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Even if globally neutral, in various scenarios compact objects can have a nonvanishing dipole moment.
Examples include neutron stars with magnetic dipoles, black-hole microstates in the string-theory fuzzball
scenario, and classical black holes in modified theories of gravity with spin-induced scalarization or
Lorentz-violating terms. A fundamental dipole moment would give rise to rich phenomenology, for
example, to intrinsic precession and extra emission channels in binary systems. We show that extreme
mass-ratio inspirals (EMRIs) detectable by future gravitational-wave interferometers allow us to study a
fundamental dipole on the secondary object in a model-agnostic fashion. By developing a general model
for a fundamental scalar dipole, we compute the extra flux associated with it. This effect is suppressed by
the square of the mass ratio relative to the case of fundamental charges, making its detection with EMRIs
very challenging for the typical dipole moments predicted in various models. On the other hand, for the
same reason, the impact of an extra dipole for constraints on extra fundamental charges is likely negligible,
making the latter constraints more robust.
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I. INTRODUCTION

The famous no-hair theorems predict that, in a large class
of theories, black holes (BHs) are described by the Kerr-
Newman solution and do not have any extra charge other
than the electromagnetic one. Circumventing these no-go
theorems has motivated both theoretical work—aimed at
finding theories in which BHs can have hair—and phe-
nomenological work—aimed at finding the consequences
of this extra hair (see, e.g., [1,2]). The most natural and
best-studied case is when BHs are endowed with extra
fundamental charges, which give rise to dipolar radiation in
binary systems and can be probed with binary pulsar timing
and gravitational-wave (GW) inspirals (see Ref. [1] for a
review).
The absence of dipolar emission in binary pulsars [3] and

in GWevents [4,5] already puts stringent constraints on the
existence of fundamental charges in various contexts.

In the future, extreme mass-ratio inspirals (EMRIs)—
one of the main targets of future space detectors such as the
Laser Interferometer Space Antenna (LISA) [6]—will
provide a unique probe to search for extra fundamental
charges [7,8], either in the context of specific modified
theories of gravity [9–11] or in a model-agnostic fashion, as
recently shown [12–15] for scalar fields (see Refs. [16–18]
for extensions to the vector case).
In addition to new fundamental charges, there is strong

theoretical and phenomenological motivation for models in
which compact objects are globally neutral (hence evading
standard dipole-emission constraints) but can nevertheless
have higher multipole moments. The most natural example
are magnetars, which are endowed with strong magnetic
dipole moments (see Ref. [19] for a review). Furthermore, in
the context of modified gravity theories, BHs could have a
fundamental dipole moment in Lorentz-violating theories
[20], in dynamical Chern-Simons gravity [21,22], and in
theories featuring spin-induced spontaneous scalarization
[23–26] (see Ref. [27] for a recent review). Finally, in the
context of BH microstates emerging in the string-theory
fuzzball scenario [28–30], a long-lasting problem is to find
consistent solutions which are globally neutral. Remarkably,
this was recently achieved with topological solitons [31,32],
which are globally neutral but have an intrinsic dipole
moment.
Motivated by the above scenarios in various contexts, in

this paper we wish to study the impact of fundamental
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dipoles for GW tests of fundamental physics with EMRIs.
Henceforth, we use G ¼ c ¼ 1 units, except for plots,
where we restore the speed of light c for clarity.

II. SETUP

A. Theoretical framework

Let us consider the following generic action [12]:

S½g;Φ;ψ � ¼ S0½g;Φ� þ αSc½g;Φ� þ Sm½g;Φ;ψ �; ð1Þ

where Φ is a massless scalar field,

S0½g;Φ� ¼
Z

d4x
ffiffiffiffiffiffiffi−gp

16π

�
R −

1

2
∂μΦ∂

μΦ
�
; ð2Þ

and Sm is the action of the matter fields ψ , while the action
Sc describes a generic nonminimal coupling between
gravity and the scalar field, whose coupling constant is
α. As in Refs. [12–15], we will assume that the theory is
continuously connected to general relativity (GR) in the
α → 0 limit and that either α has dimensions ½α� ¼ ðmassÞn
with n ≥ 1 or the theory is such that no-hair theorems hold.
An EMRI is a binary system in which a small compact

object with mass mSCO ¼ 2μ is spiraling around a super-
massive BH with mass M ≫ μ. Owing to the small mass
ratio, q ¼ μ=M ≪ 1, one can model the secondary using
the “skeletonized approach” [33–35], in which the secon-
dary object is treated as a point particle. Nevertheless, as we
want to describe an object endowed with a dipolar field, we
will use the skeletonized approach to model the secondary
as an elementary dipole made by two point particles with
mass μ displaced by a constant separation δyμ, which we
assume to be small with respect to the length scale of the
exterior spacetime, ∼M. Therefore, the action of the matter
fields reduces to

Sm½g;Φ� ¼ −
X
i¼1;2

Z
dλmiðΦÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμν

dyμi
dλ

dyνi
dλ

r
; ð3Þ

where the two worldlines of the particles are given by
yμ1;2ðλÞ ¼ yμðλÞ � 1

2
δyμ with yμðλÞ worldline of the center

of mass of the dipole.
From the action, we can now derive the field equations

and solve them by perturbatively expanding the fields at the
leading order in the mass ratio. The Einstein equations for
the gravitational field read

Gμν ¼ Rμν −
1

2
gμνR ¼ TðsÞ

μν þ αTðcÞ
μν þ Tp

μν; ð4Þ

where TðsÞ
μν is the stress-energy tensor of the scalar field and

TðcÞ
μν is the term arising from the variation of the nonminimal

coupling term Sc, while Tp
μν is the stress-energy tensor of

the two-particle dipole:

Tp μν ¼ 8π
X
i¼1;2

Z
dλmiðΦÞ δ

ð4Þðxα − yαi ðλÞÞffiffiffiffiffiffiffi−gp dyμi
dλ

dyνi
dλ

: ð5Þ

Varying the action with respect to the scalar field yields

□Φþ 8παffiffiffiffiffiffiffi−gp δSc
δΦ

¼ 16π
X
i¼1;2

Z
dλm0

iðΦÞ δ
ð4Þðxμ − yμi ðλÞÞffiffiffiffiffiffiffi−gp ;

ð6Þ

where the prime denotes derivative of a function with
respect to its argument.
As discussed in [12,13], due to the mass dimensions of

the coupling α, GR modifications to the background are
suppressed by the mass ratio of the binary (or absent if the
no-hair theorems are satisfied). Hence, the exterior space-
time of the primary can be approximated as (or is exactly)
the Kerr metric. Furthermore, in these settings, one can
neglect the terms proportional to α in Eqs. (4) and (6), since
they are suppressed by the mass ratio. In the absence of the
secondary, the resulting set of equations coincide with
those of general relativity with a free scalar field, for which
the no-hair theorem applies. Therefore, the background
scalar field is just a constant Φ0.
By expanding (6) at linear order Φ ¼ Φ0 þ φ, we obtain

the following equation for the perturbation φ:

□φ ¼ 16π
X
i¼1;2

Z
dλm0

iðΦ0Þ
δð4Þðxμ − yμi ðλÞÞffiffiffiffiffiffiffi−gp ; ð7Þ

where the operator □ is evaluated on the background Kerr
metric g0

μν. The same expansion leads miðΦÞ in Eq. (5) to
be evaluated at Φ ¼ Φ0. Thus, at the leading order the
gravitational equations (4) coincide with the standard ones
for two infinitely close point masses in general relativity.
Let us now discuss the physical meaning of the terms

miðΦ0Þ and m0
iðΦ0Þ by generalizing the argument of

Ref. [13] to the case of our two-particle system. These
functions can be evaluated in a region which is sufficiently
close to the particles (relatively to the length scale of the
exterior spacetime, ∼M) but sufficiently far away from
them in the length scale of the particle themselves, ∼μ, so
that we can evaluate the equations in the weak-field limit.
We, therefore, choose a reference frame fx̃μg centered at
the center of mass of the compact object and consider
Eqs. (5) and (7) in an intermediate region, μ ≪ r̃ ≪ M,
where r̃2 ¼ x̃ix̃i. Let us first consider Eq. (5) evaluated at
Φ ¼ Φ0. As in this region we are in the weak-field limit, the
stress-energy tensor of a particle reduces to its matter
density, and, thus, it follows that m1ðΦ0Þ ¼ m2ðΦ0Þ ¼ μ.

LESTINGI, CANNIZZARO, and PANI PHYS. REV. D 109, 044052 (2024)

044052-2



We can now turn to the study of Eq. (7). Expanding the
latter to leading order in the infinitesimal displacement
δyμ ≪ xμ in these coordinates yields

∇2φ ¼ 16πAðΦ0Þδð3Þðx̃iÞ þ 16πBðΦ0Þδỹi∂iδð3Þðx̃jÞ; ð8Þ

where AðΦ0Þ ¼ 1
2
ðm0

1ðΦ0Þ þm0
2ðΦ0ÞÞ and BðΦ0Þ ¼

1
2
ðm0

1ðΦ0Þ −m0
2ðΦ0ÞÞ. If BðΦ0Þ ¼ 0, then the solution φ

has exactly the same form as in [13], and, therefore, AðΦ0Þ
can be associated with the monopolar scalar charge per unit
mass of the object (we shall denote this quantity by d). As
we instead wish to describe an intrinsically dipolar field
configuration, for the moment we ignore this term. Setting
AðΦ0Þ ¼ 0, we recognize the equation for the potential of a
dipole, which is solved by

φ ¼ 4BðΦ0Þδỹix̃i
r̃3

: ð9Þ

By direct comparison with the potential of a dipole with
dipole vector Pi ¼ μdδỹi, which is

φ ¼ Pix̃i
r̃3

; ð10Þ

it is clear that we can interpret 4BðΦ0Þδỹi as a dipole vector
and, therefore, BðΦ0Þ ¼ 1

4
μd, m0

1ðΦ0Þ ¼ −m0
2ðΦ0Þ ¼ 1

4
μd

where, as mentioned, d is the scalar charge per unit mass of
the secondary. Finally, the equation for the scalar field reads

□φ ¼ 4πT; ð11Þ

where

T ¼ μd

"Z
dλ

δð4Þ
�
xμ − yμðλÞ þ δyμ

2

�
ffiffiffiffiffiffiffi−gp

−
Z

dλ
δð4Þ

�
xμ − yμðλÞ − δyμ

2

�
ffiffiffiffiffiffiffi−gp

#
: ð12Þ

The above discussion shows that our system can indeed
be understood as a scalar dipole made of two particles with
the same mass but opposite scalar charge, whose center of
mass inspirals onto a standard supermassive (Kerr) BH.
This suggests to introduce the dipole moment trivector per
unit mass squared:

pi ¼ d
μ
δyi: ð13Þ

Notice that this is a dimensionless quantity, in analogy with
the dimensionless charge d.
In the case in which AðΦ0Þ ≠ 0, then the secondary has

a nonvanishing net charge as well as a dipole moment.

While we are mostly interested in the case of zero net
charge, later on we will also consider this scenario, as our
formalism allows analyzing deviations from scalar emis-
sion from a fundamental charge due to the presence of an
extra dipole component.

B. Scalar equation via Teukolsky formalism

The inhomogeneous Klein-Gordon equation (11) can be
solved via Teukolsky formalism [36]. First of all, we must
characterize the worldline yμðλÞ of the center of mass, that
appears on the right-hand side of Eq. (11). Since for an
EMRI the inspiral timescale is much longer than the orbital
timescale, T inspiral ≫ Torbital, we can adopt an adiabatic
approximation, which allows us to consider the center of
mass of the dipole as being in nearly geodesic motion. This
approximation facilitates the evaluation of the emitted
energy flux Ė from the inspiral at each time. For simplicity,
we will consider equatorial, circular orbits of the Kerr
metric and use Boyer-Lindquist coordinates ft; r; θ;ϕg.
The geodesic of the centre of mass in this setting is
described by the following constants of motion, which
describe the energy, angular momentum, and angular
velocity of the center of mass, respectively:

Ec ¼
a

ffiffiffiffiffi
M

p þ ffiffiffiffiffi
r0

p ðr0 − 2MÞ
r3=40

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a

ffiffiffiffiffi
M

p þ ffiffiffiffiffi
r0

p ðr0 − 3MÞ
q ; ð14Þ

Lc ¼
ffiffiffiffiffi
M

p ðr20 − 2a
ffiffiffiffiffiffiffiffiffi
Mr0

p þ a2Þ
r3=40

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a

ffiffiffiffiffi
M

p þ ffiffiffiffiffi
r0

p ðr0 − 3MÞ
q ; ð15Þ

Ωc ¼
ffiffiffiffiffi
M

p

a
ffiffiffiffiffi
M

p þ r3=20

; ð16Þ

where r0 is the orbital radius of the geodesic andMa is the
angular momentum of the Kerr BH. Hence, the worldline of
the center of mass is yμðλÞ ¼ ðtpðλÞ; r0; π=2;ΩctpðλÞÞ.
We will assume that the displacement δyμ is constant,

i.e., it does not depend on the affine parameter λ. Note that,
in general, if the displacement is not aligned with the spin
of the primary, the interaction between the latter and the
scalar dipole will induce precession even in the case of
initially circular and equatorial orbits. Hence, for generic
orientations of the dipole moment, our assumption of a
constant displacement is valid only on timescales that are
much shorter than the precession timescale, such that this
effect can be neglected. The precession timescale is shorter
than, or at most comparable to for relativistic orbits, the
inspiral timescale but much larger than the orbital one, i.e.,
T inspiral ≫ Tprecession ≫ Torbital; see, e.g., [37]. Hence, while
our formalism does not allow us to consistently evolve the
binary through the entire inspiral (for generic displace-
ments), it safely allows us to evaluate the scalar fluxes
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throughout the orbital motion. Of course, this limitation is
absent if the displacement δyμ is orthogonal to the
equatorial plane, since there is not precession in that case.
With this in mind, we can simplify the field equation (11)

by expanding the trace of the stress-energy tensor with
respect to the constant displacement between the two
particles, δyμ ¼ ðδt; δr; δθ; δϕÞ. This yields

T ≃
1ffiffiffiffiffiffiffi−gp ðδt∂t þ δr∂r þ δθ∂θ þ δϕ∂ϕÞð

ffiffiffiffiffiffiffi
−g

p
TpÞ; ð17Þ

where Tp has the same expression of the source of the
scalar field in the setting in which the secondary is endowed
with a scalar monopolar charge:

Tp ¼ μd
Σ sin θjṫpj

δðr − r0Þδ
�
θ −

π

2

�
δðϕ −ΩctÞ; ð18Þ

with Σ ¼ r2 þ a2cos2θ and ṫp ¼ dtpðλÞ=dλ. Finally, we
can perform a Fourier transform and expand both the scalar
field and the source in spin-weighted spheroidal harmonics:

φðt;r;ΩÞ¼
Z

dω
X
l;m

Xlmðr;ωÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þa2

p S0lmðθ;ωÞeimϕe−iωt; ð19Þ

4πΣT ¼
Z

dω
X
l;m

Tlmðr;ωÞS0lmðθ;ωÞeimϕe−iωt: ð20Þ

This decomposition allows us to decouple the angular and
radial dependence of the scalar field. Indeed, we obtain the
standard inhomogeneous differential equation for the radial
field Xlmðr;ωÞ:

�
d2

dr2�
þ V

�
Xlmðr;ωÞ ¼

Δ
ðr2 þ a2Þ3=2 Tlmðr;ωÞ; ð21Þ

where Δ ¼ r2 þ a2 − 2Mr, r� is the tortoise coordinate
defined by dr�=dr ¼ ðr2 þ a2Þ=Δ, and V is the effective
potential and can be found, for example, in [38]. We can
obtain Tlm as a function of T by inverting Eq. (20) using the
properties of the spheroidal harmonics:

Tlmðr;ωÞ ¼ 2

Z
dtdθdϕΣ sin θT S�0lme

−imϕeiωt: ð22Þ

We can now substitute Eq. (17) into Eq. (22) and perform
the integrals in θ and ϕ, through integration by parts and the
properties of the δ function. We finally obtain

Tlm ¼ 4πμd
jṫj δðmΩc − ωÞ

�
S�0lm

�
π

2
; mΩc

�
δr∂rδðr − r0Þ

−
d
dθ

S�0lm

�
π

2
; mΩc

�
δθδðr − r0Þ

þ ðδϕ −ΩcδtÞS�0lm
�
π

2
; mΩc

�
imδðr − r0Þ

�
: ð23Þ

Note that the displacements along the t and ϕ directions are
proportional to each other.1 This is a consequence of the
chosen equatorial circular motion. In fact, for circular
equatorial orbits, performing a displacement δϕ corre-
sponds to moving the particle along the orbit by an angle
proportional to Ωcδt and vice versa. In particular, for
prograde orbits such that Ωc > 0, by considering a positive
displacement δϕ ¼ Ωcδt, the sum of these two terms is
zero. This is because the angular term δϕ, if positive, shifts
the particle along the circular orbit in a clockwise way. A
shift δt along time instead corresponds to ϕ ¼ Ωcðtþ δtÞ,
i.e., ϕ −Ωcδt ¼ Ωct, so that at time t the particle is actually
displaced by an angle −Ωcδt ¼ −δϕ with respect to its
original position in the counterclockwise direction. For
retrograde orbits, the effect is clearly reversed. In general,
as these terms are proportional, we can neglect from now on
shifts along time and simply reabsorb them as shifts along
the ϕ direction.

III. DIPOLE-INDUCED SCALAR FLUXES

A. Analytic derivation

The solution of the inhomogeneous equation (21) can be
found using the standard Green function in terms of two
independent solutions of the corresponding homogeneous
equation. The latter have the following asymptotic behavior:

X∞;rþ
lmω ∼ e�ir�k∞;þ as r → ∞; rþ; ð24Þ

where kþ ¼ ω −mΩH,ΩH being the angular velocity of the
BH horizon, and k∞ ¼ ω. The solution of the inhomo-
geneous equation reads

XlmωðrÞ ¼ W−1X∞
lmω

Z
r

rþ
ds

TlmωX
rþ
lmωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ a2
p

þW−1Xrþ
lmω

Z
∞

r
ds

TlmωX∞
lmωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ a2
p ; ð25Þ

where W is the Wronskian of the two homogeneous
solutions. To evaluate the fluxes, we are interested in the
asymptotic behavior of the solution (25) at infinity and at the
horizon. Using Eqs. (23) and (24), we get

1Note also that both terms are proportional to the azimuthal
number m. While this is obvious for the derivative with respect to
ϕ, it arises also for the time derivative, because the latter brings a
factor ω, and circular motion implies ω ¼ mΩc.
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Xout
lmω ¼ Z∞

lmωδðmΩc − ωÞeimΩcr� ; ð26Þ

Xin
lmω ¼ Zrþ

lmωδðmΩc − ωÞeimðΩc−ΩHÞr� ; ð27Þ

where

Z∞;rþ
lmω ¼ W−1 4πμd

jṫj ðRþ Θþ Φ̃Þ X
rþ;∞
lmω ðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
				
r¼r0

; ð28Þ

with

R ¼ S�0lm

�
π

2
; mΩc

�
δr∂r; ð29Þ

Θ ¼ −
dS�0lm
dθ

�
π

2
; mΩc

�
δθ; ð30Þ

Φ̃ ¼ imS�0lm

�
π

2
; mΩc

�
δϕ: ð31Þ

The fluxes at infinity and at horizon can be computed
from the t − r component of the scalar field stress-energy
tensor:

F∞;rþ ¼ dE∞;rþ

dt
¼ lim

r→∞;rþ

Z
dΩ ΣTðsÞr

t : ð32Þ

Finally, using Eq. (28), the fluxes read

F∞ ¼ dE∞

dt
¼

X
l;m

jZ∞
lmωj2m2Ω2

c; ð33Þ

Frþ ¼ dErþ

dt
¼

X
l;m

jZrþ
lmωj2m2ΩcðΩc − ΩHÞ: ð34Þ

In the next section, we will compute numerically the
dipole-induced scalar fluxes and highlight the differences
with respect to the monopolar case. For an immediate
comparison, we report here also the quantities Z̃∞;rþ

lmω
characterizing the monopolar case:

Z̃∞;rþ
lmω ¼ W−1 4πμd

jṫj S�0lm

�
π

2
; mΩc

�
Xrþ;∞
lmω ðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
				
r¼r0

: ð35Þ

Even by a first qualitative analysis, a crucial difference
can already be highlighted from dimensional considera-
tions. From Eq. (28), one sees that the inhomogeneous
solution, both at the horizon and at infinity, depends on the
sum of three terms proportional to the components of the
dipole moment vector, δrd=μ, δθd=μ, and δϕd=μ, respec-
tively. First, we point out that the radial displacement is of
the order of the secondary length scale, δr ¼ OðμÞ.
Moreover, the term (29) features ∂r which is OðM−1Þ.
As for the angular displacements, they can be roughly

estimated as δθ; δϕ ∼ arcsinðμ=r0Þ ≈ μ=r0 ≲ μ=M, from
which δθ; δϕ ¼ OðqÞ. Thus, the terms (29), (30) and
(31) re all of the order of OðqÞ. This immediately tells
us that Eq. (28) scales as the mass ratio squared, q2, and the
fluxes are proportional to q4.
In the case of a monopole instead, the fluxes are

proportional to q2. Therefore, emission from a dipole is
intrinsically suppressed by a factor of q2.
If we instead consider a configuration where both a

scalar monopole and a scalar dipole are present (as we shall
do in Sec. III D), the fluxes will be proportional to the
square of the sum of the two terms (35) and (28). Hence,
due to the double product of these two terms, the lowest-
order correction to the scalar monopolar flux due to the
presence of the dipole will be proportional to q3. This
resembles the contribution of the spin of the secondary
compact object to the gravitational fluxes [39–41], which
also enters at next-to-leading order in the mass ratio.

B. Numerical results

In this section, we discuss the numerical results for the
fluxes in the purely dipolar case. We consider an EMRI
around a nearly extremal Kerr BHwith spin a ¼ 0.99M. As
we shall discuss, even if this choice maximizes the effect of
the dipole, the latter is typically negligible. In all cases, we
compute the fluxes by summing the multipolar contribu-
tions up to l ¼ 17 and for all m ¼ −l;−lþ 1;…; l − 1; l.
The GW emission is studied by varying the radial

coordinate r0 of the center of mass of the secondary
and, therefore, its tangential velocity v ¼ Ωcr0, which
increases as r0 decreases. We will confront the dipole
fluxes with the ones obtained in the monopolar case in the
same setting [10,13].
Recalling that, without loss of generality, we can set

δt ¼ 0, we can focus on the fluxes given by the three
independent orientations for the dipole, which are pi ¼
dðδr; 0; 0Þ=μ, pi ¼ dð0; δθ; 0Þ=μ, and pi ¼ dð0; 0; δϕÞ=μ,
respectively (see Fig. 1).
Given that the mass ratio enters the fluxes as an overall

factor, it is convenient to normalize both the dipolar and
monopolar fluxes in a suitable way. For a given orientation
of the dipole, we can define the normalized fluxes FD and
FM as

FM ¼ ð4πÞ2q2d2FM; FD ¼ ð4πÞ2q4p2FD: ð36Þ

Here, FD (FM) is the flux obtained from Eqs. (33) and (34)
using the Zlmω given in Eq. (28) [Eq. (35)] for the dipolar
(monopolar) case. Also, p is the magnitude of the dimen-
sionless dipole vector; see Eq. (13). Using this normaliza-
tion, FD and FM are independent of the dipole moment,
charge, and mass ratio. However, for the purpose of a
comparison one should keep in mind that, for the physical
fluxes, FD=FM ¼ Oðq2Þ ≪ 1.
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Figure 2 shows the behavior of normalized dipole
emission (solid curves) in the pi ¼ dð0; δθ; 0Þ=μ case (in
which the dipole is orthogonal to the equatorial plane and,
therefore, precession is absent) in comparison to the
normalized monopolar emission (dashed curves). In this
configuration, for any orbit, the dipole emits a normalized
flux that is always smaller than in the monopolar setup at
least by one order of magnitude, both at horizon and at

infinity. This is due to the dependence on
dS�

0lm
dθ ðπ

2
; mΩcÞ in

the dipole emission. Indeed, it is easy to see that when the
derivative of the spheroidal harmonic is computed at
θ ¼ π=2, the (polar) m ¼ �l contribution to the fluxes,
which usually is the dominant one, is identically zero. The
first nonzero contribution comes from the axial mode
m ¼ �ðl − 1Þ, which is typically smaller.
In Fig. 3, we show the behavior of normalized dipole

emission (solid curves) in the pi ¼ dðδr; 0; 0Þ=μ setting,

where the dipole moment lays on the equatorial plane in the
radial direction. We notice that the relative importance of the
dipolar flux with respect to the monopolar one increases in
regions of the spacetime with a stronger gravitational field.
The normalized flux at infinity peaks at the innermost-stable
circular orbit (ISCO), where it is larger than the normalized
monopolar one by almost 2 orders of magnitude.
Figure 4 shows the normalized dipole emission (solid

curves) in the pi ¼ dð0; 0; δϕÞ=μ setup. This trend shown
in this plot is similar to the previous one. Overall, the
dipolar flux in this setting is always smaller than in the case
of radially displaced dipole but significantly larger than in
the case of dipole aligned with the BH spin (Fig. 2).
Note that, as expected, in all three cases the fluxes

increase as the small compact object gets closer to the
ISCO, since relativistic effects are amplified.
In the next section, we will discuss the possible detect-

ability of these fluxes, after restoring the normalization
factors in Eq. (36).

C. Estimates for the fundamental
dipole in various models

In order to give a rough estimate of the actual effects of
fundamental dipole moments, we need to consider the

FIG. 2. Solid curves: normalized scalar emission at infinity
(black) and at horizon (orange) for a fundamental dipole with
normalized moment pi ¼ dð0; δθ; 0Þ=μ, namely, the case in
which the dipole is parallel to the spin of the primary BH.
Dashed curves: for comparison, we show the normalized scalar
emission at infinity (black) and at horizon (orange) for the case of
a fundamental charge.

FIG. 3. The same as Fig. 2 but for the case of a radial dipole
moment along the equatorial plane.

FIG. 1. Schematic representation of an EMRI with a funda-
mental secondary dipole moment p⃗. We show the three inde-
pendent orientations of the dipole considered in this work. A
generic orientation can be expressed as a linear combination of
these three.

FIG. 4. The same as Fig. 2 but for the case of a dipole moment
with δr ¼ δθ ¼ 0.
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physical fluxes in Eq. (36) and plug in realistic values for
the (dimensionless) scalar charge and dipole moment.
Using Eq. (36) and the numerical results of the previous

section, we now wish to roughly estimate the minimum
value of p that could possibly give detectable effects. An
order-of-magnitude estimate can be obtained by computing
the ratio between the physical dipolar and monopolar
fluxes, FD=FM, and extract the minimum value of p for
which the fluxes are comparable, FD=FM ≈Oð1Þ.
In the monopolar case, the smallest charge that would

lead to a detectable effect for the scalar emission from a
monopole is d ≈ 10−2. This was shown in [13] both by
computing the GW dephasing due to the scalar emission
and by performing a more rigorous parameter estimation.
We can, therefore, estimate whether the dipole emission is
comparable to the flux generated by the monopole setup
with this minimum detectable value for the scalar charge,
using realistic values of p. We also assume a mass ratio
q ¼ 10−4 in order to minimize the suppression factor
between dipole and monopole while remaining well within
the extreme mass-ratio limit.
The flux ratio reads

FD

FM
¼ FD

FM

�
pq
d

�
2

¼ 10−4
�

q
10−4

�
2
�
0.01
d

�
2FD

FM
p2: ð37Þ

Near the ISCO, for nearly extremal BHs, the maximum
normalized ratio is FD=FM ∼ 102, as shown in Fig. 3. This
leads to

FD

FM
∼ 10−2

�
q

10−4

�
2
�
0.01
d

�
2

p2: ð38Þ

Therefore, in order to require a dipolar flux comparable to
the monopolar one, p ≈ 10.
To assess whether this value for our fundamental dipole

is realistic, we consider a few significant examples. The
first one is the magnetic dipole moment of a neutron star. Of
course, in this case the dipole moment is due to the
electromagnetic field, but we will use the intuition from
our scalar dipole as a proxy.2 The dipole moment of a
neutron star can be estimated as BR3, where B is the typical
magnetic field and R the radius of the star [45]. If we
assume standard parameters for a magnetar [19], B ≈
1015 G and R ≈ 12 km, we obtain a dipole moment
p ≈ 10−2. Thus, from Eq. (38), even in the case of extreme
magnetic fields and in the most optimistic scenario the

dipole flux is 106 times smaller than the minimum
detectable monopole flux.
The same occurs for the dipole moment of the recently

constructed globally neutral topological solitons [46]. Such
solutions are constructed by two opposite charges held at a
given distance. While their dipole moment depends on the
parameter space, in our units these solutions are charac-
terized by p ≪ 1 [46].
Furthermore, in the context of quadratic gravity theories

with scalar fields coupled to quadratic curvature terms
(which most notably include scalar Gauss-Bonnet and
dynamical Chern-Simons theories), dipole hair can grow
dynamically [22]. In this scenario, the dipole moment is
completely determined by the value of the monopole hair
yielding p ∼ d. In Chern-Simons gravity, dipole hair is
proportional to the BH spin and is, therefore, bounded also
in this case [22]. Likewise, fundamental dipoles can be
produced in theories with spin-induced scalarization
[23–26] at the level of p ∼ d.
Overall, for generic values of d, Eq. (38) implies a very

large magnitude, p ≈ 103d, for the dipole flux to be com-
parable to the monopole one for q ¼ 10−4. Furthermore, the
estimate (38) is already very optimistic, as it assumes the
smallest detectable value of a scalar charge d, a moderate
mass ratio q ¼ 10−4, and the maximum possible normalized
ratio FD=FM, obtained near the ISCO of a nearly extremal
central BH. If these assumptions are relaxed (i.e., for smaller
mass ratios, larger values of the charge, moderately spinning
BHs, and less relativistic orbits), the flux ratio is even more
severely suppressed.
We conclude that, for typical values of the dipole

moment predicted in various models, the effect of a dipole
flux is negligible.

D. Mixed case: Charge + dipole

Until now, we have neglected the presence of a putative
scalar charge and focused purely on the dipole contribution,
assuming a globally neutral secondary. One might wonder
if, in a scenario where both a scalar charge and a dipole are
included, the corrections to the total flux due to the dipole
are more significant. Indeed, as already mentioned, in this
scenario the lowest-order contribution from the dipole
scales as q3 instead of q4. In this section, we will therefore
compute the fluxes in this mixed case and show that, also in
this case, one needs large values of the dipole moment
(p ≈ 1) in order to have appreciable deviations from the
purely monopolar case.
We have studied the relative difference in the same

optimistic scenario of the previous section, i.e., a ¼ 0.99M,
q ¼ 10−4, and d ¼ 10−2, by considering different values of
the dipole moment, namely, p ¼ 10−2, 0.1, 1, 10.
Moreover, we have considered the purely radial dipole
case pi ¼ dðδr; 0; 0Þ=μ, since our previous analysis
showed that in this orientation the dipole contribution is
maximized. Figure 5 shows the total fluxes (continuous

2Note also that we are dealing with an electric-type (i.e., polar)
dipole moment, while the dipole moment of a magnetar is
magnetic (i.e., axial). Regarding the impact of magnetic dipoles
for GW emission from binaries, Refs. [42–44] show that, for
comparable mass binaries composed of magnetars, the magnetic
dipole–magnetic dipole interaction generates a contribution to the
gravitational radiation emitted by the system that might be
detectable by LISA [44].
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lines) and the purely monopolar ones (dashed lines) as
functions of the orbital velocity and for increasing values
of p. Below each panel, we also show the corresponding
relative difference between monopoleþ dipole and purely
monopole cases.

It is clear that also in this mixed case the presence of a
nonvanishing dipole moment has a small impact on the
total emission. For realistic values as p ≈ 0.01, the total
flux is larger than the purely monopolar case at most by
≈0.1%. If we assume a larger dipole moment, p ≈ 1, the

FIG. 5. First and third row of panels: mixed case fluxes normalized by ð4πÞ2μ2d2 (solid lines) compared to normalized monopolar
fluxes (dashed lines) for increasing values of p (p ¼ 0.01, 0.1, 1, 10). Second and fourth row of panels: corresponding relative
difference between the fluxes at infinity for the same values of p. The spin of the BH is fixed at a ¼ 0.99M, and the orientation of the
dipole is given by pi ¼ dðδr; 0; 0Þ=μ.
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maximum deviation from the purely monopolar case is at
most 15%, whereas for p ≈ 10 the monopolar and dipolar
contributions are of the same order. Nevertheless, as already
mentioned, such values of p are unrealistic, and these
corrections are obtained in the most optimistic scenario.

IV. CONCLUSIONS

Motivated by various scenarios predicting globally
neutral compact objects endowed with a dipole moment,
we have developed a model-agnostic framework to com-
pute the GW emission from a fundamental scalar dipole
in EMRIs.
We found that the extra flux associated with the dipole

moment is suppressed by the square of the mass ratio
relative to the case of fundamental charges, making its
detection with EMRIs very challenging for the typical
values of the dipole predicted in various models. Even in
the most optimistic scenarios, we estimated that, as long as
the dimensionless dipole moment p≲ 10, its effect would
be negligible for LISA.
This negative conclusion is based on a simple compari-

son between the dipole and monopole fluxes. Although the
strong suppression suggests that our conclusion is solid, it
would be important to confirm this expectation through a
proper parameter estimation, along the lines of [13,17] for
the case of fundamental charges. In our case, however, this
would come with the extra cost of properly taking into
account the dipole precession during the evolution. Indeed,
we have found that the only case in which precession is
absent (when the dipole is parallel to the spin of the
primary) is also the one in which dipole emission is more
suppressed. For the most promising cases (any other
orientation of the dipole), one needs to consistently evolve
the dynamics of the dipole moment, similarly to the case of
a secondary spin [47–50]. It is also possible that precession
helps make the effects of the dipole moment more
prominent, as recently found in the context of post-
Newtonian theory for comparable-mass binaries [51].
A natural extension to the present work would be to

study the case of eccentric and/or inclined orbits. The
complexity of the orbits might remove degeneracies in the
aforementioned potential parameter estimation but also

increase the dimensionality of the parameter space. In
the case of an EMRI with a scalar charge on the secondary
on an eccentric orbit, Ref. [14] showed that the inclusion of
the eccentricity improves the distinguishability of the scalar
charge with respect to the circular equatorial orbit setup.
Although in our settings the effect of a fundamental

dipole on the EMRI fluxes seems pessimistically small, for
the same reason we estimate that if the secondary is
endowed with both a charge and a dipole, the effect of
the latter is typically negligible for constraints on and
detectability of the former. This suggests that the estimates
in [12–17] should be robust against the inclusion of extra
dipole effects. The mixed case is less suppressed by the
mass ratio and is, in fact, very similar to that of an ordinary
EMRI with a spinning secondary [39,41] for which the
secondary spin is indeed not measurable with LISA, at least
when neglecting precession [40]. In this context, it would
be interesting to include our effect in a more accurate self-
force model; see Ref. [52] for very recent related work.
While the case of a fundamental scalar dipole might be

interesting on its own in the context of modified gravity and
physics beyond the Standard Model, we have also used it as
a proxy for an intrinsic electromagnetic dipole, which is of
direct astrophysical interest for magnetars. It would be very
interesting to extend our work to the vector case, general-
izing [16,17] to the case of fundamental vector dipoles.
Finally, given the suppression we found in the EMRI limit,
it should be more promising to study this effect for
comparable-mass binaries within post-Newtonian theory,
extending work done for magnetars [42–44].
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