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Abstract formulation of the spacetime matching problem and null thin shells

Miguel Manzano®  and Marc Mars®’

Instituto de Fisica Fundamental y Matemdticas, IUFFyM, Universidad de Salamanca,
Plaza de la Merced s/n, 37008 Salamanca, Spain

® (Received 14 November 2023; accepted 4 December 2023; published 20 February 2024)

The formalism of hypersurface data is a framework to study hypersurfaces of any causal character
abstractly (i.e., without the need of viewing them as embedded in an ambient space). In this paper we
exploit this formalism to study the problem of matching two spacetimes in a fully abstract manner, as this
turns out to be advantageous over other approaches in several respects. We then concentrate on the case
when the boundaries are null and prove that the whole matching is determined by a diffeomorphism ¢ on
the abstract dataset. By exploiting the gauge structure of the formalism we find explicit expressions for
the gravitational/matter-energy content of any null thin shell. The results hold for arbitrary topology.
A particular case of interest is when more than one matching is allowed. Assuming that one of the
matchings has already been solved, we provide explicit expressions for the gravitational/matter-energy
content of any other shell in terms of the known one. This situation covers, in particular, all cut-and-paste
constructions, where one can simply take as known matching the trivial reattachment of the two regions.
We include, as an example, the most general matching of two regions of the (anti-)de Sitter or Minkowski
spacetime across a totally geodesic null hypersurface.
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I. INTRODUCTION

The question of under which conditions two spacetimes
can be matched across a hypersurface and give rise to a new
spacetime is a fundamental problem in any metric theory of
gravity. In particular, a matching theory is required in any
physical situation where a substantial amount of gravita-
tional/matter-energy content is located in a thin enough
region of the spacetime (with respect to the dimensions of
the problem). Then, the matter-content can be modeled as
concentrated on a hypersurface. This thin shell of gravi-
tational/matter-energy possesses its own gravity and hence
affects the spacetime geometry, and it is worth finding the
relationship between the shell’s content and the properties
of the spacetime.

Many authors have contributed to the matching problem
in General Relativity, see e.g., the works [1-12]. The
standard approach consists of considering two spacetimes

(M=, gi) with boundaries A, For the matching to be
possible ./\/ must be dlffeomorphlc i.e., there must exist a
diffeomorphism ®: N~ — A", which we call matching
map. One then defines the resultlng spacetime M as the
union of M™ and M~ with the corresponding identifica-

tion of boundary points (ruled by ®). The necessary and
sufficient conditions for a metric g to exist on M are the
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so-called (preliminary) matching conditions (or junction
conditions) and require (i) that the first fundamental forms
y* from both boundaries coincide, (ii) that there exists

two riggings ¢* (i.e., vector fields along N i, everywhere
transversal to them) with the same square norm and such
that the one-forms g* (¢, ) coincide and (iii) that {* are
such that one points inward and the other outward. When
these conditions are fulfilled, the matched spacetime exists.
In general, this spacetime will contain a thin shell, which is
ruled by the jump in the extrinsic geometry of the matching
hypersurfaces.

In addition to this standard approach (also called a la
Darmois), one can also construct null thin shells with the
so-called cut-and-paste method (see e.g., [13-23]), where
the shell is described via a metric with a Dirac delta
distribution with support on the matching hypersurface.
The shell is built by taking a spacetime (M, g) with a null

hypersurface N' C M, then cutting M along N, which
leaves two spacetimes (M™, g%), and finally reattaching
(or pasting) (M™*, g*) by identifying the boundary points
so that there exists a jump on the null direction on the
matching hypersurface.

Be that as it may, null shells have been widely studied in
the literature (for a sample, see Refs. [24—31]), usually by
imposing additional symmetries (such as spherical sym-
metry). In particular, the problem of matching two com-
pletely general spacetimes (M®, g*) with null boundaries

N has been recently addressed in [32] under the only
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assumption that A * admit a foliation by diffeomorphic
spacelike cross sections. One of the main results in [32] is
that all the information about the matching is codified in a

diffeomorphism ¥ between the set of null generators of A/ -
and function H, called step function, which corresponds to
a shift along the null generators. Another result of interest
is that, although generically two given spacetimes can be
matched at most in one manner, sometimes multiple
matchings are possible. A relevant case of the later, studied
in detail in [33], is the matching across so-called Killing
horizons of order zero.

The matching problem is studied in [32,33] by means of
the so-called formalism of hypersurface data [7,34] (see
also [9,35-39]), which allows one to codify abstractly (i.e.,
in a detached way from an ambient manifold) the intrinsic
and extrinsic geometric information of a hypersurface

in terms of a dataset D {N,y.€,¢% Y}. The part
{N.,y,.¢ (2)} is called metric hypersurface data and
codifies at the abstract level the would-be components of
the full ambient metric g at the hypersurface. The tensor Y
codifies extrisinc information. The formalism is equipped
with a group of gauge transformations that accounts for the
fact that, at the embedded level, the choice of a rigging is
nonunique. Two datasets are equivalent if they are related
by a gauge transformation. Each gauge group element
Q(Z,V) C Gis determined by a nowhere-zero function z and a
vector field V in .

In the language of the hypersurface data formalism, the
matching can be performed if and only if [7] one can embed
a single metric hypersurface dataset in both spacetimes
(and the corresponding matching riggings satisfy the
orientation condition (iii) above). In that case, the gravi-
tational/matter-energy content of the shell is fully codified

by the jump of the tensors Y* of each side, namely

[Y] L y+ — Y~ [7]. The approach in [32,33], while based

on this formalism, still analyzes the matching in terms of
the embeddings ¢* of the abstract manifold A" in M* and
not directly at a detached level. Two questions arise
naturally. The first one is whether there is a way of
formulating the matching problem in a fully abstract
manner (that is, exclusively in terms of objects defined
in the abstract manifold V) so that one does not need to
make any reference to the actual spacetimes to be matched.
The second is whether one can generalize the results
in [32,33] to boundaries with arbitrary topology. The
aim of this paper is to answer both questions.

The first question is solved in Theorem 3.1, where we
provide a completely abstract version of the (spacetime)
matching conditions. The theorem establishes that two

given datasets D = {N,y.¢.7/?, Y}, D= {N,7, 2,
?m,fﬁ} (each of them should be thought of as an

abstraction of one of the boundaries) can be matched
provided that there exists a diffeomorphism ¢ of N onto

itself such that the metric hypersurface datasets {\,y,?,
2} AN, 9*7, 2, (p*?(z)} are related by a gauge trans-
formation G_ ). This can be interpreted as follows. The
map ¢ can be understood as an abstract version of the
(spacetime) matching map @ mentioned before. Since
the matching requires that one single metric hypersurface

dataset is embedded in both spacetimes, D and D cannot
be arbitrarily different. Instead, there must exist a gauge
transformation that compensates for the change induced by
@ so that, even after applying the pull-back ¢*, the metric
part of the data are still equivalent. Theorem 3.1 also
imposes a restriction on the sign of z. As we shall see, at the
embedded level this restriction ensures that the orientation
of the riggings to be identified in the matching process
verifies condition (iii) above.

When the datasets D, D are embedded in two space-
times, Theorem 3.1 is equivalent to the standard matching
conditions (i)—(ii1) above. This result is relevant for several
reasons. First, it applies to (abstract) hypersurfaces of any
causality and any topology. Secondly, the gauges of the

datasets D, D are unfixed so that at the embedded level
there is full freedom in the a priori choice of the riggings on
each side. This gives a lot of flexibility to the framework.
Finally, having formulated the matching problem abstractly
allows one analyze in an independent manner thin shells
with specific gravitational/matter-energy content and, on a
second stage, study whether they can be embedded in a
spacetime. This is useful e.g., for constructing examples of
spacetimes containing certain types of shells.

We then concentrate on the null case. We intend to
generalize the works [32,33] so we impose no topological
conditions on the boundaries. We prove that a (null) metric
hypersurface dataset {\,y, &, ¢ (2)} is entirely codified by
y and that the remaining metric data is pure gauge. In these
circumstances, the feasibility of the matching relies on the
tensors {y,7} satisfying ¢*7 =y (and z having suitable
sign). One of our main results in the paper is that we find
explicit expressions for the riggings to be identified in the
matching process, as well as of the gravitational/matter-
energy content of the resulting shell (Theorem 4.4).
Specifically, we compute explicitly the jump [Y] and the

energy-momentum tensor of the shell in terms of D, D
and ¢@. In particular we provide fully geometric definitions
of the energy density p, energy flux j and pressure p of the
shell (Remark 2.16) and find explicit expression for them.
We also codify the purely gravitational content of a null
shell in a tensor Y®, which we also compute explicitly. We
emphasize that all these result hold for any possible null
thin shell. The pressure p of the null shell is worth studying
in further detail. It turns out that it can be expressed as a
difference of the surface gravities (i.e., the “accelerations”)
of two null generators of N related by the push-forward
map ¢, . This generalizes previous results in [32,33], where
in specific examples we noticed that p accounts for an
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effect of compression/stretching of points when crossing
the matching hypersurface.
With the abstract matching formalism, one also recovers

the property from [32,33] that when the datasets D, D define
abstract totally geodesic null hypersurfaces, then an infinite
number of matchings are feasible. This situation is addressed
in Sec. V where, assuming that all the information about one
of the matchings is known, we prove that the gravitational/
matter energy content of all the remaining matchings can be
determined easily and explicitly in terms of the known one
and the map ¢, with no need of performing additional
calculations. The specific case when one of the matchings
gives rise to no shell is of particular interest because it
includes all cut-and-paste constructions.' In this context, we
find explicit expressions for the gravitational/matter-energy
content of any null thin shell constructed with the cut-and-
paste method. These results are applied in Sec. VII, where
we study the matching of two regions of a constant-curvature
spacetime across a totally geodesic null hypersurface.

For the sake of consistency, we devote Sec. VI to
showing how the results in [32] are recovered as a particular
case of the general framework presented here in the specific
case when A\ can be foliated by spacelike diffeomorphic
cross sections.

The structure of the paper is as follows. In Sec. II we
review the results on the geometry of embedded null
hypersurfaces, formalism of hypersurface data and match-
ing of spacetimes that are needed later. In Sec. III we
provide an abstract formulation of the matching problem.
The rest of the paper concentrates on the null case. In
particular, Sec. IV is devoted to studying the properties of
completely general null thin shells and finding explicit
expressions for their gravitational/matter-energy content,
while Sec. V addresses the case when multiple matchings
are feasible. In Sec. VI, we establish the connection between
the results in [32] and the abstract matching formalism
developed here. The paper concludes with an example
where we study all possible matchings involving two
regions separated by a totally geodesic null hypersurface
in the (anti-)de Sitter or Minkowski spacetimes (Sec. VII).

A. Notation and conventions

In this paper manifolds are smooth, connected and,
unless otherwise indicated, without boundary. We use
TM to denote the tangent bundle of a manifold M and

I'(TM) for its sections (i.e., vector fields). We also let
def

FM) = C*(M,R)and F*(M) C F(M) its subset of
nowhere zero functions. We use the symbols £, d to denote
Lie derivative and exterior derivative respectively. Both
tensorial and abstract index notation will be employed
depending on convenience. When index-free notation is

'Note that two regions of the same spacetime can always be
matched so that the resulting manifold contains no shell.

used, we shall often use boldface for covariant tensors. In
index notation we use standard font (not boldface) in all
cases. We work in arbitrary dimension n, with the follow-
ing values for different sets of indices:

a,p,...=0,1,2,...,n;

AB,..=2 ..n. (1.1)

As usual, parenthesis (resp. brackets) will denote symmet-
rization (resp. antisymmetrization) of indices and we also
use the notation A ®, B = % (AQ B+B® A) for the
symmetrized tensor product of two tensors A and B.
When B is symmetric, 2-contravariant we write trzA for
the trace with respect to B of any 2-covariant tensor A.
Given a semi-Riemannian manifold (M, g), the associated
contravariant metric is called ¢? and V is the Levi-Civita
derivative. Scalar products of two vectors are denoted
indistinctly as g(X,Y) or (X,Y), Our convention for
Lorentzian signature is (—, 4, -+, +).

II. PRELIMINARIES
A. Geometry of embedded null hypersurfaces

In this subsection we review some facts about embedded
null hypersurfaces, see e.g., [40-42]. This will serve to fix
our notation. An embedded null hypersurface in a space-
time (M, g) of dimension n + 1 is the image N = ¢(N)
of an embedding ¢: N =~ M of an n-manifold N\, such
that the first fundamental form y &ef ¢*g of N is degen-
erate. Any choice of (nowhere zero) normal vector k to N
defines a null direction tangent to A called null generator
(and viceversa). The integral curves of k are geodesic and
the surface gravity K, €F(N) of k is defined

by V,k = k;k. The second fundamental form of N w.r.t

k is the tensor KX(X,Y) & 9(Vxk,Y), VX, YEF(T/V).

Boundaries of manifolds are always two-sided, so
(cf. Lemma 1 in [7]) we shall always assume that N\
admits an everywhere transversal vector field L, i.e.,
verifying L ¢ T,N'V peN. The vector L can always
be taken null everywhere (see e.g., [32]).

A transverse submanifold of N is any (n—1)-
dimensional submanifold S C A to which k is everywhere
transverse. When, in addition, every integral curve of k

crosses S exactly once S is called cross section (or simply

section). The existence of a cross section entails a strong
topological restriction on N, as in such case there always

exist functions v € F(N), called foliation functions, whose
level sets S, o {peN| v(p) = vy R} are cross sec-

tions of A and {S,} define a foliation of N'. Nevertheless
existence of foliation functions is always granted in
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sufficiently local domains of N. Note that necessarily
k(v) #0 so we can always assume k(v) =1 either by
rescaling k or by changing v.

Given a transverse submanifold S cﬁ/ , it is useful
[32,33] to define the following tensors on S

OL(X.Y)|, = (VyL.Y)

When L is chosen null and orthogonal to S then ®F and 6,
are the second fundamental form and torsion one-form of S
with respect to L. For any choice of L, the tensors o, , OF
encode extrinsic information of S. However, @Y is not
symmetric in general.

Assuming that A admits a cross section S, one can

construct a foliation function v € F(N') and (on local
patches) a basis {L,k,v;} of F(T/\/l)|j~\v[ adapted to the

foliation with the following properties:

(2.2)

glp>
oL(X)|, = —ﬁka,mg » VX.YET,S. (2.1)
|

(A) kis a future null generator with surface gravity k.
(B) w G]—"(K/) is the only foliation function satisfying v|g =0, k(v) \;\7 =1.
(C) Each vector field v; is tangent to the foliation, i.e.v;(v) = 0.
(D) The basis vectors {k, v;} are such that [k, v;] = Oand [v;, v;] = 0.
(E) Lis a past null vector field everywhere transversal to N.

For any basis {L, k, v;} verifying (2.2), we also define n

scalar functions {y,} C F(N) as

def def 7
ui(p) = g(L.k)l,. w(p)=g(Lv)l, YpeN.

(2.3)

Note that necessarily y; # 0 [this has already been used
in (2.1)]. The vectors {v,} are spacelike by construction
and {k,v;} is a basis of I'(TN'). Conditions (A) and
(B) imply that » increases toward the future. We write 4 for

. . i

the induced metric on the leaves {S,} and A, &t g(vy, vy)
for its components in the basis {v;}. We use h;; and its
inverse h!/ to lower and raise capital latin indices irre-

spectively of whether they are tensorial or not (e.g., we let

u! < nly ). The property [k, v;] = 0 entails [32]

k(h(vy, v,)) X 2K (v, ). (2.4)

B. Formalism of hypersurface data

The formalism of hypersurface data, which we introduce
next, will allow us to analyze the matching of spacetimes at
a fully abstract level. We refer to [7,34-39] for details.

1. General hypersurface data

The fundamental notion of the formalism is metric
hypersurface data, defined to be a set {N,y,2,¢?%}
where A is an n-dimensional manifold, y is a 2-covariant
symmetric tensor, £ is a covector and £ is a scalar
function subject to the condition that the symmetric
2-covariant tensor .A|, on 7,N' x R given by

Al,(W,a),(Z,b)) E 1], (W.Z) +a?]|,(2) + b2 ,(W)

+abt?|,, W,ZET,N, a,beR
(2.5)

P’

is non-degenerate at every p € N. A priori any signature
for A| , 18 allowed. Given metric hypersurface data, one
can define unique tensor fields {P“",n“,n(z)}, with P
symmetric, by means of [7]

yapn? +n@¢, =0, (2.6)
.0+ n@p@ 1, (2.7)
Pt + £Ppt =0, (2.8)
Py, +nif, =59, (2.9)

No restriction is placed on y, which in particular is allowed
to be degenerate. However, A being nondegenerate
forces y to have at most one degeneration direction [34].
Specifically, the radical of y at pe€N, defined by
Rady|, & {XeT,N|y(X,-) =0}, is either zero- or
one-dimensional. The latter case occurs if and only if
n®)|, =0, which by (2.6) means that Rady|, = (n|,). A
point p € N is called null if dim(Rady|,) = 1 and non-null
otherwise.

The second basic notion of the formalism is hypersur-
face data which is just {N,y,2,¢®} equipped with
an extra symmetric 2-covariant tensor Y, namely
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pY {N.y. €, Y} Itis useful to define the following
tensors (note that F, s and U only require metric hyper-
surface data)

o 1
F& Sde. (2.10)
def 1 (2)
U= §£n}/+t’®s dn'?). (2.11)
K20y +U. (2.12)
s ¥ Fn.-),
r < Y(n,) (2.13)
Ky o _ Y(n,n). (2.14)

(Metric) hypersurface data has a built-in gauge group
structure [34] with the following properties.

Definition 2.1. Let D= {N,y,€,/?,Y} be hyper-
surface data, z€F*(N) and VeIl(TN). The gauge
transformed data G, y)(D) def NG (1), Gy (8),
Giev) (5(2)), Q(Z,V)(Y)} is defined as

def def

G =rv.  Gewn(@) = z2(€+y(V.").
Gy (£2) & 2(£0) 1 28(V) +1(V, V), (2.15)
def 1
Gen(Y) = 2Y + € ®, dz + §£2V7

—2Y £ (Z+7(V,) ®, dz + §£Vy. (2.16)

The set of all possible gauge transformations forms
a group G=F*(N)xT(TN) with composition law
g(Zzsvz) OQ(ZI,V|) = g(lesz2+Zglvl)’ ldentlty g(l’o) and in-

verse Q(‘;V) o Gt vy

All considerations so far make no reference to any
ambient space where A is embedded. The abstract
construction and the usual geometry of embedded hyper-
surfaces are connected through the notion of embeddedness
of the data. Given a semi-Riemannian (n + 1)-dimensional
manifold (M,g) we say {N,y,€,¢%} is embedded
with embedding ¢ and rigging ¢ in (M, g) provided there
exists an embedding ¢ : N'=— M and a rigging ¢ (i.e., a
vector field along ¢(N'), everywhere transversal to it)
satisfying

P*(9(2.0)) = ¢@.
(2.17)

¢ (9)=v.  ¢*(9(.-) =¢.

The same notion for hypersurface data {\,y, 2, £, Y}
requires, in addition,

1 *
We often simplify the notation and say simply that the
data is “{¢, {}-embedded”. We also identify scalars and
vectors in A with their corresponding images on ¢(N)
when there is no risk of confusion. The action of the gauge

group in the data corresponds to a change of rigging
according to [34]

Giew () € 2+ ¢uV).
More specifically, it holds that if {\,y,¢,¢®} is {¢,(}-
embedded in (M, g), then G, v)({N.7. ¥, @) is {¢.
G(..v)({) }-embedded in the same space.

The hypersurface ¢(N') admits a unique normal v
satisfying g(v, {) = 1, which decomposes as [7,34]

(2.19)

v=n®¢ 4+ p.n. (2.20)

It then turns out that K [defined in (2.12)] is the second
fundamental form of ¢(N') with respect to v [34], i.e.,

K = ¢* (W), v=g(,-). (2.21)

Observe that K and U coincide at null points of N
Although generically N is not a semi-Riemannian
manifold, it admits two useful covariant derivatives. The

metric hypersurface connection V depends only on
the metric part of the data and it is defined uniquely [7]
by the properties of being torsion-free together with the
expressions

[e]

vuth = _l’ﬂhUac - chabv (222)

Vafb - Fab - f(2>Uab' (223)
The second connection is called hypersurface connection
and denoted by V. It is also torsion-free and relates to the

former by VyZ = VyZ — Y(X, Z)n forany X, Z €T (TN).
When {N, 7,2, Y} is {¢,{}-embedded in (M, g), the

ambient Levi-Civita connection V and the derivatives V, V
satisty [7]

VyZ = VyZ - Y(X. Z)v - U(X. Z)¢
=VyZ-K(X,2)¢, (2.24)

(Vx,2), = Y(X,Z) + F(X,Z) (2.25)
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forall X,ZeT'(TN). Thus, V is the connection induced from V along the rigging [9]. Two consequences of the definition

of V are

Vynt =nc(s,—n?(de?),)+P*(U,, —n'YF,,).

1 (Vola + Vay) = £,0,+ Vy(0(n)) = 20(n) (54 — nV 1)) + PG, (Uyy — nPFy,)).

where 6, is an arbitrary one-form. Their explicit proof can
be found in [34] and [ [37], Lemma 2.5] respectively. We

shall also need the following lemma relating Lie and V
derivatives.

Lemma 2.2. Let {N,y,€.,¢ (2>} be metric hypersurface
data, V“ any vector field and w, any covector field. Define
v 2y VP and we & Pebyy,. Then the following iden-

v a

tities hold

1 o

§£Vyab =C(V)Uup + ViVy), (2.28)
1 : o
“E£itar = Viay) = £ Vpyw(n).  (2.29)

2
Proof. We first note that V_ .y, — V. ¥pe — ViYue =
2¢.U,, as a direct consequence of (2.22). Moreover, since

o

V has no torsion, the Lie derivative of any p-covariant tensor
T along any direction VED(TN) reads (£,7), oy =

V”VbTal‘,,ap +3°F Tay-aprbaga, Va, V. Particularizing
this for T =y we get

£Vyab = chcyab + 27/c(avh) Ve

- Vc(vcyah - vaybc - vbyac) + 2v(a‘v/b)
=2¢(V)U,, + ZV(QVb)

which is (2.28). To prove the second identity we apply (2.28)
to V =. Since by (2.9) we have y,, P, =1, —(n)t,,

identity (2.28) gives 3£47,, = €(W)U,;, + YV, (Y0, —
w(n)¢y). From (2.8), we find 2(w)=—¢Pw(n).

Inserting above yields 1 £47,, = —£Pw(n)U,, + V ;-
£(,Vpyw(n) —w(n)V 7}, which simplifies to (2.29) after
taking into account (2.23). [

From a covector and a function on A/, one can build a
unique vector field according to the next lemma.

Lemma 2.3. [7] Let {N,y,¢,¢®} be metric hypersur-
face data. Given a covector field ¢ €T(T*N) and a
scalar function uy€ F(N), there exists a vector field
WeD(TN) satisfying y(W,-) =9, €(W) =u, if and
only if @(n) +n®uy = 0. Such W is unique and reads
W = P(Q, ) + upn.

(2.26)

(2.27)

Matter-hypersurface data and abstract thin shells.—
Hypersurface data encodes (abstractly) the intrinsic and
extrinsic information of embedded hypersurfaces. In the
context of gravity, knowning the matter contents of the
spacetime determines part of the curvature, typically by
means of the Einstein tensor Eing. Thus, to codify matter
information abstractly we need to supplement the data with
additional quantities. For general hypersurfaces, only the
normal-transverse and the normal-tangential components
of Ein, can be related exclusively to intrinsic and extrinsic
information of the hypersurface [1,5,7,9]. Hence, the
additional (matter) data involves a scalar p and a covector
J that, once the data is embedded, correspond to such
components of Ein . Their relation with the rest of the data
needs to be imposed as constraint equations. They are well-
known in the spacelike case (see e.g., [43]), and were
generalized to arbitrary causal character in [7].

Note that although we refer to the variables p and J as
matter variables, what we are actually prescribing are
certain components of the Einstein tensor. The terminology
is justified because in General Relativity (with vanishing
cosmological constant) p and J indeed correspond to
the matter four-momentum along the normal direction.
However, we emphasize that we are not assuming any field
equations and that the geometric approach that we take can
be used in any theory of gravity.

We let R »eq denote the curvature tensor of the metric
hypersurface connection V. The abstract definition of
matter-hypersurface data is as follows.

Definition 2.4. [7] (Matter-hypersurface data) A tuple

{N 7,2, L”Q),Y,pf,J} formed by hypersurface data
{N,y,€,¢P,Y}, a scalar p, € F(N) and a one-form
JeT'(T*N) is matter-hypersurface data if G, v(ps) =
pe+JI(V). Gv)(J) = z7'J and the following identities,
called constraint equations, hold:

1oc 1  ca
P = ER peaP? + EfaR peaP?n’
4 vd((Pbdnc _ Pbcnd)YbC) 4 "(Z)Pde”CYb[ch]a

1 o
+3 (PPne — Pbend)(£DV U,

+ (Upe + n@Y,, ) V2@ +2Y,, (Far = Yap)nl),
(2.30)

044050-6



ABSTRACT FORMULATION OF THE SPACETIME MATCHING ...

PHYS. REV. D 109, 044050 (2024)

l.=7¢, R’ peal’n —ZVf(( 2 PP — nbn?)Y .5 ])

+ 2(Pbd - f(z)nbnd)v[cUd]b - ZPbdnbe[ch]f

— (n® PP — P n?)(Uppe + 0P )V £ )

+ 2Yb[ch}fl’lf> - (Pbdl’lf - bel’ld)YhdUCf. (231)

The next theorem justifies both the gauge behavior of
{ps.J} and the explicit form of (2.30)~(2.31).

Theorem 2.5. [7] Let {N.y.€¢.£®,Y, p,,J} be matter-
hypersurface data and assume that the hypersurface
data {N,7,2.¢%,Y} is {¢,{}-embedded in a semi-
Riemannian manifold (M, g). Then,

—Pr = ¢*(Eing(€v V))?
—J = ¢*(Einy(-.v)),

(2.32)
(2.33)

where Ein, is the (2-covariant) Einstein tensor of (M, g)
and v the (unique) normal vector field along ¢(N)
satisfying g({,v) = 1.

As we shall see further on, the matching problem
involves pairs of matter-hypersurface data. However, at
this point we simply put forward various definitions and
explore some of their consequences.

Definition 2.6. (Thin shell) A thin shell is a pair of
matter-hypersurface data with same metric hypersurface
data, i.e., of the form {N,y,Z,¢?), Y* p£, J*, e}, where
€ is a sign with gauge behavior:

Gow)(€) ==

e (2.34)

We write Q% for quantities constructed from {N,y. €
(), Y*} and let [Q] = © ot~ 0 beits jump.

One of the main properties of thin shells is that one
can define an energy-momentum tensor encoding their
matter-energy content. In a completely general case, this is
done as follows.

Definition 2.7 (Energy-momentum tensor) For a thin
shell {N,y,€,¢%,Y*, p:,J*, €}, the energy-momentum
tensor is the symmetric 2-covariant tensor 7 defined by

df & e((PYnd 4 Pl \nb — (n?) paf pbd  pdfpaph)

+ P (n@ P — pndnf))[Y ). (2.35)

Remark 2.8 Definitions 2.6 and 2.7 are a modification of
the previous ones introduced in [7], which involved no e.
The addition of the sign e is necessary in order for 7 to
retain its physical interpretation as energy-momentum
tensor (density) in all gauges. Indeed, a change in the
orientation of ¢ (or of rigging in the embedded picture)
introduces a sign in [Y] [by (2.16)]. The value of = cannot

be sensitive to this, so one needs to introduce a sign ¢ with
gauge behavior (2.34) to compensate the change of sign in
[Y] (in fact, one checks easily that the gauge behavior of 7 is
Giv)(t) = |z|7'7). To be more specific, when one deals
with thin shell data {N,y, 2,22, Y*, pf J*} {¢*, CF}-
embedded in (M=, g©), the sign e must be chosen positive
if {~ points outward with respect to (M ™, g~) and negative
otherwise.

The tensor field z has the symmetries of an energy-
momentum tensor and coincides with the Israel energy-
momentum tensor of the shell [5] whenever it does not
contain null points. Moreover, for null thin shells, the
definition of energy-momentum tensor provided in [[1],
Eq. (31)] by Barrabés and Israel yields precisely z. In a
spacetime (/\/l 9) resultlng from a matching, given a basis

{e,} of F(TN ) where N is the matching hypersurface, one
can also check that the quantity *?¢fe”, gives the singular
part of the Einstein tensor of (M, g), as it is written in [ [9],
Eq. (71)]. The gauge behavior of 7 is key in the embedded
case, as it ensures that the singular part of the Einstein
tensor of the matched spacetime remains invariant under
rescaling the normal vector v. All these reasons justify the
Definition 2.7 for the energy-momentum tensor on a thin
shell [7], irrespectively of whether the data is embedded.

At null points (and only there), 7 = 0 is compatible with
a nontrivial jump of the geometry. Indeed, in order to get
7 =0 when n® =0, it suffices to require [Y](n,:) =0
and trp[Y] =0, which does not mean that the whole
tensor [Y] vanishes identically. Physically, this situation
corresponds to an impulsive gravitational wave supported
on the shell. This behavior is possible only at null points.
At non-null points 7 =0 implies, in addition, that
P4/ PbY],, = 0 which entails 0 =y 74P P"[Y],, =
(8¢ — n“f,-)(&b —n"?})[Y],, = [Y];;i.e., absence of jumps
in the geometry. In particular, this means that nontrivial thin
shells with vanishing energy-momentum tensor can only
exist on null points.

2. Null hypersurface data

A particular case of relevance for the matching problem
is when the hypersurfaces are null everywhere. It is
immediate to translate this notion to the abstract level.

Definition 2.9. (Null (metric) hypersurface data) A
metric hypersurface data {\,y,Z,¢} or a hypersurface
data {N,y,#,¢?,Y} is null if the scalar n(® given
by (2.6)—(2.9) is zero everywhere on N.

Let us describe the main properties of the formalism in
the null case. We refer to [37] for proofs and additional
results. We already know that n(?) = 0 implies Rad(y) =

(n) and therefore y(n,-) = 0. Moreover the tensors s and

U Y lg y defined in (2.13) and (2.11) verify

(2.36)
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When the data is {¢, {}-embedded, U becomes the second
fundamental form of ¢ (') with respect to the null normal

v = ¢, n [recall (2.20)]. Inserting n®) = 0 and (2.36) in the
contraction of (2.26) with n? entails

V,n =0, (2.37)
which together with (2.14) and v = ¢, n yields
Vyy<2i4>¢*(v,,n - Y(n, n)n)@g)lcnqb*n =K,V (2.38)

Since v is a null generator of ®(N\), (2.38) means that «,
corresponds (at the abstract level) to the surface gravity
of v. Under the action of the gauge group, the surface
gravity k, transforms as follows.

Lemma 2.10. Ref. [37] Let {N,y,€,7%,Y} be null
hypersurface data and consider gauge parameters {z, V}.
The gauge behavior of the scalar function «, defined

in (2.14) is
1
g(z,V) (Kn) = E (Kn - @> .

(2.39)
Z

We now state and prove a result that will be of particular
relevance below, namely that by means of a gauge trans-
formation one can always adapt the one-form ¢ and the
scalar #%) to whatever pair {u € F(N),9€T(T*N)} one
wishes, with the only restriction that 9(n) # 0 everywhere
on V.

Lemma 2.11. Let {N,y,€,¢®} be null metric hyper-
surface data, u a function on N and 9 € '(T* ') a covector
satisfying &(n) # 0 everywhere. There exists a unique
gauge transformation G, ) satisfying

Gen)(€) =9,

Gew)(€?) = u. (2.40)

Moreover, the gauge group element G, vy is given by

1 u—P(9,9)

z=9(n), V= 3] P9, +

2.41
200y "B
Remark 2.12. The condition 9(n) #0 is necessary
because if 9(n) vanishes at any point p €N then 9 can
never correspond to ¢ in any gauge, as

L= (G (@)(Gew) ()], = 27HGew) (€)) ()] -

which in particular states that (G, y(€))(n) # 0 for all
possible gauge parameters.

Proof. We first assume that the gauge transformation
exists and restrict its form up to a function yet to be
determined. We then restrict to group elements of such a
form and show that there exists one and only one of them
that satisfies (2.40), namely (2.41). This will prove both the

existence and uniqueness claims of the lemma. For the first
part we impose (2.40):

+y(V, ) =9, 2P +20(V)+y(V.V)) =u

(2.42)

Contracting the first with n gives z=9(n), sow o y(V, )=
ﬁ&—f. Observe that w(n) =0. Moreover, the
vector V — P(w,-) lies in the kernel of y because
Yar (VP = PPw.) = w, — (85 — n°f,)w, = 0. Therefore,
there exists f€F(N) such that V¢ = P%w, + fnb =
(8(n))~' P9, + (£@) + f)n“. Thus, it suffices to restrict
oneself to gauge parameters in the class

{(z:8mLV:§%ﬁng)Hm>ge}%N)} (2.43)

We now start anew and prove that there is precisely one
function ¢ such that the corresponding (z,V) in (2.43)
fulfills conditions (2.40). For V as in (2.43) we get

(V)= 1 P(8.9) + g8(n). (V) =—¢® 1 g

9
y(V.) = ﬁy(P(& ) = ﬁs e
y(V,V) = ﬁs(w —#(V) = P;iiﬁ) o)

The first condition in (2.42) is satisfied for all g. The second
is satisfied if and only if

P(8,9) u—P(9,9)
I(n)*( 2 = -
R R
which ends the proof. L

In particular, Lemma 2.11 [together with (2.15)] means
that two given null metric hypersurface datasets are related
by a gauge transformation if and only if they both have the
same data tensor y. We prove this in the next corollary.

Corollary 2.13. Let D def {N.y.¢.¢¥}, D &ef {N.y,
¢, £} be two null metric hypersurface data. Then there is
a gauge group element G, ) € F*(N) x [(T*N) such
that G, ) (D) = Dif and only if y = y. This gauge element
is given by

1 N LP-PEE)
4 2y E) T S

Proof. The necessity is obvious from the fact that y
remains unchanged by a gauge transformation. Sufficiency
is a direct application of Lemma 2.11 to 4 =#¢ and
u=7¢9. u

(2.44)
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Lemma 2.11 and Corollary 2.13 state that in the null case
one can codify all the metric hypersurface data information
exclusively in the tensor y, and that ¢ and #(?) are pure
gauge. This fact will be key later in Sec. III when studying
the matching of spacetimes with null boundaries.

We shall also need the decompositions of {y, P} in a
basis {n,e,} of I'(TN) and its corresponding dual.

Lemma 2.14. [37] Consider null metric hypersurface data
{N.,y.€.¢P}. Let {n,e,} be a basis of I'(TA) and
{q.,0"} be its corresponding dual, ie., q(n)=1,
q(es) =0,0(n) = 0,04(ez) = &4. Define the functions

p, & ¢(ey) € F(N). Then, the tensor fields y and P
decompose as

v =9450" ® 6, (2.45)
P=P0" 0% e, ® ez + P(q.0")(n®ey+e4 @ n)
+P(g,q)n®@n (2.46)
=h"Pey @ ey —hPyp(n @ ey + ey ® 1)
— (Y -y yp)n @ n, (2.47)

where Bup < y(e4. e5) is a metric and B8 denotes its
inverse.

The concept of null thin shell arises naturally from
Definitions 2.6 and 2.9. A thin shell is said to be null if its
metric part {N,y,€,¢ (2)} defines null metric hypersurface
data. Moreover, as a corollary of Lemma 2.14, one can find
a very simple form for the components of 7.

Corollary 2.15. In the setup of Lemma 2.14, let
{N,y, 8,62, Y* pf,J* €} be a null thin shell. Then,
the components of the energy-momentum tensor 7 in the
basis {q,0} read

(q.q) = —eh*¥[Y](e4. ep).
(q.0") = eh'P[Y](n. ep).

7(04,0°%) = —ehB[Y](n, n). (2.48)
Proof. Inserting the decomposition (2.47) into
Definition 2.7 yields
i = —eBB([Y](eq. ep)nin' — [Y](n.eq)(ndel, + ednf)

+ [Y](n, n)edep)

after a simple but somewhat long computation in which
several terms cancel out. Contracting with {q,0"} it is
immediate to get (2.48). ]

Remark 2.16. In the literature, the different components
of the energy-momentum tensor of a thin shell {\/,7, 2,
%) Y*, pk J*, €} are interpreted physically as an energy
density p, an energy-flux j and a pressure p (see e.g., [44]).
However, this is usually done in a context where {N 7. C,
£ Y*, pr J*, ¢} are embedded with riggings ¢* that

are null and orthogonal to the basis vectors {e,}. In a
completely general framework, we propose the following
geometric definitions for the physical quantities {p, p, j}:

pE—arplY], pE

J € e(P(Y)(n.). ) = et pn).

—¢[Y](n, n),
(2.49)

Definitions (2.49) are justified because in the null case
(2.35) can be written in terms of {p, p,j} as
t=pn@n+p(P+26Pn@n)+2j®n. (2.50)

For null shells, the vector field j satisfies y(j, ) =
€[Y](n,-) + p€ and €(j) = 0, which makes the definitions

(2.49) consistent since the one-form j &f y(j,-) verifies
Jj(n) = 0. Moreover, a direct calculation based on (2.14)
and (2.39) proves the following gauge behavior for the
pressure p:

Gn(p) =L

=L (2.51)

Whenever 72 =0 and y, = 0, it is straightforward to
check that (2.49) becomes

pP= —GE)AB[Y](eA, eg).
J = €eh*P[Y](n, ep)ey,

p = —¢€[Y](n.n),
(2.52)

after using (2.45) and (2.47). This allows one to recover the
standard definitions for {p, p, j} introduced e.g., in [[44]
Eq. (3.99)]. Expressions (2.52) coincide with the defini-
tions proposed in [44] whenever € = —1 which, as men-
tioned in Remark 2.8, corresponds to the rigging {~
pointing inward.

We conclude this subsection by recalling several aspects
on the geometry of transverse submanifolds embedded in
null metric hypersurface datasets. We again refer to [37] for
proofs. Given null metric hypersurface data {N,y, ¢, ¢ 2) 1,
a transverse submanifold S is a codimension one embedded
submanifold of N to which n is everywhere transverse.
Letting w: S == N be the embedding of S in N we

define 7 & yw*y. Itis a fact [37] that & is a metric on S and
we denote by V" its Levi-Civita covariant derivative. When
it is clear from the context we identify vectors and scalars
on S with their counterpars on y(S). For any p-covariant
tensor T along w(S) and given a basis {v,} of I'(T'S), we

define T def w*T and write Ta,..a, def TH(vAl,...,vAP)
(without the parallel symbol). Capital Latin indices are
raised with h;, and its inverse h’/. With the definition

f‘(‘z) := h/¢,¢,, the pull-back to S of the V derivative of

any p-covariant tensor field 7 along w(S) takes the
following explicit form [ [37], Lem. 3.15]:
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p
o
a Ay b — \Uh E J
/UAI"‘/UAPUBV}JTM]"'% = VBTAl'“Ap - 4 TA]"'AF
i=1

p

E T oyay Vi, - V5

i=1

C. Matching of spacetimes and junction conditions

From now on we focus on the problem of matching two
spacetimes with boundary. In this section we recall known
results, first for boundaries of any causality and secondly in
the null case.

Consider two spacetimes (M™*, g*) with boundaries

N of any causal character. It is well known (see e. g,

[1-6,9,10]) that the matching of (M*, g*) across N
possible if and only if the so-called junction condztzons or
matching conditions are satisfied. In the language of the
formalism of hypersurface data, the matching requires [7]
that there exist metric hypersurface data {\,y, €, ¢ (2)} that
can be embedded in both spacetimes (M=, g*) with
embeddings ¢* such that ¢*(N) =N and riggings
¢*, i.e., there must exist two pairs {¢*, {*} satisfying
r=1(09)"(g). =@ ) ("),

£@) = (§*)* (g (C5.0)- (2.54)
In addition, the riggings ¢* must fulfil an orientation
condition (see item (ii) below). In these circumstances,
it is always possible to select one of the embeddings freely
by adapting A to one of the boundaries. In the following
we shall make use of this freedom by fixing ¢~ at our
convenience. This entails no loss of generality. Note that
making the choice in the minus side is also of no relevance,
as one can always switch the names of the spacetimes to be
matched.

When the junction conditions are satisfied, the geometry
of the shell [7] is determined by the jump of the transverse
tensors Y* defined as

def 1
Y* 12 (sbi) (£,+97), namely [Y]=

def

YF—Y~. (2.55)

In the literature, however, the matching conditions are not
normally presented in terms of a hypersurface dataset.
Instead, they are usually formulated as follows (see
e.g., [9]).

Junction Conditions. The matching of (M™*, g*) across

N can be performed if and only if
(i) There exist two riggings ¢* along N°*
diffeomorphism ~ ®: N~ — N*  such

VpeN and VX, ZEF(TN )

and a
that,

lJAi+l"'ApUAiB

nhvi .UZ‘; (V?Afm + (£ - f|(|2))UAaB)' (2.53)
|
g (DX, q)*Z>|(I>(p) =g (X, Z)
g (&7 D X) o) = 97 (£, X)),
g oy =97 (6.8, (2.56)

(i) One rigging must point inward with respect to its
boundary and the other outward.

For the rest of the paper, two riggings ¢* satisfying (i)-(ii)
for a diffeomorphism @ will be called matching riggings.
The diffeomorphism ® will be referred to as matching map.

If (2.56) holds for two riggings {* then, for any other
choice of rigging on one of the sides, (2.56) is fulfilled as
well? (although different choices of rigging on one side will
correspond to different riggings on the other side). We shall
make use of this freedom to fix {~ at will, again with no
loss of generality.

As proven in Lemmas 2 and 3 of [8], glven arig glng onone

side (say ¢7) and a diffeomorphism ®: N~ — N sat-

isfying g7 (0, X, ®,Z) = g (X, Z), VX,ZEF(TN ), at
non-null points the second and third equations of (2.56) yield
either no solution for {* (hence the matching is not possible)
or two solutions for {* with opposite orientation. At null
points, on the other hand, if there exists a solution {* then it is
unique. This means that at non-null points one can always
make a suitable choice of rigging {* so that the junction
condition (ii) is fulfilled, and hence one only needs to care
about (2.56). In the null case, however, this is not so. It can
happen that there exists a solution ™ of (2.56) but with
unsuitable orientation, and then the matching cannot be
performed. Thus, at null points conditions (2.56) are neces-
sary but not sufficient to guarantee that the matching is
feasible [8].

When the matching is possible, the corresponding
matching map @ is the key object upon which the whole
matching depends. This is so because once the point-to-

point identification of the boundaries AN/ - (ruled by ®) is
known, one matching rigging can be selected at will (as we
have seen) and the other is the unique solution that arises
from enforcing both (2.56) and (ii). All the information
about the matching is therefore codified by @, or equiv-
alently by the embedding ¢* [cf. (2.54)].

“For any other rigging '~ = z({~ + V) with {z€ F* (N )s

Ver(TN™ )}, the rigging '+ < 2(¢+ + V) with {2 & (@1)*z
VYo «V} also verifies (2.56). The same logic applies if one

changes the rigging on the plus side.
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We now concentrate on the case when the boundaries

N are null. From a spacetime viewpoint, this problem
was addressed in [32] (see also [33], where the matching
across Killing horizons of order zero was studied). In the
remainder of the section we summarize the main results
of [32].

Consider two (n + 1)-dimensional spacetimes (M, g*)
with null boundaries A/ that can be foliated by a family of
diffeomorphic spacelike cross sections. Assume further
that one of the boundaries lies in the future of its corre-
sponding spacetime while the other lies in its spacetime past.
This entails no loss of generality, as explained in [32].

We construct foliation functions v, € F (K/ i) and basis
{L* k%, v7} of F(TMi)|~i according to (2.2). The sur-
face gravities of k™ are K As in Sec. IT A, the leaves of the
foliations are denoted by {8}, while their corresponding
induced metrics are h*. We also let IZ'; be the second

fundamental forms of N with respect to k™, and introduce
the tensors O, 67 on the leaves {8} [cf. (2.1)]. The scalar

functions {uf} c F ( ) are defined by (2.3) with respect
to the basis {L*, k*, vy }.

As we have seen, in order to perform a matching we need
to embed a single metric hypersurface dataset in both
spacetimes. We codify the already described freedom in the
choice of {¢~, ™} as follows. We first consider an abstract
null hypersurface A and define coordinates {y' = 1, y}
therein. Then, we construct null embedded metric hyper-

surface data by enforcing that (a) the push-forward vectors

{eg &ef ¢%(0ya)} coincide with the basis vectors {k~, v} }

(since {k, v,} are chosen at will, with this procedure
we ensure that ¢~ is built at our convenience) and (b)
that the rigging {~ coincides with the basis vector L.
This amounts to impose

ey =k, ey =0y, C=L". (2.57)
Thus, ¢~ is a null past rigging [recall (2.2)] and 4 is a
coordinate along the degenerate direction of . In fact,
the subsets {4 = const} C A\ are all diffeomorphic [32]
and define a (spacelike) foliation of A/

For the matching of (M*, g%) to be possible, there
must exist another pair {¢*,{"} so that (2.54) hold (and
the orientations of ¢ are suitable). In that case, we
can build another basis {¢; & ¢ (0ye)} of I(TN") and
then determining the matching requires that we find the
explicit form of the vectors {e; } (which fully codify ¢™).

In the basis {k",v; } of F(TX/ ), these vectors decom-
pose as [32]

eT — fk+’ e;r = a1k+ —|— b;’l]j, (258)

where f,a;, b] ef(ﬁ/+) are given by

0H (A, y) o0H (A,y") ohX (y4)
= = bK e e 2‘
f on , ay ay[ > I ay] ( 59)
in terms of a set of functions {H(4,y?), h*(y%)} on N.

The functions {H, h*} encode all the matching informa-
tion and hence they determine ¢™. In fact, given coor-
dinates {v,,u'} on N such that v; =,/ (i.e., {u! } are
constant along the null generators), the embedding ¢ is
such that [32]

¢ (Ay') = (v. = H(A.y').u' = h'(y7)).  (2.60)
The function H (A, y*) is named step function because it
measures a kind of jump along the null direction when
crossing the matching hypersurface. It must satisfy the
condition d;H > 0 [32]. The explicit form of the matching

rigging ¢t was computed in [ [32], Cor. 1] and reads

C+: Hq

T /1 1
LA Lt —pAB (bDY (0. H —— (0,H)u7
aiH<M1+ + <( )A(y ﬂl_(/l )ﬂl)

1
ot ) ). @61)
i
7 def def 1 —1\J
where  (b7')] = 0y! and  Zp = I((b7')(0 H—
i (0 H)u7) = - pp )k + v,

The solvability of the first junction condition in (2.54)
constitutes the core problem for the existence of a match-
ing. In terms of the metrics A*, it can be rewritten as
VpeN .

1J| = bLthLK @(p) (2.62)

p

Equation (2.62) is an isometry condition between each
submanifold {v_ = const} C N~
image on N On the other hand, the identification of {et}
requires the existence of a diffeomorphism ¥ [ruled by

the coefficients b4 fulfilling (2.62)] between the set of null
generators on both sides. Moreover, combining (2.4),

(2.57)-(2.59), (2.62) and {ef = &ef ( «)} yields [32]

and its corresponding

KE(07.07) = (0,H)bA0ERY (vf . v).  (2.63)
Thus, for each possible choice of ¥ (i.e., of {b4}), (2.63)
determines a unique value for d;H unless the two
second fundamental forms vanish simultaneously. In the

latter case, the step function H cannot be restricted.

Consequently, when N * are totally geodesic, if a single
matching of (M™*, g*) can be performed then an infinite
number of matchings (one for each possible step function
H) are feasible [32].
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When the matf:hin.g is possible, the matte?—.energy con- g+ def 1B+ Byt w, 2 def bBv, (]1 —u] FVIH—GF, (2.64)
tent of the shell is given by the next proposition.
Proposition 2.17. [32] Assume that the matching of 1 T o +
St . . . | def h ik HiHy
(M=, g*) across N~ is possible and that it is determined ~ X i oH q+——0H || g ———0,H |,
by the functions {H (2, y*), i8(y*)}. Let h;, be the induced #1% # #
metric on thhe .leaves. {l = const} .C N, ﬁ” .ltS inverse  xaA df 14 <q1 +M1/_l’ 0,11‘1)- (2.65)
tensor and V" its Levi-Civita covariant derivative. Define Hi
the vector fields {W,}, the scalars {ii}}, the covector
g€ (T*N) and the vector field X = X“d,« € [(TN') by  Then, the components of the tensor [Y] Ly + — Y- are
|
~ - 0,0,H
[Y](0;.,0;) = —u7 (KZZ@AH —K + 31;1 > (2.66)
s 0,00 H XLKK (07,0
¥](0,.9,) = 7 (REV3H — (67 (W) — oz (o7)) + 2t KR 0]y 2.67)
) 0,H uio,H
V)0, 0) = - K VEHVIH Vi HOi;  2V(He[ (W)
, 0y ) = — - -
e # 0,1H //l_f—(allH)z aﬁH
~ <@1;<W<,,W,>) COLp )\ X'KE(vp0p) | VIVEH | ViR, _vgf,u;)> (2.68)
i o,H My i 0, H OH o H  ouy ) .

while the energy-momentum tensor of the shell is given by
(the sign € is given by Definition 2.6)

YY) (01, 0,0)

7(dA, dA) = — AL
(/41)
(Y] (0;, 9y
7(dA, dy') = 6%,
vl vy — Y109 0,)
(dy'.dy”) )

III. ABSTRACT FORMULATION OF THE
MATCHING PROBLEM

In the previous section, we have summarized the main
aspects of the matching of two general spacetimes with null
boundaries that admit a foliation by diffeomorphic space-
like sections. The matching conditions have been formu-
lated from a spacetime viewpoint, and we have recalled the
geometrical objects upon which the matching depends
(namely the step function H and the diffeomorphism W).
We have also recollected the explicit expressions for the
gravitational and matter-energy content of the resulting
shells (Proposition 2.17).

The results we have just summarized leave (at least) two
interesting problems unaddressed. The first one is whether
one can obtain analogous results without the topological
assumptions on the boundaries and the second is whether
there is a way of formulating the matching problem in a
fully abstract manner, namely without making any refer-
ence to the actual spacetimes to be matched. As already

explained in the Introduction, addressing these problems is
the key object of this paper.

Let us start with the abstract formulation of the junction
conditions. For that purpose, we first consider that the

boundaries N of the spacetimes (M=, g) to be matched

have any topology and any causal character. Since N is
embedded, there exists an abstract manifold A/ and an

embedding 1~ : N == M~ such that i~ (N) =N . From
the embedding :~, one can construct an infinite number of
embeddings simply by applying additional diffeomor-
phisms within A/. To elude this unavoidable redundancy,
we henceforth let i~ be one specific choice among all
possible. As discussed before, two spacetimes (M™, g*)
can be matched if there exists a pair of embeddings
¢F: N== M= related to a matching map ® by
¢t = @ o ¢~. Moreover, the embedding and the rigging
on one of the sides (say the minus side) can always be
chosen freely. Suppose we enforce ¢p~ =1~ and take a
specific rigging ¢{~. Then we can build embedded

hypersurface data D &of {N.,y,¢,¢ (2),Y} by requiring

(2.17)—(2.18), i.e., by defining

£ () (g ()

e et 1o, _
7). Y ) ). G)
Thus, all the information about the matching is encoded in
¢ and the junction conditions are (2.54). These condi-
tions, although of a more abstract nature than (2.56), still
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codify the matching information in the pair {¢*, ("}, which
is not of abstract nature. In order to determine the matching
in terms of objects defined at the abstract level, we must
take one step further. The following theorem, based on the
existence of a diffeomorphism ¢ of the abstract manifold N
onto itself, sets up the corresponding construction.
Theorem 3.1. Consider two hypersurface dataD & {N,

7. .60 Y1, DY (N,7,2,7%,Y"} embedded in two
spacetimes (M™,g7), (M™T,g") with embeddings 1™,
m and riggings L~, LT respectively. Assume that
=(NV) A are boundaries of (M, g*) and let e+ =
+1 (resp. ¢t = —1) if L" points outward (resp. inward)
from M. Define ¢~ in the same way (i.e., e~ = +1if L~
points outward, ¢~ = —1 if inward). Then, the matching of
(M*, g*) across N is possible if and only if

(i) There exist a gauge group element G(,y) and a

diffeomorphism ¢ of A/ onto itself such that

g(z,V)<¢*?) =7 g(z.V)
G (@27 = £2;
(ii) sign(z) = —sign(e*)sign(e™).

Proof. The fact that D, D are embedded on (M=, g*%)
respectively means that

(¢*e) =2,
(3.2)

£ () * (g (L"),
def 1

O () (g~ (L~.L)). Y- =) Eeg), (33)
7 () * (g7, 2% () (g+ (L)),
P ) g L), VL g (34)

Since the spacetimes (M=, g*), the embeddings 1* and the
riggings L* are all given, the tensor fields in (3.3)-(3.4)
are known. To prove the first part of the theorem,
we start by assuming (i)—(ii). Thus, there exist a pair
{ze F*(N),VeI(TN)} and a diffeomorphism
¢ : N — N so that (3.2) holds. These conditions can

be rewritten as [recall (2.15), g(-zfv) =Gt —yv)]
P 7=G1) =G _n)(r) =1, (3.5)
'8 =G (8) = G () =S =1V, (30
P 2D = G, (60) = Gt ) (€2)
:g_zfiv) +7(V.V) (3.7)

Let us define the map ¢ &l o, the vector field
V' f(p,V), the function 7€ F*(N") given by
*((1M)*7) &' 2 and the rigging ¢+ & Z(LT 4 V') along

N By definition of 7/, it holds that sign(z) = sign(z’).
On the other hand, combining (3.5)—(3.7) with the fact

that D is embedded with embedding * and rigging L*, it
follows

7y =97 =9 (()*(g7) = (#)*(g"). (3.8)
£ =2 ¢ + (0" 7)(V.")
= 20* () *(g" (L7 ) + g7 (V"))
= () *(g" (")), (3.9)
00 = 2(p* 2% + 2(0* ) (V) + (9*7)(V. V)
= 2¢*((t)*(g" (L*. L*)
+2g" (L V') + gt (V. V)
= (¢")*(g" (C".01)). (3.10)

The data D is therefore embedded in (M™,g") with
embedding ¢ and rigging . Thus, conditions (2.54)
are satisfied for ¢~ =17, ¢™ = 1" o @ and for the riggings
¢~ = L7, {". Moreover, combining (ii) (which holds by
assumption), the definition of {* and sign(z’) = sign(z), it
follows

¢t = —sign(et)sign(e)|Z|(LT + V). (3.11)
It is straightforward to check that (3.11) implies that
whenever L~ points inward (resp. outward) then {* points
outward (resp. inward) irrespectively of the orientation
of L*. Thus, D is embedded in (M*, g*) and L=, {* are
such that one points inward and the other outward, which
means that the matching of (M™*, g%) is possible.

To prove the converse, we assume that the matching
is possible for two pairs {¢*,{*}. We have already
discussed the flexibility of selecting at will the embedding
and the rigging on one side (say the minus side). Let us
therefore set d)‘ =17,{ = L~. Since both L™ and ¢ are

riggings along N, there exists a pair {7/ € F* (N Ve
r (TN )} such that {* = Z/(L™ + V’). Moreover, one can

define a diffeomorphism ¢ : N'— N by ¢* oo,
But then one can follow the arguments of (3.8)—(3.10)
backward and prove (3.2) for a function z€F*(N)

defined by z % ¢*((r")*7). As before, sign(z) =
sign(z’) so both (" =Z(L"+V') and L' =
sign(z)|Z/|L" have the same orientation (because V' is
tangent to N ). By assumption the matching is possible,
hence L™, ¢ are such that one points inward and the other
outward. If L~ points inward (resp. outward) then
sign(z)L™ must point outward (resp. inward), so sign(z) =
sign(e™) (sign(z) = —sign(e™)) is forced. This means that
(i)—(ii) are both fulfilled. n

Remark 3.2. Theorem 3.1 does not impose any con-
ditions on the topology of the abstract manifold N, except
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for the very mild one that hypersurface datasets can be
defined on .
Remark 3.3. In Theorem 3.1 we have not restricted the

gauges of the datasets D, D (we let the two riggings L be
given, but no conditions have been imposed on them). Each

~

specific choice of L* will fix a particular gauge on D, D.
Moreover, Theorem 3.1 holds for datasets D, YAD of any

causal nature. In particular, D, D are not required to contain
non-null or null points exclusively.

Remark 3.4. As proven in [ [34], Lem. 3.6], given metric
hypersurface data {N,y,¢,#?} and a point p € N, the
gauge group elements leaving {N,y, ¢, #?} invariant at p
are (i) G(1 0|, if pis null and (i) {G(1 o)l p» G(-1.20)| , } If P
is non-null, where the vector #|, is obtained by raising
index to |, with the inverse metric y¥|, (which in that case
exists). Since gauge parameters {z,V} are smooth by
definition, it follows that when A/ contains a null point,
only the identity element of G leaves the whole metric
hypersurface data invariant. On the contrary, when A
consists exclusively of non-null points there exist two
gauge elements which do not transform the metric data. In
this last case, the rigging G(_; _»)({) corresponds [34] to
the reflection of { with respect to the tangent plane 7',¢p (')
at each point g € p(N).

In view of the above, when there are no null points on A\,
condition (ii) can always be fulfilled once (i) is granted.
Indeed, if there exists a gauge group element G y)
satisfying (i) then this also happens for G_; _»,) 0 G(.y) =
G(~z—2¢-v)- Thus, there always exists a suitable choice of
gauge parameter z for which (i) and (ii) hold.

On the contrary, when A contains null points only the
gauge element G, ) leaves the hypersurface data invariant,
which means that (i) can be fulfilled for a gauge group
element G, y) but z may have the wrong sign. This is the
underlying reason why the spacetime conditions (2.56)
provide one unique solution for {* for given {{~, @} (see
the corresponding discussion in Sec. II C).

Remark 3.5. In Theorem 3.1, we have expressed the
junction conditions as a restriction over two datasets and a
requirement on the sign of a gauge parameter. Theorem 3.1
therefore constitutes an abstract formulation of the standard
matching conditions. In particular, a remarkable advantage
of Theorem 3.1 is that it allows us to study different
matchings in two different levels. At the first level one takes

whatever hypersurface datasets D, D satisfying (i) and
studies its properties from a fully detached point of view. At
this level, the spacetimes need not even exist. The problem
can then move on and study whether or not one can
construct spacetimes in which these data can be embedded
so that condition (ii) holds. In other words, by Theorem 3.1
one can produce a thin shell of any causality with full
freedom to prescribe the gravitational and matter-energy
content, and then study the problem of constructing the

resulting spacetime (M, g) which contains it. This is of
great use, as it provides a framework to build examples of
spacetimes with thin shells of any type.

In the setup of Theorem 3.1, the matching riggings
are {L~, "}, where ¢ is of the form (3.11). This means
that the sign ¢~ coincides with the sign ¢ introduced in
Definitions 2.6 and 2.7. It is convenient not to fix the signs
€* (or the riggings L*) a priori because it may well occur
that transverse vectors L™ on each spacetime are already
privileged or have been chosen for whatever other reason.
The main point of the construction in Theorem 3.1 is firstly
that it provides a fully abstract description of the matching
and secondly that it keeps maximum flexibility so that one
can adapt Theorem 3.1 to any particular scenario.

IV. ABSTRACT FORMULATION OF THE
MATCHING PROBLEM: NULL BOUNDARIES

For the remainder of the paper, we focus on the case

when both D and D are null hypersurface data. Under these
circumstances, by Lemma 2.11 we know that there exists a
pair {z, V} ensuring that the second and third equations
in (3.2) are fulfilled. It follows that the only restrictions are
therefore condition (ii) in Theorem 3.1 and the first equality
in (3.2), namely

7 =7. (4.1)

Consequently, given two spacetimes (M*, g*) with null

boundaries N i, either there exists (at least) one diffeo-
morphism ¢ satisfying (4.1) or not. In the former case the
matching is possible (provided (ii) holds) and, as we shall
see next, all information about the matching is codified
by ¢.

From now on and without loss of generality, we again
make the harmless assumption that one of the boundaries
lies in the future of its corresponding spacetime while the
other lies in its spacetime past (see the discussion in [32]).
The following lemma provides the explicit form of the
gauge parameters {z, V} and of the matching rigging {* in
terms of the diffeomorphism ¢.

Lemma 4.1. Assume that conditions (i)—(ii) in
Theorem 3.1 hold for a pair of embedded null hypersurface

data D, D. Then, the gauge parameters {z, V} are given by

1 ~ P((p*?’,(p*?’) —40*2(2)
7= n.
4

= V=-P *f,' =
@ ?)n) O e m)

(4.2)

Moreover, the matching identifies the rigging L~ with the
following rigging in the plus side

CH=2(LY =i (0u (P(9*8, ) + uif (pun)).  (4.3)
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where 7' € F* (/t/ ), ueF (K/ ) are given explicitly by

* (V% (7)) = 1
o) =

(e _ P(qa*?, ?’*?) _4)*;/2(2) s
o* ()" (u) 20 P)) . (44)

Proof. The explicit form (4.2) for the function z follows
from contracting (3.6) with n and using (2.7). The vector
field V can be partially obtained also from (3.6) by

particularizing Lemma 2.3 for W =V, ¢ = z71¢ — (p*?’.
This gives

V= P(f—(p*?, ) + upn
Z
. ~ )
PP+ ( - —>

where 1 Ly (V) is a function yet to be determined. This
is done by substituting (4.5) into (3.7). First, y(V,V) =
0(V) = 7722 + P(¢*#, ¢*¥) because of (2.7)~(2.8) and
7! = (¢*#)(n). Thus,

. 2 (@ > xp
(p*f(z) _ - (7 - u0> + P(@p*€,p*¢)

(4.5)

Z
£ ~ o~ ~
= Uy = 7+§(P(go*t’,go*f) — 7%y (4.6)
so that substituting this into (4.5) proves (4.2).

Equation (4.3) is a direct consequence of (4.2) and the
fact that £ = /(LT + 1 (¢, V)). "
|

Whenever there exists a diffeomorphism ¢ solving
(4.1) and given a basis {n, e, } of [(TN\), it is possible to
obtain specific expressions for the push-forward vector
fields {@.n,pses}. This is done in the next corollary.
We use a hat for all objects defined in the dataset YA)
in particular P and # are constructed in correspondence
with (2.6)—(2.9).

Corollary 4.2. Assume that conditions (i)—(ii)) in
Theorem 3.1 hold for a pair of embedded null hypersurface
data D, D. Let {n, e,} be abasis of ['(T/N') and define the
covectors {W,} and the functions {4, ¥} along N by

P Wy Eylen).  waE Eley),
2 E ) wa) = WalaV). (4.7)
Then,
pen = ((¢7")*2) ", (4.8)
ppes =P(W,, ") +xmh, (4.9)

Moreover, it holds that IA’(WA, ?) =0 and @*yu) =
(@*€)(eq).

Proof. Consider any point p € N/. From (3.5) it follows
that ?((p*n,-)k,,(p) = ((P*?) (n")|p :y(n7')|p =0, so Pyl =
b for some function b € F(N). This, together with (4.2)
and £(n) = entails that z7'|, = (¢*#)(n)|, =
C(@x1)|y(p) = bly(p) = »*B,, which proves (4.8). On
the other hand, any vector field X e ['(TN\) satisfies

. (3.5)
Powen 0:X) ) = (@77) (e, X)|, =7 (ea, X)|, = 9™ Wa(X)],,
5 5 (3.6) ¥ W
f((p*eA)lq)(p) = <€0*f)(eA)|p = 7A - 7(6A7 V)'p = 7A - (p*WA(V) p
which means that 7(¢, e4.-) = Wy, Z(pyes) = ( *(z7'y4) — W@, V). Particularizing Lemma 2.3 for the data D
and for W = ¢, e,, 0 = W, and uy = (¢~ ")* (27 wy) — W4(@, V) yields (4.9). Finally, f’(WA,?) = 0 because

P(Wa. )|y = ~COWa(@)] ) =~ (07 2)Wal@un)]
=~ ((¢7)*2)| 7 (ea )|, =0,

while ya 00 =27y, — (@ W) (V) =z""ws—7(es.V)
(3.6)

= (9" 8)(e) vields @™y () = (9*2)(en). .
Remark 4.3. From (4.8) it follows that ¢ is a diffeor-

morphism which sends null generators into null generators.

Moreover, since the vector fields {W 4 def P(Wy, )} verify

= _p (( )*Z)L/,(,,)((/J*WA)(””p

2’(WA) = 0, it follows that W, & Rady. This, together with
the fact that ¢, is necessarily of maximal rank, force the
vector fields {W, } to be everywhere nonzero on V. In fact,
{A, W4} constitutes a basis of ['(TN), since {W,} are all
linearly independent. We prove this by contradiction, i.e.,
we assume that one such vector field, e.g., W,, can be
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decomposed as W, = > 5 ¢, W,. By (4.9), this would
mean that @, (62 - Z?=3 cret) = ()((2) - Z:=3 ct}(();))ﬁ’
which we know it cannot occur, because only null gen-
erators can be mapped to null generators.

The point of introducing the objects {Wy, x(4)} will
become clear later when we study the particular case
when the boundaries have product topology S x R. For
the moment, let us simply anticipate that in such case the

property P(W,, 2’) = 0 will allow us to conclude that the
vector fields P(W,,-) are tangent to the leaves of a

specific foliation of A~ while from P ra = (9*2)(e,)
we will conclude that the functions {y,} are actually
spatial derivatives of the step function introduced in
Sec. IIC.

One of the relevant results recalled in Sec. IIC is the
relation (2.63) between the second fundamental forms
of each side. It turns out that in this abstract frame-
work with no topological assumptions one can also recover
an equation of this form. To do that, we first note
that £4,7 = f£;y because 7 € Rady. By direct computation
one gets

~ def 1 (48)Z (352
U = §¢*(£ﬁr) = 5¢*(£¢*n7) = Er=2U
e
U
Syu=%"~, (4.10)
Z

which connects the second fundamental forms U, U

corresponding to the hypersurface datasets D, D.

Equation (4.10) generalizes (2.63) to the case of boundaries|

et |
2

gt 1

Y ) (Erg),  YOE

()" (€ g)

with any topology, and has several implications that we
discuss below.

In Theorem 3.1 we have seen that when the matching is
possible there exists a diffeomorphism ¢ verifying (4.1). In
such case, Lemma 4.1 and Corollary 4.2 provide explicit
expressions for the gauge parameters {z, V'}, the matching
rigging {* and the push-forward vectors {@.n, ¢ e} of
any basis vector fields {n, e, } in terms of the map ¢ still to
be determined.

However, as the reader may have noticed, condition (4.1)
does not fix ¢ completely, firstly because there can be more
than one diffeomorphism ¢ satisfying (4.1) and secondly
because the tensor fields y and 7 are both degenerate. As
happened in Sec. II C, where the step function could not be
fixed directly by the isometry condition (2.62) but (2.63)
was also required [32], here one also needs an extra
condition in order to fix ¢ fully. This additional restriction
is precisely (4.10). As in Sec. II C, this provides useful

information only when U and U are nonzero. If both are
zero then z [and hence part of ¢, recall (4.2)] remains
completely free. This means that one can find an infinite
number of diffeomorphisms ¢ verifying (4.1), with which
we recover (and extend to arbitrary topology) the property
that whenever the boundaries are totally geodesic then the
matching can be performed in an infinite number of ways.

One can obtain explicit expressions for the gravitational
and matter-energy content of a general null shell in terms
of the diffeomorphism ¢. This is done in the following
theorem.

Theorem 4.4. Assume that conditions (i1)—(ii) in
Theorem 3.1 hold for a pair of embedded null hypersurface

data D, D and let € = e~. Define

def 1
and YT = §¢*((1+)*(£§+g+)),

where {* is given by (4.3). Then, the tensor [Y] L y+ — Y- reads

A~ Z o~ o~ o~ o~
Yop) = 2(@*Y ) g + = (P(9* . 0" €) — 970\ U,y = Viu(0*),) = Yo,

2

o

where z€ F*(N) is given by (4.2). The components of [Y] in any basis {n, e, } of [(TN') are

[Y)(n.ex) = (9" Y7) = Y7)(n.en) = (£,0*E)(en) +

(4.11)
(P(¢*€.9*C) — 9* 07 )U(ey. ) — 26565V (97 ),
eA2<zZ) +s(es) + 2P(9*,U(es, ),
(4.12)

The energy-momentum tensor 7 is given by (2.48) in terms of the dual basis {q,0"} of {n,e,}, while the purely

gravitational content of the shell is ruled by the tensor

def €p
Y (ea. e5) = [Yl(ea. ep) + n_1

and {p, p,j} are defined as in Remark 2.16.

y(ea.ep). where p Z p+2P(a.j) + p(2£® + P(a.q))

(4.13)
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Proof. Applying Lemma 2.2 for V &t y(V,))=z71¢ - @* € [recall (3.6)] and u &f €(V) [cf. (4.6)] yields

Z
7£Vyab = f(2> +

e
2 2

P 2.0"2) = 9" 7%) YUy + V0 (22— (o2
(P(@™€.97€) —¢™C7) JUap + 2V — = (970))

Z2 R R e 1 o o ~
=5 (P@*2.9*2) = "2 Uap =~ (Va2 i) = V(a0 D)y, (4.14)

where in the last step we used that V&) = ~£@U,, [cf. (2.23)]. By hypothesis the matching of (M™*, g*) is possible, so
the datasets {N, ¢*7, qo*?, (p*?(z), (p*SA(Jr}, {N,y,8.¢ @), Y "} are embedded in (M, g") with embedding 1™ o ¢ and
respective riggings L+, ¢*. This, together with (3.2), entails that the tensors ¢* Y, Y are related by Y+ = Giov) (go*?J“),
where {z, V} are given by (4.2). Thus [cf. (2.16), (4.1)]

(36)

~ ~ 4 P dz
Y =20*Y" +dz®, (0* € +7(V.") + %«fvy Ww*Y + ?Z ®, €+ §£v7- (4.15)

Inserting (4.14) into (4.15) yields the explicit form (4.11).
We now obtain the components of [Y] in the basis {n,e,}, for which we recall that U(n,-) =0 and s(n) = 0.

Particularizing (2.27) for @ = ¢*# and using (4.2) gives

o e 1 o ~ —~ ~
nVi(* )y = 5£,(90*C), + 5%((40*1/”)(”)) — (¢*€)(n)s, — P*Up(¢*€),,.
1 ~ % zZ S .
= £,(¢*C), — =5 =L = P«U,.(¢*8),, (4.16)
2z Z
° 5 1 ~ n(z n(z
WY 0"y = 3 D)) 1 = =" @1

Combining (4.16)—(4.17) with (4.11) yields (4.12). The components of the energy-momentum tensor being given by (2.48)
is just the contents of Corollary 2.15. Finally, we prove (4.13) as follows. First, we note that the one-forms j (see
Remark 2.16) and # decompose in the basis {q,0} as

J=Jles)d”, C=q+2?(ey)0" (4.18)

because j(n) =0 and #(n) =1. Also by Remark 2.16, we know that the one-form j verifies [Y](n,e4) =
€(j(ea) — p€(ey)). Thus, a direct computation based on the decomposition (2.46) of the tensor field P yields

trp[Y] = P[Yop) = 5*%[Y](ea, ep) +2P(q,0)[Y](n, e4) + P(a.q)[Y](n,n)
= f)AB[Y](eA, ep) + 2€P(QJ(€A)0A - Pf(eA)eA) —epP(a,q)
= §2[Y](e4, ep) + 2¢P(q.j) + ep(2¢®) + P(a, q))

where we used that P(64,0%) = §*% (by Lemma 2.14), P(¢,-) = —¢n [cf. (2.8)] and (4.18) in this order. Taking into
account the definition of the energy density p [see (2.49)], one finds

52[Y](ea, e5) = —e(p +2P(a.j) + p(2£?) + P(a.9)) = = ep. (4.19)

Now, from (2.48) it is clear that the only part of [Y] that does not contribute to the energy-momentum tensor is the
Y-traceless part of [Y](es,ez). By Lemma 2.14, we know that ¥By(e,,ez) = n— 1. Consequently, [Y](e4,ep)
decomposes in a f-traceless and a h-trace part as
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L W Y](ere)

[Y](ea. e) = YO(eq. ep) n—1

y(eAv 83),

from where (4.13) follows at once after inserting (4.19).
Remark 4.5. We emphasize that we have not made

any assumption on the topology of the boundaries N -
in Theorems 3.1 and 4.4 or in Lemma 4.1. The results
above therefore describe the most general matching of two
spacetimes across null hypersurfaces and generalize the
results in [32,33], where the existence of a foliation on the
boundaries played an important role.

The gravitational/matter-energy content of the result-
ing null shell is given by Theorem 4.4, and the associated
energy density p, energy flux j and pressure p are given
by (2.49). The reason why we refer to Y®(ey,ep) as
the purely gravitational part of the shell is that only
the components [Y](n,n), [Y](n,e,) and the trace
P(6*,0°)[Y](e4, ep) contribute to the energy-momentum
tensor 7 [cf. (2.48)]. This means that even if 7
vanishes identically Y®(e,, e5) does not need to be zero.
Such a case corresponds to an impulsive gravitational
wave propagating in the spacetime resulting from the
matching.

Remark 4.6. By Lemma 2.14 we know that P(q,-) = 0 if
and only if #(e4) = 0 and #® = 0. In such case, the scalar
p coincides with the energy density p of the shell. In the
embedded picture, these restrictions amount to impose that
the matching riggings ¢* are null and orthogonal to the
vector fields ¢fe,. In particular, in the setup of Sec. I1C
this holds when the rigging {~ [chosen according to (2.57)]
is null and orthogonal to the leaves of the foliation on the
minus side [hence u; = 0, cf. (2.3)].

Remark 4.7. In Theorems 3.1 and 4.4 and Lemma 4.1, all
expressions are fully explicit in terms of the diffeomor-

phism ¢. The two datasets D, D are completely known
(because the embeddings * and the spacetimes (M*, &)
are given) and the rigging {* is determined by the pair
{z,V} given by (4.2) in terms of ¢. This is related to the
results in [32,33] summarized in Sec. II C, where the whole
matching depended upon the step function H and the
coefficients b{ , which in turn determined the matching
embedding ¢ [recall (2.59) and (2.60)] and the matching
rigging ¢t [according to (2.61)].

Expressions (4.12) involve the pull-back qo*?Jr, whose
calculation can be cumbersome in general. It is more
convenient to rewrite (4.12) in terms of pull-backs of
scalar functions referred to the data D and objects defined
with respect to D. We provide the corresponding expres-
sions in the next lemma.

Lemma 4.8. Assume that conditions (i)—(ii) in
Theorem 3.1 hold for a pair of embedded null hypersurface

data D, D and let € = ¢~. Define the tensors {Y~, Y, Y+}
as in Theorem 4.4, the covectors {W,} and the functions
{x@).-wa} along N according to Corollary 4.2 and the

vector field W, &f f’(WA, -). Let z be given by (4.2) and

{n, e, } be abasis of I'(TN') with dual basis {q,#'}. Then,
Egs. (4.12) can be rewritten as

[Y](n,n):%(p*(?*(ﬁ,ﬁ))—Y—(n,nH@, (4.20)

z (e ea(2)

22 +s(eq)

+2P(¢*?.U(e,.")). (4.21)

[Y](eq.e5) = Z(/’*(?Jr(WA, W) +Z(A)?+(ﬁ, Wp)
+)((B)§+(ﬁ’ Wa) +)((A))((B)§+(ﬁ’ i)

— Y (e ) — 2¢5ehV (07 0),)

o~

2 o~ ~
+ 5 (Plg™2.07) = 0" 7P\ U(ey. cp).
(4.22)

The energy-momentum tensor 7 is given by (2.48) in terms
of the dual basis {q,0"} of {n,e,}. _

Proof. Inserting (o*Y ") (X, V)|, = Y (g, X, ?+¥)p(p)
into (4.12) and using (4.8)—(4.9), Egs. (4.20)—(4.22) follow
at once. We already know from Corollary 2.15 that 7 is
given by (2.48). [

In Sec. VI, we shall recover the results of
Proposition 2.17 by particularizing Lemma 4.8 to the case

when the boundaries A~ have product topology.
Lemma 4.8 therefore generalizes Proposition 2.17 to
(null) boundaries of any topology, and determines the
matter-energy content of any null thin shell arising from
the matching of two spacetimes.

A. Pressure of the shell

In [32,33] we discussed the effect and the importance of
a nonzero pressure in a null thin shell. This, however, was
done in very specific contexts (namely in the matching of
two regions of Minkowski across a null hyperplane or for
matchings across embedded abstract Killing horizons of
order zero) and by following a nonfully geometric approach
(i.e., by analyzing the effect of the pressure in some specific
coordinates). Our aim in this section is to study the pressure
of a completely general null shell at a fully abstract level,
providing its explicit expression in terms of well-defined
geometric quantities and reinforcing the geometric inter-
pretation of [32,33].

In the following lemma we find explicit expressions for
the pressure p in terms of the surface gravities of various
null generators of A

Lemma 4.9. Assume that conditions (i)—(ii) in
Theorem 3.1 hold for a pair of embedded null hypersurface
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dataD = {N,7,2,6?. Y },D={N.7.2.7%,Y" } and
a diffeomorphism ¢. Define z by (4.2) and introduce

~

E n), & E-Y@0),

k, = — Y (n,

def 1 R
=2 (p*&, —n(2)).

(p*K(/,*n (4.23)

Then, the pressure p of the corresponding null shell is
given by
p = —¢(k, or, equivalently

=G0 (9*k,))

p= _G(Kn - (/)*K(p*n) (424)

where ¢ = ¢~ and V €I(TN) is a vector field that can be
chosen at will. In particular, the pressure vanishes if and
only if

G0 (9*k,) =k, or.equivalently ¢*k, ,=k,.  (4.25)

Proof. Recall that g— Q< —27) We start by notic-
ing that (2.39) 1mphes that Q ( n) = G o) (k) =

z(k, +¥) On the other hand, combining (2.49)
and (4.20), it follows

1 . n(z
P = _6(__(p*Kn + K, +Q)
Z Z

= - *i{‘n)

(g(z’] —zV) (Kn) —Q
(g(—zl‘_/) (Kn)

2 BN IO WA B IO

—Q*R,). (4.26)
Recalling the transformation law for € and p in (2.34) and
(2.51) this expression can be written as —Q(‘Zlv)(e p) =

Q(Zlv)( ) — @*k,. Applying G on both sides one

obtains the left part of (4.24). The right part of (4.24) is
an immediate consequence of inserting the definition (4.23)
of (p*K,/)*,, into the first line of (4.26), while (4.25) is proven
by setting p = 0 in (4.24). =

Remark 4.10. The last expression in (4.23) defines
a function Kp,n ON N. However, we still need to
justify this terminology. It turns out that «, , coincides
with the surface gravity of the vector field ¢,n with

respect to the hypersurface connection V constructed

from the data D. To prove this, we let 3 &ef (p™1)*z, so

that [cf. (4.23)]

(R, — (™")*(n(z))) and

where the right part follows from (¢.n)(3)],(,) = (9*d3)

lop
()], = (dgp*3)(n)],=n(z)|, = (¢7")*(n ())I¢ Then,
the combination of (2.37) and (4.8) glves

Vparen =19,(2) =1 (39,0285
é é 3 \3
:_l<§+(ﬁ,ﬁ) @)(M
$ 3

Remark 4.11. The gauge parameter V is completely
superfluous and plays no role in determining the pressure,
which is only influenced by the function z given by (4.2).
We keep V in the expression to emphasize this fact.

Remark 4.12. In [32,33], we have introduced the notion
of self-compression and self-stretching on the boundaries
of the spacetimes to be matched. We have seen that this
effect is completely ruled by the pressure, and that it has to
do with the differences in the acceleration along the null
generators of both sides. With (4.24), we recover the same
result but for the case of boundaries with any topology.

Indeed, the surface gravities «, and «,, , verify V,n = K,n

and V, ,p.n =k, ,p.n, so that the quantity —ep is
positive when k, > ¢*k,_ , (namely when the “acceler-
ation” of n is greater than that of ¢,n) and negative
otherwise. The only scenario where there exists no pressure
occurs when both surface gravities coincide, i.e., when the
accelerations of n and ¢, n are the same.

V. MULTIPLE MATCHINGS ACROSS
NULL BOUNDARIES

We have already seen that generically there exists at most
one way of matching two given spacetimes (M*, g%) (i.e.,
only one matching map @ or one single diffeomorphism ¢).
However, we have also mentioned that sometimes multiple
(even infinite) matchings can be performed (e.g., when both

second fundamental forms U, U vanish). In the language
of (2.54), this means that given a choice of embedding ¢~
and matching rigging {~ on the minus side, there exist
several embeddings ¢* for which the matching conditions
hold, and each embedding gives rise to a unique solution
for the rigging {* with suitable orientation.

In this section, our aim is to study the scenario of
multiple matchings. The idea is to assume that all infor-
mation about one of the matchings is known, in particular
its corresponding diffeomorphism ¢ and hence the

3Recall that the connections V, V of a dataset {N,y, .69
Y} verify VxZ =VyZ - Y(X,Z)n, VX, Z€T(TN).
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gravitational/matter-energy content. As we shall see, in
these circumstances one only needs to consider a single
hypersurface dataset D (instead of two) and it is possible
to provide explicit expressions for the jump [Y] and the
energy-momentum tensor z of any other shell in terms of
their counterparts of the known matching. These results
can be particularized to the case when the known
matching gives rise to no-shell (i.e., when it is such that
[Y] = 0). This precisely happens in all cut-and-paste
constructions, where (M=, g*) are two regions of the
same spacetime.

Our setup will be the following. We make a choice
{¢~, "} of embedding and rigging on the minus side and
consider two matching embeddings ¢, ¢*, each of them
satisfying (2.54) for two riggings ¢, £+ respectively. We
also assume that the information about one of the match-
ings is completely known, namely we let {¢*,C"}
be given.

From the spacetimes (M®*,¢*), we can construct
two hypersurface datasets D = {N,7, ¢, f(z),Y‘}, D=
{N.7, 2’ 2@, SA(+} and Theorem 3.1 ensures that we can
find two diffeomorphisms ¢, @ and two pairs {z, V}, {z, V}
for which (i)-(ii) hold. Even more, since the pair {¢*,C*}
is known, we can always make the choice {1t = q?ﬁ*, LT =
£t} so that {7, 2,29} = {y.#£.¢®} and § is the identity
map, i.e., » = I,. In these circumstances, using (2.7)—(2.8)

|

Z

Yol = (0¥ V") 5

(P(¢*€.9*€) — p*¢P)U,;, — Vi@ C)p) = Y,

in (4.2) yields 7 = 1 and V = 0. Making the same choice of
{t", L "} for the matching of ¢ transforms (3.2) into

G @) =7, Gun(@*€)=2C. G v)(p*¢?)=¢?),
(5.1)

and forces the embedding ¢ to be given by ¢ o = ¢™.
Equations (3.5)—(3.7) now read

£
Py =7, co*t’=z—}’(V7 s
£ 28V

while the expressions (4.2) for the gauge parameters {z, V}
become
1 P(p*€.p*€) —p*¢?
7=————, V==P(p*?," )+ n.
e T T )
(5.3)

It is important to emphasize that whereas ¢ = I, forces

the metric parts of D, D to be the same, the tensors Y™, Y"
do not coincide in general. We let [Y] Ly vy,
[Y] L y+ Y be the jumps codifying the gravita-
tional/matter-energy content of the null shells associated
to @ and ¢ respectively. Then, by (4.11) we know that [Y]
must be given by

e}

(5.4)

The jumps [Y], [Y] can actually be related, as we shall see next. Indeed, by defining the tensor

def

y — Zgo*?"r _?—F’

expression (5.4) can be rewritten as

2

z ° S
Yapl = Vap += (P(¢*C.0*C) — fﬂ*f(2)>Uab - Zv(a((ﬂ*f)b) + [Yap)-

2

(5.6)

Moreover, a direct calculation shows that the components (4.12) of [Y] in a basis {n, e, } of ['(T/\) can be expressed in

terms of Y as

[Yl(n.e) = Y(n.en) + [Y](n.e,) - % (£a0™€)(ea) +

2

[Y](ea.e5) = V(ea. ep) + [Y)(ea. ep) +%(P((ﬂ*fa 9*€) = p*¢@)U(ey, e5) — Zefxelév(a((ff)b)

(5.7)
4 | s(en) + P02, Ulen. ). (53)
(5.9)

Inserting (5.7)—(5.9) into (2.48) gives us the relation between the energy-momentum tensors z, 7 of the two shells.

Specifically, for the dual basis {q,@} of {n,e,} one finds [recall that §,, &f v(ea,ep)l
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(STEN

7(q.9) = #(q.q) —eh*? (3’<€A» ep) +

(P E.0"8) - " £@)U(er. cp) —zezezv<a<¢*t’>b>),

£(0.0%) = 7(0.0) + e () =5 610" E)en) + 5+ sley) + P2 Ulen.) ).

7(64,0°) = 7(0",0°) — P <y(n, n) + @)

2z

(5.10)

The results (5.7)—(5.10) turn out to be of particular interest when one of the matchings of (M¥, ¢*) gives rise to no shell. In
order to see this, let us assume that this is the case and take @ to be the diffeomorphism corresponding to the no-shell

matching. Then, [i(] =0 (.e., Y= Y") holds, which means that the tensor Y is given by [cf. (5.5)]

Y=zp*Y -Y".

Setting [Y] = 0 in Egs. (5.7)~(5.9) yields

[Y](n. e4) = Vln.e) =5 (£,0* ) en) +

2

Z o
[Y](ea.ep) = Y(ea. ep) + 3(1)((/)*5’7 P*C) - fﬂ*f(z))U(eA’ ep) — Zefxelb?v(a((p*t’)b)

Consequently, when a no-shell matching is possible, the
jump [Y] corresponding to any other possible matching
is given by (5.12)—(5.14) in terms of the data fields
{y,¢.¢®,Y"} and the diffeomorphism ¢. In other words,
knowing the information about the no-shell matching
automatically allows one to obtain the gravitational/
matter-energy content of the remaining matchings by
simply determining ¢. In particular, there is no need to
compute the new matching rigging {* or the tensor Y
to determine the shell properties. One simple needs to
compute the right-hand sides of (5.12)—(5.14) using (5.11).

We emphasize that (5.12)—(5.14) apply, in particular,
when (M®*, %) are two regions of the same spacetime
(M, g) and more than one matching can be performed.
Then, the existence of a no-shell matching is always
guaranteed, as one can always recover the full spacetime
(M,g) from the matching of (M=, ¢*). This in fact
occurs in all cut-and-paste constructions, which means
that (5.12)—(5.14) provide the matter content of a null shell
generated by any cut-and-paste matching procedure, as
long as the two regions (M=, g*) of (M, g) can be pasted
in more than one way.

We conclude this section by discussing a particular
situation of interest, namely the case when a null hyper-
surface data D = {N,y,¢,¢ @), Y~} can be embedded in
two spacetimes (M*, g*) with embeddings * (such that
1=(N) are boundaries of M¥) and riggings L* with the

(5.11)

(5.12)

“AC) 4 S(ew) + 2P9*2. Uler, ) (5.13)
(5.14)

|
appropriate orientation. This means that (M¥, g) can be
matched so that the resulting spacetime contains no shell
(because Y~ is the same for both spacetimes). We assume,
in addition, that D admits a vector field €€ T(TA') with
the property £zy = 0. The vector & defines a (local) one-
parameter group of transformations {¢,} of N satisfying

oy =7. (5.15)

We now prove that, for each value of ¢, the diffeomorphism
@, gives rise to a matching. First, we define gauge
parameters {z, V} according to (5.3) for ¢ = ¢,. Then,
it is immediate to check that (5.1) holds for ¢ = ¢,
and that z > 0 (because ¢, depends continuously on ¢
and (¢}_,¥)(n) = €(n) = 1). Therefore, conditions (i) and
(i) in Theorem 3.1 are both fulfilled (notice that, since L™
are matching riggings, one points inward and the other
outward, so (ii) is just z > 0) and indeed each ¢, corre-

sponds to a different matching. The jump [Y] Lhy+ _y-
where Y+ & Lo ((rH)*(£,,g")) [and ¢t is given by
(4.3)] rules the gravitational/matter-energy content of the
resulting shell. The vector field & generates a multitude of

new shells. The construction is further simplified when, in
addition to (5.15), it holds

oY =Y. (5.16)
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Then (5.11) implies

Y=(z-1Y", (5.17)
which simplifies the expressions (5.12)—(5.14) consider-
ably. One may wonder what is the final result when, in
addition, £ is the restriction to A/ of a Killing vector field &
on M~ (ie., ;& =¢) and £:L~ =0 is fulfilled (so that
(5.15) and (5.16) hold). It is straightforward to see that

Pt =¢, ACEEIAON (5.18)
which combined with (5.3) means that z =1, and V =0,
so Y = 0 [cf. (5.17)]. Moreover, one can easily check that
the terms in the right-hand side of (5.12)—(5.14) cancel out.
Thus, the procedure gives rise to another no-shell matching,
as one would expect because the transformation induced by
& does not affect in any geometric way the spacetime
(M, g7). This constitutes a nontrivial consistency check
of Egs. (5.12)—(5.14).

VI. NULL BOUNDARIES WITH
PRODUCT TOPOLOGY S xR

In order to connect the results in this paper with those
from [32,33] (see Sec. IIC), we now consider the case
when the boundaries of the spacetimes to be matched
can be foliated by cross sections. In particular, we shall
construct a step function H and provide explicit expres-
sions for the gauge parameters {z, V} [cf. (4.2)]. The results
for the jump [Y] will be then compared with their counter-
parts from Proposition 2.17.

Our setup for the present section is the following. We
consider two spacetimes (M=, g*) with null boundaries
N and assume that N have product topology S* x R,
where S* are spacelike cross sections and the null gen-
erators are along R. We select two future null generators

kiEF(TMi)l./'\V/i of N and two cross sections St C

N We then construct foliation functions v, € F(N ™) by
solving k*(v,)=1 with initial values v, | s+ =0. Finally,
the riggings L* are fixed by the conditions of being
orthogonal to the respective leaves {v, = const}, null
and scaled to satisfy ui © (Lt k) = 1

We assume that (Mi,gi) can be matched, so that
conditions (i)-(ii) in Theorem 3.1 are fulfilled for a
diffeomorphism ¢: N'— N verifying (4.1). This allows
us to take two embeddings *: N =~ M= and construct
the hypersurface datasets D = {N,7,?, f(z),Y‘}, D=

{N.7.2.2% Y'Y} according to (3.3)-(3.4). We also
introduce the functions

AZ () (02), vE(@H)*(v,) and HE g*v (6.1

on N. Since by construction 13 (n) = k=~ and i} (7) = kT
[recall (2.20)], it is immediate to check that {4, v} are
foliation functions of A/. Note that, also by construction,
the data satisfies

£=di, (P=0f=dv, P=0 (62
which has the following immediate consequences
n(A)=1, F=0, s=0, a(v)=1, F=0, §=0.  (6.3)

We now select vector fields {e,} tangent to the leaves
{4 = const} so that {n, e, } is a basis of I'(TN) satisfying
[n,e4] = 0. As before, we let & be induced metric on {4 =
const} and V" for its Levi-Civita derivative. In particular

— y(e4, ep) and we note that, for any f € F(N), we
can write e, (f) also as V%f. The pull-back of £ to the
leaves of constant 1 is zero, so £, = w4 = 0. This, together
with 7 =0 and (2.47), means that P = h*Pe, @ ep.
Observe also that

0 C = p*dv=d(g*v) =dH, ¢*2% =0, (6.4)
which in particular means that
P(p*?.) = P(dH,-) = h"B(ViH)e,.  (6.5)

Inserting these properties in (4.2) fixes the matching gauge
parameters to be

ViH
2n(H)

, V= hABVﬁH< n—eB>. (6.6)

The push-forward vector fields {@n, ¢.e,s} can also be

computed in terms of the function H and the vector fields

Wy &ef ?’(WA, -). The result is an easy consequence of

Corollary 4.2 and reads

pun = (¢~')* (n(H))n, (6.7)

Pxen =W+ (07)* (es(H))n. (6.8)

Observe that {W,} are tangent to the leaves {v = const}
(because by Corollary 4.2 we know that 0 = f’(WA, ?) =

~

(W) = Wy(v)). Let us now prove that n and Wy
commute.

Lemma 6.1. The vector fields 7 and W, satisfy
[ﬁ, WA] — O
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Proof. Define the functions 1 & (p7")*(n(H)) and y 4 ( 1)*(e4(H)), so that (6.7)~(6.8) can be written as
A=u"g,nand Wy = @,e, — y(ah. Thus,
(A Wy] = [u" pun.p.e] - (1. ayn] = u g, ([n.e4]) +u g e (n)pn —n(x))n
= u_z((p*eA(u) - (p*n()((A)))(ﬂ*n, (6.9)

where in the last equality we used [n,e,] = 0 and 2 = u~'¢,n. To prove the claim we just need to show that the last
parenthesis is zero. Indeed,

pxea(u) =@ n(ya) = (du)(@ieq) = (dy ) (@en) = *(du)(es) — 9* (dy(a))(n)
= (dp*u)(es) — (do*x(a))(n) = ea(n(H)) — n(es(H)) = e, n](H) = 0.

By Remark 4.3 we also know that {7, W,} constitute a el =n(H)k*, ex = e (H)kT + 1L (Wy), (6.11)

basis of ['(T/) and hence the vector fields o
where for simplicity we have dropped pull-backs affecting

{e def _ noo- def } {e+d§fl+((p n) e+d:efl+((p . )} functions. Given that {1; W, } are hnearly independent and
PR A ! AT TA T AT A tangent to the leaves {v, = const} CN they can be
(6.10)  decomposed in a basis {L, k", v)} of F(TM+)|X/+

. satisfying (2.2) as 1f W, = bBvj, with {bf} defining an

form basis of ['(T/N ™) respectively. Inserting (6.7)-(6.8)  invertible matrix. Moreover, b% are constant along the null

into (6.10) and using again that 1] () = k™, one obtains| generators as a consequence of Lemma 6.1:

0= [0 (@), te(Wa)] = [kF, bjvg] = kF (b)vy; = k7 (bj) = 0.

The matching rigging T, obtained by inserting (6.6) into (4.3) and using (6.7)—(6.8), (6.10)—(6.11), reads

et = n(lH) (L+ - hAngH<zi(WA) VhHH)) (6.12)

which one easily checks to be the same as (2.61) simply by noting that (in the notation of Sec. I C) our choice of L* entails
ui =1, ux =0 and that 1if W, = bEv} gives kA8 = nl/ (b=1)}(b71)E.

The expressions for [Y] are obtained as a particular case of Theorem 4.4.

Theorem 6.2. In the setup and conditions of Theorem 4.4 suppose further that the boundaries N can be foliated by cross
sections and define A, v, H € F (N ) asin (6.1). Let & be the induced metric and V” the corresponding Levi-Civita covariant
derivative on the leaves {4 = const} C . Then,

_ 1 o+ W?(ViH)(VH) 2 2 ;
[Yab] - I’Z(H) <(§0 Y )ab + 2[:1([_1) Uab _vava> _Yab‘ (613)

Let {e4} be vector fields in A such that {n, e, } is a basis adapted to the foliation {4 = const} and define W, by means
of (6.8). Then the components the jump [Y] can be written as

¥ 1) = () (V3. ) = ¥ () =" 0 (6.14)

~

hin LINgh
[Y(n, e4) = o*(Y' (2. W) + (ViH)o* (Y (2, ﬁ))_Y—(n,eA)_VA( (H)) h'ViH

n(H) + n(H) Uj(ea,e;s), (6.15)
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1

[Y]<eA9 63) = n(H)

—n(H)Y (es, ep) + 2n(H)

Proof. Equation (6.13) follows at once after inserting
(6.4)—(6.6) into (4.11). To obtain (6.14)—(6.16), it suffices

to particularize (4.20)—(4.22) for z~! = n(H), (p*? =dH,
2y = (@) (ea(H)), *2® = 0,5 = 0and P(¢*2, ) =
hB(V"H)ep and notice that £,(¢*¢)=£,dH=d(n(H)),

as well as e4ebV,V,H = VIVLH [see (2.53)]. n
Before establishing the connection between (6.14)—(6.16)
and the corresponding expressions in Proposition 2.17 we
need to relate hypersurface data quantities with the tensors
defined in (2.1).
Lemma 6.3. Let {N,y,€,¢?,Y} be {¢,}-embedded

in (M,g), k o ¢4 n the corresponding null generator and
Ky its surface gravity. Consider a transverse submanifold
S C N and assume that the gauge is such that the rigging ¢
is null and orthogonal to ¢(S). Then, for any basis {e, } of
['(TS) it holds [we identify scalars and vectors with their
images on ¢(N\)]
(@) &y ==Y(n,n),
() or(en) = Y(eq,n) +F(ey,n),
(©) K¥(eq.e5) = Uley. ep).
(d) ®<:(e(A’ eB)) = Y(eA’ eB)s

Remark 6.4. This result is a particular case of a much
more general analysis on the geometry of embedded
submanifold in a hypersurface dataset carried out in [38].
We include the proof for completeness.

Proof. Claim (a) follows at once from (2.14) and (2.38)
(note that here v = k). To prove (b) we compute

@l (2.25)

)
oc(es) = =9(V,, k.0)=9g(V., k) ="Y(ex.n) +F(e4.n).
Item (c) has already been stated after definition (2.21) and

(d) follows from

(Ve Coen) 2 = O (e, ).

u
We are now in a position where the comparison can be
made. We identify the vector fields {v;} introduced in
Sec. I C with the push-forward of {e, }, hence y; = 1 and
#; =0. On the other hand, y{ =1 and u; =g"(L*,
v) = (b1)BL(Wp) = (b=1)BWy(v) = 0, so the covector
g defined in Proposition 2.17 is simply g, = —V%H. The
vector X“ in (2.65) is in turn given by

W (ViH)(ViH)

(q)*(?*(WA, Wg)) + 2V H)g* (Y (3, W) + (VAH) (Vi H)g* (Y (3, 7))

U(eA,eB)—Vﬁng). (6.16)
|
WABVEHVEH
1 _ A1V A _ _pABTh
= 21 (H) , X hA*ViH. (6.17)
Thus, expressions (2.66)—(2.68) become
- _ St e n(n(H))
[Y](n.n) = —n(H)& + & n (i) (6.18)
N Vi(n(H
¥)ne5) = of (W) = 07(05) = (T3t =~ )
WBVRH ~
+WK_(UJ,’UL), (619)
1 -
[Y](e;.e;) = TH) <2(V?,H)62(Wj)) - K;(V?H)(V?H)
+ @l_{_(W(], W_])) - n(H)@E(U(_I, U;))
FBYI HVEH

KKk (1= 2=\ _ \7h\7h
20 (H) K= (v;,v7) V,VJH>.

(6.20)

Particularizing Lemma 6.3 to the sections {4 = const}
of D (with basis e,) and the sections {v = const} of D
(with basis W), and recalling that F = F=0 [see (6.3)],
it is straightforward to check that (6.18)—(6.20) coincide
with (6.14)—(6.16).

VII. CUT-AND-PASTE MATCHING:
(ANTI-) DE SITTER SPACETIME

We have already mentioned that (5.12)—(5.14) hold for
the specific case when the two spacetimes to be matched
are actually two regions of the same spacetime (and more
than one matching is allowed). In this section, our aim is
to provide an example of a cut-and-paste construction,
namely the matching of two regions of a constant-curvature
spacetime across a totally geodesic null hypersurface.
For previous works on the cut-and-paste construction
describing nonexpanding impulsive gravitational waves
in constant curvature backgrounds we refer e.g., to
[14,17,19,20,23] and references therein.

In any constant curvature spacetime (M, g) there exists
only one totally geodesic null hypersurface up to isometries

(see e.g., [45,46]). We denote one such hypersurface by N.
Then, one can always construct coordinates {U,V, x*}
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adapted to N so that the metric is conformally flat and

N {U = 0}, namely

= g—Agk where gy, = —2dUdYV + 5, pdx*dx5,
u
def A AB
U= l—i—E(ﬁABx xB =2UV). (7.1)

Here A stands for the cosmological constant, so A =0,
A > 0, A < 0 correspond to Minkowski, de Sitter and anti-
de Sitter spacetimes respectively. When A <0, the coor-
dinates {U,V,x"} cover a whole neighborhood of N.
However, for the de Sitter case one needs to remove one
generator of N because the topology of A/ is S™ x R while
stereographic coordinates only cover the sphere minus one
point. In this section, we will analyze the three cases A = 0,
A <0 and A > 0 at once with the matching formalism
introduced before.

The induced metric on \ reads dszﬁ(l + & 8apxtxP)2

S,4pdx"dx®, and obviously the topology of N is S x R, S
being a spacelike section and the null generators being
along R. Therefore, all results from Sec. VI can be applied.

Let us construct hypersurface data associated to N.
Since N is embedded on (M, g), there exists an abstract

manifold A/ and an embedding ¢ such that ((N) = N. We
can select 1 to be as trivial as possible by constructing
coordinates {4,y*} on N so that

1. N%K/

Ay — 1y =U=0,V=1x" =y). (7.2)
We also need a choice of rigging vector field ¢ along N.
For convenience, we set { = —u?d,, (observe that y? |;/ #0).

The corresponding null metric hypersurface data (2.17)
defined by {N,y,€,£@} is

5
y =" dy' @ dy”, ¢® =0,

Hy

£ =d, (7.3)

where v & ru=1 +&845y*y5. Observe  that
0, €Rady and #(9;) =1 imply that n = d,. Moreover,
F=0 and s =0 [cf. (2.10)—(2.13)] and U=0 as a
consequence of (2.11). The tensor Y is obtained from
(2.18). A simple calculation gives

A
—ﬂ(ldy/‘ ® dy? —2yBdy* ®, dJ).

Y pu—
%

(7.4)

Cutting the spacetime across the hypersurface {U = 0}
leaves two spacetimes (M*, g%) defined to be the regions
UZ0 endowed with the metrics

+
g:t — g_A’ZIk’ where g;ltlk d;f — ZdMidV:t + 5Ade1§tdx§:’
M

def A

pe =1+ E(‘sABxixi —2UVy). (7.5)

Obviously, the boundaries are N/ * = {U = 0}. These two
regions can clearly be matched so that the original
spacetime (containing no shell) is obtained. Moreover,
since N are totally geodesic we know that multiple
matchings can be performed. We therefore proceed as in
Sec. V, i.e., we let the two embeddings 1= be given by
* =1 and take {~ = —p2dy , {" = —pA oy, as the rig-
gings defining the no-shell matching, namely the matching
for which [Y] = 0. Any other possible matching will be
ruled by a diffeomorphism ¢ of A onto itself and it
will correspond to a different rigging {* along N "
Specifically, the hypersurface data corresponding to the
no-shell matching is D= {N,7,¢, f(z),Y}, where
{y.€,.¢@} and Y are respectively given by (7.3) and (7.4),
while the matter/gravitational content of the shell of any
other possible matching (ruled by ¢) is given by the jump

Y] ¥ v+ - Y with

1

def
Y Do (7).

(7.6)

From Sec. V, we know that there is no need to compute
the new rigging {* or its corresponding Y' to determine
the jump [Y], which is explicitly given by (5.12)—(5.14).
Consequently, we only need to worry about the diffeo-
morphism ¢. The only restriction that ¢ must satisfy is
@*y =y, which in coordinates reads

(0y00*)(0,0 %) 845 _ 5358648
(I +8&6u9'0") (A +56,0"y)?

(7.7)

It follows that the components {¢"} cannot depend on the

coordinate 4. In particular, if we let {h*(y®)} be a set

. . . 2 n+1
of functions such that (a) the Jacobian matrix %

has nonzero determinant and (b) {h*(y®)} verify (1+
561y ) 26cp = (14 {561,h"h)72(0,ch*) (9,0 h®) 4,
any diffeomorphism ¢: N — N of the form
o N — N
(A Y%)— p(2.y%) = (H(2.5%). B* (%))

with 0;H # 0 fulfils ¢p*y = y. A particular simple example
is {h* = y*}, but many more exist. In fact since the metric

(7.8)

on any section of N is of constant curvature, it is also
maximally symmetric (and of dimension n — 1) so 4% (y?)
can depend on n(n — 1)/2 arbitrary parameters. For any
possible choice of {#*(y?)} and an arbitrary step function
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H(2,y*), the gauge parameters z and V are given by (6.6)

for {n = 0,,e4 = 0,4 }. In the present case the tensor Y is

given by Y = n(lH) @*Y =Y [cf. (5.11)], so we need to

compute the pull-back ¢*Y. Defining ji 2 1 + 85657 h",
from (7.4) and (7.8) it is straightforward to get

_ Asyh' o' oH

*Y),, =0, *Y),s = , 7.9
AS 0H oh!  oh' oH oh! on’
(@*Y)yy0 = P S AFB T3 asE | TG F
Ofi ay” oy® ~ dy” dy ady” dy
(7.10)

so that, multiplying (7.9)~(7.10) by ﬁ and subtracting Y
[cf. (7.4)] yields

A8y (' on' shy’
- 0’ B = - 3 R
i b 6 </w oty
Vs — A8y, (hf (aH oh! N on! 0H>
Y 6n(H) \ay \oy* oy® oyt ay®
H on' on’ 8852
-+ AL n(H)>. (7.11)
fiy 0y” Oy 1%

Inserting these expressions into (5.12)—(5.14) and using
n=29d, s§=0, U=0 together with the identity
(£a0™€)(en) = (£4dH)(e4) = d(n(H))(ea) = es(n(H))
(here ¢*¢ = dH by (6.4) and £ = ¢), one finds

_ _n(n(H)) _ Vi(n(H))
[YM] - n(H) ’ [Y/lyA] - y/lyA - An(—H)’
[Yyrys] = Yy = VivsH (7.12)

n(H)

which can be interpreted as the sum of the jump correspond-
ing to the matching of two regions of Minkowski across a
null hyperplane (see Ref. [32], Eq. (6.6)) plus the contri-
bution of the tensor Y. Observe that A = 0 entails Y = 0, so
in this way we recover expressions (6.6) in [32] for the most
general planar shell in the spacetime of Minkowski.

A direct computation that combines the definitions
(2.49), (7.3), and (7.12) yields energy-density, energy flux

and pressure (note that here we need to take ¢ = —1)
j= M/Z\/éAB (v%f(n—g;])) — yi),3> Oya,
p= —";”((;)) : (7.13)

Observe that only the pressure is independent of the value
of the cosmological constant A (p and j depend on the
conformal factor u,s and on ). The pressure p takes the
same value for the matchings of two regions of (anti-)de
Sitter or Minkowski (in fact, p coincides with the pressure
obtained in [[32], Sect. 6]. In particular, in the case
h* = y* (i.e., when the mapping between null generators
of both sides is trivial), then ;s = 0 [cf. (7.11)] and (7.13)
simplifies to

h7h
o= (=S
hn
J=myot VBn((ISVI)l’)> Oy
__n(n(H))
p=- n(H) (7.14)

In the cut-and-paste constructions corresponding to
constant-curvature spacetimes, the so-called Penrose’s
Jjunction conditions (see e.g., [20,23]) impose a jump in
the coordinates across the shell. This jump is of the form
Vily,—o=V-+Hx)y . In the present case the
matching embeddings ¢y~ =1 and ¢ = 10 ¢ are given by

d=(AyE) = (U_ = 0,V_ = 1, x1 =),
BT = Uy =0V, = HY) = 1 (2)),

so the step function corresponding to Penrose’s jump is
H(A,y") =2+ H(), HEF(N). In order to recover
such an H, one needs that there is no energy flux and
no pressure on the shell. Indeed, imposing this in (7.14) and
integrating for H yields H(4,y') = ad + H(y*), where
H e F(N) and a is a positive’ constant. Thus, in this more
general context with arbitrary cosmological constant, the
Penrose’s jump still describes either purely gravitational
waves (when p, j and p are all zero) or shells of null dust
(when j and p vanish but p # 0), analogously to what
happened in [ [32], Sect. 6] for the Minkowski spacetime.
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“In the present case, ¢~ point inward with respect to (M~ g~), s0
¢ points outward. In these circumstances, condition (ii) in Theo-
rem 3.1 imposes sign(z) = —sign(et)sign(e) = —(+1)(-1)=+1.
This, together with (6.6), means that n(H) > 0 necessarily, i.e.,
a>0.
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