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The most general charged and rotating black hole in Kaluza-Klein theory is known to be described by the
Rasheed-Larsen solution. When the under-rotating extremal limit of this solution is taken, it falls into a
general class of solutions of Kaluza-Klein theory found by Clément, and is specified by two harmonic
functions on a three-dimensional flat base space. We use this fact to generalize the single extremal black
hole solution to one describing an arbitrary superposition of such black holes. These black holes carry
nonzero electric and magnetic charges, which we set to be equal for simplicity, and are in general rotating
with parallel or antiparallel spin vectors. It is checked that the space-time outside the black holes is free of
pathologies such as naked singularities and closed time-like curves.
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I. INTRODUCTION

Exact solutions of Einstein’s field equations describing
two or more black holes are of great interest, as they
provide a window into the nature of the interactions
between black holes. However, due to the nonlinearity
of the field equations, such solutions are not easy to come
by. An example is the Israel-Khan solution [1], which
describes an arbitrary number of Schwarzschild black holes
placed along a symmetry axis. The black holes are kept in
static equilibrium by conical singularities stretching
between them, which are necessarily present to counter-
balance their gravitational attraction.
If we require the space-time to be free of conical

singularities and other defects outside the black holes,
then there must be another force present—such as electro-
magnetism—to counterbalance gravity. An example is the
Majumdar-Papapetrou solution [2,3] of Einstein-Maxwell
theory, which describes an arbitrary superposition of
Reissner-Nordström black holes. In this case, the black
holes have to be extremally charged, so that the electrostatic
repulsion between them exactly cancels out their gravita-
tional attraction. Furthermore, the black holes can be
located anywhere in the space-time, unlike those in the
Israel-Khan solution.
It is natural to wonder if there exists a rotating gener-

alization of the Majumdar-Papapetrou solution. Such a
solution was found by Israel and Wilson [4] and Perjés [5],
but it turns out that this solution describes a superposition
of naked singularities rather than black holes. It appears
that a balanced superposition of rotating black holes is not
possible in Einstein-Maxwell theory.
The purpose of this paper is to point out that a balanced

superposition of rotating black holes is possible, if we
consider instead Kaluza-Klein theory [6,7]. This theory

arises from the dimensional reduction of Einstein gravity in
five space-time dimensions, and was originally conceived
as a way to unify the gravitational and electromagnetic
forces. However, it also gives rise to a new massless scalar
field, known as the dilaton, which has not been observed.
Nevertheless, the Kaluza-Klein method of dimensional
reduction has found applications in modern theories such
as string theory.
The black holes of Kaluza-Klein theory have been

extensively studied over the years, beginning with the
pioneering work of [8–12]. The most general black hole
solution of Kaluza-Klein theory was found by Rasheed [13]
and independently by Larsen [14,15].1 This black hole is
specified by four parameters: mass, angular momentum,
electric charge, and magnetic charge. Its various properties
were studied in detail in [13–15]. In particular, it was found
that there are two different ways to take the extremal limit
of this black hole.
It is one of these extremal limits, known as the under-

rotating limit, that would be of interest to us. In this limit,
the electric and magnetic charges are both nonzero, and the
angular momentum is free to take any value in a certain
range. This results in an extremally charged, rotating black
hole solution that takes a very simple mathematical form. In
fact, it falls into a class of solutions of Kaluza-Klein theory
found by Clément [17,18] and is specified by a set of two
harmonic functions on a three-dimensional flat base space,
which have poles at the location of the black hole. By
superposing multiple copies of these harmonic functions,
we are able to construct a multicentered generalization of
this black hole.

1It was also independently found in [16].
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We note that the use of harmonic functions on a flat base
space to construct multicentered black hole solutions is
common in supergravity theories, with the balance of forces
between the black holes attributed to the presence of
supersymmetry. Supersymmetric solutions describing mul-
ticentered rotating black holes in four dimensions have
been found in, e.g., [19–21]. Even the Israel-Wilson-Perjés
solution—though not strictly a black hole solution—can be
embedded in N ¼ 2 supergravity. It is therefore somewhat
unusual that the multicentered rotating black hole solution
constructed in this paper is not supersymmetric [14,15],
even though the forces between the black holes balance out.
This paper is organized as follows: In Sec. II we review

elements of Kaluza-Klein theory, in particular the formal-
ism of Maison [22], as well as the general class of solutions
found by Clément [17,18]. In Sec. III we present the
Rasheed-Larsen black hole solution and point out how one
of its extremal limits falls into the class of solutions found
by Clément. We then show in Sec. IV how this single black
hole solution, with equal electric and magnetic charges, can
be generalized to one describing an arbitrary superposition
of such black holes. Various properties of this multicen-
tered rotating black hole solution are studied in Sec. V. In
Sec. VI we present the explicit solution for two black holes
lying along a symmetry axis. The paper concludes with a
summary of the results obtained and some avenues for
future work.

II. KALUZA-KLEIN THEORY

The starting point of Kaluza-Klein theory is Einstein
gravity in five space-time dimensions, with the assumption
that the metric is invariant under translations of the extra
space dimension x5. Moreover, it is assumed that x5 is
periodic with period 2πRKK. In this case, the five-dimen-
sional metric can be written in the form

ds2ð5Þ ¼ e−
2ϕffiffi
3

p ðdx5 þ AμdxμÞ2 þ e
ϕffiffi
3

p
gμνdxμdxν; ð2:1Þ

where μ; ν ¼ 0;…; 3 and the functions ϕ, Aμ, and gμν
depend only on the coordinates xμ. The five-dimensional
Einstein-Hilbert action then reduces to the four-
dimensional action

2πRKK

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
∂μϕ∂

μϕ −
1

4
e−

ffiffi
3

p
ϕFμνFμν

�
;

ð2:2Þ

where R is the four-dimensional Ricci scalar, g ¼ det gμν,
and Fμν ¼ ∂μAν − ∂νAμ. This shows that Kaluza-Klein
theory can be regarded as a type of Einstein-Maxwell-
dilaton theory in four dimensions. The corresponding field
equations are

Rμν ¼
1

2
∂μϕ∂νϕþ 1

2
e−

ffiffi
3

p
ϕ

�
FμρFν

ρ −
1

4
gμνFρσFρσ

�
;

ð2:3aÞ

∇μðe−
ffiffi
3

p
ϕFμνÞ ¼ 0; ð2:3bÞ

∇μ∇μϕ ¼ −
ffiffiffi
3

p

4
e−

ffiffi
3

p
ϕFμνFμν: ð2:3cÞ

The field equations (2.3) are difficult to solve without
further assumptions. At this stage, it is usual to assume that
the solution is stationary and possesses some spatial
symmetry. However, in this paper we only assume the
former. As shown by Maison [22], this is sufficient to
enable the field equations to be written in an elegant,
simplified form. We now briefly describe this formalism.
If we further require that the five-dimensional metric

(2.1) is invariant under translations of the time coordinate
x0 ¼ t, it can be written in the form

ds2ð5Þ ¼ λabðdxa þ ωa
idxiÞðdxb þ ωb

jdxjÞ þ
1

τ
hijdxidxj;

ð2:4Þ

where τ≡ − det λab. Here, a, b ¼ 0, 5, while i, j ¼ 1, 2, 3.
The functions λab, ωa

i, and hij depend only on the three
spatial coordinates xi. From these functions, we can
construct the symmetric, unimodular 3 × 3 matrix:

χ ¼
�
λab − 1

τ VaVb
1
τ Va

1
τ Vb − 1

τ

�
; ð2:5Þ

where the so-called twist potentials Va are given by

Va;i ¼ τλabεi
jkωb

j;k: ð2:6Þ

Here, the spatial indices i; j;… are raised and lowered
using the metric hij, and ; i denotes the partial derivative

∂

∂xi.
With the definitions (2.5) and (2.6), the five-dimensional
Einstein equation can be written in the simple and sugges-
tive form

Rij ¼
1

4
Trðχ−1χ;iχ−1χ;jÞ; ð2:7aÞ

ðχ−1χ;iÞ;i ¼ 0; ð2:7bÞ

where Rij is the three-dimensional Ricci tensor correspond-
ing to hij and ; i denotes the covariant derivative with
respect to hij.
We note that the field equations (2.7) can be obtained

from the three-dimensional σ-model action
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Z
d3x

ffiffiffi
h

p �
ð3ÞR −

1

4
Trðχ−1χ;iχ−1χ;iÞ

�
: ð2:8Þ

This action has a manifest SLð3;RÞ symmetry [22], which
can be used to generate new solutions from known ones.
However, we do not use this approach here; instead, we
construct solutions to the field equations (2.7) directly.
In this paper, we are specifically interested in the case of

a flat three-dimensional metric hij. A very general class of
solutions to (2.7) was found by Clément [17,18] for this
case. These solutions can be written in the form

χ ¼ ηeAfeA
2g; ð2:9Þ

where η and A are constant 3 × 3 matrices, and f and g are
harmonic functions of xi. If f and g vanish at infinity, then η
is given by

η ¼

0
B@

−1 0 0

0 1 0

0 0 −1

1
CA; ð2:10Þ

which will ensure that the four-dimensional space-time is
asymptotically Minkowski. Since χ is symmetric and
unimodular, we require that AT ¼ ηAη and that A and
A2 are both traceless. Furthermore, we require that A3 is
also traceless, so that (2.7a) is satisfied.

III. ROTATING BLACK HOLE SOLUTION

The most general rotating black hole solution of Kaluza-
Klein theory was first found by Rasheed [13]. It was
constructed by performing a set of SO(1,2) transformations
on the Kerr solution, using the formalism of Maison [22]
reviewed in Sec. II. This black hole solution can be
parametrized by its massM, angular momentum J, electric
charge Q, and magnetic charge P.
Now, the three-dimensional metric hij of this solution is

only flat when a certain extremal limit is taken, known as
the under-rotating limit. The resulting class of extremal
solutions satisfies the conditions [13]

�
P
M

�2
3 þ

�
Q
M

�2
3 ¼ 2

2
3; jJj < jPQj: ð3:1Þ

In the phase diagram Fig. 2 of [13], it forms a vertical wall
(labeled by W) which joins up to another class of extremal
solutions along the jJj ¼ jPQj curve.
The under-rotating class of extremal solutions is perhaps

most compactly expressed in the form found by Larsen
[14]. It can be recovered from the general solution in [14]2

by taking the limit m; a → 0, such that a
m → j, where j is a

finite constant satisfying jjj < 1. We then obtain the five-
dimensional metric:

ds2ð5Þ ¼
H2

H1

�
dx5 −

�
2

�
rþ p

2

�
− pj cos θ

�
Q
H2

dt

−
�
2H2 cos θ − q

�
rþ pq

pþ q

�
jsin2θ

�
P
H2

dφ

�
2

−
r2

H2

�
dtþ 2jPQsin2θdφ

r

�
2

þH1

�
dr2

r2
þ dθ2 þ sin2θdφ2

�
; ð3:2Þ

where

H1 ≡ r2 þ rpþ p2qð1þ j cos θÞ
2ðpþ qÞ ; ð3:3aÞ

H2 ≡ r2 þ rqþ pq2ð1 − j cos θÞ
2ðpþ qÞ : ð3:3bÞ

Here, ðr; θ;φÞ are the standard spherical polar coordinates.
The parameters p and q satisfy p, q > 0 and are related to
the magnetic and electric charges by

P2 ¼ p3

4ðpþ qÞ ; Q2 ¼ q3

4ðpþ qÞ : ð3:4Þ

For simplicity, we henceforth assume that P and Q are
positive. We also note that the mass and angular momentum
of the black hole are given by

M ¼ pþ q
4

; J ¼ jPQ: ð3:5Þ

It can be checked, after some calculation, that this
solution can be written in the form (2.9), with

A ¼ 4

0
BB@

− q
pþq

	 q
pþq


3
2 0

−
	 q
pþq


3
2 − p−q

pþq

	 p
pþq


3
2

0 −
	 p
pþq


3
2

p
pþq

1
CCA: ð3:6Þ

Note that A3 ¼ 0, so that the exponentials in (2.9) have
series expansions that are actually finite. The harmonic
functions f and g are given by

f ¼ M
r
; g ¼ JM2

2PQ
cos θ
r2

: ð3:7Þ

A particularly simple case of this solution arises when
p ¼ q, i.e., when the magnetic and electric charges are
equal: P ¼ Q ¼ Mffiffi

2
p . In this case, the matrix A becomes

2Note that there is a sign error in the general solution given in
[14]. Here, we use the corrected form of the solution given in
[23,24].
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A ¼

0
B@

−2
ffiffiffi
2

p
0

−
ffiffiffi
2

p
0

ffiffiffi
2

p

0 −
ffiffiffi
2

p
2

1
CA; ð3:8Þ

while the harmonic functions become

f ¼ M
r
; g ¼ J cos θ

r2
: ð3:9Þ

The solution (3.2) then becomes

ds2ð5Þ ¼
H2

H1

fdx5 −
ffiffiffi
2

p
H−1

2 ½MðrþMÞ − 2J cos θ�dt

−
ffiffiffi
2

p
½M cos θ − 2JH−1

2 ðrþMÞsin2θ�dφg2

−
r2

H2

�
dtþ 2Jsin2θdφ

r

�
2

þH1

�
dr2

r2
þ dθ2 þ sin2θdφ2

�
; ð3:10Þ

where now H1;2 ¼ ðrþMÞ2 � 2J cos θ. The four-dimen-
sional form of this solution, after substituting in for H1;2

and redefining r → r −M, is given by

ds2ð4Þ ¼ −
ðr −MÞ2

ðr4 − 4J2cos2θÞ12
�
dtþ 2Jsin2θdφ

r −M

�
2

þ ðr4 − 4J2cos2θÞ12
�

dr2

ðr −MÞ2 þ dθ2 þ sin2θdφ2

�
;

ð3:11aÞ

A0 ¼ −
ffiffiffi
2

p Mr − 2J cos θ
r2 − 2J cos θ

;

Aφ ¼ −
ffiffiffi
2

p �
M cos θ −

2Jr sin2 θ
r2 − 2J cos θ

�
; ð3:11bÞ

ϕ ¼
ffiffiffi
3

p

2
ln
�
r2 þ 2J cos θ
r2 − 2J cos θ

�
: ð3:11cÞ

To our knowledge, the four-dimensional metric (3.11a) first
appeared in [13]. When J ¼ 0, the dilaton vanishes and this
solution reduces to the P ¼ Q extremal Reissner-
Nordström solution.

IV. MULTICENTERED ROTATING
BLACK HOLE SOLUTION

Since the under-rotating extremal black hole solution can
bewritten in the form (2.9), it is possible to generalize it to a
multicentered solution. For simplicity, we only consider the
case of equal electric and magnetic charges, where the A
matrix is given by (3.8). Using Cartesian coordinates
x ¼ ðx; y; zÞ, we can simply replace the harmonic functions
(3.9) by

f ¼
XN
n¼1

Mn

jx − xnj
; g ¼

XN
n¼1

Jnðz − znÞ
jx − xnj3

: ð4:1Þ

The corresponding solution then describes a superposition
of N black holes located at x ¼ xn, each with mass Mn,
angular momentum Jn, and charges Pn ¼ Qn ¼ Mnffiffi

2
p .

Without loss of generality, we assume that all of the black
holes have different positions xn. Note that the spin vectors
of the black holes are parallel or antiparallel, in the sense
that they point in either the þz or −z direction, depending
on the sign of Jn. When Jn ¼ 0, this solution reduces to the
Majumdar-Papapetrou solution with Pn ¼ Qn.

3

The χ matrix for this solution can then be computed
using (2.9), and we obtain

χ ¼

0
BB@

−ð1 − fÞ2 − 2g −
ffiffiffi
2

p ½ð1 − fÞf − 2g� −f2 − 2g

−
ffiffiffi
2

p ½ð1 − fÞf − 2g� −2f2 − 4gþ 1
ffiffiffi
2

p ½ð1þ fÞf þ 2g�
−f2 − 2g

ffiffiffi
2

p ½ð1þ fÞf þ 2g� −ð1þ fÞ2 − 2g

1
CCA: ð4:2Þ

Using (2.5), we read off that τ ¼ ½ð1þ fÞ2 þ 2g�−1,

V0 ¼ −
f2 þ 2g

ð1þ fÞ2 þ 2g
; ð4:3aÞ

V5 ¼
ffiffiffi
2

p ð1þ fÞf þ 2g
ð1þ fÞ2 þ 2g

; ð4:3bÞ

3The five-dimensional form of this solution was studied in [25].
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and

λ00 ¼
2f2 − 4g − 1

ð1þ fÞ2 þ 2g
; ð4:4aÞ

λ05 ¼ −
ffiffiffi
2

p ð1þ fÞf − 2g
ð1þ fÞ2 þ 2g

; ð4:4bÞ

λ55 ¼
ð1þ fÞ2 − 2g
ð1þ fÞ2 þ 2g

: ð4:4cÞ

With these expressions for τ, Va, and λab, it can be checked
that (2.6) is equivalent to the two equations (written in
3-vector notation)

∇ × ω0 ¼ −2∇g; ∇ × ω5 ¼ −
ffiffiffi
2

p ∇ðf þ 2gÞ: ð4:5Þ

If we denote ω̃5 ≡ ω5 −
ffiffiffi
2

p
ω0, the solutions are given by4

ω0 · dx ¼ −
XN
n¼1

2Jn
jx − xnj3

½ðy − ynÞdx − ðx − xnÞdy�;

ð4:6aÞ

ω̃5 · dx ¼
ffiffiffi
2

p XN
n¼1

Mnðz − znÞ
jx − xnj

ðy − ynÞdx − ðx − xnÞdy
ðx − xnÞ2 þ ðy − ynÞ2

:

ð4:6bÞ

Substituting the above expressions for τ and λab into
(2.4), and after some rearrangement of the terms, we finally
arrive at the five-dimensional metric:

ds2ð5Þ ¼
H−

Hþ

�
dx5−

ffiffiffi
2

p
dtþ

ffiffiffi
2

p 1þf
H−

ðdtþω0 ·dxÞþω̃5 ·dx

�
2

−
1

H−
ðdtþω0 ·dxÞ2þHþdx ·dx; ð4:7Þ

where H� ≡ ð1þ fÞ2 � 2g and ω0, ω̃5 are given by (4.6).
The four-dimensional form of this solution, after substitut-
ing in for H�, is given by

ds2ð4Þ ¼ −
1

½ð1þ fÞ4 − 4g2�12 ðdtþ ω0 · dxÞ2 þ ½ð1þ fÞ4 − 4g2�12dx · dx; ð4:8aÞ

A0 ¼ −
ffiffiffi
2

p ð1þ fÞf − 2g
ð1þ fÞ2 − 2g

; Ai ¼
ffiffiffi
2

p 1þ f
ð1þ fÞ2 − 2g

ω0
i þ ω̃5

i ; ð4:8bÞ

ϕ ¼
ffiffiffi
3

p

2
ln

�ð1þ fÞ2 þ 2g
ð1þ fÞ2 − 2g

�
: ð4:8cÞ

V. PROPERTIES OF THE MULTICENTERED
ROTATING BLACK HOLE SOLUTION

We begin by briefly recalling some properties of the
single black hole solution (3.11) [13–15]. It is an asymp-
totically flat solution, with massM and angular momentum
J. The solution also carries equal magnetic and electric
charges, given by P ¼ Q ¼ Mffiffi

2
p . The parametersM and J are

subject to the constraint jJj < M2

2
. When M ¼ J ¼ 0, the

solution reduces to empty Minkowski space-time.
There is a degenerate event horizon located at r ¼ M,

with nonvanishing area 4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 − 4J2

p
. There is also a

curvature singularity at r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jJ cos θjp

, but it will always
lie below the event horizon. These properties are consistent
with the interpretation of the solution as an extremal black

hole. However, we note that the event horizon has zero
angular velocity, even if the black hole itself has a nonzero
angular momentum. Moreover, there is no ergoregion
present in the space-time. These somewhat unusual features
are common to all of the under-rotating extremal solutions.
Equipped with an understanding of the single black hole

solution, we now turn to the multicentered black hole
solution (4.8). From the form of the harmonic functions f
and g in (4.1), we see that it is an asymptotically flat
solution consisting of a superposition of N separate sources
in Minkowski space-time, each with mass Mn, angular
momentum Jn, and charges Pn ¼ Qn ¼ Mnffiffi

2
p . To ensure that

each source does indeed have a consistent interpretation as
a black hole, we require the condition

jJnj <
M2

n

2
ð5:1Þ

to hold individually for n ¼ 1;…; N.

4Each solution is defined only up to the gradient of a scalar, but
this term can be set to zero by an appropriate transformation of t
and/or x5 in (4.7).
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The event horizon of the nth black hole is located at
x ¼ xn. This can be verified by introducing standard
spherical polar coordinates ðr; θ;φÞ centered at x ¼ xn
and taking the limit t → t

ϵ, r → ϵr, and ϵ → 0 of the metric
(4.8a). Indeed, we recover the same near-horizon limit as
that of the single black hole metric (3.11a). It follows that
the event horizon at r ¼ 0 is regular and has a nonvanishing
area equal to 4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4

n − 4J2n
p

.
By inspection of the metric (4.8a), the only other points at

which singularities can occur are where ð1þ fÞ2 ¼ 2jgj. By
calculating the curvature invariants, it can be seen that they
are curvature singularities.We now show that these curvature
singularities all lie below the event horizons, in regions of the
space-time not covered by the Cartesian coordinates used
here. We first note that, for the nth black hole,

f2n − 2jgnj ¼
M2

n

jx − xnj2
−
2jJnjjz − znj
jx − xnj3

≥
M2

n − 2jJnj
jx − xnj2

> 0; ð5:2Þ

where we have used the fact that jz − znj ≤ jx − xnj and
(5.1). It follows that

ð1þ fÞ2 − 2jgj ¼
�
1þ

X
n

fn

�
2

− 2

����
X
n

gn

����
> 1þ

X
n

f2n − 2
X
n

jgnj

> 1: ð5:3Þ
In the second step, we have used the fact that fn > 0 (since
masses are always positive) as well as the triangle inequality.
Hence, ð1þ fÞ2 > 2jgj at every point on and outside the
event horizons.
The existence of closed time-like curves (CTCs) in the

space-time (4.8a) can also be ruled out if it can be shown
that the coordinates ðx; y; zÞ remain space-like everywhere
in the space-time. Since ω0 has both x and y components,
this result will follow if (gxxgxygxygyy

) is a positive-definite matrix.

This is equivalent to the positivity of its trace and
determinant. Explicitly, these two conditions are

gxx þ gyy ¼
2ð1þ fÞ4 − 8g2 − ω2 − ω̄2

½ð1þ fÞ4 − 4g2�12 > 0; ð5:4aÞ

gxxgyy − g2xy ¼ ð1þ fÞ4 − 4g2 − ω2 − ω̄2 > 0; ð5:4bÞ

where we have defined ω≡ ω0
x and ω̄≡ ω0

y for brevity.
Their expressions can be read off from (4.6a).

It is straightforward to see that the second condition in (5.4) is stronger than the first. To show that the second condition is
satisfied, we first note that, for the nth black hole,

f4n − 4g2n − ω2
n − ω̄2

n ¼
M4

n

jx − xnj4
−
4J2n½ðx − xnÞ2 þ ðy − ynÞ2 þ ðz − znÞ2�

jx − xnj6

¼ M4
n − 4J2n

jx − xnj4
> 0; ð5:5Þ

where we have used (5.1) in the last step. It follows that

ð1þ fÞ4 − 4g2 − ω2 − ω̄2 ¼
�
1þ

X
n

fn

�
4

− 4

�X
n

gn

�
2

−
�X

n

ωn

�
2

−
�X

n

ω̄n

�
2

> 1þ
X
n

ðf4n − 4g2n − ω2
n − ω̄2

nÞ þ
X
n≠m

ð3f2nf2m − 4gngm − ωnωm − ω̄nω̄mÞ

> 1þ
X
n≠m

ð3f2nf2m − 4gngm − ωnωm − ω̄nω̄mÞ: ð5:6Þ

In the second step, we have used the fact that fn > 0. But,
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3f2nf2m − 4gngm − ωnωm − ω̄nω̄m ≥ 3f2nf2m − 4jgnjjgmj − jωnjjωmj − jω̄njjω̄mj

¼ 3M2
nM2

m

jx − xnj2jx − xmj2
−

4jJnjjJmj
jx − xnj3jx − xmj3

× ðjx − xnjjx − xmj þ jy − ynjjy − ymj þ jz − znjjz − zmjÞ

≥
3M2

nM2
m − 12jJnjjJmj

jx − xnj2jx − xmj2
> 0; ð5:7Þ

where we have used the fact that jx − xnj; jy − ynj; jz −
znj ≤ jx − xnj in the third step. We have also used (5.1) in
the last step. Putting (5.6) and (5.7) together, we see that
(5.4b) is satisfied. This implies that (5.4a) is also satisfied,
so the space-time (4.8a) does not contain any CTCs.
We thus conclude that the superposition of multiple

rotating sources in (4.1) does not lead to any new
pathologies such as naked singularities or CTCs. The fact
that the metric is smooth and invertible outside the event
horizons means that the space-time does not contain other
defects such as conical singularities or Dirac-Misner strings
[26]. The interpretation of the solution (4.8) as a balanced
superposition of N rotating black holes thus appears to be a
consistent one.

VI. SOLUTION FOR TWO BLACK HOLES
ALONG A SYMMETRY AXIS

The general solution (4.8) will simplify considerably
when the black holes are all placed along a straight line in
the z direction. This is due to the solution becoming
rotationally symmetric about this axis. In this section,
we present the explicit form of this solution for the case
of two black holes. Without loss of generality, we choose
them to be located at ðx1; y1; z1Þ ¼ ð0; 0;−αÞ and
ðx2; y2; z2Þ ¼ ð0; 0;αÞ, respectively, where α is a positive
constant. If we assume that the black holes have massesM1

and M2 and angular momenta J1 and J2, respectively, the
corresponding harmonic functions are

f ¼ M1

R1

þM2

R2

; g ¼ J1ðzþ αÞ
R3
1

þ J2ðz − αÞ
R3
2

; ð6:1Þ

whereR1≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þðzþαÞ2

p
andR2≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þðz−αÞ2

p
.

It is natural to introduce polar coordinates ðρ;φÞ
given by

x ¼ ρ cosφ; y ¼ ρ sinφ: ð6:2Þ

The coordinates ðt; ρ; z;φÞ are then the standard Weyl-
Papapetrou coordinates used for describing stationary and
axisymmetric space-times. In fact, since there are only two
black holes in this case, it is possible to further transform
ðρ; zÞ to prolate spheroidal coordinates ðξ; ηÞ given by

ρ ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξ2 − 1Þð1 − η2Þ

q
; z ¼ αξη: ð6:3Þ

These new coordinates take the ranges 1 ≤ ξ < ∞ and
−1 ≤ η ≤ 1. The two black holes are then located at
ðξ; ηÞ ¼ ð1;−1Þ and ðξ; ηÞ ¼ ð1; 1Þ, respectively. They
divide the z axis into three parts: the inner part between
the black holes is given by ξ ¼ 1, while the two outer parts
that extend to infinity are given by η ¼ �1. Asymptotic
infinity itself is reached when ξ → ∞ while keeping
η fixed.
It can be checked that, in prolate spheroidal coordinates,

the four-dimensional metric (4.8a) is given by

ds2ð4Þ ¼ −
α2ðξ2 − η2Þ3
ðHþH−Þ12

ðdtþ ωφdφÞ2 þ
ðHþH−Þ12
ðξ2 − η2Þ2

�
dξ2

ξ2 − 1
þ dη2

1 − η2
þ ðξ2 − 1Þð1 − η2Þdφ2

ξ2 − η2

�
; ð6:4Þ

where

ωφ ≡ 2ðξ2 − 1Þð1 − η2Þ½ðξ − ηÞ3J1 þ ðξþ ηÞ3J2�
αðξ2 − η2Þ3 ; ð6:5aÞ

H� ≡ ðξ2 − η2Þ½αðξ2 − η2Þ þ ðξ − ηÞM1 þ ðξþ ηÞM2�2 � 2½ðξ − ηÞ3ð1þ ξηÞJ1 − ðξþ ηÞ3ð1 − ξηÞJ2�: ð6:5bÞ

The gauge fields (4.8b) and dilaton field (4.8c) are given by
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A0 ¼
ffiffiffi
2

p

H−
f−ðξ2 − η2Þ½ðξ − ηÞM1 þ ðξþ ηÞM2�

× ½αðξ2 − η2Þ þ ðξ − ηÞM1 þ ðξþ ηÞM2�
þ 2½ðξ − ηÞ3ð1þ ξηÞJ1 − ðξþ ηÞ3ð1 − ξηÞJ2�g;

ð6:6aÞ

Aφ ¼
ffiffiffi
2

p

H−
f−½ðξ − ηÞð1þ ξηÞM1 − ðξþ ηÞð1 − ξηÞM2�

× ½αðξ2 − η2Þ þ ðξ − ηÞM1 þ ðξþ ηÞM2�2
þ 2ðξ − ηÞ2½ðξ2 − η2ÞM1 þ ðξ2 − 2þ η2ÞM2�J1
þ 2ðξþ ηÞ2½ðξ2 − 2þ η2ÞM1 þ ðξ2 − η2ÞM2�J2
þ 2αðξ2 − 1Þð1 − η2Þ½ðξ − ηÞ3J1 þ ðξþ ηÞ3J2�g;

ð6:6bÞ

ϕ ¼
ffiffiffi
3

p

2
ln

�
Hþ
H−

�
: ð6:6cÞ

The advantage of using these coordinates is that the square-
root functions R1 and R2 have become algebraic functions
of ξ and η. This would make the solution more convenient
to study than in the original coordinates.

VII. CONCLUSION

In this paper,wehave presented a solutionofKaluza-Klein
theory describing an arbitrary superposition of extremally
charged, rotating black holes. Each black hole carries equal
electric and magnetic charge and has an angular momentum
that is allowed to lie in a certain range. The spinvectors of the
black holes are parallel or antiparallel, in the sense that they
point in the same or opposite directions.
This solution is specified by two harmonic functions on a

three-dimensional flat base space, which have poles at the
locations of the black holes. By choosing the harmonic
functions appropriately, we can obtain interesting special
cases of this solution. We have considered one special case

in this paper, namely, when the two black holes are placed
along the z axis, so that the solution has a rotational
symmetry. An even more interesting example would be if
the two black holes are not placed along the z axis, but say
along the x axis. Such a solution will not have any spatial
symmetry and so will be considerably more complicated
than the previous example.
The fact that the black holes in our solution are in static

equilibrium means that there is an exact cancellation of the
forces between them. When the black holes are nonrotat-
ing, this cancellation of forces is well understood in the
limit of large separation: the electrostatic and magnetostatic
repulsion between them balances out their Newtonian
gravitational attraction. But when the black holes are
rotating, they each acquire electric and magnetic dipole
moments, thus complicating the interactions between them.
Besides the spin-spin and dipole-dipole interactions (famil-
iar from the Israel-Wilson-Perjés solution [27]), there are
also dipole-monopole interactions to consider. Moreover,
there will be interactions arising from the dilaton field. It
would be interesting to understand how the various forces
balance out in this case.
One can also consider possible generalizations of the

solution found in this paper. For simplicity, we have only
considered the case of equal electric and magnetic charges.
It should be possible to extend the solution to the more
general case of unequal electric and magnetic charges, with
the ratio between them being the same for each black hole.
A more intriguing question is whether the condition of
parallel or antiparallel black hole spins can be relaxed. This
would require one to consider a more general form for the
harmonic function g than in (4.1) and find the correspond-
ing set of solutions to (4.5). We leave these interesting
questions for future work.
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