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In this work we obtain a static spherically symmetric charged black hole solution in the framework of
minimal Horndeski gravity with additional Maxwell and Yang-Mills fields. The obtained solution is
examined; in particular, its asymptotics are studied. Thermodynamics of the black hole is investigated,
namely, we use an effective surface gravity to derive black hole temperature. To obtain the first law of black
hole thermodynamics, the Wald method is applied. We also use the extended thermodynamics approach,
namely, it allows us to derive the Smarr relation, Gibbs free energy, and the thermal equation of state. The
study of thermal values in the extended space shows rich phase behavior, in particular, the domain where
the first-order phase transition takes place and the critical point with the second-order phase transition. We
also study thermal behavior near the critical point, obtain critical exponents, and analyze the Ehrenfest
equations at the critical point. Finally, we calculate the Prigogine-Defay ratio confirming the conclusion
about the second-order phase transition at the critical point.
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I. INTRODUCTION

The recent decade has become a period of outstanding
progress of observational astrophysics, first of all due to
long-time expected detection of the gravitational waves,
which required experimental setup of remarkably high
accuracy [1]. In general, experimental observations show
astonishing agreement with theoretical predictions made
in the framework of general relativity (GR), which even
nowadays is an exceptionally successful theory of gravity
[2]. Notwithstanding its attractive features, there are some
open issues that motivate people to look for alternative or
more general approaches than Einsteinian theory of
gravity that give answers to current puzzles. Among the
most perplexing questions are the existence of singular-
ities which, as it is proved, inevitably appear within
general relativistic consideration, dark energy/dark matter
issues, and consistent description of early stage evolution
of the Universe.
To overcome the mentioned difficulties, various

approaches were proposed and examined giving rise to

different ways to modify the general relativistic setting of
the problem. The key features, their advantages, and
possible difficulties of the diverse approaches are given
in thorough reviews [3–9]. Here we focus on scalar-tensor
gravity theories, namely, the so-called Horndeski gravity
[10,11], as one of the most promising approaches. We also
point out that scalar-tensor theories of gravity may be
considered as a conservative approach, since its formu-
lation follows the way usually used in general relativity.
We also point out that scalar-tensor theories have a rather
long history, starting back from Brans-Dicke gravity
established in the early 1960s [12]. The latter one also
gained its second renaissance since the beginning of the
new century, particularly because of its tight bonds
with FðRÞ gravity [8]. Strictly speaking, the Brans-
Dicke theory is just a particular case of the general
Horndeski gravity [11], but because of specific coupling
between gravity and scalar sectors in Brans-Dicke-type
theories and in Horndeski gravity they are often considered
separately.
In his seminal paper [10], Horndeski proposed the most

general four-dimensional scalar-tensor theory with the so-
called derivative coupling between gravity and scalar fields,
which gives rise to the second-order field equations.
Horndeski gravity got its second revival when relations with
the generalized Galileon model were established [13]. The
Galileons first appeared in studies of the Dvali-Gabadadze-
Poratti (DGP) model [14]; they got their name due to a
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specific shift symmetry, namely, φ → φ0 ¼ φþ bμxμ þ c
(bν, c are constants). One of the most appealing features of
Horndeski gravity related to the second order of the equations
of motion is the absence of ghosts. On the other hand, the
Cauchy problem iswell posed inHorndeski gravity,making it
an attractive model for various applications. Even though
there is direct relation between the generalized Galileon
theory and Horndeski gravity in four dimensions, higher-
dimensional generalization ofHorndeski gravity has not been
obtained yet [11]. Since its relation to theDGPmodel and due
to the fact that Horndeski theory terms in four-dimensional
space-time can be derived via dimensional reduction [15,16],
it can be claimed that Horndeski gravity, apart from its pheno-
menological origin, has some tieswith string theory, at least in
the low-energy limit of the latter. We also point out that
Horndeski gravity can be generalized to become amultiscalar
theory [17]; another interesting generalization is the so-called
degenerate higher-order scalar-tensor theories [18], namely,
the theories with higher-order equations of motion, but with
some degeneracy conditions removing the Ostrogradsky
instability. Horndeski gravity has numerous applications in
cosmology; the most remarkable of them are pointed out in
the review [11].
Black holes and other compact objects like neutron stars

have attracted much attention since the second revival of
Horndeski gravity [19–38]. Black hole solutions are
important and useful toy models to study various effects,
especially related to astrophysical black holes [39]. Gravity
theories including general relativity usually have compli-
cated structure; therefore, gaining some general results
valid at least within a particular gravity theory might be a
problem of immense difficulty, especially for the theories
beyond general relativity. Therefore, black hole solutions
are those objects that allow one to derive or test implica-
tions of theory and their study is a very important problem.
Black holes in Horndeski theory are known to have a

nontrivial scalar field profile, particularly, the scalar field
may be time dependent [11,23] or/and have singular
behavior at the event horizon. The nontrivial profile of
the scalar field significantly affects various properties of the
black holes and usually requires careful study. Even though
there a lot of black hole solutions in Horndeski gravity, not
much attention is paid to the case where additional fields
are taken into consideration [22,29,33,35]. It can be
explained by the following two reasons: The first one is
directly related to the cumbersome structure of the
Horndeski theory giving rise to equations that are hardly
tractable even under quite simple assumptions. The second
reason, to our mind, is related to a rather general point of
view that the main impact of the Horndeski gravity should
take place on cosmological scales, whereas for the compact
object, due to various screening mechanisms, they should
mimic general relativistic black holes at least for a distant
observer. But studies of black holes with additional
material or gauge fields in Horndeski gravity allow one

not only to reveal some specific features caused by the
particular choice of the gravity model, but they, in principle,
may give us a more general and broad view of some basic
notions of black hole physics and show the range of their
applicability to various gravity models.
In this paper a static black hole solution in a particular case

of Horndeski theory with additional Maxwell and Yang-
Mills field is considered. As far as we know, the interplay of
Horndeski gravity andYang-Mills field, even though both of
them are taken probably in their simplest form, is studied for
the first time. The Maxwell field in its standard form as well
as for some of its nonlinear generalizations was considered
in the case of Horndeski theory [22,29,33,35], whereas non-
Abelian fields were examined mainly within general rela-
tivity [40–49] or more generally in Einstein-dilaton theory
[42,50–52]. We also take into account the Maxwell field to
examine interplay between the gauge fields in the frame-
work of Horndeski gravity and as we will show there is an
effective “coupling” between them which does not appear
neither in general relativity, nor in a more general Einstein-
dilaton theory [51,52].We also pay considerable attention to
the study of various aspects of thermodynamics for the
obtained solution.
The work is organized as follows. In the following

section, we obtain and study a static black hole solution
in Horndeski gravity with additional Abelian and non-
Abelian gauge fields. In the third section, we obtain and
examine the black hole temperature. In the fourth section,we
use the Wald approach to derive the first law of black hole
thermodynamics, obtain other thermodynamics values such
as entropy and heat capacity, and examine the latter one. In
the fifth section, we use the extended thermodynamics
approach to derive the extended first law and the Smarr
relation. In the sixth section, we obtain theGibbs free energy
and study its behavior. Critical behavior in the extended
approach is studied in the seventh section. Finally, in the last
section, there are some conclusions and future prospects.

II. EQUATIONS OF MOTION FOR THE THEORY
WITH NONMINIMAL DERIVATIVE COUPLING

AND STATIC BLACK HOLE’S SOLUTION

General Horndeski gravity gives rise to complicated
equations, which even for the geometries with high
symmetry are difficult to handle; therefore, we consider
one of its simplest particular cases, but which inherits a
distinctive feature of the general Horndeski gravity, namely,
its specific derivative coupling between gravity and
additional scalar field. Similar to general Horndeski gravity,
the equations of motion are of second order, making the
theory free from Ostrogradski instability. We also take into
account some gauge fields, namely, we consider both
Abelian (electromagnetic) and non-Abelian ones, which
are minimally coupled to gravity. The action for our system
can be written in the form
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S ¼ 1

16π

Z
dnþ1x

ffiffiffiffiffiffi
−g

p �
R − 2Λ −

1

2
ðαgμν − ηGμνÞ∂μφ∂νφ

− TrðFðaÞ
μν FðaÞμνÞ − F μνF μν

�
þ SGHY; ð1Þ

where gμν and g are the metric tensor and its determinant,
respectively, R and Gμν are the Ricci scalar and the Einstein
tensor correspondingly, φ is the scalar field, α and η are

coupling constants for it, and finally, FðaÞ
μν and F μν are field

strengths for non-Abelian and Abelian fields, respectively.
We note that since there is no potential for the scalar field in
the action (1), functions we obtain and analyze show their
dependence on the ratio of the coupling parameters α=η;
therefore, only one of them can be treated as a parameter that
can bevaried, but herewe keep both in order to consider some
limited cases. We also point out that the SGHY term in the
action (1) denotes the so-called boundaryGibbons-Hawking-
York (GHY) term, which makes the variational problem well
defined. For this theory with nonminimal derivative coupling
the Gibbons-Hawking-York term can be written in the form

SGHY ¼ 1

8π

Z
dnx

ffiffiffiffiffiffi
jhj

p �
K þ η

4
½∇μφ∇νφKμν

þ ðnμnν∇μφ∇νφþ ð∇φÞ2ÞK�
�
; ð2Þ

where h is the determinant of the boundary metric hμν, Kμν

and K denote the extrinsic curvature tensor and its trace
correspondingly, and finally nμ is the vector normal to the
boundary hypersurface.

We point out here that the field tensors for the gauge
fields are defined in the standard way; namely, for the
Yang-Mills field, we write

FðaÞ
μν ¼ ∂μA

ðaÞ
ν − ∂νA

ðaÞ
μ þ 1

σ̄
CðaÞ
ðbÞðcÞA

ðbÞ
μ AðcÞ

ν ; ð3Þ

where AðaÞ
μ is the Yang-Mills potential, σ̄ is the coupling

constant for the non-Abelian field, and CðaÞ
ðbÞðcÞ are the

structure constants for the corresponding gauge group. In
this work, the gauge group is chosen to be the special
orthogonal one SOðnÞ.
TheMaxwell field tensor is defined in the standard fashion,

F μν ¼ ∂μAν − ∂νAμ; ð4Þ

and here Aμ is the Maxwell field potential.
To obtain equations of motion for the system given by

the action (1), the least action principle is used. For the
gravitational part, we can write

Eμν ≔ Gμν þ Λgμν −
�
1

2
ðαTð1Þ

μν þ ηTð2Þ
μν Þ þ Tð3Þ

μν þ Tð4Þ
μν

�
¼ 0; ð5Þ

where we have

Tð1Þ
μν ¼ ∇μφ∇νφ −

1

2
gμν∇λφ∇λφ; ð6Þ

Tð2Þ
μν ¼ 1

2
∇μφ∇νφR − 2∇λφ∇νφRλμ þ

1

2
∇λφ∇λφGμν − gμν

�
−
1

2
∇λ∇κφ∇λ∇κφ

þ 1

2
ð∇2φÞ2 − Rλκ∇λφ∇κφ

�
−∇μ∇λφ∇ν∇λφþ∇μ∇νφ∇2φ − Rλμκν∇λφ∇κφ; ð7Þ

Tð3Þ
μν ¼ 2Tr

�
FðaÞ
μλ F

ðaÞλ
ν

�
−
gμν
2

Tr
�
FðaÞ
λκ F

ðaÞλκ�; ð8Þ

Tð4Þ
μν ¼ 2F μλF ν

λ −
gμν
2

F λκF λκ: ð9Þ

It is clear that on the right-hand side of Eq. (5) there are
stress-energy tensors for the scalar and gauge fields given
by the upper relations (6)–(9).
The least action principle also allows us to obtain

equations of motion for the scalar and the gauge fields.
For the scalar field φ, we arrive at the following equation:

Eφ ≔ ðαgμν − ηGμνÞ∇μ∇νφ ¼ 0: ð10Þ

For the Yang-Mills field, we obtain

EA
ðaÞν ≔ ∇μðFðaÞμνÞ þ 1

σ̄
CðaÞ
ðbÞðcÞA

ðbÞ
μ FðcÞμν ¼ 0: ð11Þ

Finally, for the Abelian gauge field, the standard Maxwell
equations can be derived as

EA
ν ≔ ∇μF μν ¼ 0: ð12Þ

Here we are going to obtain a static black hole’s solution,
therefore we take the metric in the following form:

ds2 ¼ −UðrÞdt2 þWðrÞdr2 þ r2dΩ2
ðn−1Þ; ð13Þ

where dΩ2
ðn−1Þ represents the element of length for a

unit n − 1-dimensional hypersphere and the metric func-
tions UðrÞ andWðrÞ will be obtained from the equations of
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motion. We also point out here that in the present work we
assume that n ≥ 3. It should be noted that a more general
form for the static black hole metric was utilized in [53]
with additional function RðrÞ instead of r2 in front of the
angular part, but due to configuration of the gauge fields we
consider here, we take the metric in the form (13).
For a static electrically charged solution, the gauge

potential for the Maxwell (Abelian) field can be chosen
in the formA ¼ A0ðrÞdt. From theMaxwell equations (12)
we derive immediately that the electromagnetic field takes
the form

F rt ¼
q

rn−1
ffiffiffiffiffiffiffiffiffi
UW

p
: ð14Þ

It is known that the so-called Wu-Yang ansatz
[40,42,45,46,50], being one of the simplest possible

choices to satisfy the Yang-Mills equations (11), allowed
us to derive various solutions in pure Yang-Mills theory and
if gravity was taken into account it brought us to nontrivial
black hole solutions. Therefore, the non-Abelian gauge
potential takes the form as follows:

AðaÞ ¼ q̄
r2
CðaÞ
ðiÞðjÞx

idxj; r2 ¼
Xn
j¼1

x2j : ð15Þ

Here we point out that, in order to satisfy the equations of
motion (11), we impose that q̄ ¼ σ̄ and, for simplicity,
auxiliary Cartesian coordinates xi were used and the indices
a, i, j can take the following values: 1 ≤ a ≤ nðn − 1Þ=2,
2 ≤ jþ 1 < i ≤ n. The relations between the coordinates
xi and the angular variables of a spherical coordinate
system are standard,

x1 ¼ r cos χn−1 sin χn−2… sin χ1; x2 ¼ r sin χn−1 sin χn−2… sin χ1;

x3 ¼ r cos χn−2 sin χn−3… sin χ1; x4 ¼ r sin χn−2 sin χn−3… sin χ1;

� � �
xn ¼ r cos χ1; ð16Þ

and the angular variables χi have typical ranges of
variation; namely, for 1 ≤ i ≤ n − 2 we have 0 ≤ χi ≤ π
and 0 ≤ χn−1 < 2π. Using the angular variables we can also
represent the length element for the unit sphere,

dΩ2
n−1 ¼ dχ21 þ

Xn−1
j¼2

Yj−1
i¼1

sin2 χidχ2j : ð17Þ

The gauge potential (15) can be rewritten in terms of
angular variables, but its explicit form becomes more
cumbersome. Using the relation (3) we are able to calculate

the gauge field FðaÞ
μν and check that the equations of motion

(11) are satisfied. Finally, we calculate the corresponding
invariant for the Yang-Mills field,

TrðFðaÞ
ρσ FðaÞρσÞ ¼ ðn − 1Þðn − 2Þ q̄

2

r4
: ð18Þ

Using the metric ansatz (13) and taking into account the
gauge field tensors and their invariants we can write Eq. (5)
in the following form:

ðn − 1Þ
2rW

�
W0

W
þ ðn − 2Þ

r
ðW − 1Þ

��
1þ 3

4
η
ðφ0Þ2
W

�
− Λ ¼ α

4W
ðφ0Þ2 þ η

2

�ðn − 1Þðn − 2Þ
r2W2

�
W −

1

2

�
ðφ0Þ2 þ ðn − 1Þ

rW2
φ00φ0

�
þ q2

r2ðn−1Þ
þ ðn − 1Þðn − 2Þq̄2

2r4
; ð19Þ

ðn − 1Þ
2rW

�
U0

U
−
ðn − 2Þ

r
ðW − 1Þ

��
1þ 3

4
η
ðφ0Þ2
W

�
þ Λ ¼ α

4W
ðφ0Þ2 − ηðn − 1Þðn − 2Þ

4r2W
ðφ0Þ2 − q2

r2ðn−1Þ
−
ðn − 1Þðn − 2Þq̄2

2r4
;

ð20Þ

where the prime denotes the derivative with respect to r.
The equation for the scalar field (10) may be also be integrated at least once, and as a result we obtain

ffiffiffiffiffi
U
W

r
rn−1

�
α − η

ðn − 1Þ
2rW

�
U0

U
−
ðn − 2Þ

r
ðW − 1Þ

��
φ0 ¼ C; ð21Þ
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where C is an integration constant. The latter relation
allows us to represent the derivative φ0 as a function ofUðrÞ
andWðrÞ and of the derivative of the former one, but it can
be hardly tractable in the general case. Further progress can
be made if we imposeC ¼ 0 and this condition gives rise to
a particular, but quite nontrivial, solution with a nontrivial
scalar profile. The condition C ¼ 0 is equivalent to the
following constraint:

αgrr − ηGrr ¼ 0: ð22Þ

Here we point out that the same condition (22) was used in
our earlier works [33,35], as well as by other authors who
studied black holes in Horndeski gravity [19–21].
Now Eqs. (19) and (20) can be solved together with the

relation (22). As a result, we obtain

ðφ0Þ2 ¼ −
4r2W

2αr2 þ ηðn − 1Þðn − 2Þ
�
Λþ α

η
þ q2r2ð1−nÞ þ ðn − 1Þðn − 2Þ

2
q̄2r−4

�
; ð23Þ

UW ¼ ððα − ΛηÞr2 þ ηðn − 1Þðn − 2Þ − ηq2r2ð2−nÞ − ηðn − 1Þðn − 2Þq̄2r−2=2Þ2
ð2αr2 þ ηðn − 1Þðn − 2ÞÞ2 : ð24Þ

The square of the derivative φ0 has to be positive outside of the black hole, which might be achieved if some conditions on
the parameters α, η, Λ, q, and q̄ are imposed. For instance, when both parameters α and η are positive, the cosmological
constant Λ should be negative to provide positivity of the ðφ0Þ2 in the outer domain. A similar conclusion is inferred if we
impose α > 0 and η < 0.
Finally, the metric function UðrÞ can be written in the following form:

UðrÞ ¼ 1 −
μ

rn−2
−

2Λ
nðn − 1Þ r

2 −
ðn − 2Þ
ðn − 4Þ

q̄2

r2
þ 2q2

ðn − 1Þðn − 2Þ r
2ð2−nÞ þ 1

2αηðn − 1Þrn−2

×

�
ðαþ ΛηÞ2

Z
rnþ1

r2 þ d2
drþ η2q4

Z
r5−3n

r2 þ d2
drþ 2ηðαþ ΛηÞq2

Z
r3−n

r2 þ d2
drþ ðn − 1Þðn − 2Þ

× ηq̄2
�
ðαþ ΛηÞ

Z
rn−3

r2 þ d2
drþ ηq2

Z
r−ðnþ1Þ

r2 þ d2
drþ η

4
ðn − 1Þðn − 2Þq̄2

Z
rn−7

r2 þ d2
dr

��
; ð25Þ

where d2 ¼ ηðn − 1Þðn − 2Þ=2α. Even though all of the integrals in the upper relation can be calculated explicitly, we give
here a more concise integral form for the metric function. There are also some peculiarities related to whether the dimension
of space is odd or even. Details of the calculations of the integrals for the convenience of the reader are given in the
Appendix. Taking into account these calculations, we give here the explicit form of the metric function UðrÞ for odd n,
while the corresponding expression for even n is given in the Appendix,

UðrÞ ¼ 1 −
μ

rn−2
−

2Λ
nðn − 1Þ r

2 −
ðn − 2Þ
ðn − 4Þ

q̄2

r2
þ 2q2

ðn − 1Þðn − 2Þ r
2ð2−nÞ þ 1

2αηðn − 1Þ

×

"
ðαþ ΛηÞ2

�Xn−12
j¼0

ð−1Þjd2j r
2ð1−jÞ

n − 2j
þ ð−1Þnþ1

2
dn

rn−2
arctan

�
r
d

��
þ 2ηðαþ ΛηÞq2

×

�Xn−52
j¼0

ð−1Þjr6−2nþ2j

ð4 − nþ 2jÞd2ðjþ1Þ þ
ð−1Þn−32
dn−2rn−2

arctan

�
r
d

��
þ η2q4

�X3n−72

j¼0

ð−1Þjr2ð4þj−2nÞ

ð6þ 2j − 3nÞd2ðjþ1Þ þ
ð−1Þ3n−52

d3n−4rn−2
arctan

�
r
d

��

þ ηðn − 1Þðn − 2Þq̄2 ×
�
ðαþ ΛηÞ

�Xn−52
j¼0

ð−1Þjd2jr−2ð1þjÞ

n − 4 − 2j
þ ð−1Þn−32 dn−4

rn−2
arctan

�
r
d

��

þ ηq2
�Xn−12

j¼0

ð−1Þjr2ð1þj−nÞ

ð2j − nÞd2ðjþ1Þ þ
ð−1Þnþ1

2

dnþ2rn−2
arctan

�
r
d

��

þ ηðn − 1Þðn − 2Þ q̄
2

4

�X5−n2
j¼0

ð−1Þjr2ðj−2Þ
ð2jþ n − 6Þd2ðjþ1Þ þ

ð−1Þ7−n2
d8−nrn−2

arctan

�
r
d

���#
: ð26Þ
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We note that in the upper relation its last sum is valid when n < 7. If n > 7, the last integral of the function (25) should be
taken in the form (A1).
Because of special interest in the n ¼ 3 case, here we give the explicit form for the metric function UðrÞ,

UðrÞ ¼ 1 −
μ

r
−
Λ
3
r2 þ q2 þ q̄2

r2
þ 1

4αη

�
ðαþ ΛηÞ2

�
r2

3
− d2

�
þ η2ðq2 þ q̄2Þ2

d2r2

×

�
1

d2
−

1

3r2

�
þ
�
ðαþ ΛηÞ2dþ ηðq2 þ q̄2Þ

d3

�
2 d
r
arctan

�
r
d

��
: ð27Þ

We point out that for n ¼ 3 both gauge fields equally
contribute to the metric (27), while for higher dimensions
(n > 3), the non-Abelian field in comparison with the
Maxwell one gives slowly decaying terms if r → ∞. Even
though the explicit expressions for the metric functions (26)
and (A5), as well as their particular cases (27) and (A6)
correspondingly, are rather cumbersome, some important
conclusions about their behavior can be derived relatively
easily. First, for both types of parity of dimensions the
behavior of the metric function UðrÞ for large distances is
asymptotically of anti–de Sitter (AdS) type if both coupling
parameters α and η are positive (of the same sign); namely,
we can write

U ≃
ðα − ΛηÞ2
2nðn − 1Þαη r

2 ¼ ηðα=η − ΛÞ2
2nðn − 1Þα r2: ð28Þ

Since the gauge fields give decaying terms in the outer far
zone, it is natural that there is an AdS-type term that shows
leading behavior if r → ∞; similar results were obtained
for nonlinear electromagnetic field [33,35].
If the radius r becomes very small (r → 0) the metric

function UðrÞ shows singular behavior that is defined by
the electromagnetic field part in the general case. Namely,
when r → 0 we can write

UðrÞ ≃ −
q4

3ðn − 1Þ2ðn − 2Þ2 r
4ð2−nÞ: ð29Þ

Therefore, the leading term for r → 0 is defined by the
Maxwell field, which is rather expectable. But the explicit
form of the asymptotic (29) appears due to interplay of the
gauge field contribution and Horndeski theory, although the
asymptotic (29) does not depend on the coupling α and η.
We point out that the Yang-Mills terms alone or the terms
where effective coupling between the Maxwell and Yang-
Mills fields are taken into account show less singular
behavior in comparison with term (29) in the limit r → 0 if
n > 3. For n ¼ 3, both gauge fields give rise to contribu-
tions of the same order, which is clearly seen from the
explicit form of the metric function for this case (27).
Namely, in this case we have

UðrÞ ≃ −
ðq2 þ q̄2Þ2

12r4
: ð30Þ

One of the most important conclusions following from the
asymptotic expressions (29) and (30), because of their
negative signs, is that the singular behavior of the metric
functionUðrÞ if r → 0 is more similar to the Schwarzschild
black hole than to the Reissner-Nordström one as it might
be expected. That character of behavior of the metric
function is also clearly reflected on the graph of the metric
functionUðrÞ given by Fig. 1. The right graph of Fig. 1 also
implies that, apart from the only event horizon, namely, the
point where the function UðrÞ crosses the horizontal axis,
additional inner horizons may appear if one increases the
electric charge q, but it also may occur if the parameter q̄
goes up. A detailed analysis of this issue will be considered
elsewhere. The other important conclusion, which is also
directly related to the above mentioned features, is that for
any charge q or q̄ a naked singularity never occurs, as it
usually takes place within general relativity if the charge of
a black hole increases while other parameters of the black
hole are held fixed.
We also briefly examine the particular case if α ¼ 0,

namely, when only derivative coupling between gravity and
the scalar field part is considered. The particular solution
for α ¼ 0 is substantially more simple than the general one
examined above. Namely, for the squared derivative ðφ0Þ2
and the product of the metric functions, we obtain

ðφ0Þ2¼− 4r2W
ηðn−1Þðn−2Þ

×
�
Λþq2r2ð1−nÞ þ1

2
ðn−1Þðn−2Þq̄2r−4

�
; ð31Þ

UW¼
�
1−

Λr2

ðn−1Þðn−2Þ−
q2

ðn−1Þðn−2Þr
2ð2−nÞ−

q̄2

2r2

�
2

:

ð32Þ

The metric function UðrÞ can be written in the form
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UðrÞ ¼ 1 −
μ

rn−2
−

2Λ
nðn − 1Þ r

2 −
ðn − 2Þ
ðn − 4Þ

q̄2

r2
þ 2q2

ðn − 1Þðn − 2Þ r
2ð2−nÞ

þ Λ2

ðn − 1Þ2ðn2 − 4Þ r
4 −

q4

3ðn − 1Þ2ðn − 2Þ2 r
4ð2−nÞ −

2Λq2

ðn − 1Þ2ðn − 2Þðn − 4Þ r
2ð3−nÞ

þ Λq̄2

ðn − 1Þðn − 2Þ −
q2q̄2

nðn − 1Þ r
2ð1−nÞ þ ðn − 2Þ

4ðn − 6Þ
q̄4

r4
: ð33Þ

It should be emphasized that in (33) we impose n ≠ 4 and
n ≠ 6. If, for instance, n ¼ 4 the fourth term in the upper
row and the third term in the middle row take an additional
logarithmic factor (∼ ln r) and if n ¼ 6 this factor appears
in the last term in the bottom row, but for both cases it does
not change drastically the qualitative behavior of the metric
function UðrÞ. We would like to note that for the particular
case α ¼ 0 neither the product UW nor the function UðrÞ
depend on the parameter η. We point out that, if r → ∞, the
leading term of the metric function is of the order ∼Λ2r4,
and it is suppressed if α ≠ 0; since this term is always
positive, it gives rise to the conclusion that there is no
cosmological horizon for any sign of the cosmological
constant. If r → 0, the leading term of the metric (33) is the
same as for the general case, namely, (29) and to some
extent it is expectable since for small distances the metric is
mainly defined by the leading electromagnetic field term.
We also note that the product UW → ∞ if r → ∞ and it
becomes singular if r → 0, but this singular behavior,
which also takes place if α ≠ 0 allows us to moderate
singularities for the invariants of the Riemann tensor in
comparison with standard general relativity solutions [33].

III. BLACK HOLE TEMPERATURE

One of the basic notions of black hole thermodynamics
is temperature. The definition of the temperature is based
on the geometrical notion of surface gravity, which can be

applied not only to black holes within general relativity, but
also to more general gravitational frameworks [54–56],
including Horndeski gravity [57]. The surface gravity κ is
defined as follows:

κ2 ¼ −
1

2
∇aχb∇aχb; ð34Þ

where χμ is a Killing vector, which is null on the event
horizon. Since in our work the static configuration (13) is
considered, the time translation vector χμ ¼ ∂=∂t satisfies
the mentioned condition. In the framework of general
relativity and in various other approaches to gravity, the
temperature is defined to be proportional to the surface
gravity, namely,

TBH ¼ κ

2π
¼ 1

4π

U0ðrþÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UðrþÞWðrþÞ

p ; ð35Þ

where rþ denotes the event horizon of the black hole.
Having calculated the derivative U0ðrþÞ and after simple
algebra we write the temperature in the form

TBH ¼ 1

4πðn − 1Þrþ

��
α

η
− Λ

�
r2þ þ ðn − 1Þðn − 2Þ

−
q2

r2ðn−2Þþ
−
ðn − 1Þðn − 2Þ

2r2þ
q̄2
�
: ð36Þ

FIG. 1. Metric functions UðrÞ for various dimensions n (left) and different values of the electric charge q (right). For both graphs we
haveΛ ¼ −2, α ¼ 0.2, η ¼ 0.4, q̄ ¼ 0.2. Left: we have q ¼ 0.2 and solid and dashed lines correspond to n ¼ 3 and n ¼ 4, respectively.
Right: we have taken n ¼ 3 and solid, dashed, and dotted curves correspond to q ¼ 0.2, q ¼ 0.4, and q ¼ 0.8, respectively.

STATIC BLACK HOLE IN MINIMAL HORNDESKI GRAVITY … PHYS. REV. D 109, 044055 (2024)

044055-7



Surface gravity has clear geometric meaning and as it is
mentioned above it is widely applicable, including
Horndeski theory [57], but even for the latter theory there
are some subtleties. The authors [57] consider a particular
case of general Horndeski gravity similar to that considered
here, but they also make several assumptions that single out
a particular class of solutions that can be easily reduced to
some general relativistic ones if the Horndeski coupling
parameter η is turned off. It is also supposed that the scalar
field shares the Killing symmetry and since no peculiarities
of the scalar field are pointed out, we assume that it is
supposed to be regular, in particular, at the event horizon.
But in our case, due to the constraint (22), the first of the
assumptions may be violated, in addition, the derivative of
the scalar field has singular behavior at the horizon;
therefore, the conclusions made in [57] cannot be applied
directly to our solution. It was argued [58] that in
Horndeski theory instead of the standard surface gravity
its “effective” counterpart can be introduced and it can be
explained by the fact that, in general, the speed of gravitons
may differ from the speed of light [39,59]; namely, these
speeds differ if the Lagrangian for the gravitational per-
turbation contains the Weyl tensor (the so-called Weyl
criterion), which usually takes place in the Horndeski case
[59]. Consequently, the effective or modified surface
gravity gives rise to a modified relation for the black hole
temperature [58], which can be written in the form

T ¼ κ

2π

�
1þ η

4

ðφ0Þ2
W

�				
rþ

¼ TBH

�
1þ η

4

ðφ0Þ2
W

�				
rþ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UðrþÞWðrþÞ

p
TBH: ð37Þ

For the particular case of the solution given by the metric
(13) with corresponding functions UðrÞ and WðrÞ, we
obtain

T¼ η

8πðn−1Þαrþðr2þþd2Þ
��

α

η
−Λ

�
r2þþðn−1Þðn−2Þ

−
q2

r2ðn−2Þþ
−
ðn−1Þðn−2Þ

2r2þ
q̄2
�

2

: ð38Þ

We point out that in the limit η → 0 both the temperature
(38) and its cousin (36) become singular, confirming the
fact that our solution, from which both these expressions
are derived, does not meet the criteria imposed in [57]. We
also note that a similar conclusion about modification of the
standard relation for temperature was recently made for a
black hole in shift-symmetric Einstein-scalar Gauss-Bonnet
theory [60]. Even though the temperature (38) is given by a
relatively simple expression, not all its peculiarities can be
seen easily, but nevertheless its key features can be
described. First of all, due to the square over the main
parentheses, an effective coupling between the terms of
different origin appear; namely, there is a coupling between

both gauge fields given by the term proportional to q2q̄2,
but we can also claim a coupling between the gauge and
scalar fields reflected by the terms where coupling para-
meters are multiplied by q2 or q̄2. To sum it up, the coupling
we mention here is just a consequence of the coupling
caused by Horndeski gravity and which appears in the
metric functions UðrÞ and WðrÞ.
Using the relation (38) we can easily analyze asymptotic

behavior of the temperature. For instance, for large rþ
(rþ → ∞) the temperature T (38) shows de Sitterian or anti–
de Sitterian character depending on signs of the parametersα
and η, namely, T ∼ ðα − ΛηÞ2rþ=ð2ðn − 1ÞαηÞ, but we pay
more attention to the former one; the de Sitterian casewill be
examined elsewhere. For very small rþ (rþ → 0), the
temperature is mainly defined by the gauge field terms,
and if n > 3 the leading term is related to the Maxwell field
and is of the form T ∼ q4=ððn − 1Þ2ðn − 2ÞÞr7−4nþ . What is
curious here, being caused by the nonminimal coupling, is
this leading term does not have any dependence on the
parameter η nor on the parameterα. If n ¼ 3 both gauge field
terms give equal contribution, due to their symmetry even
in the metric (27) and consequently it is reflected in
temperature.
The analysis of the temperature as a function of the

horizon radius for its intermediate values is not trivial since
the contribution of various terms may be comparable to
what affects the behavior of the temperature. The terms in
the relation (38) have opposite signs, and the temperature
might be a nonmonotonous function of the horizon radius
rþ. In order to understand the dependence T ¼ TðrþÞ
better, we give some plots of this function for various
values of parameters. Figure 2 shows this dependence if the
cosmological constant Λ (the left graph) and the parameter
of nonminimal coupling η (the right graph) are varied. The
general features of both graphs are very similar; the
function T ¼ TðrþÞ has a specific “narrow” and “deep”
minimum, and this minimum is not affected considerably
by variation of either Λ or η. We conclude that it is mainly
defined by the gauge field terms (it is given below). If the
cosmological constant rises in absolute value, the temper-
ature T also rises for large rþ and it tends to be more
monotonous in the range of intermediate values of rþ. The
mentioned feature is also known for a Reissner-Nordström-
AdS black hole and it causes nontrivial critical behavior
within an extended thermodynamics approach; the latter
will be considered in the following sections. Comparing
both graphs of Fig. 2, we also conclude that variation of the
cosmological constant Λ leads to more substantial change
of the temperature for intermediate and relatively large
values of the horizon radius rþ than the variation of the
coupling constant η and this result is expected because of
the way those parameters contribute to the expression (38).
Figure 3 shows the influence of variation of the electric

charge q on the temperature T. As it is pointed out above,
since the terms caused by the gauge field become principal
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ones for small radii of horizon rþ, it gives rise to the shift of
the global minimum to the right if the charge q goes up. We
also point out that the narrow domain close to the global
minimum changes considerably, namely, it widens if the
charge q increases. The other important consequence of this
variation is the fact that the domain right to the global
minimum also changes substantially; namely, its nonmo-
notonicity becomes less notable. We can conclude that
further increase of the charge gives rise to its disappearance
and it also affects the critical behavior of the black hole.
Because of the same sign and inverse proportionality to the
horizon radius rþ, a variation of the non-Abelian charge q̄
gives qualitatively to the same changes in behavior of the
temperature T, but due to different rþ dependences in the
general case, those changes might be substantial for
intermediate values of rþ. Just for the particular case
n ¼ 3, both gauge fields give equal contribution.

IV. WALD PROCEDURE, CONSERVED
QUANTITIES, AND THE FIRST LAW OF BLACK

HOLE THERMODYNAMICS

The Wald approach is a consistent method to derive the
first law of black hole mechanics (thermodynamics). Being
a generalization of the standard Noether procedure to
obtain conserved quantities, it allows us to obtain the latter
one for general diffeomorphism invariant theories and it
was successfully applied to various gravity theories.
Moreover, the approach was generalized for the theories
with internal gauge degrees of freedom [61]. Gauge
invariant derivation of the zeroth and the first laws of
black holes was also made recently [62]. To briefly describe
the procedure, we write the variation of the Lagrangian for
the system (1),

δL¼ ffiffiffiffiffiffi
−g

p 

EμνδgμνþEφδφþTr

�
EA

ðaÞμδAðaÞ
μ
�þEA

μδAμ

�
þ ffiffiffiffiffiffi

−g
p ∇μJ μ; ð39Þ

and here Eμν, Eφ, EA
ðaÞμ, and Aμ are the left-hand sides of

the equations of motion (5), (10)–(12), respectively, for the
dynamical fields we consider. The last term in the upper
variation is the so-called boundary term, which is
transformed into a hypersurface integral enclosing the
chosen volume. J μ is the surface current which can be
given as a sum of corresponding dynamical fields currents,
namely,

J μ ¼ J μ
g þ J μ

φ þ J μ
A þ J μ

A; ð40Þ

where the respective components are defined as follows:

J μ
g ¼ 2

∂L
∂Rκλμν

∇λðδgκνÞ − 2∇λ

�
∂L

∂Rκμλν

�
δgκν; ð41Þ

FIG. 2. Black hole’s temperature T as a function of horizon radius rþ for some values of the cosmological constant Λ (left) and the
coupling parameter η (right). For both cases, from bottom to top corresponds to the increase in absolute value of the parameter we vary,
whereas all other parameters are held fixed; namely, for both graphs we have taken n ¼ 4; α ¼ 0.1; q ¼ q̄ ¼ 0.2. Left: we take η ¼ 0.2
and L1 ¼ −2, Λ2 ¼ −3 and Λ3 ¼ −4. Right: we take Λ ¼ −2 and η1 ¼ 0.2, η2 ¼ 0.4 and η3 ¼ 0.8.

FIG. 3. Black hole’s temperature T as a function of horizon
radius rþ for some values of the electric charge q if all the other
parameters are held fixed. The solid, dashed, dotted, and dash-
dotted curves correspond to q1 ¼ 0.2, q2 ¼ 0.4, q3 ¼ 0.6, and
q4 ¼ 1, respectively. The fixed parameters are as follows: n ¼ 4,
α ¼ 0.1, η ¼ 0.2, Λ ¼ −2, and q̄ ¼ 0.2.
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J μ
φ ¼ ∂L

∂ðφμÞ
δφ; J μ

A ¼ −4Tr
�
FðaÞμλδAðaÞ

λ

�
;

J μ
A ¼ −4F μλδAλ: ð42Þ

If the equations of motion are satisfied, the only contribu-
tion to the variation of the Lagrangian (39) and respectively
to the action is given by the hypersurface term. Having the
current J μ (40) we can construct the corresponding current
from Jð1Þ ¼ J μdxμ ¼ gλμJ λdxμ and then we define its
Hodge dual, which is essential in the Wald approach,

Θðψ ; δψÞ ¼ �Jð1Þðψ ; δψÞ; ð43Þ

where ψ is used to denote all the dynamical fields and δψ
are their variations. The diffeomorphism is generated by a
vector field ξμ; therefore, the variation of dynamical fields
can be written in the form

δξψ ¼ Lξψ ; ð44Þ

where Lξ is the corresponding Lie derivative, generated by
the vector ξμ. The variation of the Lagrangian of the system
can be written also as the corresponding Lie derivative,
namely,

δξ�L ¼ Lξ�L ¼ dðiξ � LÞ: ð45Þ

Here we point out that, since the Lagrangian in our case is
defined as a scalar function, i.e., 0-form, in the latter
relation the Hodge dual of the Lagrangian is used. We note
that to derive the second equality in the upper relation the
so-called Cartan magic formula is used. Rewriting the
formula for the variation of the Lagrangian (39) in terms of
forms and taking into account the relations (43) and (45) as
well as the notation (44), we obtain

dðiξ�LÞ ¼ EψLξψ þ dΘðψ ;LξψÞ
⇒ dðΘðψ ;LξψÞ − iξ�LÞ ¼ −EψLξψ ; ð46Þ

where Eψ correspond to the equations of motion for the
dynamical fields. If the equations of motion are satisfied,
the right-hand side of the latter relation will be equal to
zero. Now we introduce a Noether current n-form,

Jξ ¼ Θðψ ; δψÞ − iξ�L; ð47Þ

which is obviously closed on shell. Moreover, it implies
that this form is exact on shell, namely,

Jξ ¼ dQξ: ð48Þ

The integral over a closed n − 1-dimensional hypersurface
Σn−1 is the so-called Noether charge related to the vector
field ξμ which generates the diffeomorphism. Then

following the Wald approach, the space of the solutions
of the equations of motion is defined to be the phase space
of the theory, and variation of the dynamical fields δξψ
taken on shell is a phase space vector flow generated by the
vector ξμ. This flow can be generated by a HamiltonianHξ,
which is related to a symplectic form defined on a Cauchy
hypersurface Σ; namely, for its on shell variation we write

δHξ¼
Z
Σ
Ωðψ ;δψ ;LξψÞ¼

Z
Σ
ðδΘðψ ;LξψÞ−LξΘðψ ;δψÞÞ:

ð49Þ

Using the definition of the Noether current (47) and Cartan
magic formula for the Lie derivative, we can rewrite the
latter relation as follows:

δHξ ¼
Z
Σ
ðδJξ þ δðiξ�LÞ − iξdΘ − dðiξΘÞÞ

¼
Z
Σ
ðδðdQξÞ − dðiξΘÞÞ ¼

Z
∂Σ
ðδQξ − iξΘÞ: ð50Þ

We note that in the second equality we have used the on
shell condition, which allows us to remove the second and
the third terms in the first integral. In the second integral,
we use the definition of the Noether charge and the fact that
the exterior derivative and the variation for the Noether
charge Qξ commute, allowing us to derive the last equality
and the integral over the boundary ∂Σ. If ξμ is supposed to
be a generator of a symmetry, then Lξϕ ¼ 0 and, con-
sequently, δHξ ¼ 0. If the hypersurface Σ has two boun-
daries, what actually takes place for black holes, namely the
infinity and the event horizon, therefore from upper relation
we obtain

δHrþ ≡
Z
∂Σþ

ðδQξ− iξΘÞ¼
Z
∞
ðδQξ− iξΘÞ≡δH∞; ð51Þ

where ∂Σþ is the event horizon hypersurface. The written
relation allows us to derive the first law of black hole
thermodynamics.
Before derivation of the first law of black hole thermo-

dynamics, we give an explicit relation for the components
of the Noether charge, namely, we write

Qλ1…λn−1 ¼ ελ1…λn−1μν

�
∂L

∂Rκλμν
∇λξκ − 2ξ½κ∇λ�

�
∂L

∂Rκλμν

�
− 2Tr

�
FðaÞμνAðaÞ

λ

�
ξλ − 2F μνAλξ

λ

�
: ð52Þ

Using the upper relation as well as the relation for the
Hodge dual of the surface current (43), we can calculate the
differences of variations that are given under the integrals in
the relation (51). Similarly, as in the previous section, the
time translation vector ξμ can be chosen for corresponding
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calculations. It is a Killing vector and it is null on the event
horizon. For more clarity, we split the calculations of the
difference of the variations in two parts, namely, for the
gravity part together with nonminimally coupled scalar
field and for the gauge fields. The gravity part together with
the scalar field contribution gives rise to the following
relation:

ðδQξ − iξΘÞgs ¼ −ðn − 1Þrn−2δUΩ̂n−1; ð53Þ

where δU is the variation of the metric functionU and Ω̂n−1
is the surface n − 1-form. The total variation for non-
minimally coupled theory excluding gauge field contribu-
tion depends on the variation of the metric function δU
only. We point out that a similar result is derived in pure
Einsteinian theory, for instance, for the Schwarzschild
solution. The gauge fields give an independent contribution
and it takes the form

ðδQξ− iξΘÞgf¼
2rn−1ffiffiffiffiffiffiffiffiffi
UW

p A0

��
δU
U

þδW
W

�
A0

0−2δA0
0

�
Ω̂n−1;

ð54Þ

where A0 is the time component of the electromagnetic
field potential andA0

0 ¼ F rt is its radial derivative (electric
field). Wewould like to stress that the Yang-Mills field does
not give any contribution to the difference of variations due
to the fact that the constant q̄ associated with Yang-Mills
coupling is held fixed. The total variation is the sum of both
of the above written variations,

ðδQξ− iξΘÞtot¼ rn−2
�
−ðn−1ÞδUþ 2rffiffiffiffiffiffiffiffiffi

UW
p A0

×

��
δU
U

þδW
W

�
A0

0−2δA0
0

��
Ω̂n−1: ð55Þ

For convenience we assume that the electric potential is
equal to zero at the event horizon A0jrþ ¼ 0. Taking this
condition into account and performing integration over an
n − 1-dimensional hypersphere of the radius rþ, we obtain
the explicit relation for the variation of the Hamiltonian
Hrþ at the horizon,

δHrþ ¼ ðn − 1Þωn−1rn−2þ U0ðrþÞδrþ; ð56Þ

where ωn−1 ¼ 2πðn−1Þ=2=Γððn − 1Þ=2Þ is the surface of a
unit n − 1-dimensional hypersphere. Variation of the
Hamiltonian δH∞ takes the form as follows:

δH∞ ¼ ðn − 1Þωn−1δμ − 4ωn−1A0δq: ð57Þ

Since, as pointed out above, the variation of the
Hamiltonian at the horizon and at the infinity are equal,
therefore we obtain

ðn−1Þωn−1rn−2þ U0ðrþÞδrþ¼ðn−1Þωn−1δμ−4ωn−1A0δq:

ð58Þ

Finally, to derive the first law of black hole thermodynam-
ics, it is necessary to find the relations between the
variations of observable entities such us mass or charge
of the black hole and corresponding variations in the given
above relation.
The electric charge is defined in the standard way,

namely, we use the Gauss law and obtain

Qe ¼
1

4π

Z
Σ∞

�F ¼ ωn−1

4π
q: ð59Þ

The electric potential measured at the infinity with respect
to the horizon is defined as follows:

Φe ¼ Aμξ
μj∞ −Aμξ

μjrþ ¼ A0: ð60Þ

We point out that the time translation vector ξμ ¼ ∂=∂t is
used here to calculate the electric potential. The black
hole’s mass can be defined as

M ¼ ðn − 1Þωn−1

16π
μ: ð61Þ

Variation of the mass (61) together with the relations (59)
and (60) allow us to rewrite the right-hand side of Eq. (58)
in the form of a typical thermodynamic relation. On the left-
hand side of that relation, we can use the relation for the
temperature (38) in order to avoid introducing additional
scalar charges and its corresponding conjugate value if the
physical meaning of both these values is not clarified. Then
the entropy of the black hole can be defined in a typical
manner, namely,

S ¼ ωn−1

4
rn−1þ : ð62Þ

Therefore, the entropy is equal to a quarter of the black hole
horizon area, similar to as it takes place in general relativity
(GR). Finally, the first law of black hole thermodynamics
can be written in the form

δM ¼ TδSþΦeδQe: ð63Þ

The obtained relation is completely of the same form as
for the Reissner-Nordström black hole in the framework
of GR, even though the explicit relation for the tempera-
ture (38) differs from its general relativistic cousin. The fact
that the thermodynamic relations like the first law are the
same in different theories may be an additional confirma-
tion of universality of black hole thermodynamics, which at
least for some cases are insensitive to the underlying
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theories that allow one to obtain corresponding thermo-
dynamic relations.
We would also like to stress that, even from a naive

thermodynamic point of view, the temperature T (38)
satisfies a simple consistency relation, which follows
directly from the first law (63), namely, ∂T

∂Qe
¼ ∂Φe

∂S , whereas
the temperature T (36) does not. To obtain the consistency
relation for the temperature (36), an additional scalar
charge was introduced [29], which was used in earlier
paper [33,35], but its physical meaning is not clear.
Moreover, in the framework of the standard thermodynam-
ics, there are only two variable macroscopic parameters of
the black hole, namely, its mass or, directly related to it,
the radius of the event horizon rþ and the electric charge q

(or Qe). Any additional independent thermodynamic var-
iable should be related to an independent macroscopic
parameter (integration constant), but there are not any more
independent macroscopic values in the standard frame-
work. Thus, the “scalar charge” considered in the earlier
paper was introduced just to have consistent thermody-
namics relations, but its physical meaning remains obscure.
Heat capacity or specific heat is an important notion to

analyze thermal stability, particularly as it is widely used in
black hole thermodynamics. Thermally stable systems are
characterized by positive specific heat and, if the specific
heat turns out to be negative, the system tends to decay. To
obtain the heat capacity, we use the standard definition for
the latter and write

CQ ¼ T

�
∂S
∂T

�
Q
¼ T

∂S
∂rþ

�
∂rþ
∂T

�
Q
¼ ðn − 1Þωn−1

4
rn−2þ

��
α

η
− Λ

�
r2þ þ ðn − 1Þðn − 2Þ

−
q2

r2ðn−2Þþ
−
ðn − 1Þðn − 2Þq̄2

2r2þ

��
−

3r2þ þ d2

rþðr2þ þ d2Þ
��

α

η
− Λ

�
r2þ þ ðn − 1Þðn − 2Þ

−
q2

r2ðn−2Þþ
−
ðn − 1Þðn − 2Þq̄2

2r2þ

�
þ 4

��
α

η
− Λ

�
rþ þ ðn − 2Þq2

r2n−3þ
þ ðn − 1Þðn − 2Þq̄2

2r3þ

��−1
: ð64Þ

The obtained relation (64) has a relatively more cumber-
some structure in comparison to the expression for the
temperature (38), but since the derivative of the temperature
T over the horizon radius rþ makes contribution to the heat
capacity, some important conclusions about the behavior of
the latter can be derived immediately knowing the peculiar
features of the temperature. Namely, since the temperature
may in general have three extrema points, it means that the
heat capacity as a function of rþ may have three disconti-
nuity points, separating stable and unstable domains. We
point out here that since for relatively large rþ the
temperature shows rising character for any variation of
black hole parameters, at least in the observed domain,
therefore we can conclude that the specific heat CQ is
positive and the black hole is thermally stable. For smaller
radii of the horizon, the sign of CQ and consequent
conclusion about thermal stability or instability substan-
tially depend on the chosen values of black hole parameters
and the parameters of the Lagrangian. To make the
behavior of the function CQ ¼ CQðrþÞ more transparent,
we give corresponding graphs, showing its behavior near
discontinuity points and how it is affected by variations of
certain parameters, namely, its electric charge q and the
cosmological constant Λ.
Figure 4 shows the rightmost discontinuity point for two

values of the electric charge. As it was noted above, the heat
capacity CQ to the right of the discontinuity point is
positive and it goes up if the horizon radius rþ increases.
This feature is typical for most types of black holes with

AdS asymptotic. To the left of the asymptotes, the heat
capacity becomes negative, therefore this range of rþ is a
domain of instability. We also point out that for smaller
radius rþ there is a second discontinuity point that is
reflected by very fast decrease of the heat capacity CQ if the
radius of the horizon goes down. We also conclude that
discontinuity points become closer if the charge q goes up,
and further increase of the charge gives rise to merging of
the singularity points and consecutive shrinkage of the
unstable domain, at least for the considered range of the

FIG. 4. Heat capacity CQ as a function of horizon radius rþ for
two values of the electric charge qwhenever the other parameters
are held fixed. The solid and dashed curves correspond to q ¼ 0.1
and q ¼ 0.125, respectively. The fixed parameters are as follows:
n ¼ 3, α ¼ 0.2, η ¼ 0.3, Λ ¼ −3, and q̄ ¼ 0.01.
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parameters. A similar conclusion can be made if the
absolute value of Λ goes up. Then the peculiarity of the
heat capacity diminishes, what is shown in Fig. 5; namely,
the height of the peak drops down and finally vanishes if
the absolute value of the cosmological constant Λ rises.
We also point out that the heat capacity CQ (64) within

the extended thermodynamics approach can be treated as
the heat capacity under constant pressure CP, and the
pressure is introduced below. It is valid since all the
parameters are held fixed in the relation (64).

V. EXTENDED THERMODYNAMICS

The so-called extended thermodynamics has attracted
considerable attention for more than a decade [63–68].
Even though some basic assumptions for the extended
thermodynamics are still disputed, this approach gives rise
to wider thermodynamic phase space, allowing us to
describe richer thermodynamics and establish at least
formal, but deeper ties with the thermodynamics of various
systems usually considered in condensed matter physics. In
particular, it establishes profound relations between phase
transition phenomena of condensed matter systems and
phase transitions (transformations) in black hole physics.
The key assumption of the extended approach is the fact
that the cosmological constant is considered to be a
thermodynamic value. Namely, the cosmological constant
Λ was identified with thermodynamic pressure,

P ¼ −
Λ
8π

: ð65Þ

It should be pointed out that there is some analogy to
ideal fluid, where a corresponding term related to the
thermodynamic pressure goes along with the metric tensor
in the energy-momentum tensor of the fluid, but it will not
be discussed in the current work. The introduced

thermodynamic pressure (65) gives rise to the consequence
that the black hole mass should be identified now with the
enthalpyM ¼ H [66], but not with the internal energy as it
was in the standard thermodynamics. Having the pressure
P (65) the corresponding conjugate thermodynamic vol-
ume V can be defined as follows:

V ¼
�
∂M
∂P

�
S;Qe

: ð66Þ

The explicit relation for the thermodynamic volume
depends on the parity of dimension n, similar to as it is
for the metric function UðrÞ (25). Namely, for odd n the
explicit expression for the thermodynamic volume V is as
follows:

V ¼ ωn−1

�
rnþ
n

−
η

4α

�
2

�
α

η
þ Λ

��Xn−12
j¼0

ð−1Þjd2j rn−2jþ
n − 2j

þ ð−1Þnþ1
2 dn arctan

�
rþ
d

��
þ 2q2

×

�Xn−52
j¼0

ð−1Þjd2j r4þ2j−n
þ

ð4þ 2j − nÞd2ðjþ1Þ þ
ð−1Þn−32
dn−2

arctan

�
rþ
d

��
þ ðn − 1Þðn − 2Þq̄2

×

�Xn−52
j¼0

ð−1Þjd2j rn−2j−4þ
n − 2j − 4

þ ð−1Þn−32 dn−4 arctan
�
rþ
d

����
: ð67Þ

The explicit expression for the thermodynamic volume can be written similarly for even n. The obtained relation (67) is in
agreement with a respective relation obtained in [33] for corresponding limits in both cases. Since n ¼ 3 is of special
interest, we also write the thermodynamic volume for this case,

V ¼ 4π

�
r3þ
3
−

η

2α

��
α

η
þ Λ

��
1

3
r3þ − d2rþ

�
þ
�
d3
�
α

η
þ Λ

�
þ 1

d
ðq2 þ q̄2Þ

�
arctan

�
rþ
d

���
: ð68Þ

FIG. 5. Dissolution of the peak for the heat capacity CQ for
large absolute values of Λ. From higher to lower, the peaks
correspond to the increase of the absolute value of the cosmo-
logical constant.
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To derive the Smarr relation for the black hole, we introduce an additional intensive thermodynamic variable, which in some
sense is similar to the pressure (65) introduced above. The new variable and its conjugate are defined as follows:

Π ¼ α

8πη
; Ψ ¼

�
∂M
∂Π

�
S;Qe;P

: ð69Þ

Taking corresponding derivatives, we write the explicit relation for the extensive conjugate value Ψ. Namely, for odd n
(n < 7) we obtain

Ψ ¼ ωn−1

�
η

2α

��
α

η
þ L

��Xn−12
j¼0

ð−1Þjd2j rn−2jþ
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2

2
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j¼0
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d

��
þ q2
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j¼0

ð−1Þj r4þ2j−n
þ

ð4þ 2j − nÞd2ðjþ1Þ

þ ð−1Þn−32
dn−2
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rþ
d

���
þ η2rn−2þ
8α2ðr2þ þ d2Þ

��
α

η
þ Λ
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−
η2

8α2

×
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�
α

η
þ Λ

�
2
�Xn−12

j¼0

ð−1Þjd2j rn−2jþ
n − 2j
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�
rþ
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�
rþ
d

��

þ 1

4
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þ
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: ð70Þ

For the dimensions n ≥ 7 there is a different contribution in the bottom line of the above relation. It follows from the
corresponding term in the metric function UðrÞ. The explicit expression for Ψ if n is even can be derived similarly. We also
write the thermodynamic function Ψ for the n ¼ 3 case,

Ψ ¼ 4π

�
η

4αd

�
1 −

ηΛ
α

�
ðq2 þ q̄2Þ arctan

�
rþ
d

�
−
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− 1
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arctan

�
rþ
d

��
þ η2rþ
8α2ðr2þ þ d2Þ

��
α

η
þ Λ

�
r2þ þ q2 þ q̄2

r2þ

�
2
�
: ð71Þ

Since a non-Abelian field is also included into the action, it gives a contribution into the metric function UðrÞ and all the
derived quantities, so we assume that the non-Abelian parameter q̄ can be varied as well. We introduce a non-Abelian charge
similarly as it was defined, for instance, in [50],

Qn ¼
1

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn − 1Þðn − 2Þp Z

Σn−1

dn−1χJðχÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðFðaÞ

μν FðaÞμνÞ
q

¼ ωn−1

4π
q̄: ð72Þ

The integral in upper relation is taken over a sphere enclosing the black hole and JðχÞ denotes the Jacobian for the chosen
spherical coordinates. The Yang-Mills charge Qn (magnetic) now can be considered as a thermodynamic value similar to
the electric charge of the Maxwell field. Therefore, a thermodynamic conjugate value to the charge Qn can be introduced,
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U ¼
�
∂M
∂Qn

�
S;Qe;P;Π

: ð73Þ

We do not give the explicit expression for the potential U,
but it can be obtained easily. Having introduced additional
thermodynamic variables such as P, Π, Qn and their
thermodynamic conjugates, we are able to write the so-
called extended first law, which takes the form

δM ¼ TδSþΦeδQe þ VδPþ ΨδΠþ UδQn: ð74Þ

Taking into account the pairs of conjugate variables, we
also write the Smarr relation,

ðn − 2ÞM ¼ ðn − 1ÞTS − 2VP − 2ΨΠ

þ ð2 − nÞΦeQe þ UQn: ð75Þ

If the non-Abelian field is set to zero (q̄ ¼ 0) the obtained
relation is reduced to the corresponding equation derived
for the electrically charged black hole in Horndeski

gravity [33]. If we compare with the general relativistic
case, the Smarr relation (75) and the generalized first law
(74) gain only one additional term caused by the thermo-
dynamic variable Π and its conjugate value Ψ. The latter
two relations may be considered as an additional argument
in favor of universality of black hole thermodynamics,
which allows us to write the fundamental thermodynamic
relations that take the same or at least very similar form for
various underlying theories of gravity.

VI. GIBBS FREE ENERGY

If a thermodynamic system undergoes phase transitions,
the Gibbs free energy is more convenient than the enthalpy
identified with the black hole’s mass M. The Gibbs free
energy is defined as follows:

G ¼ M − TBHS: ð76Þ

The explicit relation for the Gibbs free energy for odd n
(n < 7) takes the form

G ¼ ωn−1
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Similar to above, we give the explicit relation for n ¼ 3 because of a special interest in this case,

G ¼ 1
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: ð78Þ

Since the Gibbs free energyG (77) and its particular case (78) have rather intricate forms and their temperature dependences
are given implicitly, it is difficult to analyze their behavior. To understand it better, we give a corresponding graph, which
shows the dependence G ¼ GðTÞ, while the pressure and all the other parameters are fixed. Namely, Fig. 6 shows that for
smaller pressure P the Gibbs free energy has swallowtail behavior and it gives rise to the conclusion that there is a phase
transition of the first order. From the qualitative point of view, the behavior of the Gibbs free energy is the same as for the
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Reissner-Nordström-AdS black hole in general relativity
[66]. The Gibbs free energy in Horndeski gravity for a
nonlinearly charged black hole was also examined in our
earlier paper [33] and, again, from the qualitative point of
view there is complete agreement between current and
earlier results. If the pressure goes up, the swallowtail
gradually diminishes and after reaching of a critical value
it completely vanishes. TheGibbs free energy turns out to be
a smooth function of the temperature T and it also means the
disappearance of the phase transition. The critical point
when the behavior of theGibbs free energy becomes smooth
is supposed to be a point of the second-order phase
transition, which is usually takes place for a Van der Waals
system or Reissner-Nordström-AdS black hole [66]. Be-
cause of the interest in the critical point and near critical

behavior, some aspects of this issue will be examined in the
following section. For better illustration of the swallowtail
behavior and its gradual diminishing with increase of the
pressure, we add the 3D figure for the Gibbs free energy
(Fig. 7).

VII. CRITICAL BEHAVIOR IN THE
EXTENDED PHASE SPACE

Since additional thermodynamic variables are defined,
we are able to extend corresponding thermodynamic phase
space for the system and consequently derive and examine
richer thermal behavior of the black hole. One of the key
relations in thermodynamics of any conventional system is
its thermal equation of state, which establishes a relation
between its macroscopic values such as temperature T,
pressure P, and volume V. Having defined the pressure P
(65) and using the relation for the temperature (38), we can
rewrite the latter relation in a form of the thermal equation
of state, namely, we write

P¼ 1

8π

�
q2

r2ðn−1Þþ
þ ðn− 1Þðn− 2Þq̄2

2r4þ
−
ðn− 1Þðn− 2Þ

r2þ
− ξ

�
� 1

4πr2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn− 1Þπξrþðr2þ þ d2ÞT

q
; ð79Þ

where for convenience we denote ξ ¼ α=η, which is
directly related to the above introduced thermodynamic
value Π (69). We also point out that to obtain the
expression (79) we extract the cosmological constant Λ
from the relation (38), solving the corresponding quad-
ratic equation for the parameter Λ; therefore, the sign �
appears in the upper relation. To have the pressure P
positive in all the range of variation, we pick up the signþ
only and consider it in the following relations. We also
point out that, instead of thermodynamic volume (66), we
still keep the horizon radius rþ, partially because of the
complexity of the relation (66) which does not allow us to
express rþ as an explicit function of V. On the other hand,
it does not change or modify conclusions about the critical
behavior that we are to derive. In addition, we remark that
Eq. (79) being completely “geometrical” in nature can be
rewritten in terms of “physical” variables in a similar
fashion as it was done in [66,67], but such a redefinition of
thermodynamic values does not affect any physical con-
clusions at all. We also point out that some hints about
possible critical behavior of a nonlinearly charged back
hole were obtained in our earlier paper [33], and a more
detailed consideration of criticality issues were made
in [69].
Following the key assumption that the equation of state

for black holes (79) is analogous to the Van der Waals
equation of state, far reaching consequences can be derived.
In particular, critical behavior can be studied and one of the
most important issues here is a phase transition between the

FIG. 7. Gibbs free energy G as a function of temperature T and
pressure P (or the cosmological constant Λ).

FIG. 6. Gibbs free energy G as a function of temperature T for
various values of pressure P or cosmological constant Λ, while
other parameters are held fixed. The dotted, dashed, dash-dotted,
and solid lines correspond to Λ ¼ −1.5, Λ ¼ −3.5, Λ ¼ −5.5,
and Λ ¼ −7.5, respectively. The fixed parameters are as follows:
n ¼ 3, q ¼ 0.1, q̄ ¼ 0.1, α ¼ 0.2, and η ¼ 0.3.

M. M. STETSKO PHYS. REV. D 109, 044055 (2024)

044055-16



so-called large and small black holes. The central notion
here is the so-called inflection point, defined as follows:�

∂P
∂rþ

�
T
¼ 0;

�
∂
2P
∂r2þ

�
T
¼ 0: ð80Þ

It is worth noting that if we use the volume V (66), to find
the inflection point the derivatives with respect to the

volume V should be equated to zero, but using the relation
∂P
∂V ¼ ∂P

∂rþ
∂rþ
∂V , and assuming that the derivative ∂V

∂rþ
≠ 0 since

the volume is supposed to be a monotonous function of rþ,
we again arrive at the relations (80). We also point out that
other thermodynamic parameters we used in the extended
description are held fixed. The relation for critical radius
can be derived straightforwardly using the relations (80),
namely, after simple calculations we write

−3ðn − 2Þ þ ð2n − 1Þq2
r2ðn−2Þc

þ 5ðn − 2Þq̄2
r2c

þ 3r4c þ 22d2r2c þ 15d4

2ðr2c þ d2Þðr2c þ 3d2Þ
�
n − 2 −

q2

r2ðn−2Þc

−
ðn − 2Þq̄2

r2c

�
¼ 0; ð81Þ

where rc is the critical radius rc. The critical temperature Tc and pressure Pc can be written as functions of the critical radius
rc,

Tc ¼
2ðn − 1Þðr2c þ d2Þ
πξrcðr2c þ 3d2Þ2

�
n − 2 −

q2
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−
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�
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; ð82Þ

Pc ¼
1

8π

�
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þ ðn − 1Þðn − 2Þq̄2
2r4c

−
ðn − 1Þðn − 2Þ

r2c
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�
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��
: ð83Þ

The equation for the critical horizon radius rc (81) does not
have an exact analytical solution for general dimension n
and arbitrary chosen parameters q, q̄, and d. Therefore, the
critical values such as Tc and Pc cannot be given as explicit
functions of the mentioned parameters of the black hole in
the general case, as it takes for the Van der Waals gas or
even simpler black hole solutions such as, for instance, the
Reissner-Nordström-AdS one [66]. In general the critical
values can be calculated numerically for arbitrary values of
n, ξ and black hole charges q and q̄. It should be pointed out
that for some particular cases analytical solutions can be, in
principle, obtained. Because of some interest in the
analytical solution and taking into account the fact that
analytical solutions often are easier to analyze, we note
several particular cases where at least it is possible to derive
an analytical solution for the critical radius rc and, con-
sequently, to other two critical values Tc and Pc. First of all,
if n ¼ 3 Eq. (81) takes the form

− 3þ 5ðq2 þ q̄2Þ
r2c

þ 3r4c þ 22d2r2c þ 15d4

2ðr2c þ d2Þðr2c þ 3d2Þ
�
1 −

q2 þ q̄2

r2c

�
¼ 0: ð84Þ

The latter equation can be rewritten in a form of a cubic
equation for the square of the critical radius r2c. A similar
equation can be written if the electric charge q ¼ 0, but in
this case for any n, the only difference with Eq. (84) is
hidden in the parameter d, which is dimension dependent.

Another interesting particular case is α ¼ 0 and it is easy
to verify that equation for the critical radius rc (81) reduces
to the form

ð4n − 7Þq2
r2ðn−2Þc

þ 5
ðn − 2Þq̄2

r2c
þ 2 − n ¼ 0: ð85Þ

Corresponding relations for the critical temperature Tc and
the pressure Pc can be rewritten as follows:

Tc ¼
4ðn − 2Þ
9πrc

�
1 −

q̄2

r2c
−

q2

ðn − 2Þr2ðn−2Þc

�
2

; ð86Þ

Pc ¼
ðn − 1Þðn − 2Þ

24πr2c

�
1 −

5q̄2

2r2c
−

ð4n − 7Þ
ðn − 1Þðn − 2Þ

q2

r2ðn−2Þc

�
:

ð87Þ

If n ¼ 3 Eq. (85) turns to be a quadratic one and the critical
radius can be easily written as

r2c ¼ 5ðq2 þ q̄2Þ: ð88Þ

Substituting the critical radius into the upper relations (86)
and (87), we obtain corresponding critical values Tc and
Pc. After the computation, we write the explicit expression
for the so-called critical ratio,

ρc ≡ Pcrc
Tc

¼ 75

512
: ð89Þ
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Thus, the critical ratio rc as it is expected is a dimensionless
number that does not depend on the parameters of the
solution such as its charges q, q̄, and this conclusion is in
perfect agreement with the definition of the critical ratio for
conventional systems as well as in within the extended
phase space thermodynamics for black holes. On the other
hand, it is known that for the standard Van der Waals
system and the Reissner-Nordström-AdS black hole the
critical ratio is ρc ¼ 3=8 and, as we see in our case, it is
considerably smaller. We also note that exact analytical
solutions of Eq. (85) can be also derived for n ¼ 4 and
n ¼ 5, where Eq. (85) for r2c turns out to be quadratic and
cubic, respectively, but here we do not give explicit
relations for corresponding values.
Another important particular case of Eq. (85) is related to

the situation when one of the charges is set to zero. Namely,
if q ¼ 0, then the square of the critical radius for any
dimension is

r2c ¼ 5q̄2: ð90Þ

Using this result, we write the critical ratio ρc for this
particular case,

ρc ¼
75ðn − 1Þ
1024

: ð91Þ

The obtained relation is in perfect agreement with the
relation (89) if n ¼ 3. Finally, we assume that q̄ ¼ 0, then
Eq. (85) immediately gives us

r2ðn−2Þc ¼ ð4n − 7Þ
ðn − 2Þ q2: ð92Þ

The latter expression gives rise to the following critical
ratio:

ρc ¼
3ð4n − 7Þ2
512ðn − 2Þ : ð93Þ

Similar to the upper case, there is perfect agreement with the
ratio ρc (89) if n ¼ 3, but in contrast to the upper case its
dimension dependence is different. The latter relation
also shows that, for higher-dimensional cases, at least when
n is not too high the critical ratio (93) is also smaller than the
corresponding ratio for higher-dimensional generalization
of the Reissner-Nordström-AdS black hole, which equals
ρc ¼ ð2n − 3Þ=ð4ðn − 1ÞÞ.
If a thermodynamic system undergoes a second-order

phase transition, there are universal parameters, namely, the
critical exponents that characterize behavior of certain
thermodynamic values near the critical point and do not
depend on the parameters of the system [70]. To obtain the
critical exponents it is useful to introduce the so-called

reduced variables, which show how close to the critical
point the system is,

t ¼ T
Tc

− 1; ω ¼ rþ
rc

− 1: ð94Þ

Now the critical exponents ᾱ, β,γ, and δ are defined as
follows:

CV ∼ jtj−ᾱ; ΔVls ∼ jtjβ; κT ∼ tγ; P−Pc ∼ jωjδ:
ð95Þ

Here we point out that CV is the heat capacity under
constant volume, ΔVls is the volume difference for large
and small phases, and κT is the isothermal compressibility.
We also note that instead of the commonly used notation α
for the first of the critical exponents we use ᾱ, because the
symbol α is used to denote one of the coupling constants.
It follows from the definition of the entropy S (62) that

the heat capacity under fixed volume exactly equals zero:
CV ¼ Tð∂S=∂TÞV ¼ 0, therefore we immediately conclude
that the critical exponent ᾱ ¼ 0. To derive the other critical
exponents, we rewrite the equation of state (79) near the
critical point in the following form:

P ¼ Pc þ Atþ Btωþ Cω3 þDt2 þ � � � ; ð96Þ

where

A ¼ Tc

�
∂P
∂T

�
rþ

				
rc

; B ¼ rcTc

�
∂
2P

∂T∂rþ

�				
rc

;

C ¼ r3c
6

�
∂
3P
∂r3þ

�
T

				
rc

; D ¼ T2
c

2

�
∂
2P
∂T2

�
rþ

				
rc

: ð97Þ

The derivatives noted above can be either calculated
numerically for a general case of solution or, for some
particular cases, even analytical expressions can be derived.
In any case, the following procedure is identical.
Differentiating Eq. (96) and taking into account Maxwell’s
area law, we can writeZ

ωs

ωl

ωdP ¼
Z

ωs

ωl

ðBtþ Cω3Þdω ¼ 0: ð98Þ

After integration we arrive at the relation

Btðω2
s − ω2

l Þ þ
C
2
ðω4

s − ω4
l Þ ¼ 0: ð99Þ

The obtained equation gives rise to a nontrivial solution
ωs ¼ −ωl. Since for both phases we have the same pressure
and using the equation of state (96) we obtain

Btðωs − ωlÞ þ Cðω3
s − ω3

l Þ ¼ 0: ð100Þ

M.M. STETSKO PHYS. REV. D 109, 044055 (2024)

044055-18



Solving the latter equation for ωs and taking into account
the relation for ωs and ωl, finally we arrive at the following
expression:

ωl ≃
ffiffiffiffiffiffiffiffiffiffi
−
B
C
t

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B
C
ðTc − TÞ

Tc

s
: ð101Þ

Now we are able to write the expression for the volume
difference ΔVls and extract the critical exponent from it,

ΔVls ≃Vcðωl −ωsÞ ¼ 2Vcωl ∼ j− tj1=2 ⇒ β ¼ 1

2
: ð102Þ

Using the definition of the isothermal compressibility κT
and the equation of state (96) we can derive the critical
exponent γ,

κT ¼ −
1

V

�
∂V
∂P

�
T
∼

1

Bt
;⇒ γ ¼ 1: ð103Þ

Finally, considering the critical isotherm, we obtain the
critical exponent δ. Namely, from the equation of state (96)
it follows that

P − Pc ∼ Cω3;⇒ δ ¼ 3: ð104Þ

All the critical exponents we have derived take the same
value as their counterparts for the Reissner-Nordström-AdS
black hole [66] and in the case of Horndeski gravity they
were derived in the work [69], but for a different black hole
solution. The same critical exponents were derived for
various solutions in different frameworks, as it was men-
tioned in the reviewing paper [68]. Therefore, we can
conclude that the critical behavior shows some universal
features, at least for the vast number of black hole solutions
in various independent frameworks.
We also note that in [69] the authors used a different

equation of state identifying the thermodynamic pressure P
not with the cosmological constant Λ, but relating the
pressure with the ratio of the coupling constants α=η. In
their case that definition of pressure was reasonable, since
asymptotic behavior of the metric function UðrÞ for
infinitely large distances in their case is defined by the
ratio α=η; in fact, that solution has an additional constraint,
giving rise to the noted behavior. In our case we do not
impose any specific constraints, thus asymptotic behavior
at the infinity is equally defined by the cosmological
constant Λ and the ratio α=η. Actually, we have an effective
cosmological constant Λeff ∼

η
α ðαη − ΛÞ2, whereas in [69]

the effective cosmological constant is of the form Λeff ∼ α
η.

We also suppose that in our case the thermodynamic
pressure can be defined to be proportional to the ratio α

η,
giving rise to a bit more cumbersome equation of state
instead of Eq. (79). However, taking into account the results

of the work [69], we do not think that it changes drastically
the critical behavior or gives rise to other critical exponents.
Since here we focus on the analysis of the thermal

behavior of the system at the critical point or in close
vicinity of it, we also consider Ehrenfest’s equations that
were developed for the study of the phase transition of the
second order, which is supposed to take place at the critical
point. The Ehrenfest equations characterize discontinuity of
such thermodynamic parameters as the heat capacity under
constant pressure CP, the isothermal compressibility κT,
and the volume expansion coefficient α̃, namely, we write�

∂P
∂T

�
S
¼ CP2

− CP1

VTðα̃2 − α̃1Þ
¼ ΔCP

VTΔα̃
; ð105Þ

�
∂P
∂T

�
V
¼ α̃2 − α̃1

κT2
− κT1

¼ Δα̃
ΔκT

: ð106Þ

We point out here that heat capacityCP in the upper relation
is given by relation (64), because the latter one was derived
under the assumption that Λ was held fixed. The volume
expansion coefficient α̃ is defined as follows:
α̃ ¼ 1=Vð∂V=∂TÞP. We show that mentioned thermody-
namic quantities such as Cp, α̃, and κT have infinite
discontinuity at the critical point. Let us consider the
isothermal compressibility,

κT ¼ −
1

V

�
∂V
∂P

�
T
¼ −

1

V
∂V
∂rþ

�
∂rþ
∂P

�
T
: ð107Þ

Taking into account the first of the conditions (80), we
conclude that at the critical point the derivative
ð∂rþ=∂PÞT → ∞; therefore, there is an infinite gap for
the isothermal compressibility κT at the critical point. The
other two thermodynamic quantities also have an infinite
gap at the critical point and it is enough to consider one of
them, because the other one can be shown in exactly the
same way. Let us consider again the heat capacity (64).
It is clear that to show its discontinuity at the critical point
we should show that the derivative ð∂rþ=∂TÞP has an
infinite gap at the critical point, because both the temper-
ature T and the derivative ∂S=∂rþ are continuous and take
finite values at that point. To make the analysis more
transparent, we write the derivative ð∂T=∂rþÞP taken at the
critical point rc,�
∂T
∂rþ

�
P

				
c
¼ r2cχðrcÞ

8ðn − 1Þπξðr2c þ d2Þ

×

�ðr2c þ 3d2Þ
ðr2c þ d2Þ χðrcÞ þ 2rcχ0ðrcÞ

�
; ð108Þ

where we denote χðrÞ ¼ ξ − Λþ ðn − 1Þðn − 2Þ=r2 −
q2=r2ðn−1Þ − ðn − 1Þðn − 2Þq̄2=2r4 and χ0ðrÞ is its deriva-
tive with respect to r. Now if we write the derivative
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ð∂P=∂rþÞT at the critical point rc and use the expression for
the critical temperature Tc (82), we obtain�
∂P
∂rþ

�
T

				
c
¼ −

1

16πrc

�ðr2c þ 3d2Þ
ðr2c þ d2Þ χðrcÞ þ 2rcχ0ðrcÞ

�
¼ 0:

ð109Þ
Where the last equality is nothing else but the condition
(80), it follows that the expression in the parentheses in the
upper relation equals zero. Since there is identical con-
tribution in the relation (108), we conclude that the
derivative ð∂T=∂rþÞP equals zero at the critical point rc
and as a result the heat capacity CP is discontinuous with
infinite gap at this point.
It is also established that there is a subtlety in the

definition of the so-called phase transitions of the second
order according to Ehrenfest’s classification. More pre-
cisely, the character of the phase transition with discon-
tinuous second derivatives as we have here is defined by the
Prigogine-Defay ratio, which is introduced as follows:

Π̃ ¼ ð∂P=∂TÞS
ð∂P=∂TÞV

¼ ΔCPΔκT
VTðΔα̃Þ2 ; ð110Þ

where obviously the Prigogine-Defay ratio is calculated at
the critical point. Taking into account corresponding
relations for the thermodynamic values CP, eα; and κT
and substituting them into the upper relation, after simple
transformations we obtain

Π̃ ¼ −
ð∂S=∂rþÞð∂rþ=∂PÞT
ð∂V=∂rþÞð∂rþ=∂TÞP

				
c
: ð111Þ

Calculating derivatives ∂S=∂rþ and ∂V=∂rþ and taking into
account the relations (108) and (109), we obtain

Π̃ ¼ 1: ð112Þ

Therefore, since the Prigogine-Defay ratio equals 1, the
phase transition at the critical point is exactly of the second
order. We point out that in contrast to the considered
case for dilatonic black holes the Prigogine-Defay ratio is
Π̃ < 1 [51], giving rise to the conclusion about a glass-type
phase transition for the latter case.

VIII. DISCUSSION

In this work, a static charged black hole solution is
obtained in Horndeski gravity with linear Maxwell and
Yang-Mills fields. Because of the chosen form of the field
potentials for the gauge fields, namely, the Maxwell field is
purely electric and the non-Abelian field is of magnetic
character, the explicit relations for the metric function are
derived in a closed form. We point out that due to the nature
of the Horndeski gravity the explicit relations for the metric

function UðrÞ have some differences for even (A5) and
odd (26) dimensions of space n. This is a specific feature of
Horndeski gravity and similar differences occurred even for
pure Horndeski gravity [32], but it also affects the terms
related to the gauge field [33]. The other distinctive feature
of the obtained solution is a specific effective coupling
between the gauge fields that is reflected by the terms
proportional to the product of charges q and q̄ (∼q2q̄2) in
the metric function UðrÞ (25) and in the following explicit
relations. We point out that effective coupling of similar
characters never appears in the framework of general
relativity or Einstein-dilaton theory [51,52], but it may
appear in “higher-order” gravity theories, for instance,
when Gauss-Bonnet or higher Lovelock terms are taken
into account, but as far as we know this issue has not been
studied yet. It would be interesting to consider this issue in
those theories and compare both results. It should be noted
that for n ¼ 3 both Abelian and non-Abelian fields give
identical contribution to the metric function (27). We also
note that the obtained solution belongs to a class that does
not have a limit when both coupling parameters α and η are
switched off. This constraint is caused by the relation (22).
The intricate expression of the metric functionUðrÞ in its

integral (25) or explicit (26) [or/and (A5)] forms turns a
thorough analysis of the metric function into a difficult
task. However, asymptotic cases can be analyzed relatively
easily. First of all, it follows from (28) that asymptotic
behavior at the infinity will be of AdS or dS types,
depending on the signs of the coupling constants. We also
point out that, in this case, instead of the bare cosmological
constant Λ, there is an effective one defined by both the
bare constant Λ and the ratio of the coupling parameters
α=η, namely, Λeff ∼ η=αðα=η − ΛÞ2. It should be noted that
imposing additional constraints on the metric functions
UðrÞ and WðrÞ, another effective cosmological constant
Λeff can be obtained; namely, in [69] the effective cosmo-
logical constant was obtained to be proportional to the ratio
of the coupling parameters Λeff ∼ α=η. Therefore, it is an
interesting issue to examine various options of how the
effective cosmological constant appears and what form it
takes. The latter is also important from the point of view of
the extended thermodynamics because it is directly related
to the definition of the thermodynamic pressure P. In this
work, we consider mainly the solution with AdS asymp-
totic, but as we have mentioned, our solution may have de
Sitterian asymptotic depending on the signs of the param-
eters, but this solution has its own peculiarities and it needs
additional careful study.
For very small distances r → 0 the leading contribution

into the metric function UðrÞ is mainly defined by the
gauge field. In our case for n > 3 the dominant contribution
is given by the Maxwell field, whereas for n ¼ 3 both
gauge fields contribute equally. Because of a specific
interplay between Horndeski gravity and gauge field terms,
the dominant term for r → 0 is always of negative sign,
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making the behavior of the metric function more similar to
the Schwarzschild solution than to the Reissner-Nordström
one. In addition, the leading term is always proportional to
∼q4, whereas in general relativity the linear Maxwell field
contribution is of the order of ∼q2. The negative sign of the
mentioned contribution for r → 0 gives rise to the con-
clusion that for this particular solution in Horndeski gravity
a naked singularity never exists as it may happen for a
charged solution in general relativity, for instance, for the
Reissner-Nordström solution. Figure 1 confirms the men-
tioned conclusion. Figure 1 also shows that increase of the
charge (or even both charges) can give rise to the appear-
ance of additional horizons, but it needs more careful
examination and it will be considered elsewhere.
We also study thermal properties of the black hole. First,

we calculate the black hole temperature. To obtain it we have
used the concept of modified surface gravity, introduced in
[58], where the authors argued that due to the difference
between speeds of gravitons and photons the concept of
surface gravity needs a revision. The modified surface
gravity and corresponding black hole temperature allowed
us to avoid introducing additional scalar charges that are ill
defined, as it was done earlier [29,33], to maintain the first
law of black hole thermodynamics. An additional benefit we
obtain using the modified surface gravity concept is the fact
that the entropy we introduce takes the same form as in
general relativity. To obtain the first law we use the Wald
approach [71,72]. We also point out that the concept of the
effective surface gravity should be carefully analyzed as it is
performed in general relativity. Both temperature T and
entropy S allowed us to calculate heat capacity CQ and
examine it. Its examination shows that it might have
singularity points and instability domains that disappear
under certain conditions. These singularities give a hint
about possible critical behavior of the black hole, which is
also studied in the extended thermodynamics framework.
Finally, introducing the thermodynamic pressure P (65)

we obtain the thermal equation of state (79). In addition to
the pressure, we have also introduced the thermal quantityΠ
which has a similar nature to the pressure, as was pointed out
in [69], but this issue should be carefully studied. The
extended thermal phase space allowed us to derive the Smarr
relation (75). We also obtained the Gibbs free energy. The
study of the Gibbs free energy for relatively small pressure
shows swallowtail behavior (see Figs. 6 and 7) and increase
of the pressure gives rise to gradual diminishing of the
swallowtail behavior with its following dissolution. The
swallowtail character of the G ¼ GðTÞ function means that
the system undergoes a phase transition of the first order for
corresponding values of the pressure P and it disappears
when the swallowtail vanishes with increase of the pressure.
The study of the equation of state (79) gives rise to the
critical radius rc (or critical volumeVc)which is obtained for
some particular cases and, consequently, for those cases we
derived explicit relations for the critical ratios ρc. General

relations for the critical values can be studied only numeri-
cally. Studying the thermal behavior near the critical point,
we obtained the critical exponents ᾱ, β, γ, and δ. Their
numerical values are the same as even for the Reissner-
Nordström-AdS black hole [66] and for other black hole
solutions in Horndeski gravity with different equations of
state [69] which confirms the universal character of thermo-
dynamic relations. We have also analyzed the Ehrenfest
equations to study the behavior at the critical point and
calculated the Prigogine-Defay ratio Π̃, which is shown to be
equal to 1. We make the conclusion that at the critical point
we have the second-order phase transition. It would also be
interesting to study carefully the critical behavior if instead
of the cosmological constantΛ the ratio α=η is used to define
thermodynamic pressure. The other interesting and impor-
tant issue is to study in more detail the domain where the
first-order phase transition occurs, namely, to obtain and
examine the Clausius-Clapeyron equation.
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APPENDIX: SOME INTEGRALS AND EXPLICIT
FORM FOR THE METRIC FUNCTION

For the sake of convenience, we give some technicalities
related to the explicit calculation of the metric function
UðrÞ (25). Here we collect all the necessary integrals and
we point out that there are some subtleties for odd and even
dimensions n, namely, we obtainZ

rm

r2 þ d2
dr ¼

Xðm−2Þ=2

j¼0

ð−1Þjd2j rm−2j−1

m − 2j − 1

þ ð−1Þm2dm−1 arctan

�
r
d

�
; ðA1Þ

if m is a positive even number. If m is a positive odd
number, the latter integral takes the formZ

rm

r2 þ d2
dr ¼

Xðm−3Þ=2

j¼0

ð−1Þjd2j rm−2j−1

m − 2j − 1

þ ð−1Þm−1
2
dm−1

2
ln

�
1þ r2

d2

�
; ðA2Þ

and if in the latter relation m ¼ 1 there is just a logarithmic
contribution. There are also integrals of the form

Z
r−m

r2 þ d2
dr ¼

Xðm−2Þ=2

j¼0

ð−1Þj r1þ2j−m

ð1þ 2j −mÞd2ðjþ1Þ

þ ð−1Þm2
dmþ1

arctan

�
r
d

�
; ðA3Þ
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if m is an even positive. While in the case of an odd integer the upper integral takes the following form:

Z
r−m

r2 þ d2
dr ¼

Xðm−3Þ=2

j¼0

ð−1Þj r1þ2j−m

ð1þ 2j −mÞd2ðjþ1Þ þ
ð−1Þmþ1

2

2dmþ1
ln

�
1þ d2

r2

�
: ðA4Þ

Having used the given integrals, we are able to write the explicit form of the metric functionUðrÞ (25). Particularly, for odd
n the metric function is given in the main body of the paper (26), while for even n we write

UðrÞ ¼ 1 −
μ

rn−2
−

2Λ
nðn − 1Þ r

2 −
ðn − 2Þ
ðn − 4Þ

q̄2

r2
þ 2q2

ðn − 1Þðn − 2Þ r
2ð2−nÞ þ 1

2αηðn − 1Þ

×

�
ðαþ ΛηÞ2

�Xn−22
j¼0

ð−1Þjd2j r
2ð1−jÞ

n − 2j
þ ð−1Þn2 dn

2rn−2
ln

�
1þ r2

d2

��

þ 2ηðαþ ΛηÞq2
�Xn−62

j¼0

ð−1Þjr6−2nþ2j

ð4 − nþ 2jÞd2ðjþ1Þ þ
ð−1Þn−22
2ðdrÞn−2 ln

�
1þ d2

r2

��

þ η2q4
�X3n−82

j¼0

ð−1Þjr2ð4þj−2nÞ

ð6þ 2j − 3nÞd2ðjþ1Þ þ
ð−1Þ3n−42

2d3n−4rn−2
ln

�
1þ d2

r2

��
þ ηðn − 1Þðn − 2Þq̄2

×

�
ðαþ ΛηÞ

�Xn−62
j¼0

ð−1Þjd2jr−2ð1þjÞ

n − 4 − 2j
þ ð−1Þn−22 dn−4

2rn−2
ln

�
1þ r2

d2

��

þ ηq2
�Xn−22

j¼0

ð−1Þjr2ð1þj−nÞ

ð2j − nÞd2ðjþ1Þ þ
ð−1Þnþ2

2

2dnþ2rn−2
ln

�
1þ d2

r2

��

þ ηðn − 1Þðn − 2Þ q̄
2

4

�Xn−102

j¼0

ð−1Þjd2jr−2ðjþ3Þ

n − 8 − 2j
þ ð−1Þn−82 dn−8

2rn−2
ln

�
1þ r2

d2

����
: ðA5Þ

We remark that the upper relation is written for the case n > 7. Similar to the odd n case, the exponent in the numerator of
the last integral in (25) changes its sign if n < 7, therefore integral (A4) should be chosen instead of (A2).
For the case n ¼ 4 the metric function UðrÞ is as follows:

UðrÞ ¼ 1 −
μ

r2
−
Λ
6
r2 þ q2

3r4
− 2

q̄2

r2
ln

�
r
d

�
þ 1

6αη

�ðαþ ΛηÞ2
2

�
r2

2
− d2

�
þ
�
ðαþ ΛηÞ d

4

2
þ 3ηq̄2

�
×
ðαþ ΛηÞ

r2
ln

�
1þ r2

d2

�
þ η2q4

2d2r4

�
−

1

3r4
þ 1

2ðdrÞ2 −
1

d4

�
þ 3

η2q2q̄2

d2r4

�
1

d2
−

1

2r2

�
−
9η2q̄4

2d2r4
þ
�

η2

2d2

�
q2

d2
− 3q̄2

�
2

− ηðαþ ΛηÞq2
�

1

d2r2
ln

�
1þ d2

r2

��
: ðA6Þ
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Phys. 11 (2023) 195.
[61] K. Prabhu, Classical Quantum Gravity 34, 035011

(2017).
[62] K. Hajian, M. M. Sheikh-Jabbari, and B. Tekin, Phys. Rev.

D 106, 104030 (2022).
[63] D. Kastor, S. Ray, and J. Traschen, Classical Quantum

Gravity 26, 195011 (2009).
[64] D. Kastor, S. Ray, and J. Traschen, Classical Quantum

Gravity 27, 235014 (2010).
[65] D. Kastor, S. Ray, and J. Traschen, Classical Quantum

Gravity 28, 195022 (2011).
[66] D. Kubiznak and R. B. Mann, J. High Energy Phys. 07

(2012) 033.
[67] S. Gunasekaran, R. B. Mann, and D. Kubiznak, J. High

Energy Phys. 11 (2012) 110.
[68] D. Kubiznak, R. B. Mann, and M. Teo, Classical Quantum

Gravity 34, 063001 (2017).
[69] Y.-P. Hu, H.-A. Zeng, Z.-M. Jiang, and H. Zhang, Phys.

Rev. D 100, 084004.
[70] N. Goldenfeld, Lectures on Phase Transitions and the

Renormalization Group (CRC Press, Taylor & Francis
Group, Boca Raton, 2019).

[71] V. Iyer and R. M. Wald, Phys. Rev. D 50, 846 (1994).
[72] R. M. Wald, Phys. Rev. D 48, R3427 (1993).

STATIC BLACK HOLE IN MINIMAL HORNDESKI GRAVITY … PHYS. REV. D 109, 044055 (2024)

044055-23

https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1088/1361-6633/ac9cef
https://doi.org/10.1007/BF01807638
https://doi.org/10.1088/1361-6633/ab2429
https://doi.org/10.1103/PhysRev.124.925
https://doi.org/10.1143/PTP.126.511
https://doi.org/10.1143/PTP.126.511
https://doi.org/10.1016/S0370-2693(00)00669-9
https://doi.org/10.1016/S0370-2693(00)00669-9
https://doi.org/10.1103/PhysRevD.83.084025
https://doi.org/10.1103/PhysRevD.83.084025
https://doi.org/10.1007/978-3-319-10070-8
https://doi.org/10.1007/JHEP05(2015)034
https://doi.org/10.1007/JHEP05(2015)034
https://doi.org/10.1142/S0218271819420069
https://doi.org/10.1103/PhysRevD.86.084048
https://doi.org/10.1103/PhysRevD.89.064017
https://doi.org/10.1103/PhysRevD.89.084050
https://doi.org/10.1103/PhysRevD.89.084050
https://doi.org/10.1103/PhysRevD.89.084038
https://doi.org/10.1093/ptep/ptu096
https://doi.org/10.1093/ptep/ptu096
https://doi.org/10.1007/JHEP08(2014)106
https://doi.org/10.1007/JHEP08(2014)106
https://doi.org/10.1103/PhysRevD.90.024008
https://doi.org/10.1103/PhysRevD.90.024008
https://doi.org/10.1103/PhysRevD.92.064027
https://doi.org/10.1103/PhysRevD.92.064027
https://doi.org/10.1103/PhysRevD.92.104050
https://doi.org/10.1103/PhysRevD.92.104050
https://doi.org/10.1007/JHEP11(2015)176
https://doi.org/10.1007/JHEP11(2015)176
https://doi.org/10.1103/PhysRevD.93.044030
https://doi.org/10.1103/PhysRevD.93.044030
https://doi.org/10.1103/PhysRevD.95.044037
https://doi.org/10.1103/PhysRevD.95.044037
https://doi.org/10.1103/PhysRevD.97.124007
https://doi.org/10.1103/PhysRevD.97.124007
https://arXiv.org/abs/1811.05030
https://doi.org/10.1103/PhysRevD.99.044028
https://doi.org/10.1103/PhysRevD.99.124049
https://doi.org/10.1103/PhysRevD.99.124049
https://doi.org/10.1103/PhysRevD.101.104004
https://doi.org/10.1103/PhysRevD.104.104067
https://doi.org/10.1103/PhysRevD.104.104067
https://doi.org/10.1140/epjc/s10052-022-10451-5
https://doi.org/10.1140/epjc/s10052-022-10451-5
https://doi.org/10.1103/PhysRevD.105.024038
https://doi.org/10.1103/PhysRevD.105.024038
https://doi.org/10.1103/PhysRevD.89.084042
https://doi.org/10.1103/PhysRevD.89.084042
https://doi.org/10.1103/PhysRevD.12.2212
https://doi.org/10.1103/PhysRevD.25.995
https://doi.org/10.1016/0550-3213(93)90441-Q
https://doi.org/10.1016/0550-3213(93)90441-Q
https://doi.org/10.1103/PhysRevD.51.4054
https://doi.org/10.1103/PhysRevD.51.4054
https://doi.org/10.1016/S0370-1573(99)00010-1
https://doi.org/10.1103/PhysRevD.75.024022
https://doi.org/10.1103/PhysRevD.75.024022
https://doi.org/10.1103/PhysRevD.76.087501
https://doi.org/10.1103/PhysRevD.76.087501
https://doi.org/10.1016/j.physletb.2007.11.006
https://doi.org/10.1016/j.physletb.2007.11.006
https://doi.org/10.1103/PhysRevD.84.064015
https://doi.org/10.1103/PhysRevD.84.064015
https://doi.org/10.1016/j.physletb.2011.08.066
https://doi.org/10.1103/PhysRevD.101.124017
https://doi.org/10.1007/s10714-020-02777-w
https://doi.org/10.1142/S0217751X21500342
https://doi.org/10.1103/PhysRevD.54.7243
https://doi.org/10.1088/0264-9381/13/3/017
https://doi.org/10.1088/0264-9381/13/3/017
https://doi.org/10.1103/PhysRevD.87.044023
https://doi.org/10.1103/PhysRevD.87.044023
https://doi.org/10.1103/PhysRevD.102.101503
https://doi.org/10.1103/PhysRevD.102.101503
https://doi.org/10.1103/PhysRevD.104.084092
https://doi.org/10.1016/j.physletb.2020.136002
https://doi.org/10.1103/PhysRevD.95.084029
https://doi.org/10.1007/JHEP11(2023)195
https://doi.org/10.1007/JHEP11(2023)195
https://doi.org/10.1088/1361-6382/aa536b
https://doi.org/10.1088/1361-6382/aa536b
https://doi.org/10.1103/PhysRevD.106.104030
https://doi.org/10.1103/PhysRevD.106.104030
https://doi.org/10.1088/0264-9381/26/19/195011
https://doi.org/10.1088/0264-9381/26/19/195011
https://doi.org/10.1088/0264-9381/27/23/235014
https://doi.org/10.1088/0264-9381/27/23/235014
https://doi.org/10.1088/0264-9381/28/19/195022
https://doi.org/10.1088/0264-9381/28/19/195022
https://doi.org/10.1007/JHEP07(2012)033
https://doi.org/10.1007/JHEP07(2012)033
https://doi.org/10.1007/JHEP11(2012)110
https://doi.org/10.1007/JHEP11(2012)110
https://doi.org/10.1088/1361-6382/aa5c69
https://doi.org/10.1088/1361-6382/aa5c69
https://doi.org/10.1103/PhysRevD.100.084004
https://doi.org/10.1103/PhysRevD.100.084004
https://doi.org/10.1103/PhysRevD.50.846
https://doi.org/10.1103/PhysRevD.48.R3427

