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The formalism of hypersurface data is a framework to study hypersurfaces of any causal character
abstractly (i.e., without the need of viewing them as embedded in an ambient space). In this paper we
exploit this formalism to study the problem of matching two spacetimes in a fully abstract manner, as this
turns out to be advantageous over other approaches in several respects. We then concentrate on the case
when the boundaries are null and prove that the whole matching is determined by a diffeomorphism φ on
the abstract dataset. By exploiting the gauge structure of the formalism we find explicit expressions for
the gravitational/matter-energy content of any null thin shell. The results hold for arbitrary topology.
A particular case of interest is when more than one matching is allowed. Assuming that one of the
matchings has already been solved, we provide explicit expressions for the gravitational/matter-energy
content of any other shell in terms of the known one. This situation covers, in particular, all cut-and-paste
constructions, where one can simply take as known matching the trivial reattachment of the two regions.
We include, as an example, the most general matching of two regions of the (anti-)de Sitter or Minkowski
spacetime across a totally geodesic null hypersurface.
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I. INTRODUCTION

The question of under which conditions two spacetimes
can be matched across a hypersurface and give rise to a new
spacetime is a fundamental problem in any metric theory of
gravity. In particular, a matching theory is required in any
physical situation where a substantial amount of gravita-
tional/matter-energy content is located in a thin enough
region of the spacetime (with respect to the dimensions of
the problem). Then, the matter-content can be modeled as
concentrated on a hypersurface. This thin shell of gravi-
tational/matter-energy possesses its own gravity and hence
affects the spacetime geometry, and it is worth finding the
relationship between the shell’s content and the properties
of the spacetime.
Many authors have contributed to the matching problem

in General Relativity, see e.g., the works [1–12]. The
standard approach consists of considering two spacetimes

ðM�; g�Þ with boundaries eN �
. For the matching to be

possible eN �
must be diffeomorphic, i.e., there must exist a

diffeomorphism Φ∶ eN −
⟶ eN þ

, which we call matching
map. One then defines the resulting spacetime M as the
union of Mþ and M− with the corresponding identifica-
tion of boundary points (ruled by Φ). The necessary and
sufficient conditions for a metric g to exist on M are the

so-called (preliminary) matching conditions (or junction
conditions) and require (i) that the first fundamental forms
γ� from both boundaries coincide, (ii) that there exists

two riggings ζ� (i.e., vector fields along eN �
, everywhere

transversal to them) with the same square norm and such
that the one-forms g�ðζ�; ·Þ coincide and (iii) that ζ� are
such that one points inward and the other outward. When
these conditions are fulfilled, the matched spacetime exists.
In general, this spacetime will contain a thin shell, which is
ruled by the jump in the extrinsic geometry of the matching
hypersurfaces.
In addition to this standard approach (also called à la

Darmois), one can also construct null thin shells with the
so-called cut-and-paste method (see e.g., [13–23]), where
the shell is described via a metric with a Dirac delta
distribution with support on the matching hypersurface.
The shell is built by taking a spacetime ðM; gÞ with a null

hypersurface eN ⊂ M, then cutting M along eN , which
leaves two spacetimes ðM�; g�Þ, and finally reattaching
(or pasting) ðM�; g�Þ by identifying the boundary points
so that there exists a jump on the null direction on the
matching hypersurface.
Be that as it may, null shells have been widely studied in

the literature (for a sample, see Refs. [24–31]), usually by
imposing additional symmetries (such as spherical sym-
metry). In particular, the problem of matching two com-
pletely general spacetimes ðM�; g�Þ with null boundarieseN �

has been recently addressed in [32] under the only
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assumption that eN �
admit a foliation by diffeomorphic

spacelike cross sections. One of the main results in [32] is
that all the information about the matching is codified in a

diffeomorphismΨ between the set of null generators of eN �

and function H, called step function, which corresponds to
a shift along the null generators. Another result of interest
is that, although generically two given spacetimes can be
matched at most in one manner, sometimes multiple
matchings are possible. A relevant case of the later, studied
in detail in [33], is the matching across so-called Killing
horizons of order zero.
The matching problem is studied in [32,33] by means of

the so-called formalism of hypersurface data [7,34] (see
also [9,35–39]), which allows one to codify abstractly (i.e.,
in a detached way from an ambient manifold) the intrinsic
and extrinsic geometric information of a hypersurface

in terms of a dataset D ¼def fN ; γ;l;lð2Þ;Yg. The part
fN ; γ;l;lð2Þg is called metric hypersurface data and
codifies at the abstract level the would-be components of
the full ambient metric g at the hypersurface. The tensor Y
codifies extrisinc information. The formalism is equipped
with a group of gauge transformations that accounts for the
fact that, at the embedded level, the choice of a rigging is
nonunique. Two datasets are equivalent if they are related
by a gauge transformation. Each gauge group element
Gðz;VÞ ⊂ G is determined by a nowhere-zero function z and a
vector field V in N .
In the language of the hypersurface data formalism, the

matching can be performed if and only if [7] one can embed
a single metric hypersurface dataset in both spacetimes
(and the corresponding matching riggings satisfy the
orientation condition (iii) above). In that case, the gravi-
tational/matter-energy content of the shell is fully codified
by the jump of the tensors Y� of each side, namely

½Y� ¼def Yþ − Y− [7]. The approach in [32,33], while based
on this formalism, still analyzes the matching in terms of
the embeddings ϕ� of the abstract manifold N in M� and
not directly at a detached level. Two questions arise
naturally. The first one is whether there is a way of
formulating the matching problem in a fully abstract
manner (that is, exclusively in terms of objects defined
in the abstract manifold N ) so that one does not need to
make any reference to the actual spacetimes to be matched.
The second is whether one can generalize the results
in [32,33] to boundaries with arbitrary topology. The
aim of this paper is to answer both questions.
The first question is solved in Theorem 3.1, where we

provide a completely abstract version of the (spacetime)
matching conditions. The theorem establishes that two
given datasets D ¼ fN ; γ;l;lð2Þ;Y−g, bD ¼ fN ;bγ; bl;blð2Þ; bYþg (each of them should be thought of as an
abstraction of one of the boundaries) can be matched
provided that there exists a diffeomorphism φ of N onto

itself such that the metric hypersurface datasets fN ; γ;l;
lð2Þg, fN ;φ⋆bγ;φ⋆bl;φ⋆blð2Þg are related by a gauge trans-
formation Gðz;VÞ. This can be interpreted as follows. The
map φ can be understood as an abstract version of the
(spacetime) matching map Φ mentioned before. Since
the matching requires that one single metric hypersurface
dataset is embedded in both spacetimes, D and bD cannot
be arbitrarily different. Instead, there must exist a gauge
transformation that compensates for the change induced by
φ so that, even after applying the pull-back φ⋆, the metric
part of the data are still equivalent. Theorem 3.1 also
imposes a restriction on the sign of z. As we shall see, at the
embedded level this restriction ensures that the orientation
of the riggings to be identified in the matching process
verifies condition (iii) above.
When the datasets D, bD are embedded in two space-

times, Theorem 3.1 is equivalent to the standard matching
conditions (i)–(iii) above. This result is relevant for several
reasons. First, it applies to (abstract) hypersurfaces of any
causality and any topology. Secondly, the gauges of the
datasets D, bD are unfixed so that at the embedded level
there is full freedom in the a priori choice of the riggings on
each side. This gives a lot of flexibility to the framework.
Finally, having formulated the matching problem abstractly
allows one analyze in an independent manner thin shells
with specific gravitational/matter-energy content and, on a
second stage, study whether they can be embedded in a
spacetime. This is useful e.g., for constructing examples of
spacetimes containing certain types of shells.
We then concentrate on the null case. We intend to

generalize the works [32,33] so we impose no topological
conditions on the boundaries. We prove that a (null) metric
hypersurface dataset fN ; γ;l;lð2Þg is entirely codified by
γ and that the remaining metric data is pure gauge. In these
circumstances, the feasibility of the matching relies on the
tensors fγ;bγg satisfying φ⋆bγ ¼ γ (and z having suitable
sign). One of our main results in the paper is that we find
explicit expressions for the riggings to be identified in the
matching process, as well as of the gravitational/matter-
energy content of the resulting shell (Theorem 4.4).
Specifically, we compute explicitly the jump ½Y� and the
energy-momentum tensor of the shell in terms of D, bD
and φ. In particular we provide fully geometric definitions
of the energy density ρ, energy flux j and pressure p of the
shell (Remark 2.16) and find explicit expression for them.
We also codify the purely gravitational content of a null
shell in a tensor YG, which we also compute explicitly. We
emphasize that all these result hold for any possible null
thin shell. The pressure p of the null shell is worth studying
in further detail. It turns out that it can be expressed as a
difference of the surface gravities (i.e., the “accelerations”)
of two null generators of N related by the push-forward
map φ⋆. This generalizes previous results in [32,33], where
in specific examples we noticed that p accounts for an
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effect of compression/stretching of points when crossing
the matching hypersurface.
With the abstract matching formalism, one also recovers

the property from [32,33] that when the datasetsD, bD define
abstract totally geodesic null hypersurfaces, then an infinite
number of matchings are feasible. This situation is addressed
in Sec. V where, assuming that all the information about one
of the matchings is known, we prove that the gravitational/
matter energy content of all the remaining matchings can be
determined easily and explicitly in terms of the known one
and the map φ, with no need of performing additional
calculations. The specific case when one of the matchings
gives rise to no shell is of particular interest because it
includes all cut-and-paste constructions.1 In this context, we
find explicit expressions for the gravitational/matter-energy
content of any null thin shell constructed with the cut-and-
paste method. These results are applied in Sec. VII, where
we study the matching of two regions of a constant-curvature
spacetime across a totally geodesic null hypersurface.
For the sake of consistency, we devote Sec. VI to

showing how the results in [32] are recovered as a particular
case of the general framework presented here in the specific
case when N can be foliated by spacelike diffeomorphic
cross sections.
The structure of the paper is as follows. In Sec. II we

review the results on the geometry of embedded null
hypersurfaces, formalism of hypersurface data and match-
ing of spacetimes that are needed later. In Sec. III we
provide an abstract formulation of the matching problem.
The rest of the paper concentrates on the null case. In
particular, Sec. IV is devoted to studying the properties of
completely general null thin shells and finding explicit
expressions for their gravitational/matter-energy content,
while Sec. V addresses the case when multiple matchings
are feasible. In Sec. VI, we establish the connection between
the results in [32] and the abstract matching formalism
developed here. The paper concludes with an example
where we study all possible matchings involving two
regions separated by a totally geodesic null hypersurface
in the (anti-)de Sitter or Minkowski spacetimes (Sec. VII).

A. Notation and conventions

In this paper manifolds are smooth, connected and,
unless otherwise indicated, without boundary. We use
TM to denote the tangent bundle of a manifold M and
ΓðTMÞ for its sections (i.e., vector fields). We also let

F ðMÞ ¼def C∞ðM;RÞ andF⋆ðMÞ ⊂ F ðMÞ its subset of
nowhere zero functions. We use the symbols £, d to denote
Lie derivative and exterior derivative respectively. Both
tensorial and abstract index notation will be employed
depending on convenience. When index-free notation is

used, we shall often use boldface for covariant tensors. In
index notation we use standard font (not boldface) in all
cases. We work in arbitrary dimension n, with the follow-
ing values for different sets of indices:

α; β;… ¼ 0; 1; 2;…;n; a; b;… ¼ 1; 2;…;n;

A; B;… ¼ 2;…;n: ð1:1Þ

As usual, parenthesis (resp. brackets) will denote symmet-
rization (resp. antisymmetrization) of indices and we also
use the notation A ⊗s B≡ 1

2
ðA ⊗ Bþ B ⊗ AÞ for the

symmetrized tensor product of two tensors A and B.
When B is symmetric, 2-contravariant we write trBA for
the trace with respect to B of any 2-covariant tensor A.
Given a semi-Riemannian manifold ðM; gÞ, the associated
contravariant metric is called g♯ and ∇ is the Levi-Civita
derivative. Scalar products of two vectors are denoted
indistinctly as gðX; YÞ or hX; Yig. Our convention for
Lorentzian signature is ð−;þ; � � � ;þÞ.

II. PRELIMINARIES

A. Geometry of embedded null hypersurfaces

In this subsection we review some facts about embedded
null hypersurfaces, see e.g., [40–42]. This will serve to fix
our notation. An embedded null hypersurface in a space-

time ðM; gÞ of dimension nþ 1 is the image eN ¼ ϕðN Þ
of an embedding ϕ∶N↪M of an n-manifold N , such

that the first fundamental form γ ¼def ϕ⋆g of N is degen-

erate. Any choice of (nowhere zero) normal vector k to eN
defines a null direction tangent to eN called null generator
(and viceversa). The integral curves of k are geodesic and

the surface gravity κ̃k ∈F ð eN Þ of k is defined

by ∇kk ¼ eκkk. The second fundamental form of eN w.r.t

k is the tensor eKkðX; YÞ ¼def gð∇Xk; YÞ, ∀X; Y ∈ΓðT eN Þ.
Boundaries of manifolds are always two-sided, so

(cf. Lemma 1 in [7]) we shall always assume that eN
admits an everywhere transversal vector field L, i.e.,

verifying L ∉ Tp
eN ∀p∈ eN . The vector L can always

be taken null everywhere (see e.g., [32]).

A transverse submanifold of eN is any ðn − 1Þ-
dimensional submanifold S ⊂ eN to which k is everywhere
transverse. When, in addition, every integral curve of k
crosses S exactly once S is called cross section (or simply
section). The existence of a cross section entails a strong

topological restriction on eN , as in such case there always

exist functions v∈F ð eN Þ, called foliation functions, whose
level sets Sv0 ¼def fp∈ eN j vðpÞ ¼ v0 ∈Rg are cross sec-

tions of eN and fSvg define a foliation of eN . Nevertheless
existence of foliation functions is always granted in

1Note that two regions of the same spacetime can always be
matched so that the resulting manifold contains no shell.
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sufficiently local domains of eN . Note that necessarily
kðvÞ ≠ 0 so we can always assume kðvÞ ¼ 1 either by
rescaling k or by changing v.

Given a transverse submanifold S ⊂ eN , it is useful
[32,33] to define the following tensors on S

ΘLðX;YÞjp ¼def h∇XL;Yigjp;

σLðXÞjp ¼def − 1

gðL;kÞh∇Xk;Ligjp; ∀X;Y∈TpS: ð2:1Þ

When L is chosen null and orthogonal to S then ΘL and σL
are the second fundamental form and torsion one-form of S
with respect to L. For any choice of L, the tensors σL, ΘL

encode extrinsic information of S. However, ΘL is not
symmetric in general.

Assuming that eN admits a cross section S, one can

construct a foliation function v∈F ð eN Þ and (on local
patches) a basis fL; k; vIg of ΓðTMÞjeN adapted to the

foliation with the following properties:

ðAÞ k is a future null generator with surface gravityeκk:
ðBÞ v∈F ð eN Þ is the only foliation function satisfying vjS ¼ 0; kðvÞjeN ¼ 1:

ðCÞ Each vector field vI is tangent to the foliation; i:e:vIðvÞ ¼ 0:

ðDÞ The basis vectors fk; vIg are such that ½k; vI� ¼ 0 and ½vI; vJ� ¼ 0:

ðEÞ L is a past null vector field everywhere transversal to eN :

ð2:2Þ

For any basis fL; k; vIg verifying (2.2), we also define n

scalar functions fμag ⊂ F ð eN Þ as

μ1ðpÞ ¼def gðL;kÞjp; μIðpÞ ¼def gðL;vIÞjp ∀p∈ eN : ð2:3Þ

Note that necessarily μ1 ≠ 0 [this has already been used
in (2.1) ]. The vectors fvAg are spacelike by construction

and fk; vIg is a basis of ΓðT eN Þ. Conditions (A) and
(B) imply that v increases toward the future. We write h for

the induced metric on the leaves fSvg and hIJ ¼def gðvI; vJÞ
for its components in the basis fvIg. We use hIJ and its
inverse hIJ to lower and raise capital latin indices irre-
spectively of whether they are tensorial or not (e.g., we let

μI ¼def hIJμJ). The property ½k; vI� ¼ 0 entails [32]

kðhðvI; vJÞÞ ¼
eN
2eKkðvI; vJÞ: ð2:4Þ

B. Formalism of hypersurface data

The formalism of hypersurface data, which we introduce
next, will allow us to analyze the matching of spacetimes at
a fully abstract level. We refer to [7,34–39] for details.

1. General hypersurface data

The fundamental notion of the formalism is metric
hypersurface data, defined to be a set fN ; γ;l;lð2Þg
where N is an n-dimensional manifold, γ is a 2-covariant
symmetric tensor, l is a covector and lð2Þ is a scalar
function subject to the condition that the symmetric
2-covariant tensor Ajp on TpN ×R given by

AjpððW;aÞ;ðZ;bÞÞ ¼def γjpðW;ZÞþaljpðZÞþbljpðWÞ
þablð2Þjp; W;Z∈TpN ; a;b∈R

ð2:5Þ

is non-degenerate at every p∈N . A priori any signature
for Ajp is allowed. Given metric hypersurface data, one

can define unique tensor fields fPab; na; nð2Þg, with P
symmetric, by means of [7]

γabnb þ nð2Þla ¼ 0; ð2:6Þ

lana þ nð2Þlð2Þ ¼ 1; ð2:7Þ

Pablb þ lð2Þna ¼ 0; ð2:8Þ

Pabγbc þ nalc ¼ δac: ð2:9Þ

No restriction is placed on γ, which in particular is allowed
to be degenerate. However, A being nondegenerate
forces γ to have at most one degeneration direction [34].
Specifically, the radical of γ at p∈N , defined by

Radγjp ¼def fX∈TpN jγðX; ·Þ ¼ 0g, is either zero- or
one-dimensional. The latter case occurs if and only if
nð2Þjp ¼ 0, which by (2.6) means that Radγjp ¼ hnjpi. A
point p∈N is called null if dimðRadγjpÞ ¼ 1 and non-null
otherwise.
The second basic notion of the formalism is hypersur-

face data which is just fN ; γ;l;lð2Þg equipped with
an extra symmetric 2-covariant tensor Y, namely
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D ¼def fN ; γ;l;lð2Þ;Yg. It is useful to define the following
tensors (note that F, s and U only require metric hyper-
surface data)

F ¼def 1

2
dl; ð2:10Þ

U ¼def 1

2
£nγ þ l ⊗s dnð2Þ: ð2:11Þ

K ¼def nð2ÞY þ U: ð2:12Þ

s ¼def Fðn; ·Þ;
r ¼def Yðn; ·Þ ð2:13Þ

κn ¼def − Yðn; nÞ: ð2:14Þ

(Metric) hypersurface data has a built-in gauge group
structure [34] with the following properties.
Definition 2.1. Let D ¼ fN ; γ;l;lð2Þ;Yg be hyper-

surface data, z∈F⋆ðN Þ and V∈ΓðTN Þ. The gauge

transformed data Gðz;VÞðDÞ ¼def fN ; Gðz;VÞðγÞ; Gðz;VÞðlÞ;
Gðz;VÞðlð2ÞÞ; Gðz;VÞðYÞg is defined as

Gðz;VÞðγÞ ¼def γ; Gðz;VÞðlÞ ¼def zðlþ γðV; ·ÞÞ;
Gðz;VÞðlð2ÞÞ ¼def z2ðlð2Þ þ 2lðVÞ þ γðV; VÞÞ; ð2:15Þ

Gðz;VÞðYÞ ¼def zY þ l ⊗s dzþ
1

2
£zVγ

¼ zY þ ðlþ γðV; ·ÞÞ ⊗s dzþ
z
2
£Vγ: ð2:16Þ

The set of all possible gauge transformations forms
a group G ¼ F⋆ðN Þ × ΓðTN Þ with composition law
Gðz2;V2Þ �Gðz1;V1Þ ¼ Gðz1z2;V2þz−1

2
V1Þ, identity Gð1;0Þ and in-

verse G−1
ðz;VÞ ¼def Gðz−1;−zVÞ.

All considerations so far make no reference to any
ambient space where N is embedded. The abstract
construction and the usual geometry of embedded hyper-
surfaces are connected through the notion of embeddedness
of the data. Given a semi-Riemannian ðnþ 1Þ-dimensional
manifold ðM; gÞ we say fN ; γ;l;lð2Þg is embedded
with embedding ϕ and rigging ζ in ðM; gÞ provided there
exists an embedding ϕ ∶N↪M and a rigging ζ (i.e., a
vector field along ϕðN Þ, everywhere transversal to it)
satisfying

ϕ⋆ðgÞ ¼ γ; ϕ⋆ðgðζ; ·ÞÞ ¼ l; ϕ⋆ðgðζ; ζÞÞ ¼ lð2Þ:

ð2:17Þ

The same notion for hypersurface data fN ; γ;l;lð2Þ;Yg
requires, in addition,

1

2
ϕ⋆ð£ζgÞ ¼ Y: ð2:18Þ

We often simplify the notation and say simply that the
data is “fϕ; ζg-embedded”. We also identify scalars and
vectors in N with their corresponding images on ϕðN Þ
when there is no risk of confusion. The action of the gauge
group in the data corresponds to a change of rigging
according to [34]

Gðz;VÞðζÞ ¼def zðζ þ ϕ⋆VÞ: ð2:19Þ

More specifically, it holds that if fN ; γ;l;lð2Þg is fϕ; ζg-
embedded in ðM; gÞ, then Gðz;VÞðfN ; γ;l;lð2ÞgÞ is fϕ;
Gðz;VÞðζÞg-embedded in the same space.
The hypersurface ϕðN Þ admits a unique normal ν

satisfying gðν; ζÞ ¼ 1, which decomposes as [7,34]

ν ¼ nð2Þζ þ ϕ⋆n: ð2:20Þ
It then turns out that K [defined in (2.12)] is the second
fundamental form of ϕðN Þ with respect to ν [34], i.e.,

K ¼ ϕ⋆ð∇νÞ; ν ¼def gðν; ·Þ: ð2:21Þ
Observe that K and U coincide at null points of N .
Although generically N is not a semi-Riemannian
manifold, it admits two useful covariant derivatives. The

metric hypersurface connection ∇� depends only on
the metric part of the data and it is defined uniquely [7]
by the properties of being torsion-free together with the
expressions

∇� aγbc ¼ −lbUac − lcUab; ð2:22Þ

∇� alb ¼ Fab − lð2ÞUab: ð2:23Þ

The second connection is called hypersurface connection
and denoted by ∇. It is also torsion-free and relates to the

former by∇XZ ¼ ∇� XZ − YðX; ZÞn for any X; Z∈ΓðTN Þ.
When fN ; γ;l;lð2Þ;Yg is fϕ; ζg-embedded in ðM; gÞ, the
ambient Levi-Civita connection ∇ and the derivatives ∇� , ∇
satisfy [7]

∇XZ ¼ ∇� XZ − YðX; ZÞν − UðX; ZÞζ
¼ ∇XZ −KðX; ZÞζ; ð2:24Þ

h∇Xζ; Zig ¼ YðX; ZÞ þ FðX; ZÞ ð2:25Þ
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for all X; Z∈ΓðTN Þ. Thus, ∇ is the connection induced from ∇ along the rigging [9]. Two consequences of the definition

of ∇� are

∇� bnc¼ncðsb−nð2Þðdlð2ÞÞbÞþPacðUba−nð2ÞFbaÞ; ð2:26Þ

nbð∇� bθd þ∇� dθbÞ ¼ £nθd þ∇� dðθðnÞÞ − 2ðθðnÞðsd − nð2Þ∇� dlð2ÞÞ þ PabθbðUda − nð2ÞFdaÞÞ: ð2:27Þ

where θa is an arbitrary one-form. Their explicit proof can
be found in [34] and [ [37], Lemma 2.5] respectively. We

shall also need the following lemma relating Lie and ∇�
derivatives.
Lemma 2.2. Let fN ; γ;l;lð2Þg be metric hypersurface

data, Va any vector field and wa any covector field. Define

V
ˇ a

¼def γabVb and ŵa ¼def Pabwb. Then the following iden-

tities hold

1

2
£Vγab ¼ lðVÞUab þ∇� ðaV

ˇ
bÞ; ð2:28Þ

1

2
£ŵγab ¼ ∇� ðawbÞ − lða∇

�
bÞwðnÞ: ð2:29Þ

Proof. We first note that ∇� cγab −∇� aγbc −∇� bγac ¼
2lcUab as a direct consequence of (2.22). Moreover, since

∇� has no torsion, the Lie derivative of any p-covariant tensor
T along any direction V∈ΓðTN Þ reads ð£VTÞa1���ap ¼
Vb∇� bTa1���ap þ

Pp
i¼1Ta1���ai−1baiþ1���ap∇

�
aiV

b. Particularizing
this for T ¼ γ we get

£Vγab ¼ Vc∇� cγab þ 2γcða∇
�
bÞVc

¼ Vcð∇� cγab −∇� aγbc −∇� bγacÞ þ 2∇� ðaV
ˇ
bÞ

¼ 2lðVÞUab þ 2∇� ðaV
ˇ
bÞ

which is (2.28). To prove the second identity we apply (2.28)
to V¼ ŵ. Since by (2.9) we have γabPbcwc¼wa−wðnÞla,

identity (2.28) gives 1
2
£ŵγab ¼ lðŵÞUab þ∇� ðaðwbÞ −

wðnÞlbÞÞ. From (2.8), we find lðŵÞ ¼ −lð2ÞwðnÞ.
Inserting above yields 1

2
£ŵγab ¼ −lð2ÞwðnÞUab þ∇� ðawbÞ−

lða∇
�
bÞwðnÞ −wðnÞ∇� ðalbÞ, which simplifies to (2.29) after

taking into account (2.23). ▪
From a covector and a function on N , one can build a

unique vector field according to the next lemma.
Lemma 2.3. [7] Let fN ; γ;l;lð2Þg be metric hypersur-

face data. Given a covector field ϱ∈ΓðT⋆N Þ and a
scalar function u0 ∈F ðN Þ, there exists a vector field
W ∈ΓðTN Þ satisfying γðW; ·Þ ¼ ϱ, lðWÞ ¼ u0 if and
only if ϱðnÞ þ nð2Þu0 ¼ 0. Such W is unique and reads
W ¼ Pðϱ; ·Þ þ u0n.

Matter-hypersurface data and abstract thin shells.—
Hypersurface data encodes (abstractly) the intrinsic and
extrinsic information of embedded hypersurfaces. In the
context of gravity, knowning the matter contents of the
spacetime determines part of the curvature, typically by
means of the Einstein tensor Eing. Thus, to codify matter
information abstractly we need to supplement the data with
additional quantities. For general hypersurfaces, only the
normal-transverse and the normal-tangential components
of Eing can be related exclusively to intrinsic and extrinsic
information of the hypersurface [1,5,7,9]. Hence, the
additional (matter) data involves a scalar ρ and a covector
J that, once the data is embedded, correspond to such
components ofEing. Their relation with the rest of the data
needs to be imposed as constraint equations. They are well-
known in the spacelike case (see e.g., [43]), and were
generalized to arbitrary causal character in [7].
Note that although we refer to the variables ρ and J as

matter variables, what we are actually prescribing are
certain components of the Einstein tensor. The terminology
is justified because in General Relativity (with vanishing
cosmological constant) ρ and J indeed correspond to
the matter four-momentum along the normal direction.
However, we emphasize that we are not assuming any field
equations and that the geometric approach that we take can
be used in any theory of gravity.

We let R
� a

bcd denote the curvature tensor of the metric
hypersurface connection ∇. The abstract definition of
matter-hypersurface data is as follows.
Definition 2.4. [7] (Matter-hypersurface data) A tuple

fN ; γ;l;lð2Þ;Y; ρl; Jg formed by hypersurface data
fN ; γ;l;lð2Þ;Yg, a scalar ρl ∈F ðN Þ and a one-form
J∈ΓðT⋆N Þ is matter-hypersurface data if Gðz;VÞðρlÞ ¼
ρl þ JðVÞ, Gðz;VÞðJÞ ¼ z−1J and the following identities,
called constraint equations, hold:

ρl ¼ 1

2
R
� c

bcdPbd þ 1

2
laR

� a
bcdPbdnc

þ∇� dððPbdnc − PbcndÞYbcÞ þ nð2ÞPbdPacYb½cYd�a

þ 1

2
ðPbdnc − PbcndÞðlð2Þ∇� dUbc

þ ðUbc þ nð2ÞYbcÞ∇
�
dlð2Þ þ 2YbcðFdf − YdfÞnfÞ;

ð2:30Þ
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Jc ¼ laR
� a

bcdnbnd − 2∇� fððnð2ÞPbd − nbndÞYb½cδ
f
d�Þ

þ 2ðPbd − lð2ÞnbndÞ∇� ½cUd�b − 2PbdnfUb½cFd�f

− ðnð2ÞPbd − nbndÞððUb½c þ nð2ÞYb½cÞ∇
�
d�lð2Þ

þ 2Yb½cFd�fnfÞ − ðPbdnf − PbfndÞYbdUcf: ð2:31Þ

The next theorem justifies both the gauge behavior of
fρl; Jg and the explicit form of (2.30)–(2.31).
Theorem 2.5. [7] Let fN ; γ;l;lð2Þ;Y; ρl; Jg be matter-

hypersurface data and assume that the hypersurface
data fN ; γ;l;lð2Þ;Yg is fϕ; ζg-embedded in a semi-
Riemannian manifold ðM; gÞ. Then,

−ρl ¼ ϕ⋆ðEingðζ; νÞÞ; ð2:32Þ

−J ¼ ϕ⋆ðEingð·; νÞÞ; ð2:33Þ

where Eing is the (2-covariant) Einstein tensor of ðM; gÞ
and ν the (unique) normal vector field along ϕðN Þ
satisfying gðζ; νÞ ¼ 1.
As we shall see further on, the matching problem

involves pairs of matter-hypersurface data. However, at
this point we simply put forward various definitions and
explore some of their consequences.
Definition 2.6. (Thin shell) A thin shell is a pair of

matter-hypersurface data with same metric hypersurface
data, i.e., of the form fN ; γ;l;lð2Þ;Y�; ρ�l ; J

�; ϵg, where
ϵ is a sign with gauge behavior:

Gðz;VÞðϵÞ ¼
z
jzj ϵ: ð2:34Þ

We write Q� for quantities constructed from fN ; γ;l;

lð2Þ;Y�g and let ½Q� ¼def Qþ −Q− be its jump.
One of the main properties of thin shells is that one

can define an energy-momentum tensor encoding their
matter-energy content. In a completely general case, this is
done as follows.
Definition 2.7 (Energy-momentum tensor) For a thin

shell fN ; γ;l;lð2Þ;Y�; ρ�l ; J
�; ϵg, the energy-momentum

tensor is the symmetric 2-covariant tensor τ defined by

τdf ¼def ϵððPafnd þ PadnfÞnb − ðnð2ÞPafPbd þ PdfnanbÞ
þ Pabðnð2ÞPdf − ndnfÞÞ½Yab�: ð2:35Þ

Remark 2.8 Definitions 2.6 and 2.7 are a modification of
the previous ones introduced in [7], which involved no ϵ.
The addition of the sign ϵ is necessary in order for τ to
retain its physical interpretation as energy-momentum
tensor (density) in all gauges. Indeed, a change in the
orientation of l (or of rigging in the embedded picture)
introduces a sign in ½Y� [by (2.16)]. The value of τ cannot

be sensitive to this, so one needs to introduce a sign ϵ with
gauge behavior (2.34) to compensate the change of sign in
½Y� (in fact, one checks easily that the gauge behavior of τ is
Gðz;VÞðτÞ ¼ jzj−1τ). To be more specific, when one deals
with thin shell data fN ; γ;l;lð2Þ;Y�; ρ�l ; J

�g fϕ�; ζ�g-
embedded in ðM�; g�Þ, the sign ϵ must be chosen positive
if ζ− points outward with respect to ðM−; g−Þ and negative
otherwise.
The tensor field τ has the symmetries of an energy-

momentum tensor and coincides with the Israel energy-
momentum tensor of the shell [5] whenever it does not
contain null points. Moreover, for null thin shells, the
definition of energy-momentum tensor provided in [ [1],
Eq. (31)] by Barrabés and Israel yields precisely τ. In a
spacetime ðM; gÞ resulting from a matching, given a basis

feag of ΓðT eN Þwhere eN is the matching hypersurface, one
can also check that the quantity τabeμaeνb gives the singular
part of the Einstein tensor of ðM; gÞ, as it is written in [ [9],
Eq. (71)]. The gauge behavior of τ is key in the embedded
case, as it ensures that the singular part of the Einstein
tensor of the matched spacetime remains invariant under
rescaling the normal vector ν. All these reasons justify the
Definition 2.7 for the energy-momentum tensor on a thin
shell [7], irrespectively of whether the data is embedded.
At null points (and only there), τ ¼ 0 is compatible with

a nontrivial jump of the geometry. Indeed, in order to get
τ ¼ 0 when nð2Þ ¼ 0, it suffices to require ½Y�ðn; ·Þ ¼ 0
and trP½Y� ¼ 0, which does not mean that the whole
tensor ½Y� vanishes identically. Physically, this situation
corresponds to an impulsive gravitational wave supported
on the shell. This behavior is possible only at null points.
At non-null points τ ¼ 0 implies, in addition, that
PafPbd½Y�ab ¼ 0 which entails 0 ¼ γfiγdjPafPbd½Y�ab ¼
ðδai − naliÞðδbj − nbljÞ½Y�ab ¼ ½Y�ij, i.e., absence of jumps
in the geometry. In particular, this means that nontrivial thin
shells with vanishing energy-momentum tensor can only
exist on null points.

2. Null hypersurface data

A particular case of relevance for the matching problem
is when the hypersurfaces are null everywhere. It is
immediate to translate this notion to the abstract level.
Definition 2.9. (Null (metric) hypersurface data) A

metric hypersurface data fN ; γ;l;lð2Þg or a hypersurface
data fN ; γ;l;lð2Þ;Yg is null if the scalar nð2Þ given
by (2.6)–(2.9) is zero everywhere on N .
Let us describe the main properties of the formalism in

the null case. We refer to [37] for proofs and additional
results. We already know that nð2Þ ¼ 0 implies RadðγÞ ¼
hni and therefore γðn; ·Þ ¼ 0. Moreover, the tensors s and

U ¼def 1
2
£nγ defined in (2.13) and (2.11) verify

sðnÞ ¼ 0; Uðn; ·Þ ¼ 0: ð2:36Þ
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When the data is fϕ; ζg-embedded, U becomes the second
fundamental form of ϕðN Þ with respect to the null normal
ν ¼ ϕ⋆n [recall (2.20)]. Inserting nð2Þ ¼ 0 and (2.36) in the
contraction of (2.26) with nb entails

∇� nn ¼ 0; ð2:37Þ

which together with (2.14) and ν ¼ ϕ⋆n yields

∇νν ¼ð2.24Þϕ⋆ð∇
�
nn − Yðn; nÞnÞ ¼ð2.27Þκnϕ⋆n ¼ κnν: ð2:38Þ

Since ν is a null generator of ΦðN Þ, (2.38) means that κn
corresponds (at the abstract level) to the surface gravity
of ν. Under the action of the gauge group, the surface
gravity κn transforms as follows.
Lemma 2.10. Ref. [37] Let fN ; γ;l;lð2Þ;Yg be null

hypersurface data and consider gauge parameters fz; Vg.
The gauge behavior of the scalar function κn defined
in (2.14) is

Gðz;VÞðκnÞ ¼
1

z

�
κn −

nðzÞ
z

�
: ð2:39Þ

We now state and prove a result that will be of particular
relevance below, namely that by means of a gauge trans-
formation one can always adapt the one-form l and the
scalar lð2Þ to whatever pair fu∈F ðN Þ;ϑ∈ΓðT⋆N Þg one
wishes, with the only restriction that ϑðnÞ ≠ 0 everywhere
on N .
Lemma 2.11. Let fN ; γ;l;lð2Þg be null metric hyper-

surface data, u a function onN and ϑ∈ΓðT⋆N Þ a covector
satisfying ϑðnÞ ≠ 0 everywhere. There exists a unique
gauge transformation Gðz;VÞ satisfying

Gðz;VÞðlÞ ¼ ϑ; Gðz;VÞðlð2ÞÞ ¼ u: ð2:40Þ

Moreover, the gauge group element Gðz;VÞ is given by

z ¼ ϑðnÞ; V ¼ 1

ϑðnÞPðϑ; ·Þ þ
u − Pðϑ;ϑÞ
2ðϑðnÞÞ2 n: ð2:41Þ

Remark 2.12. The condition ϑðnÞ ≠ 0 is necessary
because if ϑðnÞ vanishes at any point p∈N then ϑ can
never correspond to l in any gauge, as

1 ¼ ðGðz;VÞðlÞÞðGðz;VÞðnÞÞjp ¼ z−1ðGðz;VÞðlÞÞðnÞjp:

which in particular states that ðGðz;VÞðlÞÞðnÞ ≠ 0 for all
possible gauge parameters.
Proof. We first assume that the gauge transformation

exists and restrict its form up to a function yet to be
determined. We then restrict to group elements of such a
form and show that there exists one and only one of them
that satisfies (2.40), namely (2.41). This will prove both the

existence and uniqueness claims of the lemma. For the first
part we impose (2.40):

zðlþ γðV; ·ÞÞ ¼ ϑ; z2ðlð2Þ þ 2lðVÞ þ γðV; VÞÞ ¼ u:

ð2:42Þ

Contracting the first with n gives z¼ϑðnÞ, so w ¼def γðV; ·Þ¼
1

ϑðnÞϑ−l. Observe that wðnÞ ¼ 0. Moreover, the

vector V − Pðw; ·Þ lies in the kernel of γ because
γabðVb − PbcwcÞ ¼ wa − ðδca − nclaÞwc ¼ 0. Therefore,
there exists f∈F ðN Þ such that Va ¼ Pabwb þ fnb ¼
ðϑðnÞÞ−1Pabϑb þ ðlð2Þ þ fÞna. Thus, it suffices to restrict
oneself to gauge parameters in the class��

z¼ϑðnÞ;V¼ 1

ϑðnÞPðϑ; ·Þþqn

�
;q∈F ðN Þ

�
: ð2:43Þ

We now start anew and prove that there is precisely one
function q such that the corresponding ðz; VÞ in (2.43)
fulfills conditions (2.40). For V as in (2.43) we get

ϑðVÞ ¼ 1

ϑðnÞPðϑ;ϑÞ þ qϑðnÞ; lðVÞ ¼ −lð2Þ þ q;

γðV; ·Þ ¼ 1

ϑðnÞ γðPðϑ; ·Þ; ·Þ ¼
1

ϑðnÞϑ − l;

γðV; VÞ ¼ 1

ϑðnÞϑðVÞ − lðVÞ ¼ Pðϑ;ϑÞ
ϑðnÞ2 þ lð2Þ:

The first condition in (2.42) is satisfied for all q. The second
is satisfied if and only if

ϑðnÞ2
�
2qþ Pðϑ;ϑÞ

ϑðnÞ2
�

¼ u ⟺ q ¼ u − Pðϑ;ϑÞ
2ϑðnÞ2 :

which ends the proof. ▪
In particular, Lemma 2.11 [together with (2.15)] means

that two given null metric hypersurface datasets are related
by a gauge transformation if and only if they both have the
same data tensor γ. We prove this in the next corollary.

Corollary 2.13. Let D ¼def fN ; γ;l;lð2Þg, D ¼def fN ; γ;
l;lð2Þg be two null metric hypersurface data. Then there is
a gauge group element Gðz;VÞ ∈F⋆ðN Þ × ΓðT⋆N Þ such
that Gðz;VÞðDÞ ¼ D if and only if γ ¼ γ. This gauge element
is given by

z¼lðnÞ; V¼ 1

lðnÞPðl; ·Þþ
lð2Þ−Pðl;lÞ
2ðlðnÞÞ2 n: ð2:44Þ

Proof. The necessity is obvious from the fact that γ
remains unchanged by a gauge transformation. Sufficiency
is a direct application of Lemma 2.11 to ϑ ¼ l and
u ¼ lð2Þ. ▪
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Lemma 2.11 and Corollary 2.13 state that in the null case
one can codify all the metric hypersurface data information
exclusively in the tensor γ, and that l and lð2Þ are pure
gauge. This fact will be key later in Sec. III when studying
the matching of spacetimes with null boundaries.
We shall also need the decompositions of fγ; Pg in a

basis fn; eAg of ΓðTN Þ and its corresponding dual.
Lemma 2.14. [37] Consider null metric hypersurface data

fN ; γ;l;lð2Þg. Let fn; eAg be a basis of ΓðTN Þ and
fq; θAg be its corresponding dual, i.e., qðnÞ ¼ 1;
qðeAÞ ¼ 0; θAðnÞ ¼ 0; θAðeBÞ ¼ δAB. Define the functions

ψA ¼def lðeAÞ∈F ðN Þ. Then, the tensor fields γ and P
decompose as

γ ¼ hABθA ⊗ θB; ð2:45Þ
P ¼ PðθA; θBÞeA ⊗ eB þ Pðq; θAÞðn ⊗ eA þ eA ⊗ nÞ

þ Pðq;qÞn ⊗ n ð2:46Þ
¼ hABeA ⊗ eB − hABψBðn ⊗ eA þ eA ⊗ nÞ
− ðlð2Þ − hABψAψBÞn ⊗ n; ð2:47Þ

where hAB ¼def γðeA; eBÞ is a metric and hAB denotes its
inverse.
The concept of null thin shell arises naturally from

Definitions 2.6 and 2.9. A thin shell is said to be null if its
metric part fN ; γ;l;lð2Þg defines null metric hypersurface
data. Moreover, as a corollary of Lemma 2.14, one can find
a very simple form for the components of τ.
Corollary 2.15. In the setup of Lemma 2.14, let

fN ; γ;l;lð2Þ;Y�; ρ�l ; J
�; ϵg be a null thin shell. Then,

the components of the energy-momentum tensor τ in the
basis fq; θAg read

τðq;qÞ ¼ −ϵhAB½Y�ðeA; eBÞ;
τðq; θAÞ ¼ ϵhAB½Y�ðn; eBÞ;
τðθA; θBÞ ¼ −ϵhAB½Y�ðn; nÞ: ð2:48Þ

Proof. Inserting the decomposition (2.47) into
Definition 2.7 yields

τdf ¼ −ϵhABð½Y�ðeA; eBÞndnf − ½Y�ðn; eAÞðndefB þ edBn
fÞ

þ ½Y�ðn; nÞedAefBÞ
after a simple but somewhat long computation in which
several terms cancel out. Contracting with fq; θAg it is
immediate to get (2.48). ▪
Remark 2.16. In the literature, the different components

of the energy-momentum tensor of a thin shell fN ; γ;l;
lð2Þ;Y�; ρ�l ; J

�; ϵg are interpreted physically as an energy
density ρ, an energy-flux j and a pressure p (see e.g., [44]).
However, this is usually done in a context where fN ; γ;l;
lð2Þ;Y�; ρ�l ; J

�; ϵg are embedded with riggings ζ� that

are null and orthogonal to the basis vectors feAg. In a
completely general framework, we propose the following
geometric definitions for the physical quantities fρ; p; jg:

ρ ¼def − ϵtrP½Y�; p ¼def − ϵ½Y�ðn; nÞ;
j ¼def ϵðPð½Y�ðn; ·Þ; ·Þ − ϵlð2ÞpnÞ: ð2:49Þ

Definitions (2.49) are justified because in the null case
(2.35) can be written in terms of fρ; p; jg as

τ ¼ ρn ⊗ nþ pðPþ 2lð2Þn ⊗ nÞ þ 2j ⊗s n: ð2:50Þ

For null shells, the vector field j satisfies γðj; ·Þ ¼
ϵ½Y�ðn; ·Þ þ pl and lðjÞ ¼ 0, which makes the definitions

(2.49) consistent since the one-form j ¼def γðj; ·Þ verifies
jðnÞ ¼ 0. Moreover, a direct calculation based on (2.14)
and (2.39) proves the following gauge behavior for the
pressure p:

Gðz;VÞðpÞ ¼
p
jzj : ð2:51Þ

Whenever lð2Þ ¼ 0 and ψA ¼ 0, it is straightforward to
check that (2.49) becomes

ρ ¼ −ϵhAB½Y�ðeA; eBÞ; p ¼ −ϵ½Y�ðn; nÞ;
j ¼ ϵhAB½Y�ðn; eBÞeA; ð2:52Þ

after using (2.45) and (2.47). This allows one to recover the
standard definitions for fρ; p; jg introduced e.g., in [[44]
Eq. (3.99)]. Expressions (2.52) coincide with the defini-
tions proposed in [44] whenever ϵ ¼ −1 which, as men-
tioned in Remark 2.8, corresponds to the rigging ζ−

pointing inward.
We conclude this subsection by recalling several aspects

on the geometry of transverse submanifolds embedded in
null metric hypersurface datasets. We again refer to [37] for
proofs. Given null metric hypersurface data fN ; γ;l;lð2Þg,
a transverse submanifold S is a codimension one embedded
submanifold of N to which n is everywhere transverse.
Letting ψ∶ S↪ N be the embedding of S in N we

define h ¼def ψ⋆γ. It is a fact [37] that h is a metric on S and
we denote by∇h its Levi-Civita covariant derivative. When
it is clear from the context we identify vectors and scalars
on S with their counterpars on ψðSÞ. For any p-covariant
tensor T along ψðSÞ and given a basis fvAg of ΓðTSÞ, we
define Tk ¼def ψ⋆T and write TA1…Ap

¼def TkðvA1
;…; vAp

Þ
(without the parallel symbol). Capital Latin indices are
raised with hIJ and its inverse hIJ. With the definition

lð2Þ
k ≔ hIJlIlJ, the pull-back to S of the ∇� derivative of

any p-covariant tensor field T along ψðSÞ takes the
following explicit form [ [37], Lem. 3.15]:
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va1A1
…v

ap
Ap
vbB∇

�
bT a1���ap ¼ ∇h

BT A1���Ap
−
Xp
i¼1

lJT A1���Ai−1JAiþ1���Ap
UAiB

−
Xp
i¼1

T a1���apv
a1
A1
…vai−1Ai−1

naivaiþ1

Aiþ1
…v

ap
Ap

�
∇h

ðAi
lBÞ þ ðlð2Þ − lð2Þ

k ÞUAiB

�
: ð2:53Þ

C. Matching of spacetimes and junction conditions

From now on we focus on the problem of matching two
spacetimes with boundary. In this section we recall known
results, first for boundaries of any causality and secondly in
the null case.
Consider two spacetimes ðM�; g�Þ with boundarieseN � of any causal character. It is well known (see e.g.,

[1–6,9,10]) that the matching of ðM�; g�Þ across eN � is
possible if and only if the so-called junction conditions or
matching conditions are satisfied. In the language of the
formalism of hypersurface data, the matching requires [7]
that there exist metric hypersurface data fN ; γ;l;lð2Þg that
can be embedded in both spacetimes ðM�; g�Þ with

embeddings ϕ� such that ϕ�ðN Þ ¼ eN �
and riggings

ζ�, i.e., there must exist two pairs fϕ�; ζ�g satisfying

γ ¼ ðϕ�Þ⋆ðg�Þ; l ¼ ðϕ�Þ⋆ðg�ðζ�; ·ÞÞ;
lð2Þ ¼ ðϕ�Þ⋆ðg�ðζ�; ζ�ÞÞ: ð2:54Þ

In addition, the riggings ζ� must fulfil an orientation
condition (see item ðiiÞ below). In these circumstances,
it is always possible to select one of the embeddings freely
by adapting N to one of the boundaries. In the following
we shall make use of this freedom by fixing ϕ− at our
convenience. This entails no loss of generality. Note that
making the choice in the minus side is also of no relevance,
as one can always switch the names of the spacetimes to be
matched.
When the junction conditions are satisfied, the geometry

of the shell [7] is determined by the jump of the transverse
tensors Y� defined as

Y� ¼def
ð2.18Þ

1

2
ðϕ�Þ⋆ð£ζ�g�Þ; namely ½Y� ¼def Yþ−Y−: ð2:55Þ

In the literature, however, the matching conditions are not
normally presented in terms of a hypersurface dataset.
Instead, they are usually formulated as follows (see
e.g., [9]).
Junction Conditions. The matching of ðM�; g�Þ acrosseN �
can be performed if and only if

(i) There exist two riggings ζ� along eN �
and a

diffeomorphism Φ∶ N − ⟶ N þ such that,

∀p∈ eN −
and ∀X; Z∈ΓðT eN −Þ,

gþðΦ⋆X;Φ⋆ZÞjΦðpÞ ¼ g−ðX; ZÞjp;
gþðζþ;Φ⋆XÞjΦðpÞ ¼ g−ðζ−; XÞjp;
gþðζþ; ζþÞjΦðpÞ ¼ g−ðζ−; ζ−Þjp: ð2:56Þ

(ii) One rigging must point inward with respect to its
boundary and the other outward.

For the rest of the paper, two riggings ζ� satisfying (i)-ðiiÞ
for a diffeomorphism Φ will be called matching riggings.
The diffeomorphismΦwill be referred to asmatching map.
If (2.56) holds for two riggings ζ� then, for any other

choice of rigging on one of the sides, (2.56) is fulfilled as
well2 (although different choices of rigging on one side will
correspond to different riggings on the other side). We shall
make use of this freedom to fix ζ− at will, again with no
loss of generality.
As proven in Lemmas 2 and 3 of [8], given a rigging on one

side (say ζ−) and a diffeomorphism Φ∶ eN −
⟶ eN þ

sat-

isfying gþðΦ⋆X;Φ⋆ZÞ ¼ g−ðX; ZÞ, ∀X; Z∈ΓðT eN −Þ, at
non-null points the second and third equations of (2.56) yield
either no solution for ζþ (hence the matching is not possible)
or two solutions for ζþ with opposite orientation. At null
points, on the other hand, if there exists a solution ζþ then it is
unique. This means that at non-null points one can always
make a suitable choice of rigging ζþ so that the junction
condition (ii) is fulfilled, and hence one only needs to care
about (2.56). In the null case, however, this is not so. It can
happen that there exists a solution ζþ of (2.56) but with
unsuitable orientation, and then the matching cannot be
performed. Thus, at null points conditions (2.56) are neces-
sary but not sufficient to guarantee that the matching is
feasible [8].
When the matching is possible, the corresponding

matching map Φ is the key object upon which the whole
matching depends. This is so because once the point-to-

point identification of the boundaries eN �
(ruled by Φ) is

known, one matching rigging can be selected at will (as we
have seen) and the other is the unique solution that arises
from enforcing both (2.56) and (ii). All the information
about the matching is therefore codified by Φ, or equiv-
alently by the embedding ϕþ [cf. (2.54)].

2For any other rigging ζ0− ¼ zðζ− þ VÞ with fz∈F⋆ð eN −Þ;
V ∈ΓðT eN −Þg, the rigging ζ0þ ¼def ẑðζþþ V̂Þ with fẑ ¼def ðΦ−1Þ⋆z;
V̂ ¼def Φ⋆Vg also verifies (2.56). The same logic applies if one
changes the rigging on the plus side.
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We now concentrate on the case when the boundarieseN �
are null. From a spacetime viewpoint, this problem

was addressed in [32] (see also [33], where the matching
across Killing horizons of order zero was studied). In the
remainder of the section we summarize the main results
of [32].
Consider two ðnþ 1Þ-dimensional spacetimes ðM�;g�Þ

with null boundaries eN �
that can be foliated by a family of

diffeomorphic spacelike cross sections. Assume further
that one of the boundaries lies in the future of its corre-
sponding spacetime while the other lies in its spacetime past.
This entails no loss of generality, as explained in [32].

We construct foliation functions v� ∈F ð eN �Þ and basis
fL�; k�; v�I g of ΓðTM�ÞjeN � according to (2.2). The sur-

face gravities of k� are eκ�k� . As in Sec. II A, the leaves of the
foliations are denoted by fS�v�g, while their corresponding

induced metrics are h�. We also let eKk
� be the second

fundamental forms of eN � with respect to k�, and introduce
the tensorsΘL

�, σ
�
L on the leaves fS�v�g [cf. (2.1)]. The scalar

functions fμ�a g ⊂ F ð eN �Þ are defined by (2.3) with respect
to the basis fL�; k�; v�I g.
As we have seen, in order to perform a matching we need

to embed a single metric hypersurface dataset in both
spacetimes. We codify the already described freedom in the
choice of fϕ−; ζ−g as follows. We first consider an abstract
null hypersurface N and define coordinates fy1 ¼ λ; yAg
therein. Then, we construct null embedded metric hyper-
surface data by enforcing that (a) the push-forward vectors

fe−a ¼def ϕ−
⋆ð∂yaÞg coincide with the basis vectors fk−; v−I g

(since fk−; v−I g are chosen at will, with this procedure
we ensure that ϕ− is built at our convenience) and (b)
that the rigging ζ− coincides with the basis vector L−.
This amounts to impose

e−1 ¼ k−; e−I ¼ v−I ; ζ− ¼ L−: ð2:57Þ

Thus, ζ− is a null past rigging [recall (2.2)] and λ is a
coordinate along the degenerate direction of N . In fact,
the subsets fλ ¼ constg ⊂ N are all diffeomorphic [32]
and define a (spacelike) foliation of N .
For the matching of ðM�; g�Þ to be possible, there

must exist another pair fϕþ; ζþg so that (2.54) hold (and
the orientations of ζ� are suitable). In that case, we

can build another basis feþa ¼def ϕþ
⋆ð∂yaÞg of ΓðT eN þÞ and

then determining the matching requires that we find the
explicit form of the vectors feþa g (which fully codify ϕþ).
In the basis fkþ; vþI g of ΓðT eNþÞ, these vectors decom-
pose as [32]

eþ1 ¼ fkþ; eþI ¼ aIkþ þ bJI v
þ
J ; ð2:58Þ

where f; aI; bJI ∈F ð eN þÞ are given by

f¼∂Hðλ;yAÞ
∂λ

; aI ¼
∂Hðλ;yAÞ

∂yI
; bKI ¼∂hKðyAÞ

∂yI
ð2:59Þ

in terms of a set of functions fHðλ; yBÞ; hAðyBÞg on N .
The functions fH; hAg encode all the matching informa-
tion and hence they determine ϕþ. In fact, given coor-

dinates fvþ; uIg on eN þ
such that vþI ¼ ∂uI (i.e., fuIþg are

constant along the null generators), the embedding ϕþ is
such that [32]

ϕþðλ; yIÞ ¼ ðvþ ¼ Hðλ; yIÞ; uI ¼ hIðyJÞÞ: ð2:60Þ

The function Hðλ; yAÞ is named step function because it
measures a kind of jump along the null direction when
crossing the matching hypersurface. It must satisfy the
condition ∂λH > 0 [32]. The explicit form of the matching
rigging ζþ was computed in [ [32], Cor. 1] and reads

ζþ ¼ μ−1
∂λH

�
1

μþ1
Lþ − hABþ

�
ðb−1ÞIA

�
∂yIH −

1

μ−1
ð∂λHÞμ−I

�

þ 1

μþ1
μþA

�
ZB

�
; ð2:61Þ

where ðb−1ÞJI ¼def ∂hIyJ and ZB ¼def 1
2
ððb−1ÞJBð∂yJH−

1
μ−
1

ð∂λHÞμ−J Þ − 1
μþ μ

þ
B Þkþ þ vþB .

The solvability of the first junction condition in (2.54)
constitutes the core problem for the existence of a match-
ing. In terms of the metrics h�, it can be rewritten as

h−IJjp ¼ bLI b
K
J h

þ
LKjΦðpÞ ∀p∈ eN −: ð2:62Þ

Equation (2.62) is an isometry condition between each

submanifold fv− ¼ constg ⊂ eN − and its corresponding

image on eN þ. On the other hand, the identification of fe�1 g
requires the existence of a diffeomorphism Ψ [ruled by
the coefficients bAB fulfilling (2.62)] between the set of null
generators on both sides. Moreover, combining (2.4),

(2.57)–(2.59), (2.62) and fe�1 ¼def ϕ�
⋆ð∂yaÞg yields [32]

eKk
−ðv−I ; v−J Þ ¼ ð∂λHÞbAI bBJ eKk

þðvþA ; vþB Þ: ð2:63Þ

Thus, for each possible choice of Ψ (i.e., of fbABg), (2.63)
determines a unique value for ∂λH unless the two
second fundamental forms vanish simultaneously. In the
latter case, the step function H cannot be restricted.

Consequently, when eN �
are totally geodesic, if a single

matching of ðM�; g�Þ can be performed then an infinite
number of matchings (one for each possible step function
H) are feasible [32].
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When the matching is possible, the matter-energy con-
tent of the shell is given by the next proposition.
Proposition 2.17. [32] Assume that the matching of

ðM�; g�Þ across eN � is possible and that it is determined
by the functions fHðλ; yAÞ; hBðyAÞg. Let hIJ be the induced
metric on the leaves fλ ¼ constg ⊂ N , hIJ its inverse
tensor and ∇h its Levi-Civita covariant derivative. Define
the vector fields fWAg, the scalars fμ̄þAg, the covector
q∈ΓðT⋆N Þ and the vector field X ¼ Xa

∂ya ∈ΓðTN Þ by

μ̄þI ¼def bBI μþB ; WI ¼def bBI vþB ; qI ¼def −μþ1 ∇h
I H− μ̄þI ; ð2:64Þ

X1 ¼def hIJ

2μþ1 ∂λH

�
qI þ

μþ1 μ
−
I

μ−1
∂λH

��
qJ −

μþ1 μ
−
J

μ−1
∂λH

�
;

XA ¼def hIA
�
qI þ

μþ1 μ
−
I

μ−1
∂λH

�
: ð2:65Þ

Then, the components of the tensor ½Y� ¼def Yþ − Y− are

½Y�ð∂λ; ∂λÞ ¼ −μ−1

�eκþkþ∂λH − eκ−k− þ ∂λ∂λH
∂λH

�
; ð2:66Þ

½Y�ð∂λ; ∂yJÞ ¼ −μ−1

�eκþkþ∇h
JH − ðσþL ðWJÞ − σ−Lðv−J ÞÞ þ

∂λ∂yJH

∂λH
þ XL eKk

−ðv−J ; v−LÞ
μþ1 ∂λH

�
; ð2:67Þ

½Y�ð∂yI ; ∂yJÞ ¼ −μ−1

�eκþkþ∇h
I H∇h

JH

∂λH
−
∇h

ðIH∂λμ̄
þ
JÞ

μþ1 ð∂λHÞ2 −
2∇h

ðIHσþL ðWJÞÞ
∂λH

−
�ΘLþðWðI;WJÞÞ

μþ1 ∂λH
−
ΘL

−ðv−ðI; v−JÞÞ
μ−1

�
−
X1 eKk

−ðv−I ; v−J Þ
μþ1 ∂λH

þ∇h
I∇h

JH
∂λH

þ
∇h

ðIμ̄
þ
JÞ

μþ1 ∂λH
−
∇h

ðIμ
−
JÞ

μ−1

�
; ð2:68Þ

while the energy-momentum tensor of the shell is given by
(the sign ϵ is given by Definition 2.6)

τðdλ; dλÞ ¼ −ϵ
hIJ½Y�ð∂yI ; ∂yJÞ

ðμ−1 Þ2
;

τðdλ; dyIÞ ¼ ϵ
hIJ½Y�ð∂λ; ∂yJÞ

ðμ−1 Þ2
;

τðdyI; dyJÞ ¼ −ϵ
hIJ½Y�ð∂λ; ∂λÞ

ðμ−1 Þ2
:

III. ABSTRACT FORMULATION OF THE
MATCHING PROBLEM

In the previous section, we have summarized the main
aspects of the matching of two general spacetimes with null
boundaries that admit a foliation by diffeomorphic space-
like sections. The matching conditions have been formu-
lated from a spacetime viewpoint, and we have recalled the
geometrical objects upon which the matching depends
(namely the step function H and the diffeomorphism Ψ).
We have also recollected the explicit expressions for the
gravitational and matter-energy content of the resulting
shells (Proposition 2.17).
The results we have just summarized leave (at least) two

interesting problems unaddressed. The first one is whether
one can obtain analogous results without the topological
assumptions on the boundaries and the second is whether
there is a way of formulating the matching problem in a
fully abstract manner, namely without making any refer-
ence to the actual spacetimes to be matched. As already

explained in the Introduction, addressing these problems is
the key object of this paper.
Let us start with the abstract formulation of the junction

conditions. For that purpose, we first consider that the

boundaries eN �
of the spacetimes ðM�; g�Þ to be matched

have any topology and any causal character. Since eN −
is

embedded, there exists an abstract manifold N and an

embedding {−∶ N↪M− such that {−ðN Þ ¼ eN −. From
the embedding {−, one can construct an infinite number of
embeddings simply by applying additional diffeomor-
phisms within N . To elude this unavoidable redundancy,
we henceforth let {− be one specific choice among all
possible. As discussed before, two spacetimes ðM�; g�Þ
can be matched if there exists a pair of embeddings
ϕ�∶ N↪M� related to a matching map Φ by
ϕþ ¼ Φ � ϕ−. Moreover, the embedding and the rigging
on one of the sides (say the minus side) can always be
chosen freely. Suppose we enforce ϕ− ¼ {− and take a
specific rigging ζ−. Then we can build embedded

hypersurface data D ¼def fN ; γ;l;lð2Þ;Yg by requiring
(2.17)–(2.18), i.e., by defining

γ ¼def ð{−Þ�ðg−Þ; l ¼def ð{−Þ�ðg−ðζ−; ·ÞÞ;

lð2Þ ¼def ð{−Þ�ðg−ðζ−; ζ−ÞÞ; Y− ¼def 1

2
ð{−Þ�ð£ζ−g−Þ: ð3:1Þ

Thus, all the information about the matching is encoded in
ϕþ and the junction conditions are (2.54). These condi-
tions, although of a more abstract nature than (2.56), still
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codify the matching information in the pair fϕþ; ζþg, which
is not of abstract nature. In order to determine the matching
in terms of objects defined at the abstract level, we must
take one step further. The following theorem, based on the
existence of a diffeomorphism φ of the abstract manifold N
onto itself, sets up the corresponding construction.
Theorem 3.1. Consider two hypersurface data D ¼def fN ;

γ;l;lð2Þ;Y−g, bD ¼def fN ;bγ; bl; blð2Þ; bYþg embedded in two
spacetimes ðM−; g−Þ, ðMþ; gþÞ with embeddings {−,
{þ and riggings L−, Lþ respectively. Assume that

{�ðN Þ ¼def eN �
are boundaries of ðM�; g�Þ and let ϵþ ¼

þ1 (resp. ϵþ ¼ −1) if Lþ points outward (resp. inward)
from Mþ. Define ϵ− in the same way (i.e., ϵ− ¼ þ1 if L−

points outward, ϵ− ¼ −1 if inward). Then, the matching of

ðM�; g�Þ across eN �
is possible if and only if

(i) There exist a gauge group element Gðz;VÞ and a
diffeomorphism φ of N onto itself such that

Gðz;VÞðφ⋆bγÞ ¼ γ; Gðz;VÞðφ⋆blÞ ¼ l;

Gðz;VÞðφ⋆blð2ÞÞ ¼ lð2Þ; ð3:2Þ
(ii) signðzÞ ¼ −signðϵþÞsignðϵ−Þ.
Proof. The fact that D, bD are embedded on ðM�; g�Þ

respectively means that

γ ¼def ð{−Þ⋆ðg−Þ; l ¼def ð{−Þ⋆ðg−ðL−; ·ÞÞ;

lð2Þ ¼def ð{−Þ⋆ðg−ðL−;L−ÞÞ; Y− ¼def 1
2
ð{−Þ⋆ð£L−g−Þ; ð3:3Þ

γ̂ ¼def ð{þÞ⋆ðgþÞ; bl ¼def ð{þÞ⋆ðgþðLþ; ·ÞÞ;
blð2Þ ¼def ð{þÞ⋆ðgþðLþ;LþÞÞ; bYþ ¼def 1

2
ð{þÞ⋆ð£LþgþÞ: ð3:4Þ

Since the spacetimes ðM�; g�Þ, the embeddings {� and the
riggings L� are all given, the tensor fields in (3.3)-(3.4)
are known. To prove the first part of the theorem,
we start by assuming (i)–(ii). Thus, there exist a pair
fz∈F⋆ðN Þ; V ∈ΓðTN Þg and a diffeomorphism
φ ∶N ⟶ N so that (3.2) holds. These conditions can
be rewritten as [recall (2.15), G−1

ðz;VÞ ¼ Gðz−1;−zVÞ]

φ⋆bγ ¼ G−1
ðz;VÞðγÞ ¼ Gðz−1;−zVÞðγÞ ¼ γ; ð3:5Þ

φ⋆bl ¼ G−1
ðz;VÞðlÞ ¼ Gðz−1;−zVÞðlÞ ¼

l
z
− γðV; ·Þ; ð3:6Þ

φ⋆blð2Þ ¼ G−1
ðz;VÞðlð2ÞÞ ¼ Gðz−1;−zVÞðlð2ÞÞ

¼ lð2Þ

z2
−
2lðVÞ

z
þ γðV; VÞ :ð3:7Þ

Let us define the map ϕþ ¼def {þ �φ, the vector field

V 0 ¼def {þ⋆ðφ⋆VÞ, the function z0 ∈F⋆ð eN þÞ given by

φ⋆ðð{þÞ⋆z0Þ ¼def z and the rigging ζþ ¼def z0ðLþ þ V 0Þ along

eN þ
. By definition of z0, it holds that signðzÞ ¼ signðz0Þ.

On the other hand, combining (3.5)–(3.7) with the fact
that bD is embedded with embedding {þ and rigging Lþ, it
follows

γ ¼ φ⋆bγ ¼ φ⋆ðð{þÞ⋆ðgþÞÞ ¼ ðϕþÞ⋆ðgþÞ; ð3:8Þ
l ¼ zðφ⋆blþ ðφ⋆γ̂ÞðV; ·ÞÞ
¼ zφ⋆ðð{þÞ⋆ðgþðLþ; ·Þ þ gþðV 0; ·ÞÞÞ
¼ ðϕþÞ⋆ðgþðζþ; ·ÞÞ; ð3:9Þ

lð2Þ ¼ z2ðφ⋆blð2Þ þ 2ðφ⋆blÞðVÞ þ ðφ⋆bγÞðV; VÞÞ
¼ z2φ⋆ðð{þÞ⋆ðgþðLþ; LþÞ
þ 2gþðLþ; V 0Þ þ gþðV 0; V 0ÞÞÞ

¼ ðϕþÞ⋆ðgþðζþ; ζþÞÞ: ð3:10Þ
The data D is therefore embedded in ðMþ; gþÞ with
embedding ϕþ and rigging ζþ. Thus, conditions (2.54)
are satisfied for ϕ− ¼ {−, ϕþ ¼ {þ �φ and for the riggings
ζ− ¼ L−, ζþ. Moreover, combining ðiiÞ (which holds by
assumption), the definition of ζþ and signðz0Þ ¼ signðzÞ, it
follows

ζþ ¼ −signðϵþÞsignðϵ−Þjz0jðLþ þ V 0Þ: ð3:11Þ
It is straightforward to check that (3.11) implies that
whenever L− points inward (resp. outward) then ζþ points
outward (resp. inward) irrespectively of the orientation
of Lþ. Thus, D is embedded in ðM�; g�Þ and L−, ζþ are
such that one points inward and the other outward, which
means that the matching of ðM�; g�Þ is possible.
To prove the converse, we assume that the matching

is possible for two pairs fϕ�; ζ�g. We have already
discussed the flexibility of selecting at will the embedding
and the rigging on one side (say the minus side). Let us
therefore set ϕ− ¼ {−, ζ− ¼ L−. Since both Lþ and ζþ are

riggings along eN þ, there exists a pair fz0 ∈F⋆ð eN þÞ; V 0 ∈
ΓðT eN þÞg such that ζþ ¼ z0ðLþ þ V 0Þ. Moreover, one can

define a diffeomorphism φ ∶N ⟶ N by ϕþ ¼def {þ �φ.
But then one can follow the arguments of (3.8)–(3.10)
backward and prove (3.2) for a function z∈F⋆ðN Þ
defined by z ¼def φ⋆ðð{þÞ⋆z0Þ. As before, signðzÞ ¼
signðz0Þ so both ζþ ¼ z0ðLþ þ V 0Þ and z0Lþ ¼
signðzÞjz0jLþ have the same orientation (because V 0 is

tangent to eN þ
). By assumption the matching is possible,

hence L−, ζþ are such that one points inward and the other
outward. If L− points inward (resp. outward) then
signðzÞLþ must point outward (resp. inward), so signðzÞ ¼
signðϵþÞ (signðzÞ ¼ −signðϵþÞ) is forced. This means that
(i)–(ii) are both fulfilled. ▪
Remark 3.2. Theorem 3.1 does not impose any con-

ditions on the topology of the abstract manifold N , except
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for the very mild one that hypersurface datasets can be
defined on N .
Remark 3.3. In Theorem 3.1 we have not restricted the

gauges of the datasets D, bD (we let the two riggings L� be
given, but no conditions have been imposed on them). Each
specific choice of L� will fix a particular gauge on D, bD.
Moreover, Theorem 3.1 holds for datasets D, bD of any
causal nature. In particular,D, bD are not required to contain
non-null or null points exclusively.
Remark 3.4. As proven in [ [34], Lem. 3.6], given metric

hypersurface data fN ; γ;l;lð2Þg and a point p∈N , the
gauge group elements leaving fN ; γ;l;lð2Þg invariant at p
are (i) Gð1;0Þjp if p is null and (ii) fGð1;0Þjp;Gð−1;−2lÞjpg if p
is non-null, where the vector ljp is obtained by raising
index to ljp with the inverse metric γ♯jp (which in that case
exists). Since gauge parameters fz; Vg are smooth by
definition, it follows that when N contains a null point,
only the identity element of G leaves the whole metric
hypersurface data invariant. On the contrary, when N
consists exclusively of non-null points there exist two
gauge elements which do not transform the metric data. In
this last case, the rigging Gð−1;−2lÞðζÞ corresponds [34] to
the reflection of ζ with respect to the tangent plane TqϕðN Þ
at each point q∈ϕðN Þ.
In view of the above, when there are no null points onN ,

condition (ii) can always be fulfilled once (i) is granted.
Indeed, if there exists a gauge group element Gðz;VÞ
satisfying (i) then this also happens for Gð−1;−2lÞ �Gðz;VÞ ¼
Gð−z;−2l−VÞ. Thus, there always exists a suitable choice of
gauge parameter z for which (i) and (ii) hold.
On the contrary, when N contains null points only the

gauge element Gð1;0Þ leaves the hypersurface data invariant,
which means that (i) can be fulfilled for a gauge group
element Gðz;VÞ but z may have the wrong sign. This is the
underlying reason why the spacetime conditions (2.56)
provide one unique solution for ζþ for given fζ−;Φg (see
the corresponding discussion in Sec. II C).
Remark 3.5. In Theorem 3.1, we have expressed the

junction conditions as a restriction over two datasets and a
requirement on the sign of a gauge parameter. Theorem 3.1
therefore constitutes an abstract formulation of the standard
matching conditions. In particular, a remarkable advantage
of Theorem 3.1 is that it allows us to study different
matchings in two different levels. At the first level one takes
whatever hypersurface datasets D, bD satisfying (i) and
studies its properties from a fully detached point of view. At
this level, the spacetimes need not even exist. The problem
can then move on and study whether or not one can
construct spacetimes in which these data can be embedded
so that condition (ii) holds. In other words, by Theorem 3.1
one can produce a thin shell of any causality with full
freedom to prescribe the gravitational and matter-energy
content, and then study the problem of constructing the

resulting spacetime ðM; gÞ which contains it. This is of
great use, as it provides a framework to build examples of
spacetimes with thin shells of any type.
In the setup of Theorem 3.1, the matching riggings

are fL−; ζþg, where ζþ is of the form (3.11). This means
that the sign ϵ− coincides with the sign ϵ introduced in
Definitions 2.6 and 2.7. It is convenient not to fix the signs
ϵ� (or the riggings L�) a priori because it may well occur
that transverse vectors L� on each spacetime are already
privileged or have been chosen for whatever other reason.
The main point of the construction in Theorem 3.1 is firstly
that it provides a fully abstract description of the matching
and secondly that it keeps maximum flexibility so that one
can adapt Theorem 3.1 to any particular scenario.

IV. ABSTRACT FORMULATION OF THE
MATCHING PROBLEM: NULL BOUNDARIES

For the remainder of the paper, we focus on the case
when bothD and bD are null hypersurface data. Under these
circumstances, by Lemma 2.11 we know that there exists a
pair fz; Vg ensuring that the second and third equations
in (3.2) are fulfilled. It follows that the only restrictions are
therefore condition (ii) in Theorem 3.1 and the first equality
in (3.2), namely

φ⋆bγ ¼ γ: ð4:1Þ

Consequently, given two spacetimes ðM�; g�Þ with null

boundaries eN �
, either there exists (at least) one diffeo-

morphism φ satisfying (4.1) or not. In the former case the
matching is possible (provided (ii) holds) and, as we shall
see next, all information about the matching is codified
by φ.
From now on and without loss of generality, we again

make the harmless assumption that one of the boundaries
lies in the future of its corresponding spacetime while the
other lies in its spacetime past (see the discussion in [32]).
The following lemma provides the explicit form of the
gauge parameters fz; Vg and of the matching rigging ζþ in
terms of the diffeomorphism φ.
Lemma 4.1. Assume that conditions (i)–(ii) in

Theorem 3.1 hold for a pair of embedded null hypersurface
data D, bD. Then, the gauge parameters fz; Vg are given by

z¼ 1

ðφ⋆blÞðnÞ ; V¼−Pðφ⋆bl; ·ÞþPðφ⋆bl;φ⋆blÞ−φ⋆blð2Þ

2ðφ⋆blÞðnÞ n:

ð4:2Þ

Moreover, the matching identifies the rigging L− with the
following rigging in the plus side

ζþ ¼ z0ðLþ − {þ⋆ðφ⋆ðPðφ⋆bl; ·ÞÞÞ þ μ{þ⋆ðφ⋆nÞÞ; ð4:3Þ
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where z0 ∈F⋆ð eN þÞ, μ∈F ð eN þÞ are given explicitly by

φ⋆ðð{þÞ⋆ðz0ÞÞ ¼ 1

ðφ⋆blÞðnÞ ;
φ⋆ðð{þÞ⋆ðμÞÞ ¼ Pðφ⋆bl;φ⋆blÞ − φ⋆blð2Þ

2ðφ⋆blÞðnÞ : ð4:4Þ

Proof. The explicit form (4.2) for the function z follows
from contracting (3.6) with n and using (2.7). The vector
field V can be partially obtained also from (3.6) by
particularizing Lemma 2.3 for W ¼ V, ϱ ¼ z−1l − φ⋆bl.
This gives

V ¼ P

�
l
z
− φ⋆bl; ·�þ u0n

¼ð2.8Þ − Pðφ⋆bl; ·Þ þ�
u0 −

lð2Þ

z

�
n; ð4:5Þ

where u0 ¼def lðVÞ is a function yet to be determined. This

is done by substituting (4.5) into (3.7). First, γðV; VÞ ¼
ϱðVÞ ¼ z−2lð2Þ þ Pðφ⋆bl;φ⋆blÞ because of (2.7)–(2.8) and
z−1 ¼ ðφ⋆blÞðnÞ. Thus,

φ⋆blð2Þ ¼ 2

z

�
lð2Þ

z
− u0

�
þ Pðφ⋆bl;φ⋆blÞ

⇒ u0 ¼
lð2Þ

z
þ z
2
ðPðφ⋆bl;φ⋆blÞ − φ⋆blð2ÞÞ ð4:6Þ

so that substituting this into (4.5) proves (4.2).
Equation (4.3) is a direct consequence of (4.2) and the
fact that ζþ ¼ z0ðLþ þ {þ⋆ðφ⋆VÞÞ. ▪

Whenever there exists a diffeomorphism φ solving
(4.1) and given a basis fn; eAg of ΓðTN Þ, it is possible to
obtain specific expressions for the push-forward vector
fields fφ⋆n;φ⋆eAg. This is done in the next corollary.
We use a hat for all objects defined in the dataset bD,
in particular bP and n̂ are constructed in correspondence
with (2.6)–(2.9).
Corollary 4.2. Assume that conditions (i)–(ii) in

Theorem 3.1 hold for a pair of embedded null hypersurface
data D, bD. Let fn; eAg be a basis of ΓðTN Þ and define the
covectors fWAg and the functions fψA; χðAÞg along N by

φ⋆WA ¼def γðeA; ·Þ; ψA ¼def lðeAÞ;
χðAÞ ¼def ðφ−1Þ⋆ðz−1ψAÞ −WAðφ⋆VÞ: ð4:7Þ

Then,

φ⋆n ¼ ððφ−1Þ⋆zÞ−1n̂; ð4:8Þ

φ⋆eA ¼ P̂ðWA; ·Þ þ χðAÞn̂; ð4:9Þ

Moreover, it holds that bPðWA; blÞ ¼ 0 and φ⋆χðAÞ ¼
ðφ⋆blÞðeAÞ.
Proof. Consider any point p∈N . From (3.5) it follows

that bγðφ⋆n; ·ÞjφðpÞ ¼ ðφ⋆bγÞðn; ·Þjp¼ γðn; ·Þjp¼0, so φ⋆n ¼
bn̂ for some function b∈F ðN Þ. This, together with (4.2)

and blðn̂Þ ¼ 1, entails that z−1jp ¼ ðφ⋆blÞðnÞjp ¼blðφ⋆nÞjφðpÞ ¼ bjφðpÞ ¼ φ⋆bjp, which proves (4.8). On
the other hand, any vector field X∈ΓðTN Þ satisfies

γ̂ðφ⋆eA;φ⋆XÞjφðpÞ ¼ ðφ⋆γ̂ÞðeA; XÞjp ¼ð3.5ÞγðeA; XÞjp ¼ φ⋆WAðXÞjp;
blðφ⋆eAÞjφðpÞ ¼ ðφ⋆blÞðeAÞjp ¼ð3.6ÞψA

z
− γðeA; VÞjp ¼ ψA

z
− φ⋆WAðVÞjp;

which means that bγðφ⋆eA; ·Þ ¼ WA, blðφ⋆eAÞ ¼ ðφ−1Þ⋆ðz−1ψAÞ −WAðφ⋆VÞ. Particularizing Lemma 2.3 for the data bD
and for W ¼ φ⋆eA, ϱ ¼ WA and u0 ¼ ðφ−1Þ⋆ðz−1ψAÞ −WAðφ⋆VÞ yields (4.9). Finally, P̂ðWA; blÞ ¼ 0 because

bPðWA; blÞjφðpÞ ¼ −blð2ÞWAðbnÞjφðpÞ ¼ −blð2Þððφ−1Þ⋆zÞWAðφ⋆nÞjφðpÞ ¼ −blð2Þððφ−1Þ⋆zÞjφðpÞðφ⋆WAÞðnÞjp
¼ −blð2Þððφ−1Þ⋆zÞjφðpÞγðeA; nÞjp ¼ 0;

while χðAÞ �φ¼ z−1ψA − ðφ⋆WAÞðVÞ ¼ z−1ψA − γðeA;VÞ
¼ð3.6Þðφ⋆blÞðeAÞ yields φ⋆χðAÞ ¼ ðφ⋆blÞðeAÞ. ▪
Remark 4.3. From (4.8) it follows that φ is a diffeor-

morphism which sends null generators into null generators.

Moreover, since the vector fields fWA ¼def P̂ðWA; ·Þg verify

blðWAÞ ¼ 0, it follows thatWA ∉ Radbγ. This, together with
the fact that φ⋆ is necessarily of maximal rank, force the
vector fields fWAg to be everywhere nonzero onN . In fact,
fn̂;WAg constitutes a basis of ΓðTN Þ, since fWAg are all
linearly independent. We prove this by contradiction, i.e.,
we assume that one such vector field, e.g., W2, can be
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decomposed as W2 ¼
Pn

r¼3 crWr. By (4.9), this would
mean that φ⋆ðe2 −

Pn
r¼3 crerÞ ¼ ðχð2Þ −

Pn
r¼3 crχðrÞÞn̂,

which we know it cannot occur, because only null gen-
erators can be mapped to null generators.
The point of introducing the objects fWA; χðAÞg will

become clear later when we study the particular case
when the boundaries have product topology S ×R. For
the moment, let us simply anticipate that in such case the

property P̂ðWA; blÞ ¼ 0 will allow us to conclude that the
vector fields P̂ðWA; ·Þ are tangent to the leaves of a

specific foliation of eN þ while from φ⋆χðAÞ ¼ ðφ⋆blÞðeAÞ
we will conclude that the functions fχðAÞg are actually
spatial derivatives of the step function introduced in
Sec. II C.
One of the relevant results recalled in Sec. II C is the

relation (2.63) between the second fundamental forms
of each side. It turns out that in this abstract frame-
work with no topological assumptions one can also recover
an equation of this form. To do that, we first note
that £fn̂bγ ¼ f£n̂bγ because n̂∈Radbγ. By direct computation
one gets

φ⋆Û ¼def 1

2
φ⋆ð£n̂γ̂Þ ¼ð4.8Þ

z
2
φ⋆ð£φ⋆nγ̂Þ ¼

ð3.5Þ z
2
£nγ ¼ zU

⇒ U ¼ φ⋆Û
z

; ð4:10Þ

which connects the second fundamental forms U, bU
corresponding to the hypersurface datasets D, bD.
Equation (4.10) generalizes (2.63) to the case of boundaries

with any topology, and has several implications that we
discuss below.
In Theorem 3.1 we have seen that when the matching is

possible there exists a diffeomorphism φ verifying (4.1). In
such case, Lemma 4.1 and Corollary 4.2 provide explicit
expressions for the gauge parameters fz; Vg, the matching
rigging ζþ and the push-forward vectors fφ⋆n;φ⋆eAg of
any basis vector fields fn; eAg in terms of the map φ still to
be determined.
However, as the reader may have noticed, condition (4.1)

does not fix φ completely, firstly because there can be more
than one diffeomorphism φ satisfying (4.1) and secondly
because the tensor fields γ and bγ are both degenerate. As
happened in Sec. II C, where the step function could not be
fixed directly by the isometry condition (2.62) but (2.63)
was also required [32], here one also needs an extra
condition in order to fix φ fully. This additional restriction
is precisely (4.10). As in Sec. II C, this provides useful
information only when U and bU are nonzero. If both are
zero then z [and hence part of φ, recall (4.2)] remains
completely free. This means that one can find an infinite
number of diffeomorphisms φ verifying (4.1), with which
we recover (and extend to arbitrary topology) the property
that whenever the boundaries are totally geodesic then the
matching can be performed in an infinite number of ways.
One can obtain explicit expressions for the gravitational

and matter-energy content of a general null shell in terms
of the diffeomorphism φ. This is done in the following
theorem.
Theorem 4.4. Assume that conditions (i)–(ii) in

Theorem 3.1 hold for a pair of embedded null hypersurface
data D, bD and let ϵ ¼ ϵ−. Define

Y− ¼def 1

2
ð{−Þ⋆ð£L−g−Þ; bYþ ¼def 1

2
ð{þÞ⋆ð£LþgþÞ and Yþ ¼def 1

2
φ⋆ðð{þÞ⋆ð£ζþgþÞÞ;

where ζþ is given by (4.3). Then, the tensor ½Y� ¼def Yþ − Y− reads

½Yab� ¼ zððφ⋆bYþÞab þ
z
2
ðPðφ⋆bl;φ⋆blÞ − φ⋆blð2ÞÞUab −∇� ðaðφ⋆blÞbÞÞ − Y−

ab; ð4:11Þ

where z∈F⋆ðN Þ is given by (4.2). The components of ½Y� in any basis fn; eAg of ΓðTN Þ are

½Y�ðeA; eBÞ ¼ ðzðφ⋆bYþÞ − Y−ÞðeA; eBÞ þ
z2

2
ðPðφ⋆bl;φ⋆blÞ − φ⋆blð2ÞÞUðeA; eBÞ − zeaAe

b
B∇

�
ðaðφ⋆blÞbÞ;

½Y�ðn; eAÞ ¼ ðzðφ⋆bYþÞ − Y−Þðn; eAÞ −
z
2
ð£nφ⋆blÞðeAÞ þ eAðzÞ

2z
þ sðeAÞ þ zPðφ⋆bl;UðeA; ·ÞÞ;

½Y�ðn; nÞ ¼ ðzðφ⋆bYþÞ − Y−Þðn; nÞ þ nðzÞ
z

: ð4:12Þ

The energy-momentum tensor τ is given by (2.48) in terms of the dual basis fq; θAg of fn; eAg, while the purely
gravitational content of the shell is ruled by the tensor

YGðeA; eBÞ ¼def ½Y�ðeA; eBÞ þ
ϵρ̄

n − 1
γðeA; eBÞ; where ρ̄ ¼def ρþ 2Pðq; jÞ þ pð2lð2Þ þ Pðq;qÞÞ ð4:13Þ

and fρ; p; jg are defined as in Remark 2.16.
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Proof. Applying Lemma 2.2 for V
ˇ
¼def γðV; ·Þ ¼ z−1l − φ⋆bl [recall (3.6)] and u0 ¼def lðVÞ [cf. (4.6)] yields

z
2
£Vγab ¼

�
lð2Þ þ z2

2
ðPðφ⋆bl;φ⋆blÞ − φ⋆blð2ÞÞ

�
Uab þ z∇� ða

�
lbÞ
z

− ðφ⋆blÞbÞ
�

¼ z2

2
ðPðφ⋆bl;φ⋆blÞ − φ⋆blð2ÞÞUab −

1

z
ð∇� ðazÞlbÞ − z∇� ðaðφ⋆blÞbÞ; ð4:14Þ

where in the last step we used that ∇� ðalbÞ ¼ −lð2ÞUab [cf. (2.23)]. By hypothesis the matching of ðM�; g�Þ is possible, so
the datasets fN ;φ⋆bγ;φ⋆bl;φ⋆blð2Þ;φ⋆bYþg, fN ; γ;l;lð2Þ;Yþg are embedded in ðMþ; gþÞ with embedding {þ �φ and
respective riggings Lþ, ζþ. This, together with (3.2), entails that the tensors φ⋆bYþ, Yþ are related by Yþ ¼ Gðz;VÞðφ⋆bYþÞ,
where fz; Vg are given by (4.2). Thus [cf. (2.16), (4.1)]

Yþ ¼ zφ⋆bYþ þ dz ⊗s ðφ⋆blþ γðV; ·ÞÞ þ z
2
£Vγ ¼ð3.6Þzφ⋆bYþ þ dz

z
⊗s lþ z

2
£Vγ: ð4:15Þ

Inserting (4.14) into (4.15) yields the explicit form (4.11).
We now obtain the components of ½Y� in the basis fn; eAg, for which we recall that Uðn; ·Þ ¼ 0 and sðnÞ ¼ 0.

Particularizing (2.27) for θ ¼ φ⋆bl and using (4.2) gives

na∇� ðaðφ⋆blÞbÞ ¼ 1

2
£nðφ⋆blÞb þ 1

2
∇� bððφ⋆blÞðnÞÞ − ðφ⋆blÞðnÞsb − PacUbcðφ⋆blÞa;

¼ 1

2
£nðφ⋆blÞb −∇� bz

2z2
−
sb
z
− PacUbcðφ⋆blÞa; ð4:16Þ

nanb∇� ðaðφ⋆blÞbÞ ¼ 1

2
£nððφ⋆blÞðnÞÞ − nðzÞ

2z2
¼ −

nðzÞ
z2

: ð4:17Þ

Combining (4.16)–(4.17) with (4.11) yields (4.12). The components of the energy-momentum tensor being given by (2.48)
is just the contents of Corollary 2.15. Finally, we prove (4.13) as follows. First, we note that the one-forms j (see
Remark 2.16) and l decompose in the basis fq; θAg as

j ¼ jðeAÞθA; l ¼ qþ lðeAÞθA ð4:18Þ

because jðnÞ ¼ 0 and lðnÞ ¼ 1. Also by Remark 2.16, we know that the one-form j verifies ½Y�ðn; eAÞ ¼
ϵðjðeAÞ − plðeAÞÞ. Thus, a direct computation based on the decomposition (2.46) of the tensor field P yields

trP½Y� ¼ Pab½Yab� ¼ hAB½Y�ðeA; eBÞ þ 2Pðq; θAÞ½Y�ðn; eAÞ þ Pðq;qÞ½Y�ðn; nÞ
¼ hAB½Y�ðeA; eBÞ þ 2ϵPðq; jðeAÞθA − plðeAÞθAÞ − ϵpPðq;qÞ
¼ hAB½Y�ðeA; eBÞ þ 2ϵPðq; jÞ þ ϵpð2lð2Þ þ Pðq;qÞÞ

where we used that PðθA; θBÞ ¼ hAB (by Lemma 2.14), Pðl; ·Þ ¼ −lð2Þn [cf. (2.8)] and (4.18) in this order. Taking into
account the definition of the energy density ρ [see (2.49)], one finds

hAB½Y�ðeA; eBÞ ¼ −ϵðρþ 2Pðq; jÞ þ pð2lð2Þ þ Pðq;qÞÞÞ ¼def − ϵρ̄: ð4:19Þ

Now, from (2.48) it is clear that the only part of ½Y� that does not contribute to the energy-momentum tensor is the
h-traceless part of ½Y�ðeA; eBÞ. By Lemma 2.14, we know that hABγðeA; eBÞ ¼ n − 1. Consequently, ½Y�ðeA; eBÞ
decomposes in a h-traceless and a h-trace part as
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½Y�ðeA; eBÞ ¼ YGðeA; eBÞ þ
hIJ½Y�ðeI; eJÞ

n − 1
γðeA; eBÞ;

from where (4.13) follows at once after inserting (4.19). ▪
Remark 4.5. We emphasize that we have not made

any assumption on the topology of the boundaries eN �

in Theorems 3.1 and 4.4 or in Lemma 4.1. The results
above therefore describe the most general matching of two
spacetimes across null hypersurfaces and generalize the
results in [32,33], where the existence of a foliation on the
boundaries played an important role.
The gravitational/matter-energy content of the result-

ing null shell is given by Theorem 4.4, and the associated
energy density ρ, energy flux j and pressure p are given
by (2.49). The reason why we refer to YGðeA; eBÞ as
the purely gravitational part of the shell is that only
the components ½Y�ðn; nÞ, ½Y�ðn; eAÞ and the trace
PðθA; θBÞ½Y�ðeA; eBÞ contribute to the energy-momentum
tensor τ [cf. (2.48)]. This means that even if τ
vanishes identically YGðeA; eBÞ does not need to be zero.
Such a case corresponds to an impulsive gravitational
wave propagating in the spacetime resulting from the
matching.
Remark 4.6. By Lemma 2.14 we know that Pðq; ·Þ ¼ 0 if

and only if lðeAÞ ¼ 0 and lð2Þ ¼ 0. In such case, the scalar
ρ̄ coincides with the energy density ρ of the shell. In the
embedded picture, these restrictions amount to impose that
the matching riggings ζ� are null and orthogonal to the
vector fields ϕ�

⋆eA. In particular, in the setup of Sec. II C
this holds when the rigging ζ− [chosen according to (2.57)]
is null and orthogonal to the leaves of the foliation on the
minus side [hence μ−A ¼ 0, cf. (2.3)].
Remark 4.7. In Theorems 3.1 and 4.4 and Lemma 4.1, all

expressions are fully explicit in terms of the diffeomor-
phism φ. The two datasets D, bD are completely known
(because the embeddings {� and the spacetimes ðM�; g�Þ
are given) and the rigging ζþ is determined by the pair
fz; Vg given by (4.2) in terms of φ. This is related to the
results in [32,33] summarized in Sec. II C, where the whole
matching depended upon the step function H and the
coefficients bJI , which in turn determined the matching
embedding ϕþ [recall (2.59) and (2.60)] and the matching
rigging ζþ [according to (2.61)].
Expressions (4.12) involve the pull-back φ⋆bYþ, whose

calculation can be cumbersome in general. It is more
convenient to rewrite (4.12) in terms of pull-backs of
scalar functions referred to the data bD and objects defined
with respect to D. We provide the corresponding expres-
sions in the next lemma.
Lemma 4.8. Assume that conditions (i)–(ii) in

Theorem 3.1 hold for a pair of embedded null hypersurface
dataD, bD and let ϵ ¼ ϵ−. Define the tensors fY−; bYþ;Yþg
as in Theorem 4.4, the covectors fWAg and the functions
fχðAÞ;ψAg along N according to Corollary 4.2 and the

vector field WA ¼def bPðWA; ·Þ. Let z be given by (4.2) and
fn; eAg be a basis of ΓðTN Þ with dual basis fq; θAg. Then,
Eqs. (4.12) can be rewritten as

½Y�ðn;nÞ¼1

z
φ⋆ðbYþðbn;bnÞÞ−Y−ðn;nÞþnðzÞ

z
; ð4:20Þ

½Y�ðn;eAÞ¼φ⋆ðbYþðn̂;WAÞþχðAÞbYþðn̂; n̂ÞÞ−Y−ðn;eAÞ

−
z
2
ð£nφ⋆blÞðeAÞþeAðzÞ

2z
þsðeAÞ

þzPðφ⋆bl;UðeA; ·ÞÞ; ð4:21Þ

½Y�ðeA; eBÞ ¼ zφ⋆ðbYþðWA;WBÞ þ χðAÞbYþðn̂;WBÞ
þ χðBÞbYþðn̂;WAÞ þ χðAÞχðBÞbYþðn̂; n̂ÞÞ

− Y−ðeA; eBÞ − zeaAe
b
B∇

�
ðaðφ⋆blÞbÞ

þ z2

2
ðPðφ⋆bl;φ⋆blÞ − φ⋆blð2ÞÞUðeA; eBÞ:

ð4:22Þ

The energy-momentum tensor τ is given by (2.48) in terms
of the dual basis fq; θAg of fn; eAg.
Proof. Inserting ðφ⋆bYþÞðX; YÞjp ¼ bYþðφ⋆X;φ⋆YÞjφðpÞ

into (4.12) and using (4.8)–(4.9), Eqs. (4.20)–(4.22) follow
at once. We already know from Corollary 2.15 that τ is
given by (2.48). ▪
In Sec. VI, we shall recover the results of

Proposition 2.17 by particularizing Lemma 4.8 to the case

when the boundaries eN �
have product topology.

Lemma 4.8 therefore generalizes Proposition 2.17 to
(null) boundaries of any topology, and determines the
matter-energy content of any null thin shell arising from
the matching of two spacetimes.

A. Pressure of the shell

In [32,33] we discussed the effect and the importance of
a nonzero pressure in a null thin shell. This, however, was
done in very specific contexts (namely in the matching of
two regions of Minkowski across a null hyperplane or for
matchings across embedded abstract Killing horizons of
order zero) and by following a nonfully geometric approach
(i.e., by analyzing the effect of the pressure in some specific
coordinates). Our aim in this section is to study the pressure
of a completely general null shell at a fully abstract level,
providing its explicit expression in terms of well-defined
geometric quantities and reinforcing the geometric inter-
pretation of [32,33].
In the following lemma we find explicit expressions for

the pressure p in terms of the surface gravities of various
null generators of N .
Lemma 4.9. Assume that conditions (i)–(ii) in

Theorem 3.1 hold for a pair of embedded null hypersurface
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dataD ¼ fN ; γ;l;lð2Þ;Y−g, bD ¼ fN ;bγ; bl; blð2Þ; bYþg and
a diffeomorphism φ. Define z by (4.2) and introduce

κn ¼def − Y−ðn; nÞ; κ̂n ¼def − bYþðbn;bnÞ;
φ⋆κφ⋆n ¼def 1

z
ðφ⋆κ̂n − nðzÞÞ: ð4:23Þ

Then, the pressure p of the corresponding null shell is
given by

p ¼ −ϵðκn − Gðz;V̄Þðφ⋆κ̂nÞÞ or; equivalently

p ¼ −ϵðκn − φ⋆κφ⋆nÞ ð4:24Þ

where ϵ ¼ ϵ− and V̄ ∈ΓðTN Þ is a vector field that can be
chosen at will. In particular, the pressure vanishes if and
only if

Gðz;V̄Þðφ⋆κ̂nÞ¼ κn or;equivalently φ⋆κφ⋆n¼ κn: ð4:25Þ

Proof. Recall that G−1
ðz;V̄Þ ¼ Gðz−1;−zV̄Þ. We start by notic-

ing that (2.39) implies that G−1
ðz;V̄ÞðκnÞ ¼ Gðz−1;−zV̄ÞðκnÞ ¼

zðκn þ nðzÞ
z Þ. On the other hand, combining (2.49)

and (4.20), it follows

p ¼ −ϵ
�
−
1

z
φ⋆κ̂n þ κn þ

nðzÞ
z

�

¼ −
ϵ

z
ðGðz−1;−zV̄ÞðκnÞ − φ⋆κ̂nÞ

¼ −
ϵ

z
ðG−1

ðz;V̄ÞðκnÞ − φ⋆κ̂nÞ: ð4:26Þ

Recalling the transformation law for ϵ and p in (2.34) and
(2.51) this expression can be written as −G−1

ðz;V̄ÞðϵpÞ ¼
G−1
ðz;V̄ÞðκnÞ − φ⋆κ̂n. Applying Gðz;V̄Þ on both sides one

obtains the left part of (4.24). The right part of (4.24) is
an immediate consequence of inserting the definition (4.23)
of φ⋆κφ⋆n into the first line of (4.26), while (4.25) is proven
by setting p ¼ 0 in (4.24). ▪
Remark 4.10. The last expression in (4.23) defines

a function κφ⋆n on N . However, we still need to
justify this terminology. It turns out that κφ⋆n coincides
with the surface gravity of the vector field φ⋆n with

respect to the hypersurface connection b∇ constructed

from the data bD. To prove this, we let z ¼def ðφ−1Þ⋆z, so
that [cf. (4.23)]

κφ⋆n ¼
1

z
ðκ̂n − ðφ−1Þ⋆ðnðzÞÞÞ and

ðφ⋆nÞðzÞ ¼ ðφ−1Þ⋆ðnðzÞÞ;

where the right part follows from ðφ⋆nÞðzÞjφðpÞ ¼ ðφ⋆dzÞ
ðnÞjp¼ðdφ⋆zÞðnÞjp¼nðzÞjp¼ðφ−1Þ⋆ðnðzÞÞjφðpÞ. Then,
the combination of (2.37) and (4.8) gives3

b∇φ⋆nφ⋆n ¼ 1

z
b∇n̂

�
n̂
z

�
¼ 1

z

�
1

z
b∇n̂n̂ −

n̂ðzÞ
z2

n̂

�

¼ −
1

z

�bYþðn̂; n̂Þ þ n̂ðzÞ
z

�
φ⋆n

¼ 1

z
ðκ̂n − ðφ⋆nÞðzÞÞφ⋆n

¼ 1

z
ðκ̂n − ðφ−1Þ⋆ðnðzÞÞÞφ⋆n ¼ κφ⋆nφ⋆n:

Remark 4.11. The gauge parameter V̄ is completely
superfluous and plays no role in determining the pressure,
which is only influenced by the function z given by (4.2).
We keep V̄ in the expression to emphasize this fact.
Remark 4.12. In [32,33], we have introduced the notion

of self-compression and self-stretching on the boundaries
of the spacetimes to be matched. We have seen that this
effect is completely ruled by the pressure, and that it has to
do with the differences in the acceleration along the null
generators of both sides. With (4.24), we recover the same
result but for the case of boundaries with any topology.
Indeed, the surface gravities κn and κφ⋆n verify ∇nn ¼ κnn

and b∇φ⋆nφ⋆n ¼ κφ⋆nφ⋆n, so that the quantity −ϵp is
positive when κn > φ⋆κφ⋆n (namely when the “acceler-
ation” of n is greater than that of φ⋆n) and negative
otherwise. The only scenario where there exists no pressure
occurs when both surface gravities coincide, i.e., when the
accelerations of n and φ⋆n are the same.

V. MULTIPLE MATCHINGS ACROSS
NULL BOUNDARIES

We have already seen that generically there exists at most
one way of matching two given spacetimes ðM�; g�Þ (i.e.,
only one matching mapΦ or one single diffeomorphism φ).
However, we have also mentioned that sometimes multiple
(even infinite) matchings can be performed (e.g., when both
second fundamental forms U, bU vanish). In the language
of (2.54), this means that given a choice of embedding ϕ−

and matching rigging ζ− on the minus side, there exist
several embeddings ϕþ for which the matching conditions
hold, and each embedding gives rise to a unique solution
for the rigging ζþ with suitable orientation.
In this section, our aim is to study the scenario of

multiple matchings. The idea is to assume that all infor-
mation about one of the matchings is known, in particular
its corresponding diffeomorphism φ and hence the

3Recall that the connections ∇̊, ∇ of a dataset fN ; γ;l;lð2Þ;
Yg verify ∇XZ ¼ ∇̊XZ − YðX; ZÞn, ∀X; Z∈ΓðTN Þ.
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gravitational/matter-energy content. As we shall see, in
these circumstances one only needs to consider a single
hypersurface dataset D (instead of two) and it is possible
to provide explicit expressions for the jump ½Y� and the
energy-momentum tensor τ of any other shell in terms of
their counterparts of the known matching. These results
can be particularized to the case when the known
matching gives rise to no-shell (i.e., when it is such that
½Y� ¼ 0). This precisely happens in all cut-and-paste
constructions, where ðM�; g�Þ are two regions of the
same spacetime.
Our setup will be the following. We make a choice

fϕ−; ζ−g of embedding and rigging on the minus side and
consider two matching embeddings ϕþ, ϕ̃þ, each of them
satisfying (2.54) for two riggings ζþ, ζ̃þ respectively. We
also assume that the information about one of the match-
ings is completely known, namely we let fϕ̃þ; ζ̃þg
be given.
From the spacetimes ðM�; g�Þ, we can construct

two hypersurface datasets D ¼ fN ; γ;l;lð2Þ;Y−g, bD ¼
fN ;bγ; bl; blð2Þ; bYþg and Theorem 3.1 ensures that we can
find two diffeomorphisms φ, φ̃ and two pairs fz; Vg, fz̃; Ṽg
for which (i)-(ii) hold. Even more, since the pair fϕ̃þ; ζ̃þg
is known, we can always make the choice f{þ ¼ ϕ̃þ; Lþ ¼
ζ̃þg so that fbγ; bl; blð2Þg ¼ fγ;l;lð2Þg and φ̃ is the identity
map, i.e., φ̃ ¼ IN . In these circumstances, using (2.7)–(2.8)

in (4.2) yields z̃ ¼ 1 and Ṽ ¼ 0. Making the same choice of
f{þ; Lþg for the matching of φ transforms (3.2) into

Gðz;VÞðφ⋆γÞ ¼ γ; Gðz;VÞðφ⋆lÞ ¼l; Gðz;VÞðφ⋆lð2ÞÞ ¼ lð2Þ;

ð5:1Þ
and forces the embedding ϕþ to be given by ϕ̃þ �φ≡ ϕþ.
Equations (3.5)–(3.7) now read

φ⋆γ ¼ γ; φ⋆l ¼ l
z
− γðV; ·Þ;

φ⋆lð2Þ ¼ lð2Þ

z2
−
2lðVÞ

z
þ γðV; VÞ; ð5:2Þ

while the expressions (4.2) for the gauge parameters fz; Vg
become

z¼ 1

ðφ⋆lÞðnÞ ; V¼−Pðφ⋆l; ·ÞþPðφ⋆l;φ⋆lÞ−φ⋆lð2Þ

2ðφ⋆lÞðnÞ n:

ð5:3Þ
It is important to emphasize that whereas φ̃ ¼ IN forces
the metric parts of D, bD to be the same, the tensors Y−, bYþ

do not coincide in general. We let ½Ỹ� ¼def bYþ − Y−,

½Y� ¼def Yþ − Y− be the jumps codifying the gravita-
tional/matter-energy content of the null shells associated
to φ̃ and φ respectively. Then, by (4.11) we know that ½Y�
must be given by

½Yab� ¼ zððφ⋆bYþÞab þ
z
2
ðPðφ⋆l;φ⋆lÞ − φ⋆lð2ÞÞUab −∇� ðaðφ⋆lÞbÞÞ − Y−

ab: ð5:4Þ

The jumps ½Y�, ½Ỹ� can actually be related, as we shall see next. Indeed, by defining the tensor

Y ¼def zφ⋆bYþ − bYþ; ð5:5Þ

expression (5.4) can be rewritten as

½Yab� ¼ Yab þ
z2

2
ðPðφ⋆l;φ⋆lÞ − φ⋆lð2ÞÞUab − z∇� ðaðφ⋆lÞbÞ þ ½Ỹab�: ð5:6Þ

Moreover, a direct calculation shows that the components (4.12) of ½Y� in a basis fn; eAg of ΓðTN Þ can be expressed in
terms of Y as

½Y�ðn; nÞ ¼ Yðn; nÞ þ ½Ỹ�ðn; nÞ þ nðzÞ
z

; ð5:7Þ

½Y�ðn; eAÞ ¼ Yðn; eAÞ þ ½Ỹ�ðn; eAÞ −
z
2
ð£nφ⋆lÞðeAÞ þ

eAðzÞ
2z

þ sðeAÞ þ zPðφ⋆l;UðeA; ·ÞÞ; ð5:8Þ

½Y�ðeA; eBÞ ¼ YðeA; eBÞ þ ½Ỹ�ðeA; eBÞ þ
z2

2
ðPðφ⋆l;φ⋆lÞ − φ⋆lð2ÞÞUðeA; eBÞ − zeaAe

b
B∇

�
ðaðφ⋆lÞbÞ: ð5:9Þ

Inserting (5.7)–(5.9) into (2.48) gives us the relation between the energy-momentum tensors τ, τ̃ of the two shells.

Specifically, for the dual basis fq; θAg of fn; eAg one finds [recall that hAB ¼def γðeA; eBÞ]
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τðq;qÞ ¼ τ̃ðq;qÞ − ϵhAB
�
YðeA; eBÞ þ

z2

2
ðPðφ⋆l;φ⋆lÞ − φ⋆lð2ÞÞUðeA; eBÞ − zeaAe

b
B∇

�
ðaðφ⋆lÞbÞ

�
;

τðq; θAÞ ¼ τ̃ðq; θAÞ þ ϵhAB
�
Yðn; eBÞ −

z
2
ð£nφ⋆lÞðeBÞ þ

eBðzÞ
2z

þ sðeBÞ þ zPðφ⋆l;UðeB; ·ÞÞ
�
;

τðθA; θBÞ ¼ τ̃ðθA; θBÞ − ϵhAB
�
Yðn; nÞ þ nðzÞ

z

�
: ð5:10Þ

The results (5.7)–(5.10) turn out to be of particular interest when one of the matchings of ðM�; g�Þ gives rise to no shell. In
order to see this, let us assume that this is the case and take φ̃ to be the diffeomorphism corresponding to the no-shell
matching. Then, ½Ỹ� ¼ 0 (i.e., bYþ ¼ Y−) holds, which means that the tensor Y is given by [cf. (5.5)]

Y ¼ zφ⋆Y− − Y−: ð5:11Þ

Setting ½Ỹ� ¼ 0 in Eqs. (5.7)–(5.9) yields

½Y�ðn; nÞ ¼ Yðn; nÞ þ nðzÞ
z

; ð5:12Þ

½Y�ðn; eAÞ ¼ Yðn; eAÞ −
z
2
ð£nφ⋆lÞðeAÞ þ

eAðzÞ
2z

þ sðeAÞ þ zPðφ⋆l;UðeA; ·ÞÞ; ð5:13Þ

½Y�ðeA; eBÞ ¼ YðeA; eBÞ þ
z2

2
ðPðφ⋆l;φ⋆lÞ − φ⋆lð2ÞÞUðeA; eBÞ − zeaAe

b
B∇

�
ðaðφ⋆lÞbÞ: ð5:14Þ

Consequently, when a no-shell matching is possible, the
jump ½Y� corresponding to any other possible matching
is given by (5.12)–(5.14) in terms of the data fields
fγ;l;lð2Þ;Y−g and the diffeomorphism φ. In other words,
knowing the information about the no-shell matching
automatically allows one to obtain the gravitational/
matter-energy content of the remaining matchings by
simply determining φ. In particular, there is no need to
compute the new matching rigging ζþ or the tensor Yþ
to determine the shell properties. One simple needs to
compute the right-hand sides of (5.12)–(5.14) using (5.11).
We emphasize that (5.12)–(5.14) apply, in particular,

when ðM�; g�Þ are two regions of the same spacetime
ðM; gÞ and more than one matching can be performed.
Then, the existence of a no-shell matching is always
guaranteed, as one can always recover the full spacetime
ðM; gÞ from the matching of ðM�; g�Þ. This in fact
occurs in all cut-and-paste constructions, which means
that (5.12)–(5.14) provide the matter content of a null shell
generated by any cut-and-paste matching procedure, as
long as the two regions ðM�; g�Þ of ðM; gÞ can be pasted
in more than one way.
We conclude this section by discussing a particular

situation of interest, namely the case when a null hyper-
surface data D ¼ fN ; γ;l;lð2Þ;Y−g can be embedded in
two spacetimes ðM�; g�Þ with embeddings {� (such that
{�ðN Þ are boundaries of M�) and riggings L� with the

appropriate orientation. This means that ðM�; g�Þ can be
matched so that the resulting spacetime contains no shell
(because Y− is the same for both spacetimes). We assume,
in addition, that D admits a vector field ξ̄∈ΓðTN Þ with
the property £ξ̄γ ¼ 0. The vector ξ̄ defines a (local) one-
parameter group of transformations fφtg of N satisfying

φ⋆
t γ ¼ γ: ð5:15Þ

We now prove that, for each value of t, the diffeomorphism
φt gives rise to a matching. First, we define gauge
parameters fz; Vg according to (5.3) for φ ¼ φt. Then,
it is immediate to check that (5.1) holds for φ ¼ φt
and that z > 0 (because φt depends continuously on t
and ðφ⋆

t¼0lÞðnÞ ¼ lðnÞ ¼ 1). Therefore, conditions (i) and
(ii) in Theorem 3.1 are both fulfilled (notice that, since L�
are matching riggings, one points inward and the other
outward, so (ii) is just z > 0) and indeed each φt corre-

sponds to a different matching. The jump ½Y� ¼def Yþ − Y−

where Yþ ¼def 1
2
φ⋆
t ðð{þÞ⋆ð£ζþgþÞÞ [and ζþ is given by

(4.3)] rules the gravitational/matter-energy content of the
resulting shell. The vector field ξ̄ generates a multitude of
new shells. The construction is further simplified when, in
addition to (5.15), it holds

φ⋆
t Y− ¼ Y−: ð5:16Þ
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Then (5.11) implies

Y ¼ ðz − 1ÞY−; ð5:17Þ

which simplifies the expressions (5.12)–(5.14) consider-
ably. One may wonder what is the final result when, in
addition, ξ̄ is the restriction to N of a Killing vector field ξ
on M− (i.e., {−⋆ξ̄ ¼ ξ) and £ξL− ¼ 0 is fulfilled (so that
(5.15) and (5.16) hold). It is straightforward to see that

φ⋆
t l ¼ l; φ⋆

t lð2Þ ¼ lð2Þ; ð5:18Þ

which combined with (5.3) means that z ¼ 1, and V ¼ 0,
so Y ¼ 0 [cf. (5.17)]. Moreover, one can easily check that
the terms in the right-hand side of (5.12)–(5.14) cancel out.
Thus, the procedure gives rise to another no-shell matching,
as one would expect because the transformation induced by
ξ does not affect in any geometric way the spacetime
ðM−; g−Þ. This constitutes a nontrivial consistency check
of Eqs. (5.12)–(5.14).

VI. NULL BOUNDARIES WITH
PRODUCT TOPOLOGY S ×R

In order to connect the results in this paper with those
from [32,33] (see Sec. II C), we now consider the case
when the boundaries of the spacetimes to be matched
can be foliated by cross sections. In particular, we shall
construct a step function H and provide explicit expres-
sions for the gauge parameters fz; Vg [cf. (4.2)]. The results
for the jump ½Y� will be then compared with their counter-
parts from Proposition 2.17.
Our setup for the present section is the following. We

consider two spacetimes ðM�; g�Þ with null boundarieseN � and assume that eN � have product topology S� ×R,
where S� are spacelike cross sections and the null gen-
erators are along R. We select two future null generators

k� ∈ΓðTM�ÞjeN � of eN �
and two cross sections S�0 ⊂eN �

. We then construct foliation functions v� ∈F ð eN �Þ by
solving k�ðv�Þ¼1 with initial values v�jS�

0
¼0. Finally,

the riggings L� are fixed by the conditions of being
orthogonal to the respective leaves fv� ¼ constg, null

and scaled to satisfy μ�1 ¼def g�ðL�; k�Þ ¼ 1.
We assume that ðM�; g�Þ can be matched, so that

conditions (i)–(ii) in Theorem 3.1 are fulfilled for a
diffeomorphism φ∶ N ⟶ N verifying (4.1). This allows
us to take two embeddings {�∶ N↪M� and construct

the hypersurface datasets D ¼ fN ; γ;l;lð2Þ;Y−g, bD ¼
fN ;bγ; bl; blð2Þ; bYþg according to (3.3)–(3.4). We also
introduce the functions

λ ¼def ð{−Þ⋆ðv−Þ; v ¼def ð{þÞ⋆ðvþÞ and H ¼def φ⋆v ð6:1Þ

on N . Since by construction {−⋆ðnÞ ¼ k− and {þ⋆ðn̂Þ ¼ kþ
[recall (2.20)], it is immediate to check that fλ; vg are
foliation functions of N . Note that, also by construction,
the data satisfies

l¼ dλ; lð2Þ ¼ 0; bl¼ dv; blð2Þ ¼ 0; ð6:2Þ

which has the following immediate consequences

nðλÞ¼1; F¼0; s¼0; bnðvÞ¼1; bF¼0; bs¼0: ð6:3Þ

We now select vector fields feAg tangent to the leaves
fλ ¼ constg so that fn; eAg is a basis of ΓðTN Þ satisfying
½n; eA� ¼ 0. As before, we let h be induced metric on fλ ¼
constg and ∇h for its Levi-Civita derivative. In particular

hAB ¼def γðeA; eBÞ and we note that, for any f∈F ðN Þ, we
can write eAðfÞ also as ∇h

Af. The pull-back of l to the
leaves of constant λ is zero, so lA ¼ ψA ¼ 0. This, together
with lð2Þ ¼ 0 and (2.47), means that P ¼ hABeA ⊗ eB.
Observe also that

φ⋆bl ¼ φ⋆dv ¼ dðφ⋆vÞ ¼ dH; φ⋆blð2Þ ¼ 0; ð6:4Þ

which in particular means that

Pðφ⋆bl; ·Þ ¼ PðdH; ·Þ ¼ hABð∇h
AHÞeB: ð6:5Þ

Inserting these properties in (4.2) fixes the matching gauge
parameters to be

z ¼ 1

nðHÞ ; V ¼ hAB∇h
AH

� ∇h
BH

2nðHÞ n − eB

�
: ð6:6Þ

The push-forward vector fields fφ⋆n;φ⋆eAg can also be
computed in terms of the function H and the vector fields

WA ¼def bPðWA; ·Þ. The result is an easy consequence of
Corollary 4.2 and reads

φ⋆n ¼ ðφ−1Þ⋆ðnðHÞÞbn; ð6:7Þ

φ⋆eA ¼ WA þ ðφ−1Þ⋆ðeAðHÞÞbn: ð6:8Þ

Observe that fWAg are tangent to the leaves fv ¼ constg
(because by Corollary 4.2 we know that 0 ¼ bPðWA; blÞ ¼blðWAÞ ¼ WAðvÞ). Let us now prove that bn and WA
commute.
Lemma 6.1. The vector fields n̂ and WA satisfy

½n̂;WA� ¼ 0.
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Proof. Define the functions u ¼def ðφ−1Þ⋆ðnðHÞÞ and χðAÞ ¼def ðφ−1Þ⋆ðeAðHÞÞ, so that (6.7)–(6.8) can be written as
n̂ ¼ u−1φ⋆n and WA ¼ φ⋆eA − χðAÞn̂. Thus,

½bn;WA� ¼ ½u−1φ⋆n;φ⋆eA�− ½bn;χðAÞbn� ¼u−1φ⋆ð½n;eA�Þþu−2φ⋆eAðuÞφ⋆n−bnðχðAÞÞbn
¼ u−2ðφ⋆eAðuÞ−φ⋆nðχðAÞÞÞφ⋆n; ð6:9Þ

where in the last equality we used ½n; eA� ¼ 0 and n̂ ¼ u−1φ⋆n. To prove the claim we just need to show that the last
parenthesis is zero. Indeed,

φ⋆eAðuÞ − φ⋆nðχðAÞÞ ¼ ðduÞðφ⋆eAÞ − ðdχðAÞÞðφ⋆nÞ ¼ φ⋆ðduÞðeAÞ − φ⋆ðdχðAÞÞðnÞ
¼ ðdφ⋆uÞðeAÞ − ðdφ⋆χðAÞÞðnÞ ¼ eAðnðHÞÞ − nðeAðHÞÞ ¼ ½eA; n�ðHÞ ¼ 0:

▪

By Remark 4.3 we also know that fn̂;WAg constitute a
basis of ΓðTN Þ and hence the vector fields

n
e−1 ¼def {−⋆n;e−A ¼def {−⋆eA

o
;
n
eþ1 ¼def {þ⋆ðφ⋆nÞ;eþA ¼def {þ⋆ðφ⋆eAÞ

o
ð6:10Þ

form basis of ΓðT eN �Þ respectively. Inserting (6.7)–(6.8)
into (6.10) and using again that {þ⋆ðbnÞ ¼ kþ, one obtains

eþ1 ¼ nðHÞkþ; eþA ¼ eAðHÞkþ þ {þ⋆ðWAÞ; ð6:11Þ
where for simplicity we have dropped pull-backs affecting
functions. Given that f{þ⋆WAg are linearly independent and

tangent to the leaves fvþ ¼ constg ⊂ eN þ
, they can be

decomposed in a basis fLþ; kþ; vþAg of ΓðTMþÞjeNþ

satisfying (2.2) as {þ⋆WA ¼ bBAv
þ
B , with fbBAg defining an

invertible matrix. Moreover, bBA are constant along the null
generators as a consequence of Lemma 6.1:

0 ¼ ½{⋆ðbnÞ; {⋆ðWAÞ� ¼ ½kþ; bBAvþA � ¼ kþðbBAÞvþB ⟺ kþðbBAÞ ¼ 0:

The matching rigging ζþ, obtained by inserting (6.6) into (4.3) and using (6.7)–(6.8), (6.10)–(6.11), reads

ζþ ¼ 1

nðHÞ
�
Lþ − hAB∇h

AH

�
{þ⋆ðWAÞ þ

∇h
BH
2

kþ
��

; ð6:12Þ

which one easily checks to be the same as (2.61) simply by noting that (in the notation of Sec. II C) our choice of L� entails
μ�1 ¼ 1, μ�A ¼ 0 and that {þ⋆WA ¼ bBAv

þ
B gives hAB ¼ hIJþ ðb−1ÞAI ðb−1ÞBJ .

The expressions for ½Y� are obtained as a particular case of Theorem 4.4.
Theorem 6.2. In the setup and conditions of Theorem 4.4 suppose further that the boundaries eN � can be foliated by cross

sections and define λ; v; H∈F ðN Þ as in (6.1). Let h be the induced metric and ∇h the corresponding Levi-Civita covariant
derivative on the leaves fλ ¼ constg ⊂ N . Then,

½Yab� ¼
1

nðHÞ
�
ðφ⋆bYþÞab þ

hABð∇h
AHÞð∇h

BHÞ
2nðHÞ Uab −∇� a∇

�
bH

�
− Y−

ab: ð6:13Þ

Let feAg be vector fields in N such that fn; eAg is a basis adapted to the foliation fλ ¼ constg and define WA by means
of (6.8). Then the components the jump ½Y� can be written as

½Y�ðn; nÞ ¼ nðHÞφ⋆ðbYþðn̂; n̂ÞÞ − Y−ðn; nÞ − nðnðHÞÞ
nðHÞ ; ð6:14Þ

½Y�ðn; eAÞ ¼ φ⋆ðbYþðn̂;WAÞÞ þ ð∇h
AHÞφ⋆ðbYþðn̂; n̂ÞÞ − Y−ðn; eAÞ −

∇h
AðnðHÞÞ
nðHÞ þ hIJ∇h

I H
nðHÞ UkðeA; eJÞ; ð6:15Þ
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½Y�ðeA; eBÞ ¼
1

nðHÞ
�
φ⋆ðbYþðWA;WBÞÞ þ 2ð∇h

ðAHÞφ⋆ðbYþðbn;WBÞÞÞ þ ð∇h
AHÞð∇h

BHÞφ⋆ðbYþðbn;bnÞÞ
− nðHÞY−ðeA; eBÞ þ

hIJð∇h
I HÞð∇h

JHÞ
2nðHÞ UkðeA; eBÞ −∇h

A∇h
BH

�
: ð6:16Þ

Proof. Equation (6.13) follows at once after inserting
(6.4)–(6.6) into (4.11). To obtain (6.14)–(6.16), it suffices
to particularize (4.20)–(4.22) for z−1 ¼ nðHÞ, φ⋆bl ¼ dH,

χðAÞ ¼ ðφ−1Þ⋆ðeAðHÞÞ, φ⋆blð2Þ ¼ 0, s ¼ 0 and Pðφ⋆bl; ·Þ ¼
hABð∇h

AHÞeB and notice that £nðφ⋆blÞ¼£ndH¼dðnðHÞÞ,
as well as eaAe

b
B∇

�
a∇
�
bH ¼ ∇h

A∇h
BH [see (2.53)]. ▪

Before establishing the connection between (6.14)–(6.16)
and the corresponding expressions in Proposition 2.17 we
need to relate hypersurface data quantities with the tensors
defined in (2.1).
Lemma 6.3. Let fN ; γ;l;lð2Þ;Yg be fϕ; ζg-embedded

in ðM; gÞ, k ¼def ϕ⋆n the corresponding null generator and
κ̃k its surface gravity. Consider a transverse submanifold
S ⊂ N and assume that the gauge is such that the rigging ζ
is null and orthogonal to ϕðSÞ. Then, for any basis feAg of
ΓðTSÞ it holds [we identify scalars and vectors with their
images on ϕðN Þ]
(a) κ̃k ¼ −Yðn; nÞ,
(b) σζðeAÞ ¼ YðeA; nÞ þ FðeA; nÞ,
(c) eKkðeA; eBÞ ¼ UðeA; eBÞ.
(d) ΘζðeðA; eBÞÞ ¼ YðeA; eBÞ,
Remark 6.4. This result is a particular case of a much

more general analysis on the geometry of embedded
submanifold in a hypersurface dataset carried out in [38].
We include the proof for completeness.
Proof. Claim (a) follows at once from (2.14) and (2.38)

(note that here ν ¼ k). To prove (b) we compute

σζðeAÞ ¼ð2.1Þ−gð∇eAk;ζÞ¼gð∇eAζ;kÞ ¼ð2.25ÞYðeA;nÞþFðeA;nÞ:

Item (c) has already been stated after definition (2.21) and
(d) follows from

YðeA; eBÞ ¼
1

2
ð£ζgÞðeA; eBÞ

¼ gð∇eðAζ; eBÞÞ ¼
ð2.1Þ ¼ ΘζðeðA; eBÞÞ:

▪
We are now in a position where the comparison can be

made. We identify the vector fields fv−Ag introduced in
Sec. II C with the push-forward of feAg, hence μ−1 ¼ 1 and
μ−A ¼ 0. On the other hand, μþ1 ¼ 1 and μþA ¼ gþðLþ;
vþA Þ ¼ ðb−1ÞBAblðWBÞ ¼ ðb−1ÞBAWBðvÞ ¼ 0, so the covector
q defined in Proposition 2.17 is simply qA ¼ −∇h

AH. The
vector Xa in (2.65) is in turn given by

X1 ¼ hAB∇h
AH∇h

BH
2nðHÞ ; XA ¼ −hAB∇h

BH: ð6:17Þ

Thus, expressions (2.66)–(2.68) become

½Y�ðn; nÞ ¼ −nðHÞκ̃þkþ þ κ̃−k− −
nðnðHÞÞ
nðHÞ ; ð6:18Þ

½Y�ðn; eJÞ ¼ σþL ðWJÞ − σ−Lðv−J Þ − ð∇h
JHÞκ̃þkþ −

∇h
JðnðHÞÞ
nðHÞ

þ hLB∇h
BH

nðHÞ
eKk
−ðv−J ; v−LÞ; ð6:19Þ

½Y�ðeI; eJÞ ¼
1

nðHÞ
�
2ð∇h

ðIHÞσþL ðWJÞÞ − κ̃þkþð∇h
I HÞð∇h

JHÞ

þΘLþðWðI;WJÞÞ − nðHÞΘL
−ðv−ðI; v−JÞÞ

þ γAB∇h
AH∇h

BH
2nðHÞ

eKk
−ðv−I ; v−J Þ −∇h

I∇h
JH

�
:

ð6:20Þ

Particularizing Lemma 6.3 to the sections fλ ¼ constg
of D (with basis eA) and the sections fv ¼ constg of bD
(with basis WA), and recalling that F ¼ F̂ ¼ 0 [see (6.3)],
it is straightforward to check that (6.18)–(6.20) coincide
with (6.14)–(6.16).

VII. CUT-AND-PASTE MATCHING:
(ANTI-) DE SITTER SPACETIME

We have already mentioned that (5.12)–(5.14) hold for
the specific case when the two spacetimes to be matched
are actually two regions of the same spacetime (and more
than one matching is allowed). In this section, our aim is
to provide an example of a cut-and-paste construction,
namely the matching of two regions of a constant-curvature
spacetime across a totally geodesic null hypersurface.
For previous works on the cut-and-paste construction
describing nonexpanding impulsive gravitational waves
in constant curvature backgrounds we refer e.g., to
[14,17,19,20,23] and references therein.
In any constant curvature spacetime ðM; gÞ there exists

only one totally geodesic null hypersurface up to isometries

(see e.g., [45,46]). We denote one such hypersurface by eN .
Then, one can always construct coordinates fU;V; xAg
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adapted to eN so that the metric is conformally flat andeN ¼def fU ¼ 0g, namely

g ¼ gMk

μ2
; where gMk ¼ −2dUdV þ δABdxAdxB;

μ ¼def 1þ Λ
12

ðδABxAxB − 2UVÞ: ð7:1Þ

Here Λ stands for the cosmological constant, so Λ ¼ 0,
Λ > 0, Λ < 0 correspond to Minkowski, de Sitter and anti-
de Sitter spacetimes respectively. When Λ ≤ 0, the coor-

dinates fU;V; xAg cover a whole neighborhood of eN .
However, for the de Sitter case one needs to remove one

generator of eN because the topology of eN is Sn × R while
stereographic coordinates only cover the sphere minus one
point. In this section, we will analyze the three casesΛ ¼ 0,
Λ < 0 and Λ > 0 at once with the matching formalism
introduced before.

The induced metric on eN reads ds2¼eN ð1þ Λ
12
δABxAxBÞ−2

δABdxAdxB, and obviously the topology of eN is S × R, S
being a spacelike section and the null generators being
along R. Therefore, all results from Sec. VI can be applied.

Let us construct hypersurface data associated to eN .

Since eN is embedded on ðM; gÞ, there exists an abstract

manifold N and an embedding { such that {ðN Þ ¼ eN . We
can select { to be as trivial as possible by constructing
coordinates fλ; yAg on N so that

{∶ N↪ eN
ðλ; yAÞ↦ {ðλ; yAÞ≡ ðU ¼ 0;V ¼ λ; xA ¼ yAÞ: ð7:2Þ

We also need a choice of rigging vector field ζ along eN .
For convenience, we set ζ¼−μ2∂U (observe that μ2jeN ≠0).

The corresponding null metric hypersurface data (2.17)
defined by fN ; γ;l;lð2Þg is

γ ¼ δAB
μ2N

dyA ⊗ dyB; l ¼ dλ; lð2Þ ¼ 0; ð7:3Þ

where μN ¼def {⋆μ ¼ 1þ Λ
12
δAByAyB. Observe that

∂λ ∈Radγ and lð∂λÞ ¼ 1 imply that n ¼ ∂λ. Moreover,
F ¼ 0 and s ¼ 0 [cf. (2.10)–(2.13)] and U ¼ 0 as a
consequence of (2.11). The tensor Y is obtained from
(2.18). A simple calculation gives

Y ¼ −
ΛδAB
6μN

ðλdyA ⊗ dyB − 2yBdyA ⊗s dλÞ: ð7:4Þ

Cutting the spacetime across the hypersurface fU ¼ 0g
leaves two spacetimes ðM�; g�Þ defined to be the regions
U⋛0 endowed with the metrics

g� ¼ g�Mk

μ2�
; where g�Mk ¼def − 2dU�dV� þ δABdxA�dx

B
�;

μ� ¼def 1þ Λ
12

ðδABxA�xB� − 2U�V�Þ: ð7:5Þ

Obviously, the boundaries are eN � ≡ fU� ¼ 0g. These two
regions can clearly be matched so that the original
spacetime (containing no shell) is obtained. Moreover,

since eN � are totally geodesic we know that multiple
matchings can be performed. We therefore proceed as in
Sec. V, i.e., we let the two embeddings {� be given by
{� ¼ { and take ζ− ¼ −μ2−∂U−

, ζ̃þ ¼ −μ2þ∂Uþ as the rig-
gings defining the no-shell matching, namely the matching
for which ½Ỹ� ¼ 0. Any other possible matching will be
ruled by a diffeomorphism φ of N onto itself and it

will correspond to a different rigging ζþ along eN þ
.

Specifically, the hypersurface data corresponding to the
no-shell matching is D ¼ fN ; γ;l;lð2Þ;Yg, where
fγ;l;lð2Þg and Y are respectively given by (7.3) and (7.4),
while the matter/gravitational content of the shell of any
other possible matching (ruled by φ) is given by the jump

½Y� ¼def Yþ − Y with

Yþ ¼def 1

2
φ⋆ð{⋆ð£ζþgþÞÞ: ð7:6Þ

From Sec. V, we know that there is no need to compute
the new rigging ζþ or its corresponding Yþ to determine
the jump ½Y�, which is explicitly given by (5.12)–(5.14).
Consequently, we only need to worry about the diffeo-
morphism φ. The only restriction that φ must satisfy is
φ⋆γ ¼ γ, which in coordinates reads

ð∂yaφAÞð∂ybφBÞδAB
ð1þ Λ

12
δIJφ

IφJÞ2 ¼ δAaδ
B
bδAB

ð1þ Λ
12
δIJyIyJÞ2

: ð7:7Þ

It follows that the components fφAg cannot depend on the
coordinate λ. In particular, if we let fhAðyBÞg be a set

of functions such that (a) the Jacobian matrix ∂ðh2;…;hnþ1Þ
∂ðy2;…;ynþ1Þ

has nonzero determinant and (b) fhAðyBÞg verify ð1þ
Λ
12
δIJyIyJÞ−2δCD ¼ ð1 þ Λ

12
δIJhIhJÞ−2ð∂yChAÞð∂yDhBÞδAB,

any diffeomorphism φ∶ N ⟶ N of the form

φ∶ N ⟶ N

ðλ; yBÞ↦φðλ; yBÞ≡ ðHðλ; yBÞ; hAðyBÞÞ ð7:8Þ
with ∂λH ≠ 0 fulfils φ⋆γ ¼ γ. A particular simple example
is fhA ¼ yAg, but many more exist. In fact since the metric

on any section of eN is of constant curvature, it is also
maximally symmetric (and of dimension n − 1) so hAðyBÞ
can depend on nðn − 1Þ=2 arbitrary parameters. For any
possible choice of fhAðyBÞg and an arbitrary step function

ABSTRACT FORMULATION OF THE SPACETIME MATCHING … PHYS. REV. D 109, 044050 (2024)

044050-25



Hðλ; yAÞ, the gauge parameters z and V are given by (6.6)
for fn ¼ ∂λ; eA ¼ ∂yAg. In the present case the tensor Y is
given by Y ¼ 1

nðHÞφ
⋆Y − Y [cf. (5.11)], so we need to

compute the pull-back φ⋆Y. Defining μ̄N ¼def1þ Λ
12
δABhAhB,

from (7.4) and (7.8) it is straightforward to get

ðφ⋆YÞλλ ¼ 0; ðφ⋆YÞλyB ¼ ΛδIJhJ

6μ̄N

∂hI

∂yB
∂H
∂λ

; ð7:9Þ

ðφ⋆YÞyAyB ¼
ΛδIJ
6μ̄N

�
hJ
�
∂H
∂yA

∂hI

∂yB
þ ∂hI

∂yA
∂H
∂yB

�
−H

∂hI

∂yA
∂hJ

∂yB

�
ð7:10Þ

so that, multiplying (7.9)–(7.10) by 1
nðHÞ and subtracting Y

[cf. (7.4)] yields

Yλλ ¼ 0; YλyB ¼ ΛδIJ
6

�
hJ

μ̄N

∂hI

∂yB
−
δIBy

J

μN

�
;

YyAyB ¼ ΛδIJ
6nðHÞ

�
hJ

μ̄N

�
∂H
∂yA

∂hI

∂yB
þ ∂hI

∂yA
∂H
∂yB

�

−
H
μ̄N

∂hI

∂yA
∂hJ

∂yB
þ δIAδ

J
Bλ

μN
nðHÞ

�
: ð7:11Þ

Inserting these expressions into (5.12)–(5.14) and using
n ¼ ∂λ, s ¼ 0, U ¼ 0 together with the identity
ð£nφ⋆lÞðeAÞ ¼ ð£ndHÞðeAÞ ¼ dðnðHÞÞðeAÞ ¼ eAðnðHÞÞ
(here φ⋆l ¼ dH by (6.4) and bl ¼ l), one finds

½Yλλ� ¼ −
nðnðHÞÞ
nðHÞ ; ½YλyA � ¼ YλyA −

∇h
AðnðHÞÞ
nðHÞ ;

½YyAyB � ¼ YyAyB −
∇h

A∇h
BH

nðHÞ ; ð7:12Þ

which can be interpreted as the sum of the jump correspond-
ing to the matching of two regions of Minkowski across a
null hyperplane (see Ref. [32], Eq. (6.6)) plus the contri-
bution of the tensorY. Observe thatΛ ¼ 0 entailsY ¼ 0, so
in this way we recover expressions (6.6) in [32] for the most
general planar shell in the spacetime of Minkowski.
A direct computation that combines the definitions

(2.49), (7.3), and (7.12) yields energy-density, energy flux
and pressure (note that here we need to take ϵ ¼ −1)

ρ ¼ μ2N δAB
�
YyAyB −

∇h
A∇h

BH
nðHÞ

�
;

j ¼ μ2N δAB
�∇h

BðnðHÞÞ
nðHÞ − YλyB

�
∂yA ;

p ¼ −
nðnðHÞÞ
nðHÞ : ð7:13Þ

Observe that only the pressure is independent of the value
of the cosmological constant Λ (ρ and j depend on the
conformal factor μN and on Y). The pressure p takes the
same value for the matchings of two regions of (anti-)de
Sitter or Minkowski (in fact, p coincides with the pressure
obtained in [ [32], Sect. 6]. In particular, in the case
hA ¼ yA (i.e., when the mapping between null generators
of both sides is trivial), thenYλyB ¼ 0 [cf. (7.11)] and (7.13)
simplifies to

ρ ¼ μ2N δAB
�
YyAyB −

∇h
A∇h

BH
nðHÞ

�
;

j ¼ μ2N δAB
∇h

BðnðHÞÞ
nðHÞ ∂yA ;

p ¼ −
nðnðHÞÞ
nðHÞ : ð7:14Þ

In the cut-and-paste constructions corresponding to
constant-curvature spacetimes, the so-called Penrose’s
junction conditions (see e.g., [20,23]) impose a jump in
the coordinates across the shell. This jump is of the form
VþjUþ¼0 ¼ V− þHðxA−ÞjU−¼0. In the present case the
matching embeddings ϕ− ¼ { and ϕþ ¼ { �φ are given by

ϕ−ðλ; yBÞ ¼ ðU− ¼ 0;V− ¼ λ; xA− ¼ yAÞ;
ϕþðλ; yBÞ ¼ ðUþ ¼ 0;Vþ ¼ Hðλ; yBÞ; xAþ ¼ hAðyBÞÞ;

so the step function corresponding to Penrose’s jump is
Hðλ; yAÞ ¼ λþHðyAÞ, H∈F ðN Þ. In order to recover
such an H, one needs that there is no energy flux and
no pressure on the shell. Indeed, imposing this in (7.14) and
integrating for H yields Hðλ; yAÞ ¼ aλþHðyAÞ, where
H∈F ðN Þ and a is a positive4 constant. Thus, in this more
general context with arbitrary cosmological constant, the
Penrose’s jump still describes either purely gravitational
waves (when ρ, j and p are all zero) or shells of null dust
(when j and p vanish but ρ ≠ 0), analogously to what
happened in [ [32], Sect. 6] for the Minkowski spacetime.
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[45] Á. Ferrández, Á. Giménez, and P. Lucas, Geometry of light-
like submanifolds in Lorentzian space forms, in Proceedings
of del Congreso Geometria de Lorentz, Benalmadena
(Proc. of theMeeting on Lorentzian Geometry, Benalmádena,
2001), https://www.researchgate.net/publication/228737113_
Geometry_of_lightlike_submanifolds_in_Lorentzian_space_
forms.

[46] M. Navarro, O. Palmas, and D. A. Solis, Null hypersurfaces
in generalized Robertson–Walker spacetimes, J. Geom.
Phys. 106, 256 (2016).

MIGUEL MANZANO and MARC MARS PHYS. REV. D 109, 044050 (2024)

044050-28

https://doi.org/10.1016/j.physrep.2005.10.005
https://doi.org/10.1016/j.physrep.2005.10.005
https://www.researchgate.net/publication/228737113_Geometry_of_lightlike_submanifolds_in_Lorentzian_space_forms
https://www.researchgate.net/publication/228737113_Geometry_of_lightlike_submanifolds_in_Lorentzian_space_forms
https://www.researchgate.net/publication/228737113_Geometry_of_lightlike_submanifolds_in_Lorentzian_space_forms
https://www.researchgate.net/publication/228737113_Geometry_of_lightlike_submanifolds_in_Lorentzian_space_forms
https://www.researchgate.net/publication/228737113_Geometry_of_lightlike_submanifolds_in_Lorentzian_space_forms
https://doi.org/10.1016/j.geomphys.2016.04.009
https://doi.org/10.1016/j.geomphys.2016.04.009

