derived by transforming the
differential equations into the form of Heun’s equation.
In fact, the separated Teukolsky equations are Heun’s
equations in disguise [21,24], which is why a thorough
discussion of this class is important.

IV. HEUN’S DIFFERENTIAL EQUATION

The canonical representation of Heun’s differential
equation is [38]

d2yðzÞ
dz2

þ
�
γ

z
þ δ

z − 1
þ ϵ

z − aH

�
dyðzÞ
dz

þ αβz − q
zðz − 1Þðz − aHÞ

yðzÞ ¼ 0; ð23Þ

where aH is the singularity parameter and q is called
accessory (or auxiliary) parameter, which is closely related
to a Sturm-Liouville eigenvalue problem discussed in
Sec. VA. The exponents γ, δ, ϵ, α, β are related to the
Frobeniusmethod applied to theHeun’s equation, where two
indicial exponents f0;1− γg;f0;1− δg;f0;1− ϵg;fα;βg
exist at its regular singularities f0; 1; aH;∞g, respectively.
The sum of all exponents must be equal to two, thus the
identity

γ þ δþ ϵ ¼ αþ β þ 1 ð24Þ

holds.
Around each singularity there exists a solution in the

form of a local Heun functionHlwith a convergence radius
extending to the next neighboring singularity, as discussed
in Sec. IVA. By means of an analytical extension, it is
possible to go beyond the convergence radius, e.g., estab-
lish a common domain of convergence. However, the result
generally does not show the same behavior as the analytical
solutions obtained at other singularities. The nature of
the Heun equation, nevertheless, allows for solutions of
which the convergence domain contains two or three
singularities by imposing a certain condition on q. These
are called Heun functions Hf and Heun polynomials Hp,
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respectively. Of these, only Hf will be of interest in this
work; see Sec. IV C.

A. Local Heun function Hl

Equation (23) can be solved by two different series
expansions: a simple power series or a function series
expansion. While the power series is usually used for Hl,
the function series is applied for Hf, as discussed in
Sec. IV C. The power series expansion around z ¼ 0 and
the choice of the first respective indicial exponent

yðzÞ ¼
X∞
r¼0

crzr ð25Þ

yields a three-term recurrence relation for the series
coefficients cr,

Rrcrþ1 − ðQr þ qÞcr þ Prcr−1 ¼ 0; ð26Þ

where

Rr ¼ ðrþ 1Þðrþ γÞaH; ð27aÞ

Qr ¼ r½ðr − 1þ γÞð1þ aHÞ þ aHδþ ϵ�; ð27bÞ

Pr ¼ ðr − 1þ αÞðr − 1þ βÞ; ð27cÞ

and cn ¼ 0 for n < 0. Because of the normalization,
c0 ¼ 1. Note that γ ∈N, otherwise the so-called logarithmic
case has to be considered. In Sec. VA 2 this coincides
with solutions that are irregular at the poles and are not
considered further.
By construction, the solution converges inside a circle

around z ¼ 0 with radius z < minð1; jaHjÞ. The notation
convention for the solution to Eq. (25) is given in Eq. (28a)
below, where the first subscript denotes the singularity and
the second denotes the solution index. ϵ is omitted and
implicitly defined by the identity [Eq. (24)].

y01ðzÞ ¼ HlðaH; q; α; β; γ; δ; zÞ; ð28aÞ

y02ðzÞ ¼ z1−γHlðaH; ðaHδþ ϵÞð1 − γÞ þ q; αþ 1 − γ; β þ 1 − γ; 2 − γ; δ; zÞ; ð28bÞ

y11ðzÞ ¼ Hlð1 − aH; αβ − q; α; β; δ; γ; 1 − zÞ; ð28cÞ

y12ðzÞ ¼ ð1 − zÞ1−δHlð1 − aH; ðð1 − aHÞγ þ ϵÞð1 − δÞ þ αβ − q; αþ 1 − δ; β þ 1 − δ; 2 − δ; γ; 1 − zÞ: ð28dÞ

In total, eight solutions can be formulated with their
respective three-term recurrence relations. However, by
means of automorphisms, the solution [Eq. (28a)] can be
used to construct all other solutions. In general, all other
solutions can be derived by applying an appropriate trans-
formation of the independent variable z ↦ ζðzÞ. It may be
necessary to transform the dependent variable as well so
that after the transformation the Frobenius exponents are
f0; ρ1g; f0; ρ2g; f0; ρ3g; fρ4; ρ5g. Then the Heun differ-
ential equation can be obtained again with new coefficients
leading to Hlða�H; q�α�; β�; γ�; δ�; ζÞ. For example, the
solution y02 with the second exponent at z ¼ 0 can be
expressed by y01, as shown in Eq. (28b). The procedure can
then be repeated for solutions at other singularities, e.g., at
z ¼ 1, leading to Eqs. (28c) and (28d) for indicial ex-
ponents f0; 1 − δg, respectively. The remaining solutions
are not of interest in this paper and are omitted here.
With Eq. (25) and (28a) to (28d), the behavior of the
respective solutions near their singularities can be studied.
For solutions around z ¼ 0 the leading-order terms are1

y01ðzÞ ¼ 1þOðzÞ; ð29aÞ
y02ðzÞ ¼ z1−γð1þOðzÞÞ; ð29bÞ

and for solutions around z ¼ 1

y11ðzÞ ¼ 1þOð1 − zÞ; ð30aÞ
y12ðzÞ ¼ ð1 − zÞ1−δð1þOð1 − zÞÞ: ð30bÞ

These functions are implemented in many commonly used
computer algebra system programs, such as Mathematica
[39] or MAPLE [40], which also use the same power series
implementation. There are also open source implemen-
tations, e.g., in OCTAVE [41]. A promising result for a
Python implementation is described in [42], where the
integral series representation of the solutions to the Heun
equation is implemented. In this work, however, we use the
Mathematica implementation for reliability reasons.

B. Connection coefficients

Local solutions around different singularities are
not proportional in overlapping convergence domains.
The (two-point) connection problem is an approach to

1These equations clarify the role of the so-called indicial
exponents as exponents of the leading order terms.
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express a solution by other linearly independent solutions in
a domain of mutual convergence. Motohashi et al. [20] and
Hatsuda et al. [23] dealt extensively with this problem in the
context of local Heun functions, using the results of Dekar
et al. [43].An alternative approach to the connection problem
is offered by Fiziev [44], who solved it by transforming the
Heun equation to another domain, which allowed to respect
the occurring branch cuts more carefully. However, we will
stick to the notation of Motohashi and Hatsuda.
Local Heun functions formulated at z ¼ 0 are expressed

by those at z ¼ 1 through the linear combinations

y01ðzÞ ¼ C11y11ðzÞ þ C12y12ðzÞ; ð31aÞ

y02ðzÞ ¼ C21y11ðzÞ þ C22y12ðzÞ; ð31bÞ

and vice versa,

y11ðzÞ ¼ D11y01ðzÞ þD12y02ðzÞ; ð32aÞ

y12ðzÞ ¼ D21y01ðzÞ þD22y02ðzÞ: ð32bÞ

The exact form of the coefficients is given by [43]. As
discussed in [20], a more computationally efficient and
convergent expression is given in terms of Wronskians of
local Heun functions. The coefficients for the first case are

C11 ¼
Wz½y01; y12�
Wz½y11; y12�

; ð33aÞ

C12 ¼
Wz½y01; y11�
Wz½y12; y11�

; ð33bÞ

C21 ¼
Wz½y02; y12�
Wz½y11; y12�

; ð33cÞ

C22 ¼
Wz½y02; y11�
Wz½y12; y11�

; ð33dÞ

and for the second case

D11 ¼
Wz½y11; y02�
Wz½y01; y02�

; ð34aÞ

D12 ¼
Wz½y11; y01�
Wz½y02; y01�

; ð34bÞ

D21 ¼
Wz½y12; y02�
Wz½y01; y02�

; ð34cÞ

D22 ¼
Wz½y12; y01�
Wz½y02; y01�

: ð34dÞ

The evaluation is performed at any point z within the
mutual convergence domain.

C. Heun function Hf

For the local Heun function Hl, a power series is an
appropriate choice. On the other hand, a suitable choice for
the Heun function Hf is a series of functions, which ensure
more efficient convergence with the mathematical properties
of special cases appearing more naturally. Here, the hyper-
geometric function 2F1ðα; β; γ; zÞ is a good choice, which
seems appropriate since Heun’s equation is historically the
result of a generalization of the hypergeometric equation. It is
a solution of a second-order linear differential equation
with only two regular singularities and one irregular singu-
larity. This approach is similar to expanding the spheroidal
wave function in a series of Bessel functions. Despite more
efficient convergence, another very important property moti-
vates the use of the hypergeometric function, as will be
shown below for a particular choice of parameters.
The solution of Eq. (23) at z ¼ 0 with indicial exponent

γ ¼ 0 is constructed as

yðzÞ ¼
X∞
n¼0

cnyν0þnðzÞ; ð35aÞ

yνðzÞ ¼ 2F1ð−ν; νþϖ; γ; zÞ; ð35bÞ

where ϖ ¼ γ þ δ − 1 ¼ αþ β − ϵ. The corresponding
three-term recurrence relation for the coefficients is

P�
ncnþ1 þ S�ncn þ R�

ncn−1 ¼ 0; ð36Þ

with

P�
n ¼ Fν0þn−1; S�n ¼ Jν0þn; R�

n ¼ Dν0þnþ1; ð37Þ
where

Fν ¼ −
ðνþ αÞðνþ βÞðνþ γÞðνþϖÞ

ð2νþϖÞð2νþϖ − 1Þ ; ð38aÞ

Dν ¼ −
νðνþϖ − αÞðνþϖ − βÞðνþ δ − 1Þ

ð2νþϖÞð2νþϖ − 1Þ ; ð38bÞ

Jν ¼ −Eν − q;

¼ Zν

ð2νþϖ þ 1Þð2νþϖ − 1Þ − aHνðνþϖÞ − q;

ð38cÞ
and

Zν ¼ ϵνðνþϖÞðγ − δÞ
þ ðνðνþϖÞ þ αβÞð2νðνþϖÞ þ γðϖ − 1ÞÞ: ð39Þ

Again, cn ¼ 0; ∀ n < 0 and c0 ¼ 1. The choice of ν0 is
important and affects the resulting type of hypergeometric
function and its convergence behavior. In the literature,
two types are discussed: the so-called Erdélyi type
(E-type) I and II solutions, which differ significantly in
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their convergence behavior. While E-type I solutions have a
“limaçon” as convergence space and can contain one or two
singularities (the second one will be at the edge of the
convergence domain but is included), E-type II solutions
have an ellipse as convergence domain with singularities
at the foci. E-type II essentially uses degenerate hyper-
geometric functions as expansion functions in Eq. (35),
which predetermines the solution to have two singularities
in its convergence space. By choosing ν0 ∈ f0;−β −ϖg,
E-type II solutions are obtained for class2 I or III Heun
functions, respectively. For the sake of simplicity, the
discussion here is restricted to the first case. Solutions of
other classes can be derived by automorphisms similar to
those used for solutions of Hl.
The condition imposed on q is important to build a Heun

function Hf. By rewriting the functions of the three-term
recurrence relation [Eq. (36)]

Mn ¼
cn
cn−1

≔ −
R�
n

S�n þ P�
nMnþ1

; ð40aÞ

Ln ¼
cn
cnþ1

≔ −
P�
n

S�n þ R�
nLn−1

; ð40bÞ

the identity

MnLn−1 ¼ 1 ð41Þ
can be derived [21]. Replacing S�n ¼ −ðEn þ qÞ in Eq. (41),
inserting the recurrence relation and rearranging for q,
the necessary condition for the transformation of Hl into
Hf follows:

qk ¼ −En−1 −
R�
nP�

n−1
−ðEn þ qkÞ þ P�

n−1Ln−2
þ P�

nMnþ1;

¼ −En−1 −
R�
nP�

n−1
−ðEn þ qkÞ−

R�
n−1P

�
n−2

−ðEn−2 þ qkÞ − :::

−
P�
nR�

nþ1

−ðEnþ1 þ qkÞ−
P�
nþ1R

�
nþ2

−ðEnþ2 þ qkÞ − :::
: ð42Þ

Note that the parameter q now has an index k∈N and qk is
an infinitely countable set of possible auxiliary parameters
that provide solutions to the problem. Equation (42)
involves a finite continued fraction3 in the second term
and an infinite one in the third term. The second term is
finite due to Eq. (41) and the conditions on the coefficients
of Eq. (36). Consequently, Ln ¼ 0 for n < 0 and Mn ¼ 0
for n < 1. The continued fraction is centered on n and can
be chosen arbitrarily, e.g., n ¼ 0 reduces to a single infinite
continued fraction. To solve for qk, a successive approxi-
mation is performed, similar to the eigenvalue derivation
in [45]. Despite the infinite continued fraction in Eq. (42),

another property leads to the same result. Two local
solutions Hl developed around two different singulari-
ties share a mutual convergence domain and a particular
choice of qk will make them linearly dependent [46], i.e.,
the Wronskian vanishes,

Wz½y0iðq; zÞ; y1jðq; zÞ� ¼ y0iðq; zÞy01jðq; zÞ
− y00iðq; zÞy1jðq; zÞ ¼! 0; ð43Þ

where the indices i; j∈ f1; 2g refer to the respective
exponents of the local solutions [Eqs. (28a) to (28d)].
Despite its analytical property, this equation will be
evaluated numerically by a root-finding algorithm and
will complement the infinite continued fraction [Eq. (42)]
approach in later calculations.
The construction of the auxiliary parameter qk as in

Eq. (42) and (43) transforms the involved local Heun
functions Hl into a Heun function Hf for which the
convergence domain contains two singularities instead of
one. Despite the different notation, the evaluation of
the resulting Hf can still be performed by local solu-
tions [Eq. (28a) to (28d)]. In the literature, the technical
description of an Hf solution is

y0iðqk; zÞ ≔ ðs1; s2ÞHfðXÞk ðaH; qk;α; β; γ; δ; zÞ: ð44Þ
The proportionality of local solutions is defined by

Θi→j ≔
y0iðqk; zÞ
y1jðqk; zÞ

; ð45Þ

which is a constant and independent of z in the region of
mutual convergence.
A connection problem as in Sec. IV B has become

obsolete, as can be seen in Eq. (43). In the notation above
of Hf, s1 and s2 are the singularities at which the solutions
are simultaneously regular. Their respective Frobenius
exponents are fρ1; ρ2g and fσ1; σ2g. X∈ fI; II; III; IVg
refers to the class of the exponent combination, fρ1; σ1g,
fρ2; σ1g, fρ1; σ2g, and fρ2; σ2g, respectively. For further
discussion, the singularities will be considered to be s1 ¼ 0
and s1 ¼ 1, thus ρ1 ¼ 0;ρ2 ¼ 1− γ;σ1 ¼ 0 and σ2 ¼ 1 − δ.
This, together with the fact that for Eq. (28a) the parameter
γ must be a positive integer, establishes the existence
conditions for the class definitions just introduced [46],

class I∶ ReðγÞ > 0; ReðδÞ > 0 ð46aÞ

class II∶ ReðγÞ < 2; ReðδÞ > 0 ð46bÞ

class III∶ ReðγÞ > 0; ReðδÞ < 2 ð46cÞ

class IV∶ ReðγÞ < 2; ReðδÞ < 2: ð46dÞ

As a result, only certain classes are relevant for the Heun
function.

2See Eq. (46).
3Continued fractions can be written compactly using a notation

where, for example, 1
a−

1
b−

1
c ¼ 1

a− 1

b−1c

.
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1. Orthogonality and normalization

The orthogonality of spherical harmonics and the
resulting normalization play a crucial role in creating a
complete set of orthonormal functions, useful to expand
any square-integrable function. This particular property
will be important later in evaluating the scattering of waves
by a black hole.
Although Hl has no orthogonality relation and therefore

does not provide normalization, Hf has an orthogonality
relation [38]. This is

ðqk − qnÞ
Z
C
wðzÞykðzÞynðzÞdz ¼ ½pðzÞWz½yk; yn��C; ð47Þ

where

wðzÞ ¼ zγ−1ðz − 1Þδ−1ðz − aHÞϵ−1; ð48aÞ

pðzÞ ¼ zγðz − 1Þδðz − aHÞϵ: ð48bÞ

yk and yn are Heun functions Hf of the same class with
different auxiliary parameters qk ≠ qn, and C is a contour
along which the integral is evaluated. It is assumed that
the singularity parameter aH ∉ ½0; 1�. The right-hand side
vanishes for the class I Heun functions when C is a real line
from z ¼ 0 to z ¼ 1. Thus, as long as k ≠ n, the integral is
equal to zero and the orthogonality of yk, yn holds. When
k ¼ n Eq. (47) reveals a normalization constantZ

C
wðzÞy20iðqk; zÞdz ¼ ζij: ð49Þ

In this short excerpt, only the class I Heun functions are
discussed. This restriction can be lifted if C is a closed
Pochhammer double-loop contour [38]. However, Becker
[46] carried out an approach for each class that is still feasible
along the line z∈ ½0; 1�. The normalization constant ζij has
the same expression for all classes [Eqs. (46a) to (46d)],

ζij ¼ −Θi→jpðzÞ∂W
ij
z

∂q

				
q¼qk

: ð50Þ

Here,Wij
z ≔ Wz½y0iðq; zÞ; y1jðq; zÞ�. An important property

is that ζij is independent of z, since Θi→j and pðzÞ ∂Wij

∂q jq¼qk

are independent of z in the mutual convergence domain!

V. SOLVING THE SEPARATED EQUATIONS

Insights into Heun’s differential equation and its sol-
utions are now applied to the TMEs [Eqs. (19) and (15)]. A
general instruction on how to transform a differential
equation into the Heun form is given in Ref. [38]. The
independent variable undergoes a Moebius transformation,

zðuÞ ¼ u2 − u4
u2 − u1

u − u1
u − u4

; ð51Þ

which modifies the regular singularities positions’
fu1; u2; u3; u4;∞g → f0; 1; aH;∞; z∞g. An f-homotopic
transformation of the dependent variable follows:

yðzÞ ¼ zρ1ðz − 1Þρ2ðz − aHÞρ3fðzÞ: ð52Þ

Reading off the exponents of each singularity gives the
Heun form [Eq. (23)].

A. Angular solution

Starting with the solution of the angular Teukolsky
equation [Eq. (19)],

zðxÞ ¼ x4 − x2
x4 − x3

x − x3
x − x2

; ð53Þ

transforms fx1; x2; x3; x4;∞g to fza;∞; 0; 1; za∞g, where

za∞ ¼ zðxÞjx→∞ ¼ x4 − x2
x4 − x3

; ð54aÞ

za ¼ zðxÞjx→x1 ¼
x4 − x2
x4 − x3

x1 − x3
x1 − x2

: ð54bÞ

The physically interesting region between the two poles is
now located in the region z∈ ½0; 1�. It should be noted that
zðxÞ describes a complex path for x∈ ½−1; 1� and not a
straight line connecting both singularities on the real axis.
The dependent variable is transformed using the

f-homotopic transformation

sS
ðijÞ
lm ðzÞ ¼ zA1ðz − 1ÞA2ðz − zaÞA3ðz − za∞ÞA5yðaÞij ðsλlm; zÞ:

ð55Þ

Instead of using qk in the notation of the local Heun
function, the corresponding eigenvalue sλlm appears. Since
the differential equation [Eq. (19)] has five regular singu-
larities, A5 is also included here as an additional exponent
for the regular singularity at z ¼ za∞. This singularity is
removable and does not obstruct the formalism. Its expo-
nent turns out to be A5 ¼ 1.
To get to the Heun form, the exponents Ai will have to

take a particular form, which is

Ai ¼ �jAðxiÞj ð56Þ

with

AðxÞ ¼ sGmðxÞ
Δ0

xðxÞ
; ð57Þ

where i∈ f1; 2; 3; 4g. Note that A4 ¼ A�
3. Explicitly written

out, the exponents are
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A1 ¼ �
				m − s

2

				; ð58aÞ

A2 ¼ �
				mþ s

2

				; ð58bÞ

A3 ¼ ∓ 1

2

				
�
s − i

�
aω

1þ αffiffiffi
α

p −m
ffiffiffi
α

p ��				; ð58cÞ

A4 ¼ � 1

2

				
�
sþ i

�
aω

1þ αffiffiffi
α

p −m
ffiffiffi
α

p ��				: ð58dÞ

The choice of sign for A1, A2 depends on the boundary
condition and it is arbitrary for A3. Finally, the transformed
differential equation [Eq. (19)] takes the form

d2ya
dz2

þ
�
2A1 þ 1

z
þ 2A2 þ 1

z − 1
þ 2A3 þ 1

z − za

�
dya
dz

þ ρþρ−zþ u
zðz − 1Þðz − zaÞ

ya ¼ 0; ð59Þ

where

ρ� ¼ ð1 − A4Þ � A4; ð60aÞ

u ¼ −
�

iλ
4

ffiffiffi
α

p þ 1

2
þ A1 þ

�
mþ 1

2

�
ðA3 − A4Þ

�
: ð60bÞ

A coefficient comparison with Eq. (23) leads to the
identification of the Heun parameters,

γ ¼ 2A1 þ 1; ð61aÞ

δ ¼ 2A2 þ 1; ð61bÞ

ϵ ¼ 2A3 þ 1; ð61cÞ

α ¼ ρþ; ð61dÞ

β ¼ ρ−; ð61eÞ

aH ¼ za; ð61fÞ

q ¼ −u: ð61gÞ

Inserting the Heun parameters into Eq. (24), the identity for
the exponents yields

A1 þ A2 þ A3 þ A4 ¼ 0: ð62Þ
The arbitrary choice of signs for A3, A4 must respect this
identity.
A remarkable fact is that for a → 0, in the absence of

frame dragging effects, the angular Teukolsky equation
reduces to a spin-weighted Legendre equation. With
normalization of the solution due to the orthogonality
property, the polar part of the spin-weighted spherical
harmonics is obtained [47]:

sYlmðθÞ ¼ ð−1Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmÞ!ðl −mÞ!ð2lþ 1Þ

2ðlþ sÞ!ðl − sÞ!

s
sin2l

�
θ

2

�
eimϕ

Xl−s
p¼0

�
l − s
p

��
lþ s

pþ s −m

�
ð−1Þl−p−scot2pþs−m

�
θ

2

�
; ð63Þ

which becomes the usual spherical harmonics for s ¼ 0.
This fact is also reflected in Eq. (59)—or, more evi-

dently, in the Heun’s equation. The limit of the Kerr
parameter a → 0 also leads to the limit of aH → 0.
Dividing Eq. (23) by aH, considering the aforementioned
limit, and letting β; ϵ; q → ∞ simultaneously, such that

β

a
→ −ν;

ϵ

a
→ −ν;

q
a
→ −σ; ð64Þ

the general Heun differential equation reduces to the
confluent Heun equation

d2y
dz2

þ
�
νþ γ

z
þ δ

z − 1

�
dy
dz

þ
�
ανz − σ

zðz − 1Þ
�
y ¼ 0; ð65Þ

which has only two regular singularities at z∈ f0; 1g and
one irregular singularity at z ¼ ∞ due to the merging
of z ¼ aH; z ¼ ∞.

Equation (65) can also be derived starting from the
Legendre equation and transforming it into the confluent
Heun equation, but bearing in mind that now there are
only two regular singularities. Another equivalent approach
is shown in [21], where the general Heun equation is
examined and various limits are considered in the three-
term recurrence relations.
So far, the solution of the angular Teukolsky equation

has been derived in terms of the Heun function. What is
still missing is the resolution of the boundary condition and
the derivation of the separation constant, or rather the
eigenvalue sλlm.

1. Eigenvalue problem

The eigenvalues of spherical harmonics in an axially
symmetric spacetime have been extensively discussed
in the past [45,48,49]. An extension of this is the spin-
weighted spherical harmonics, where the spin weight
modifies the polar component [47] (cf. Eq. (63)). In [21]
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the authors performed a successive approximation of the
eigenvalue for KdS spacetimes by Heun functions. We will
briefly present the results in the notation used here.
To apply the successive approximation formula for

Eq. (42), the desired eigenvalue sλlm is extracted from
the auxiliary parameter sqlm ¼s q̃lm − i sλlm

4
ffiffi
α

p and rearranged

for sλlm. An expansion in terms of the Kerr parameter a is

sλlm ¼
X∞
i¼0

biai: ð66Þ

It is important for comparability to emphasize the relation
of this eigenvalue to Teukolsky’s definition of the eigen-
value, which is sλlm ≔ sAlm þ 2s − 2aωmþ a2ω2 [23,35].
Relabeling the index n ¼ l − ðA1 þ A2Þ in Eq. (36)

introduces the new index l, which gives the zeroth-order
coefficient [48].

b0 ¼ ðlþ A1 þ A2 þ 1Þðl − ðA1 þ A2ÞÞ: ð67Þ

As mentioned above, the solution of the angular
Teukolsky equation for spherically symmetric cases, i.e.,
Schwarzschild(-de Sitter), turns out to be the spin-weighted
spherical harmonics sYlm, whose defining property is
the regularity at the poles x∈ f−1; 1g. Since the differen-
tial equation and its eigenvalue still qualify as a Sturm-
Liouville problem, for which a Dirichlet-type boundary
condition imposes the said regularity, the exact analytic
eigenvalue in this case is

λ ¼ lðlþ 1Þ − sðs − 1Þ: ð68Þ

This case must be reproduced in the limit a → 0 of the
more general case of the KdS spacetime treated here.
Thus, comparing Eqs. (67) and (68),

A1 þ A2¼! − s ∀ m; s: ð69Þ

This can only be achieved if the signs of A1, A2 are chosen
such that

A1 ¼

þj m−s

2
j; m − s ≥ 0

−j m−s
2
j; m − s < 0

¼ m − s
2

; ð70aÞ

A2 ¼

−j mþs

2
j; mþ s ≥ 0

þj mþs
2

j; mþ s < 0
¼ −

mþ s
2

: ð70bÞ

After the sign uncertainty is resolved by the boundary
condition, the remaining coefficients of the successive
approximation can be determined in Eq. (66). The coef-
ficients up to the fifth order are given in [21].
In principle, the eigenvalues of a ≠ 0 can be determined

analytically by successive approximations. Because of its
approximate nature, the resulting eigenvalues will not be

accurate enough for applications. However, they serve
as seed values for a numerical root-finding algorithm.
Recalling that the eigenvalue can be determined by two
approaches, the infinite continued fraction [Eq. (42)] or the
Wronskian method [Eq. (43)], the second approach qual-
ifies for a root-finding algorithm.

2. Final solution

The final solution is a combination of all possible
solutions in the region of interest, i.e., the region between
the north pole (z ¼ 1) and the south pole (z ¼ 0). Thus,

sSlmðzÞ ¼
X1
i¼0

X2
j¼1

XijsS
ðijÞ
lm ðzÞ: ð71Þ

However, depending on m, s, not all solutions are regular
on the whole domain including the boundaries at the same
time. We are only interested in the solutions that are regular
on the poles for the given parameter set. Observing that the
expansion of each solution at its respective regular singu-
larity is Eqs. (29) and (30), the coefficients Xij must be

X01ðzÞ ¼


1; A1 ≥ 0

0; A1 < 0;
X02ðzÞ ¼



0; A1 ≥ 0

1; A1 < 0;

X11ðzÞ ¼


1; A2 ≥ 0

0; A2 < 0;
X12ðzÞ ¼



0; A2 ≥ 0

1; A2 < 0
ð72Þ

in order to reduce the sum to its regular solutions. The sum,
combined with the aforementioned conditions, can also be
rewritten as

sSlmðzÞ ¼ sS
ð0iÞ
lm ðzÞ þ sS

ð1jÞ
lm ðzÞ; ð73Þ

where the indices i, j refer to the angular solutions

i ¼


1; A1 ≥ 0

2; A1 < 0
; j ¼



1; A2 ≥ 0

2; A2 < 0
: ð74Þ

The general solution now consists of two solutions in
total. Recalling that the eigenvalue discussion transforms
local Heun functions Hl into Heun functions Hf, and
the remaining two solutions of each regular singularity
become linearly dependent, this property, expressed as

sS
ð0iÞ
lm ðzÞ ¼ sΘ

ði→jÞ
lm sS

ð1jÞ
lm ðzÞ, simplifies the general solution

even more to

sSlmðzÞ ¼
�
1þ 1

sΘ
ði→jÞ
lm

�
sS

ð0iÞ
lm ðzÞ: ð75Þ

sSlmðzÞ can be reformulated in a last step by dividing the
prefactor of the left-hand side, so that the definition

sS̃lmðzÞ ≔ sS
ð0iÞ
lm ðzÞ
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finally expresses the general solution by only one of the
remaining solutions, which still depends on m, s via the
i index.
Since the Heun function is evaluated in Mathematica

using the series representation [Eq. (35)], the greater the
distance between the evaluation point and the respective
regular singularity, the more terms must be calculated,
which may take a substantial amount of time. In particular,
this means that, e.g., computing a point near z ¼ 1 by a
solution of z ¼ 0 takes considerably longer. Using the
linear dependence of the Heun functions reduces the
computational cost at this point. The final general solution
is therefore calculated by

sS̃lmðzÞ ¼
(

sS
ð0iÞ
lm ðzÞ; jzj ≤ 1

2

sΘ
ði→jÞ
lm sS

ð1jÞ
lm ðzÞ; jzj > 1

2
;

ð76Þ

where the proportionality constant of the linear dependence

is sΘ
ði→jÞ
lm ¼ sS

ð0iÞ
lm ð1=2Þ=sSð1jÞlm ð1=2Þ. Here, z¼1=2 is chosen

to switch from one definition to another because it lies
between the two regular singularities within the mutual
convergence region, thus minimizing computational cost.
The modulus of z in the case of conditions of Eq. (76) is
necessary since zðxÞ for x∈ ½−1; 1� is a path in the com-
plex plane.

B. Radial solution

The radial Teukolsky equation [Eq. (15)] is solved
similarly to the angular case. The transformation of the
independent variable uses the regular singularities, which
are equal to all radial locations of the horizons,

zðrÞ ¼ r0þ − r−
r0þ − rþ

r − rþ
r − r−

: ð77Þ

These are transformed as fr0−; r−; rþ; r0þ;∞g →
fzr;∞; 0; 1; zr∞g, where

zr∞ ¼ zjr→∞ ¼ r0þ − r−
r0þ − rþ ; ð78aÞ

zr ¼ zjr→r0− ¼ r0þ − r−
r0þ − rþ

r0− − rþ
r0− − r−

: ð78bÞ

The physical region of interest, the domain of outer
communication, lies between the event horizon rþ and
the cosmological horizon r0þ, i.e., z∈ ½0; 1�. The regular
singularity at r ¼ ∞ can again be removed by an additional
factor in the f-homotopic transformation of the dependent
variable. Thus,

sR
ðijÞ
lm ðzÞ ¼ zB1ðz − 1ÞB2ðz − zrÞB3ðz − zr∞ÞB5yðrÞij ðsλlm; zÞ:

ð79Þ

The exponents take a particular form in order to complete
the transformations to the canonical form of Heun’s
equation, in which their definition can be conveniently
written by KmðrÞ, giving

Bi ¼ �ijBðriÞj ð80Þ

with

BðrÞ ¼ KmðrÞ
Δ0

rðrÞ
; ð81Þ

where i∈ f1; 2; 3; 4g and ri ∈ frþ; r0þ; r0−; r−g and B5 ¼
2sþ 1. As in the angular case, B4 ¼ B�

3. Finally, the
transformation results in

d2y
dz2

þ
�
2B1 þ sþ 1

z
þ 2B2 þ sþ 1

z − 1
þ 2B3 þ sþ 1

z − zr

�
dy
dz

þ σþσ−zþ v
zðz − 1Þðz − zrÞ

y ¼ 0; ð82Þ

where the remaining functions are

σ� ¼
�
1 − B4 þ

3

2
s

�
�
�
B4 þ

1

2
s

�
; ð83aÞ

v ¼ λ − 2sð1 − αÞ − Λ
3
ðsþ 1Þð2sþ 1Þðrþr− þ r0þr0−Þ

Λ
3
ðr− − r0−Þðrþr0þÞ

−
ið2sþ 1Þ½2ð1þ αÞfωðrþr− þ a2Þ − amg

Λ
3
ðr− − r0−Þðr− − rþÞðrþ − r0þÞ

: ð83bÞ

A coefficient comparison between Eq. (23) and (82)
identifies the Heun parameters as

γ ¼ 2B1 þ 1; ð84aÞ

δ ¼ 2B2 þ 1; ð84bÞ

ϵ ¼ 2B3 þ 1; ð84cÞ

α ¼ σþ; ð84dÞ

β ¼ σ−; ð84eÞ

aH ¼ zr; ð84fÞ

q ¼ −v ð84gÞ

with the identity for the exponents

B1 þ B2 þ B3 þ B4 ¼ 0: ð85Þ

As in the angular case, the exponents have a sign
ambiguity. While in the angular case the signs are resolved
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by requiring regularity at x ¼ �1, in the radial case they are
resolved by a more complex boundary condition discussed
in the next section.

1. Boundary condition and final solution

The boundary condition imposed on the radial solution,
which leads to the full solution of the radial Teukolsky
equation, roots from the physical context of black holes.
The main property of horizons is the semipermeability of
the information flow, i.e., in the case of the event horizon
rþ, that information falls into the black hole, but nothing
escapes it in a classical sense. In the case of the cosmo-
logical horizon r0þ, information crossing it to the outside of
the domain of outer communication will be unreachable for
an observer due to the superluminal expansion behind it.
Taking this into account, two linear independent solutions
can be formulated: The In and the Up mode, as discussed in
many publications (see, e.g.. [7,8,12,14,20,35,50,51]). A
Penrose diagram depicts this in Fig. 1. Its mathematical
construction is adequately done in terms of the asymptotic
behavior of the radial solution at the horizons. To do this,
the radial Teukolsky equation is transformed into a quasi-
Schrödinger representation [20], which leads to

RðrÞ ∼ Δ−s
2
�ðBhþs

2
Þ

r ðrÞ; r → rh: ð86Þ

This, in combination with the time-dependent term from
the separation ansatz e−iωt, determines the ingoing and
outgoing properties of the respective waves by proper
choice of signs. On the basis of this, the In and Up modes
can be defined as

Rin →



CðtransÞΔ−B1 ; ðr → rþÞ
CðrefÞΔB2 þ CðincÞΔB2 ; ðr → r0þÞ;

ð87aÞ

Rup →



DðupÞΔB1 þDðrefÞΔ−B1 ; ðr → rþÞ
DðtransÞΔ−B2 ; ðr → r0þÞ:

ð87bÞ

The six scattering coefficients CðtransÞ, CðrefÞ, CðincÞ, DðupÞ,
DðrefÞ, and DðtransÞ are to be determined. With sR

ðinÞ
lm ðrÞ ¼

sR
ð02Þ
lm ðsλlm; rÞ and sR

ðupÞ
lm ðrÞ ¼ sR

ð11Þ
lm ðsλlm; rÞ, the corre-

sponding asymptotic behavior of Eq. (86) coincides with
Eqs. (29a) and (30b), respectively. Using Eq. (31b) and
(32a), it can be concluded that

sR
ðinÞ
lm ðrÞ ¼



R02ðrÞ; ðr → rþÞ
C21R11ðrÞ þ C22R12ðrÞ; ðr → r0þÞ;

ð88aÞ

sR
ðupÞ
lm ðrÞ ¼



D11R01ðrÞ þD12R02ðrÞ; ðr → r0þÞ
R11ðrÞ; ðr → r0þÞ:

ð88bÞ

A coefficient comparison of Eq. (87) and (88) expresses the
scattering coefficients in terms of the Heun connection
coefficients, which can be looked up in [20].
It should be emphasized that this approach to wave

scattering by a black hole allows for a fully analytical
solution in terms of the local Heun functions and con-
nection coefficients [Eqs. (33) and (34)]. Applications of
the scattering coefficients include the derivation of reflec-
tion and transmission, which are important for S-matrices
and evaluation of differential cross sections. This becomes
possible by the presence of a positive cosmological con-
stant, i.e., in de Sitter spacetimes. However, a negative
cosmological constant, i.e., in anti–de Sitter spacetimes,
leads to complex radial values of the negative and positive
cosmological horizons r0−, r0þ. Therefore, r0þ no longer
limits the domain of outer communication, but r ¼ ∞.
Because r ¼ ∞ is not an irregular singularity for Eq. (15) in
the case of Λ < 0, a radial boundary condition can be
formulated such that the solutions are analytical again. For
a proper description in this case check Ref. [52].

C. Scattering via Green’s function

The scattering of monochromatic point sources by a KdS
black hole is described by the spatial Green’s function, for
which the time-dependent part e−iωt, acting as an l and m
independent total complex phase shift, is omitted. It is
calculated for all possible partial waves, which are written
as a product of the solutions of the radial and angular
Teukolsky equations, as well as the azimuthal part from
Eq. (14). In addition to sSlmðθÞ, the normalization constant
sζlm from Eq. (50) ensures the existence of an orthonormal
basis, similar to the case of spherical harmonics, allowing
expansion of any square-integrable function in the manner
of a Fourier series. Finally, the Green’s function is [20]

IN ModeUP Mode

FIG. 1. Penrose diagram showing only an excerpt of the fully
analytically extended diagram (domain of outer communication).
Purely ingoing waves (IN mode) and purely outgoing waves
(UPmode) are scattered to both horizons by the black hole.Ho is
the event horizon, where Hc is the cosmological horizon. An
extended analytical version can be found in [31].
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Gðr⃗O; r⃗s; LÞ ¼
XL
l¼s

Xl

m¼−l
sG̃lmðrO; rsÞ s

SlmðθOÞ
sζlm

sS�lmðθsÞ
sζlm

× eimϕOe−imϕs ; ð89Þ
where a star marks the complex conjugate. The s subscripts
of the Boyer-Lindquist coordinates indicate the coordinates
of the point source, while the O subscripts indicate the
observer’s coordinates, and i, j are selected depending on
Eq. (74). The complete analytical solution is defined by an
infinite sum L ¼ ∞.4 In the case of the radial Teukolsky
equation, the solution for a radiating point source, arbi-
trarily placed around the black hole, roots from the
modified differential equation�

Δ−s d
dr

�
Δsþ1

d
dr

�
þ sV

ðradÞ
lm ðrÞ

�
sG̃lmðr; rsÞ

¼ −δðr − rsÞ: ð90Þ
For In and Up solutions satisfying the boundary condi-
tions introduced in Eq. (87), it is required that the linear
independent solutions coincide at the location of the source.
In the context of Green’s functions, this is done in the
standard way via

sG̃lmðrO; rsÞ ¼
−ΔsðrsÞ

Δsþ1Wr½Rin; Rout�
× fRinðrsÞRupðrOÞΘðrO − rsÞ
þ RinðrOÞRupðrsÞΘðrs − rOÞg; ð91Þ

where Θ is the Heaviside step function. Therefore, depend-
ing on the order of rO and rs, one or the other term becomes
relevant. It is important to note that Δsþ1Wr½Rin; Rout� is
constant and is evaluated at some point in the overlapping
convergence domain of the radial solutions.

VI.WAVE-OPTICAL IMAGINGOF BLACKHOLES

In the following, the wave-optical imaging of black holes
is discussed based on the results above. The Green’s
function allows to describe the scattering of a point source
and interference effects at arbitrary points around a black
hole. However, the interference itself is not sufficient to
achieve wave-optical imaging. For this, a short revision of
this missing step is given below. After that, we investigate
black hole scattering of scalar wave point sources in
Schwarzschild–de Sitter and Kerr–de Sitter. The main goal
is to validate the wave-optical images with previous results
from the ray-optical approaches. The formation of an
Einstein ring, frame dragging, the wave-optical shadow,
and additional image splitting in the presence of a rotating
black hole, which is remotely predicted in the weak-
gravitational case, are considered.

A. Wave-optical imaging

The choice of scalar (s ¼ 0) point sources in first-order
perturbations simplifies the study of scattering as a useful
model for other spin fields [14], where polarization degrees
of freedom become negligible. Furthermore, scalar waves
allow access to wave-optical imaging via the Kirchhoff-
Fresnel diffraction theorem [53]. A typical setup is shown
in Fig. 3, also used in previous works [7,9–11,19].

FIG. 2. Schematic illustration emphasizing the relationships
between the polar coordinate θO of the observer plane and the
point source coordinates ðθs;ϕsÞ in the black hole coordinate
system. The gray plane is the observer plane on which the Green’s
function is evaluated. It coincides with the lens plane in Fig. 3
with its respective plane coordinate system defined by
capital X, Y.

FIG. 3. Schematic plane arrangement. From a point in the
source plane a wave is emitted to the lens plane, described by r⃗0,
where R⃗0

0 is the distance to the origin of the lens plane. r⃗00 and R⃗00
0

have the same properties for the lens plane-image plane relation.
The faint blue circle indicates the thin convex lens with radius d.

4For computing the results, a small discussion of convergence
and truncation of the sum can be found in Appendix E.
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Waves coming from a source pass through the lens plane
and are diffracted to the image plane, resulting in the wave-
optical image. In the lens plane, different shapes and types
can be considered, e.g., a simple aperture or a convex lens,
giving significantly different results. In our case, we focus
on the latter, as done in [11], with the aperture size d ¼ 2M
assumed in all further calculations. The far-field approxi-
mation of the Kirchhoff-Fresnel diffraction, also called
Fourier optics, states that the diffraction integral in the
image plane is approximately the two-dimensional Fourier
transform of the lens plane, written as

ψðr00!Þ ∝
Z Z

Σ
Φðr⃗Þe−i

ωx00
R00
0

x
e
−iωy

00
R00
0

y
dxdy; ð92Þ

where Σ ¼ x2 þ y2 ≤ d2 is the lens shape and Φðr⃗Þ is the
field of the source in the lens plane. Note that Z00 is identical
to the focal length f of the lens in our considerations. The
wave-optical image is evaluated by the absolute square of
the Fourier transform [Eq. (89)] jF ðGðr⃗; r⃗s; lmaxÞÞj2, where
F ðxÞ is a short-hand notation for the Fourier transform.

B. Notes on the construction

A two-dimensional observer plane placed around the
black hole is considered, always facing towards the black
hole regardless of its location. Details can be found in
Appendix B and the plane coincides with the lens plane
mentioned in the last subsection.
Assuming that the distance between the observer and the

black hole is much larger than the radial position in the
observer plane rO ≪ d, the radius of each point can be
considered as constant, and thus one radial solution
suffices. Note that the azimuthal coordinate of the observer
plane ϕO is not listed in the set of free parameters because it
is sufficient to modify only ϕs. Therefore, ϕO ¼ 0 is
assumed. Varying ϕS instead of ϕO also avoids recalculat-
ing the angular solutions of the observer plane, which
drastically reduces computational cost.
The number of discrete points in the observer plane is

reduced to a grid of xN ¼ yN ¼ 71 to balance resolution
and computational cost. To increase the spectral resolution
of the Fourier transformed observer plane, zero padding of
the result is applied as a postprocessing step, which
essentially appends zeros in both spatial dimensions of
the discrete calculations. Here, we will zero pad the input to
an output of 1071 × 1071 discrete points. As another
postprocessing step, a Tukey filter5 is applied to reduce
aliasing effects in the Fourier transformation process.
For the cosmological constant, a small value of ΛM2 ¼

10−3 is considered. Thus, the set of free parameters to
examine is fMω; a; rO; rs; θO; θs;ϕsg.

Primarily, the computation time depends on the fre-
quency, due to the cutoff of the Green’s function
(cf. Appendix E), and the resolution of the observer
plane. For reference, the most time-consuming calculation
for Mω ¼ 15 and a ¼ 0.99M required ten days of com-
putation parallelized over 40 kernels.
Note that the plots in the image plane are normalized to

their respective maximum absolute value for each result
shown. Consequently, it appears that each wave-optical
image shown here has the same luminosity, which is
not actually the case and limits the comparability of the
results shown in terms of magnitude. Figure 10 shows
the maximum maxðjGðr⃗; r⃗s; lmaxjÞ for different locations
of the point source to give an impression of different
normalizations.

C. Schwarzschild–de Sitter

In the case of the SdS metric (a ¼ 0), the normalized
solution of the angular Teukolsky equation reduces
to spin-weighted spherical harmonics [Eq. (63)], which
reduces computational complexity and is independent of
the choice of Λ. The radial Teukolsky equation depends
on the m-multipole index in Eq. (18) through the product
with the Kerr parameter a. Therefore, setting a ¼ 0,
the radial solution becomes independent of m, which
considerably reduces the number of terms that must be
computed.
Figure 4 shows the frequency variation for an SdS black

hole. The observer plane and the point source are located
in the equatorial plane and aligned antipodally (θO ¼ π

2
,

θs ¼ π
2
, and ϕs ¼ π). For three different results of Mω ∈

f4; 12; 18g and radial locations rO ¼ 10M, rs ¼ 20M, the
wave-optical images are computed. In this alignment,
previous results predict the formation of a so-called
Einstein ring. The upper row of the figure shows the
imaginary part of the Green’s function. The concentric
circles become finer as Mω increases. Actual wave-optical
images resulting from the scattering are shown in the lower
row, respectively. The resulting images are consistent with
the prediction of Einstein rings, which become sharper as
the frequency increases. However, unlike the ray-optical
approach, these images show both an expansion and a
distribution of magnitude.
Varying the angular position ϕS of the source for

fixed rs changes the resulting image. For nine align-
ments that deviate from the antipodal alignment in steps
of π

10
for θs and ϕs respectively, the resulting images

are shown for Mω ¼ 20 in Fig. 5. Moving the source
breaks the Einstein ring and the formation of primary
and secondary images around the center. The primary
images face outwards, and the secondary images face
inward. The bending of these images is a natural
consequence of the imaging by the wave-optical ansatz.
The secondary image is, trivially, fainter than the
primary image.5See Appendix D for details.
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D. Kerr–de Sitter

TheKdS case involves a parameter choice of 0<a<amax,
where the full solutions of the radial and angular Teukolsky
equations (Eqs. (75) and (91), respectively) come into play.
Its effect on the wave-optical image is studied in Fig. 6 for
three different values of a=M∈ f0; 0.60; 0.99g in an antipo-
dal alignment of source and observer in the equatorial plane.
Increasing a shifts the apparent point source location, which
can be intuitively explained by the resulting frame dragging
caused in the vicinity of rotating black holes. Therefore, an
antipodally aligned observer-source constellation no longer
appears antipodal in the presence of a nonzero Kerr param-
eter. In addition, the results from the KdS observer planes
gain a symmetry breaking featurewhen compared to the SdS
results; see Figs. 6(a) to 6(c). The comparison between the
results with nonzero Kerr parameters and a ¼ 0 is shown in
Figs. 6(c) and 6(f). Thewave-optical images limit towards the
SdS case. The two cases differ mainly in the solution of the
angular Teukolsky equation. Omitting the normalization
constant, a crucial step in solving the angular Teukolsky
equation, results in unusable lens and image planes that

neithermatch at all the results shownnor the limit towards the
SdS case.
To once again visualize the frame-dragging effects,

Fig. 5 is recreated for the KdS case with a ¼ 0.99M in
Fig. 7. Choosing the azimuthal position ϕS of the point
source on the equatorial plane so that it appears antipodal in
the KdS case, the Einstein ring forms. However, it has a
broken symmetry and additional features compared to the
SdS case, e.g., a structure resembling a Kerr black hole
inside the Einstein ring. Section VI E will show that the
current setup is not sufficient to fully reveal the black hole
shadow in the wave-optical regime.
If the source andobserver plane areplaced in the equatorial

plane and ϕs ¼ π
2
is chosen, another effect is apparent, as

shown in Fig. 8. In the case of a ¼ 0.00M, three images
aligned at β=rO ¼ 0 can be observed. The lensing approach
to imaging and black hole shadows describes the appearance
of infinitely stacked images close to the shadow6 in Fig. 8.

FIG. 4. Variation of the source frequency Mω∈ f4; 12; 18g for SdS, using parameters a ¼ 0.00M, ΛM2 ¼ 10−3, rO ¼ 10M,
rs ¼ 20M, θO ¼ π

2
, θs ¼ π

2
, ϕs ¼ π. In this constellation, the Einstein ring forms. The upper row shows the imaginary part

ImðGðr⃗; r⃗s; lmaxÞ, whereas in the lower row the resulting image from jF ðGðr⃗; r⃗s; lmaxÞÞj2 is shown, respectively. An apparent effect
of increasing frequency is a sharper Einstein ring in the image plane and finer structures of interference in the observer plane.

6Shown as an orange-dotted curve, see Sec. VI E for the
description of the ray-optical shadow.
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The wave-optical image has these infinitely stacked images
near the shadow of the black hole on the left half of Fig. 8.
Increasing the Kerr parameter a causes two more distinct
images to separate from the infinitely stacked images,
resulting in a total of five visible images of the point source.
However, they appear to be one point. Varying the frequency
reveals the reason for this. For example, whenMω ¼ 3, the
four projected points of the source merge into one very large

point, brighter than the primary image on the right. As the
frequency decreases, the projections merge. The same argu-
ment applies to the infinitely stacked images near the
shadow’s boundary on the left side, where scattered wave
merges into a single point. As l increases in Eq. (89), the
amplitudes of Eq. (91) decrease to zero as l → ∞. Physically,
this can be explained by the fact that the modes are more and
more absorbed by the black hole.

FIG. 5. Variation of the point source’s location for a ¼ 0.00M, Mω ¼ 20, ΛM2 ¼ 10−3, rO ¼ 10M, rs ¼ 20M, θO ¼ 1
2
π. Here, only

the image jF ðGðr⃗; r⃗s; lmaxÞÞj2 is shown. Primary and secondary images of the source are clearly visible.
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Our results can be checked against previous work. Lens
maps computed for the Kerr spacetime [54]7 confirm the
results. The appearance of more images in the presence of
angular momentum of a massive body is also discussed
in previous literature [55,56]. The described observation
cannot be made if ϕs ¼ 3

2
π. Also, if the observer plane is

placed on one of the poles (θO ∈ f0; πg) when ϕs ¼ 1
2
π. In

the latter case, however, there is another effect worth
mentioning: due to frame dragging, the apparent location
of the source rotates around the center of the image along
the shadow boundary8 (cf. Sec. VI E).

E. Black hole shadow and wave-optical imaging

We have shown that the method outlined above produces
images with an intensity distribution that cannot be repro-
duced using the ray optics approach that solves for null
geodesics. The latter was useful to verify the wave-optical
results, e.g., by observing the frame dragging or, in case of
Fig. 8, the appearance of additional images of the source.
However, a genuine property of black holes has not yet

been reproduced with wave optics: the shadow of a black
hole. In particular the Kerr case is appealing, in which large
Kerr parameters a produce a very characteristic shadow in
the equatorial plane θO ¼ π=2, which deviates significantly
from a circle and is shifted from its proper origin [3,5]. The
simple reason for this lies in the construction: In the case of
the shadow description originating from the ray-optical
approach, the boundary of the shadow can be computed by
null geodesics, emitted into the past from the observer’s
position, which get infinitely close to the photon region of
the black hole. The set of these geodesics covers the whole

FIG. 6. Variation of the Kerr parameter a=M∈ f0.00; 0.60; 0.90g forMω ¼ 15, ΛM2 ¼ 10−3, rO ¼ 10M, rs ¼ 20M, θO ¼ π
2
, θs ¼ π

2
,

ϕs ¼ π. Increasing a results in a shift of the apparent source position, as well as additional structures breaking the symmetry in the
observer plane. Even if the source is moved so that it appears directly behind the black hole [the center of the concentric circles is in the
middle of the observer plane, as in Fig. 6(c)], no clean Einstein ring emerges, but a distorted one with additional features appears.
The upper row shows again ImðGðr⃗; r⃗s; lmaxÞÞ in the observer plane and the lower row shows the images in the image plane,
jF ðGðr⃗; r⃗s; lmaxÞÞj2.

7See p. 5, Fig. 4, bottom right excerpt. Enlarging very close to
the location of our observed additional images, one can barely see
the edges of the green and blue planes, which is the location of
our point source (a few pixels) for the color coding of the authors’
work.

8This is also shown in [54], p. 5, Fig. 4, bottom left excerpt.
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photon region. Here, however, the approach is reversed: A
point source emits waves that are scattered by the black
hole to interfere at the observer’s plane. All geodesics that
would theoretically hit an observer coming from the same
point source do not cover the entire photon region. Thus,
the characteristic shadow will not be revealed in its full
nature in the wave-optical imaging of a single source.

Examples of equations describing the apparent shadow
for an observer were first given by Bardeen [6] for Kerr
black holes. Grenzebach et al. [5] give a description of the
shadows for the entire PB spacetime class for arbitrary
observers. See [3] for a comprehensive comparison
between the two approaches. The main difference between
the two approaches is the shift of the origin of the shadow

FIG. 7. Variation of the source position according to the captions of the subfigures for a ¼ 0.99M, Mω ¼ 15, ΛM2 ¼ 10−3,
rO ¼ 10M, rs ¼ 20M, θO ¼ 1

2
π, similar to Fig. 5, showing the image jF ðGðr⃗; r⃗s; lmaxÞÞj2. The shift in apparent source location due to

the frame dragging is observable.
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depending on a, which is due to different definitions of
the observer. A principal null ray for Bardeen’s observer
has an angular momentum of L ¼ pϕ ¼ 0. Therefore, the
observer is corotating and is referred to as a zero-angular
momentum observer (ZAMO) or locally nonrotating frame.
In Grenzebach’s case, the principal null ray has an angular
momentum of L ¼ −a sin θO and the observer is called a
standard observer, who is a noncorotating, static observer,
as viewed from infinity. Furthermore, Bardeen’s formula
differs in its applicability, as it is only valid for observers at
large distances. In the following, the shadows are calculated
using the equations of Grenzebach et al. At an observer’s
location, the shadow is described by the celestial angles

sin ϑðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ΔrKE

p
r2 þ a2 − aLE

				
r¼rO

; ð93aÞ

sinψðrÞ ¼ LE − a sin2 θffiffiffiffiffiffiffiffiffiffiffiffi
ΔθKE

p
sin θ

				
θ¼θO

; ð93bÞ

where

KEðrÞ ¼
16r2Δr

ðΔ0
rÞ2

; ð94aÞ

aLEðrÞ ¼ ðΣþ aχÞ − 4rΔr

Δ0
r
: ð94bÞ

The stereographic projection is employed to construct
the shadow on a plane, resulting in

xðrpÞ ¼ −2 tan
�
1

2
ϑðrpÞ

�
sinψðrpÞ; ð95aÞ

yðrpÞ ¼ −2 tan
�
1

2
ϑðrpÞ

�
cosψðrpÞ; ð95bÞ

where rp ∈ ½rmin
p ; rmax

p � is the radius of the photon region
seen from θO. At the poles θO ∈ f0; πg the photon region

FIG. 8. Variation of the Kerr parameter a=M ¼ f0.00; 0.20; 0.60; 0.80; 0.90; 0.99g for Mω ¼ 15, ΛM2 ¼ 10−3, rO ¼ 10M,
rs ¼ 20M, θO ¼ π

2
, θs ¼ π

2
, and ϕs ¼ π

2
. The image jF ðGðr⃗; r⃗s; lmaxÞÞj2 is shown. The point source is in the equatorial plane, but

at ϕs ¼ π
2
instead of ϕs ¼ π as before. The ray-optical shadow of the black hole is shown (orange-dotted line), as described in Sec. VI E.

In this setup, in addition to the primary and secondary images, two additional images separate from the infinitely stacked images at the
shadow’s boundary with increasing a.
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degenerates to a single point (rmin
p ¼ rmax

p ), while in the
equatorial plane it has the maximal extension. For a ¼ 0,
the photon region becomes a photon sphere (a topological
sphere of radius rp ¼ 3M). However, in our case we
still have a cosmological constant that introduces correc-
tions to the radius of the photon sphere. These correc-
tions are discussed, for example, in [57]. The projections
xðrpÞ, yðrpÞ can be translated into the origin reference of
Bardeen’s projection. In the previous paragraph, it was
mentioned that the difference in origins depends on a and
θO. Shifting x by

αðrpÞ
rO

¼ xðrpÞ −
a sin θO

rO
; ð96aÞ

βðrpÞ
rO

¼ yðrpÞ ð96bÞ

gives the correct translation between the two observer
definitions [3]. αðrpÞ; βðrpÞ are the expressions computed
by the Bardeen formula, which divided by rO gives the
celestial angles.
In the next step, the shadow computed from the ray-

optical approach has to be included in the wave-optical
image for comparison. Hence, the relationship between
the aforementioned projections and the image plane must
be further examined. In Appendix B we discuss how the
coordinates of the image plane are calculated from the
viewing angles in the observer plane. Assuming that
observers are at large distances, the viewing angle ϑ
becomes small. The projection on the celestial sphere by
Eq. (93), the stereographic projection [Eq. (95)], and the
angles derived from the coordinates of the image plane
[Eqs. (B1), (B2), (B9)] agree and approximate the projec-
tions up to the first order in ϑ. Under this assumption, the
center of the observer plane of Fig. 3 coincides with the
location of the observer in [58].
To model the wave-optical shadow of a black hole, a

slight modification to the previous approach must be
considered. The nature of the TME and Green’s function
as linear differential equations allow for the superposition
principle to be applied. Instead of a single point source as
used in Fig. 2, a superposition of many point sources with
the same frequency and amplitude aligned on a hemisphere
opposite the observer is considered; see Fig. 9. On this
hemisphere, scalar point sources have angular separations
of π

10
in both angular directions. In total, 101 sources are

taken into account for the observation of the wave-optical
shadow. In this way, the photon region is sufficiently well
covered.
The first test to construct the characteristic shadow

is performed with Mω ¼ 15 and the center of the
observer plane placed in the equatorial plane θO ¼ π

2
with

rO ¼ 10M. The hemisphere of the sources has a radius of
rS ¼ 20M. As a increases, the deformation and the shift

FIG. 9. Schematic representation of the hemisphere of sources
aligned antipodally to the observer plane. The orange line points
to the antipodal point of the center of the observer plane. Sources
are aligned such that they are distributed from pole to pole in
steps of π

10
for their coordinates θ and ϕ, resulting in a total of 101

sources. The relationship between the expansion of the source
sphere and the distance to the black hole of the observer plane is
true to scale for the evaluated parameter sets used in Fig. 11 and
12. The rotation angles are defined in the same way as in Fig. 2,
but are omitted here for clarity.

FIG. 10. Evaluation of maxðjGðr⃗; r⃗s; LÞjÞ for one single source
located at ðϕs; θsÞ. Using a ¼ 0.99M, ΛM2 ¼ 10−3, Mω ¼ 15,
rO ¼ 10M, rs ¼ 20M, and θO ¼ π

2
, a total of 10.001 point

sources are calculated. The magnitudes are minimum-maximum
normalized for highest contrast. The choice of parameters
correlates with the results of Figs. 7, 8(f) and 11(a) and gives
an impression of the magnitude and how the normalization of
each figure is roughly correlated with different positions of the
source and the resulting observable brightness.
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from the origin should also increase. Figure 11 shows the
wave imaging results supplemented by the boundary curve
of the shadow given by ray optics. It can be seen that the
shadows have a darker inner region surrounded by an
interfering structure. Although the inner region appears
dark, it is important to note that the intensity is not zero. As
mentioned above, the images are normalized to the maxi-
mum of their respective magnitudes. In the inner region,
diffraction still leads to illumination, which is observable
on the observer plane, as can be seen in, e.g. Fig. 11(b).
Comparing the results for different a leads to agreement
with the results for ray-optical shadows. The same argu-
ments as for the KdS examination apply to the SdS case as
well. The degeneration of the photon region to a photon
sphere results in a circular shadow.
Despite the variation of a, changing the polar position θO

of the observer also has a crucial effect on the morphology

of the characteristic Kerr shadow. While the deformation of
the shadow is maximal in the equatorial plane, the shadow
becomes increasingly circular at the poles. For an observer
located at θO ∈ f0; πg, the photon region also degenerates
to a photon sphere, leading to a circular shadow as in the
case a ¼ 0. Although the photon region became spherical,
it should be emphasized that in this case the scattering
results are not the same as in the SdS case. Figure 12 shows
a variation of the polar coordinate in π=6 steps from the
equatorial plane to θO ¼ π. The hemisphere of the point
sources comoves in such a way that the antipodal alignment
is maintained. All other parameters are fixed, and for the
Kerr parameter an extreme choice a ¼ 0.99M is consid-
ered. The equatorial case can be found in Fig. 11(a). The
results show that the wave shadow is again consistent with
the theoretical prediction of Eq. (95). However, in contrast
to the equatorial variation of a, a significant spot appears in

FIG. 11. Validation of the wave-optical results by Eq. (95) of [5], which is used to produce the dashed orange lines.
jF ðGðr⃗; r⃗s; lmaxÞÞj2 is shown and the blue lines at α=rO ¼ 0 and β=rO ¼ 0 highlight the center. For different a the shadows are
plotted according to the result in Eq. (B9) for the parametersMω ¼ 15, ΛM2 ¼ 10−3, rO ¼ 10M, rs ¼ 20M, and θO ¼ π

2
; see Sec. VI E

for the distribution of the sources.

FIG. 12. Similar results as those shown in Fig. 11, but with fixed a ¼ 0.99M and varying θO are shown. The equatorial case for this
parameter set can be found in Fig. 11(a). The ray-optical shadow and the wave-optical shadow are compatible. The emerging circle in the
center of the shadow turns out to be a Poisson spot, which shrinks as the frequency increases.
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the center of the figure. Such spots are called Poisson’s
spots and are caused by constructive interference, which is
more pronounced in the variation of angular position.
Increasing the frequency shrinks the spot and it would
theoretically disappear in the high-frequency limit, thus,
not being observable in ray optics.

VII. CONCLUSION AND OUTLOOK

In this work, the exact wave-optical imaging of point
sources in the KdS spacetime is discussed. The solutions of
separated radial and angular Teukolsky equations are given
in terms of solutions to Heun’s equation. The main problem
in wave scattering is the normalization of angular solutions.
The solution of the angular Teukolsky equation and the
derivation of the corresponding eigenvalues lead to the so-
called Heun functions Hf, which possess an orthogonality
relation that allows for normalization. Omitting the nor-
malization constant prevents the set of solutions from being
an orthonormal basis, which is mandatory for the expansion
of arbitrary square integrable functions.
Comparison of wave-optical images shows that the SdS

case is a limit of the KdS case for a → 0. Omitting
the normalization constant for a ≠ 0 results in unusable
images that neither agree with the results of the ray-
optical approaches nor yield the SdS limit. A key difference
between wave-optical and ray-optical results (e.g., lens
maps, see [54,59], or numerical ray tracing of general
relativistic magnetohydrodynamic models [1]), are observ-
able amplitude distributions caused by interference.
Our results show expected properties, e.g., primary and

secondary images appearing in nonantipodal alignments as
well as Einstein rings for apparent antipodal cases, which
agree with results from ray optics. Frame dragging and
image splitting, which are a consequence of rotating com-
pact bodies, are also reproduced. The nature of Eq. (89)
allows for a superposition of multiple point sources, which
is necessary to construct BH shadows, since all wave
paths to the observer must cover the entire photon region of
the black hole, causing a shadow as seen in Fig. 11 and 12.
The variation of a and θ shows wave-optical shadow
regions in agreement with the results derived from ray
tracing approaches.
The computational efficiency of current implementations

of the Heun function limits its applicability in our inves-
tigation. In principle, the method can be used to investigate
arbitrary frequencies. However, in order to obtain results in
a reasonable time, we limit our evaluations to Mω ≤ 20.
Otherwise, the computation time increases nonlinearly
because Eq. (89) has a higher cutoff L (see Appendix E).
Becker [46] suggests in his derivation of the normalization
constant the use of already computed expressions, so that
they are not evaluated unnecessarily multiple times in
each step. Promising results of an alternative implementa-
tion of the solutions of Heun’s equations [42] suggest an
improvement in computational efficiency of several orders of

magnitude, greatly reducing the effort required to compute
the exact equations.
Until now, only low frequencies have been used in the

scalar case s ¼ 0. Therefore, the derivation of a high-
frequency approximation in terms of solutions to Heun’s
equation may be of interest. This will reduce the com-
putational cost and allow higher-frequency results to be
computed in a reasonable amount of time, while serving as
a bridge between the low frequencies studied in this work
and the ray-optical computations of previous works. This
allows wave-optical investigations of the effects of a and Λ,
e.g. as in [7].
In addition to different frequency regimes, other bosonic

perturbations are also of interest, in particular s ¼ 1
electromagnetic fields and gravitational fields for s ¼ 2.
The employed NP formalism and our results allow for
reconstruction of, e.g., the full Faraday tensor. Scalar fields
have been used as a simple model and to approximate other
perturbations [14]. However, polarization degrees of free-
dom, e.g., in the low-frequency scattering of gravitational
waves, may be worth further analysis for the study of
effects around a black hole. Assuming that the observer is
sufficiently far away from the block hole, the construction
of a simple coordinate plane as the observer plane results in
apparent images that match the ray-optical results for a
ZAMO observer. This is reflected in the shift of the
coordinate origin of the image plane along the XI axis
in Eq. (96a). The question naturally arises as to why the
results here are related to those seen by a ZAMO observer.
A fully satisfactory answer cannot be given yet, but will be
the subject of future work. In addition, it is of interest to
construct the observer plane in such a way that arbitrary
velocities of an observer can be included, as done in [58].
This will, of course, not only result in a different wave-
optical shadow, but will also alter scattered images. In
the case of de Sitter spacetimes, the study of observers
comoving with the expansion presents an interesting case
on its own.
Besides this conceptual discussion of wave optics via

black hole scattering, the generalization of the background
spacetime will be of interest in future work, e.g., including
more free parameters of Plebanski-Demianski space-
times, wormhole spacetimes, or in alternative gravitational
theories.
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APPENDIX A: ON THE TME

The discussion of linear perturbations of a background
metric is intuitively done by considering the decomposition
gμν ¼ ημν þ hμν. It is used to study, e.g., the quasinormal
modes of black holes [33]. Another approach to the per-
turbation problem was taken by Teukolsky [35] via the
Newman-Penrose (NP) formalism. The advantage of per-
turbing the metric in the NP formalism is the extension to
fieldswith an arbitrary spin. The 12NP scalars form the basis
of the formalism, and their derivation is performed in terms of
a null tetrad system. The choice of the two real null tetrads l
and n, representing radial ingoing and outgoing null rays
viewed from an asymptotic region, and a complementary
complex null tetrad m is substantial. They fulfill

lana ¼ −1; ðA1aÞ

mama ¼ 1; ðA1bÞ

which are the only nonzero contractions. In Petrov
type-D metrics, some degrees of freedom vanish, leading
to κ ¼ σ ¼ λ ¼ ν ¼ 0. However, a complex null rotation is
not yet fixed. Performing such a rotation with ϵ ¼ 0, also
fixes the last degree of freedom, leading to the so-called
Kinnersley tetrads [35,60]. For the KdS metric, expressed in
PB functions, this yields

lμ ¼ 1

Δr
½ðΣþ aχÞ∂t þ Δr∂r þ a∂ϕ�; ðA2aÞ

nμ ¼ 1

2Σ
½ðΣþ aχÞ∂t − Δr∂r þ a∂ϕ�; ðA2bÞ

mμ ¼ −
iρ�ffiffiffi
2

p
�
χ csc θffiffiffiffiffiffi

Δθ

p ∂t − i
ffiffiffiffiffiffi
Δθ

p
∂θ þ

csc θffiffiffiffiffiffi
Δθ

p ∂ϕ

�
: ðA2cÞ

The remaining nonzero coefficients are

ρ ¼ −
1

r − ia cos θ
ðA3aÞ

τ ¼ −i
a sin θ

ffiffiffiffiffiffi
Δθ

pffiffiffi
2

p
Σ

ðA3bÞ

π ¼ iρ2
a sin θ

ffiffiffiffiffiffi
Δθ

pffiffiffi
2

p ðA3cÞ

μ ¼ ρΔr

2Σ
ðA3dÞ

γ ¼ 2Δrρþ Δ0
r

4Σ
ðA3eÞ

β ¼ −ρ�
2 cot θΔθ þ Δ0

θ

4
ffiffiffi
2

p ffiffiffiffiffiffi
Δθ

p ðA3fÞ

α ¼ ρ
2Δθðcot θ þ 2iρ sin θÞ þ Δ0

θ

4
ffiffiffi
2

p ffiffiffiffiffiffi
Δθ

p : ðA3gÞ

From these, five complex so-called Weyl scalars Ψi can be
composed. Type-D spacetimes eliminate certain scalars
(Ψ1 ¼ Ψ3 ¼ Ψ4 ¼ Ψ5 ¼ 0). The remaining nonzero Weyl
scalar is

Ψ2 ¼ Mρ3: ðA4Þ

In contrast to linear perturbation in the metric, all spin
coefficients, Kinnersley tetrads, andWeyl scalars are linearly
perturbed. From these perturbations and related symmetries,
the differential equations for different spin weights are
derived in terms of the NP formalism [37], where for scalar
perturbations (s ¼ 0)

½DΔþ ΔD − δ�δ − δδ� þ ð−γ − γ� þ μþ μ�ÞD
þ ðϵþ ϵ� − ρ� − ρÞΔþ ð−β� − π þ αþ τ�Þδ
þ ð−π� þ τ − β þ α�Þδ��sΨlm ¼ 0: ðA5Þ

The resulting differential equation for the scalar case coin-
cides with theKlein-Gordon equation in de Sitter spacetimes
ð□−R

6
ÞΦ¼0. For positive spin weights ðs∈f1

2
;1;2gÞ the

Teukolsky master equation follows:

f½D − ρ� þ ϵ� þ ϵ − 2sðρþ ϵÞ�ðΔþ μ − 2sγÞ
− ½δþ π� − α� þ β − 2sðτ þ βÞ�ðδ� þ π − 2sαÞ
− 2ðs − 1Þðs − 1=2Þψ2gsΨlm ¼ 0 ðA6Þ

and for negative spin weights ðs∈ f− 1
2
;−1;−2gÞwe obtain

f½Δ − γ� þ μ� − γ − 2sðγ þ μÞ�ðD − ρ − 2sϵÞ
− ½δ� − τ� þ β� − α − 2sðαþ πÞ�ðδ − τ − 2sβÞ
− 2ðsþ 1Þðsþ 1=2Þψ2gsΨlm ¼ 0; ðA7Þ

where D ¼ lμ∂μ, Δ ¼ nμ∂μ, and δ ¼ mμ∂
μ are directional

derivatives of the NP formalism. Another noteworthy exten-
sion proceeds to supersymmetric spin fields s¼�3=2, which
is approached via the Geroch-Held-Penrose formalism [61].
The solution sΨlm of the differential equation yields

scalars of the Newman-Penrose or Geroch-Held-Penrose
formalism according to Table I. Finally, for the KdS metric
using the NP identity [62]

TABLE I. Solution of sΨlm for different spin weights s. The
respective expressions are scalars from Newman-Penrose or
rather Geroch-Heldt-Penrose formalism [35].

s 0 1
2

− 1
2

1 −1 3
2

− 3
2

2 −2

sΨlm Φ χ0 ρ−1χ1 ϕ0 ρ−2ϕ2 Ω0 ρ−3Ω3 ψB
0 ρ−4ψB

2
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Dμ − δπ ¼ ðρ�μþ σλÞ þ ππ� − ðϵþ ϵ�Þμ − ðα� − βÞπ
− νκ þ ψ2 þ 2ΛNP; ðA8Þ

where ΛNP ¼ R
24

and R ¼ 4Λ, the final form of the TME
shown in Eq. (13) follows.

APPENDIX B: COORDINATE SYSTEM
OF THE IMAGE PLANE

The simplification of the diffraction integral to a
Fourier transformation, discussed as an approximation in
the Kirchhoff-Fresnel theory, gives access to the image
plane. In the image plane the coordinates

XI ¼ rI sinϕI; ðB1aÞ

YI ¼ rI cosϕI; ðB1bÞ

are used. The image mapped onto the image plane reveals
information about the apparent angular position of the
observed object. Therefore, it is of great interest to derive
relations between the angular position and coordinates in
the image plane. Returning to the simple concept of a
convex lens imaging an object on the image plane placed at
a distance f from the lens, as seen in Fig. 3 and 13, the
opening angle α defines the apparent angular size both from
the object to the lens and from the lens to the detector. It can
be derived by simple trigonometric relations and gives
access to the radial distance rI of an imaged object from the
center of the coordinate system,

rI ¼ f tanϑ; ðB2Þ

where the half angle is ϑ ¼ α
2
. For points near the optical

axis, the radius is approximately rI ≈ fθ. Thus, the focal-
length normalized image plane coordinates are

XI

f
¼ tanϑ sinϕI ≈ ϑ sinϕI; ðB3aÞ

YI

f
¼ tanϑ cosϕI ≈ ϑ cosϕI: ðB3bÞ

Considering large distances results in points near the
center of the projection. Consequently, an approximation
with respect to ϑ up to the first order yields

xðrpÞ ¼ −2 tan
�
1

2
ϑðrpÞ

�
sinψðrpÞ ≈ −ϑðrpÞ sinψðrpÞ;

ðB4aÞ

yðrpÞ ¼ −2 tan
�
1

2
ϑðrpÞ

�
cosψðrpÞ ≈ −ϑðrpÞ cosψðrpÞ:

ðB4bÞ

Stereographic projection is usually defined without a
minus sign, as well as with xðrpÞ defined by cosψðrpÞ and
yðrpÞ defined using sinψðrpÞ. This is due to the conven-
tion used by Grenzebach et al. [58]9 and is respected in
Eq. (B3). Considering the projection onto the celestial
sphere, again for small ϑ (in the authors’ notation), gives

x̃ ¼ sinψðrpÞ sin ϑðrpÞ ≈ ϑðrpÞ sinψðrpÞ; ðB5aÞ
ỹ ¼ cosψðrpÞ sin ϑðrpÞ ≈ ϑðrpÞ cosψðrpÞ; ðB5bÞ
z̃ ¼ cosϑðrpÞ ≈ 1; ðB5cÞ

where x̃; ỹ; z̃ are the projections of the celestial coordi-
nates on the celestial sphere, which becomes a plane for
small viewing angles ϑðrpÞ. This leads to agreement of
all projections up to the first order of ϑ. Therefore, it is
reasonable to assume that the center of the observer plane is
located at the observer’s momentary coordinates.
Since the Fourier integral is evaluated discretely, XI , YI

must be expressed accordingly in the context of a dis-
crete Fourier transformation. Assuming that the Green’s
function is evaluated in the observer planewith the respective
sample distances XT , YT , and comparing the definitions of
the continuous Fourier integral and the discrete Fourier
transformation

FðωÞ ¼
Z

fðtÞe−iω̃tdt; ðB6aÞ

FðωnÞ ¼
XN
k¼1

fðtkÞe−iω̃ntk ; ðB6bÞ

FIG. 13. Extension to Fig. 3 to display the viewing angles α and
ϕI in the case of Kirchhoff-Fresnel diffraction planes. The
projection on the image plane connects the coordinates XI , YI
with the viewing angles.

9See in particular the defining equation [Eq. (4.4)] and the
complementary Fig. 4.2.
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a coefficient comparison of the continuous case [Eqs. (92)
and (B6)] yields the spatial frequencies

ω̃XI;n ¼
ω

f
XI;n; ðB7aÞ

ω̃YI;n ¼
ω

f
YI;n: ðB7bÞ

The discrete frequencies and time bins of the discrete case are
related to the sample distance T of the processed input by

ω̃n ¼ 2π
n
NT

; n ¼ 1;…; N; ðB8aÞ

tk ¼ kT; k ¼ 1;…; N; ðB8bÞ

whereN is the number of samples and n is the sample index.
By equating Eq. (B7) with (B8a), XI , YI for sample n are

XI;n

f
¼ 2π

ω

n
NXT

; ðB9aÞ

YI;n

f
¼ 2π

ω

n
NYT

; ðB9bÞ

with n∈ f−N=2 − 1;…;−1; 0; 1;…; N=2g for even N and
n∈ f−ðN − 1Þ=2;…;−1; 0; 1;…; ðN − 1Þ=2g for odd N.
This gives access to the XI, YI coordinates depending on

the sample index n and thus to the opening angles,
directions of observed structures, and also to the compari-
son of the result with other known results. Note that the
focal length f of a convex lens appears on the left-hand
side, leading to a focal length-normalized coordinate.

APPENDIX C: OBSERVER PLANE
AND ARBITRARY ROTATIONS AROUND

THE BLACK HOLE

The evaluation of the scattered wave and its interference
is observed in the observer plane, which in principle is a
coordinate-constructed plane. The construction of the
observer plane starts with a quasi-Cartesian coordinate
system built on Boyer-Lindquist coordinates,

r⃗O ¼

0
B@

X

Y

Z

1
CA; ðC1Þ

where in the nonrotated case Z ¼ rO and X; Y ∈ ½−d; d�,
where d is the aperture size. To describe the two-dimen-
sional coordinates of the observer plane for arbitrary
inclinations θO, a rotation is performed in terms of the
Boyer-Lindquist coordinates of this coordinate plane. r⃗ is
rotated around the ðx; zÞ plane by θ. Thus, the center of
the inclined plane will always have its normal pointing
towards the black hole. Note that its center at X ¼ 0,

Y ¼ 0 is located in Boyer-Lindquist coordinates at
r⃗O ¼ ðrO; θO;ϕOÞ. This yields

r⃗0 ¼ r⃗RotyðθÞ

¼

0
B@

X cos θ þ rO sin θ

Y

rO cos θ − X sin θ

1
CA

¼! r0O

0
B@

sin θO cosϕO

sin θO sinϕO

cos θO

1
CA: ðC2Þ

θO can be derived from Eq. (C2):

cos θO ¼ 1

r0O
ðrO cos θ þ X sin θÞ: ðC3Þ

Equation (C3) now describes θO inserted in the evaluation
of the Green’s function [Eq. (89)] in terms of the observer
planes coordinates ðX; YÞ.

APPENDIX D: WINDOWING
OF THE OBSERVER PLANE

The complex result of Eq. (89) is filtered with a Tukey
filter (also called a tapered cosine window), as used in [28].
It reduces aliasing effects of the Fourier transform by the
sharp edge of the observer plane. This step is technically
inspired and should be considered as a kind of postpro-
cessing of the data, which does not introduce any physical
effect. Figure 14 shows an example of the imaginary part of
the evaluated Green’s function [Eq. (89)] at the observer
plane, which coincides with the lens plane of Fig. 3. In
Fig. 15 results in the image planes for two particular cases
are shown, exemplifying results without an applied Tukey
filter. The most prominent effect of omitting the Tukey

FIG. 14. Demonstration of the Tukey filter. The apparent
effect of the application can be summarized as a smoothing of
the edges to zero. The result seen here is the observer plane of
Fig. 11(a), where a superposition of multiple sources is applied;
see Sec. VI E. Observer planes of single sources can be seen for
SdS in Figs. 4(a) to 4(c) and for KdS in Figs. 6(a) to 6(c).
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filter is a more prominent emergence of aliasing effects and
a more outstanding Poisson spot in the center of the
Einstein ring. Note that for Fig. 15(a) the source has been
shifted to ϕs ¼ 0.94π such that it “appears” antipodal to the
observer, compensating the frame dragging. By applying
the Tukey filter to the results of the lens plane, Poisson
spots are not emerging, e.g. as in Refs. [7,11,63,64]. These
would shrink in size as the frequency increases. It should be
emphasized that the filter is a technical and not a physical
step in the calculation. The filter function modifies the
impinging scattering at the observer plane by

ΦðX; YÞ ¼ w

�
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p

d
þ 1

�
;
2

3

�
Φ̃ðX; YÞ: ðD1Þ

The choice of the first argument is motivated by a radial
symmetric weighting and a shift to the center of X ¼ 0,
Y ¼ 0. The Tukey filter function wðx; pÞ is defined as [65]

wðx; pÞ ¼

8>>>>><
>>>>>:

1
2

�
1 − cosð2πxp Þ

�
; 0 ≤ x < p

2

1; p
2
≤ x < 1 − p

2

1
2

�
1 − cos

�
2πð1−xÞ

p

��
; 1 − p

2
≤ x ≤ 1

0; x < 0 ∧ x > 1:

ðD2Þ

The p parameter controls how sharply the edges are
smoothed, where p ¼ 0 corresponds to a rectangular filter
and p ¼ 1 corresponds to a Hann filter. p ¼ 2

3
turns out to

be an appropriate choice so that the edges are smoothed
without losing too much of the original information.

APPENDIX E: NOTES ON CONVERGENCE

Equation (89) is a sum of infinite terms. However, in
the evaluation, the sum runs to a finite L ¼ lmax, at which
point the sum converges sufficiently. Of course, one
naturally has to consider that errors are introduced this
way.10 The evaluation of an appropriate choice of lmax is
done heuristically here. Figure 16 shows the convergence
of Green’s functions for a given set of parameters. For a
certain L ¼ lmax the sum converges sufficiently. Sufficient
is defined here as an L for which

CðLÞ ¼ jGðr⃗; r⃗s; L − 1Þ −Gðr⃗; r⃗s; LÞj≤
!
10−10: ðE1Þ

The value for the lower limit is chosen by considering
sufficient small contributions for higher partial sums. One
parameter that significantly varies the lmax derived by
Eq. (E1) is the frequency ω because finer structures of
the scattering take longer for the Green’s function to
converge. The choice of the radial coordinates rO, rs also
has a significant influence which should not be neglected.
A complete analytical formula for the inequality [Eq. (E1)]
cannot be given yet, since the problem is highly nontrivial.
For now, the heuristic condition is sufficient in the
calculations.

FIG. 15. Demonstration of the results of the image plane
jF ðGðr⃗; r⃗s; lmaxÞÞj2 without Tukey filtering applied. Shown
above are two examples for Mω ¼ 15, ΛM2 ¼ 10−3, rO ¼ 10M,
rs ¼ 20M, θO ¼ π

2
, θs ¼ π

2
, and choices of a and ϕs in the res-

pective captions. The most prominent observation is the presence
of aliasing effects and a more outstanding Poisson spot.

FIG. 16. Convergence behavior of the Green’s function
Gðr⃗; r⃗s; LÞ over L. The following parameters are used:
a ¼ 0.99M, ΛM2 ¼ 10−3, Mω ¼ 9, r ¼ 10M, rs ¼ 6M,
θ ¼ π=2, θs ¼ π=2, ϕ ¼ π, ϕs ¼ 0. The vertical red dashed
line indicates where CðLÞ ≤ 10−10.

10These errors can be “smoothed” by an Ansatz of Handler and
Matzner [12,66].
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