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The gravitational waves emitted (some time) after two black holes merge are well described
by the theory of linear perturbations on a spacetime characterized by the mass and spin of the
remnant. However, in the very early stages right after merger, both the mass and spin are changing. In
this work we explore, in a setup based on Vaidya’s spacetime, the dynamical consequences of a change of
mass in the spacetime due to the accretion of null matter (for example, gravitational waves). We show that
accretion imprints time-dependent frequencies and amplitude to a ringdown waveform, and we show how
to model accurately this effect in certain regimes. We also comment on the direct emission of gravitational
waves due to perturbations in the infalling matter, which is of relevance for black holes embedded in
astrophysical environments.
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I. INTRODUCTION

The gravitational wave (GW) emission some time after
the merger of two astrophysical compact objects is well
described by the propagation of linear perturbations on the
geometry of a single Kerr black hole (BH) [1,2]. Such a
ringdown process is characterized by a superposition of
damped sinusoids, known as quasinormal modes (QNMs),
whose complex quasinormal frequencies (QNFs) depend
exclusively on the mass and spin of the BH [2–7]. Black
hole spectroscopy is therefore a particularly interesting
prospect for testing general relativity (GR), since the
detection of more than one QNM would allow to test
GR predictions [8–10].
To date, there are accurate waveforms capturing the

ringdown [11–18]. However, these model the early post-
merger stage in a phenomenological way, by allowing a
sufficiently large number of fitting parameters, thus not
discerning the physical nature of the effects (nonlinear-
ities, changes in mass and or spin...). This makes it
difficult to extend these models to more generic situations,
as well as to perform targeted tests of GR, or even to
generalize them for beyond GR theories. Thus, it is
necessary to improve our physical understanding of the
early postmerger phase in order to test GR accurately and
minimize systematic errors [19–22].
The regime of validity of linearized perturbations, i.e., of

a waveform based on a superposition of damped sinusoids

with constant frequencies and amplitudes, is restricted to
several cycles after the merger [23–29]. Therefore, most of
the analysis only consider a linear perturbation theory
based model after t ∼ 10–15m after merger, withm the final
BH mass [15,30–35]. The underlying reason is that the
hypothesis that spacetime is a Kerr BH superposed with
some small perturbation is not correct in the early times
after the merger. For instance, in [28] it was shown that the
“Kerrness” measures show significant deviations from the
exact Kerr spacetime shortly after merger. In a similar vein,
it was shown that the outer common horizon formed after
the head-on collision of spinless BHs increases its area by
several percent in the early ringdown stages [36]. The fact
that the remnant’s mass and spin change significantly after
the merger were already observed since the first numerical
relativity breakthroughs [24,37].
Delaying the starting time of the fit comes at a significant

statistical cost, since the signal to noise ratio decays very
quickly after merger. One way forward consists on under-
standing nonlinear effects that could be important once the
two BHs merge. Nonlinearities have been shown to lead to
turbulence, even for small perturbations of BHs in asymp-
totically anti–de Sitter spacetimes [38,39], and there are
some insights indicating that it could play a role also in the
dynamics of asymptotically flat BHs [40]. Non-linear
effects have been identified also in the scattering of waves
in BH spacetimes [41,42] in head-on collisions of BHs
[43,44], and recently in the ringdown stage [25,44,45].
There has been recent activity regarding modelling one
such nonlinear effect, which is the presence of quadratic
QNMs (second order combinations of QNMs), which are
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the leading contribution in some higher harmonics for
quasicircular binary coalescences [46–52].
Given the violent merger process, leading to consider-

able luminosities in GWs, accounting for the changing
mass and spin in the early stages of the ringdown is
necessary in order to have waveform models that accurately
describe the early postmerger stage. It turns out that a
dynamically changing BH mass and spin can excite a
plethora of modes [53] (see also [54,55]). The analysis of
these effects has been performed focusing on scalar fields
in anti–de Sitter space, thus providing only a qualitative
picture and guide for how would the mechanism work in
asymptotically flat space, where the structure of infinity
and the dynamics are drastically different. It is therefore
important to include asymptotically flat BHs in the frame-
work. Previous studies in that direction had been performed
in a fully nonlinear setup [56], anticipating that the
amplitudes and the frequencies of the ringdown oscillations
are modulated due to accretion. We will significantly
improve and extend previous studies, by considering a
setup where backreaction due to absorption can be mod-
elled exactly, at the cost of restricting to configurations that
are close to spherical symmetry.
More precisely, we consider linear fluctuations of

gravitational and pure radiation fields around Vaidya’s
spacetime, the latter being an exact solution to Einstein’s
equation describing accretion of radiation by a BH. This
setup allows us to discuss in detail the effects of the mass
change in the ringdown waveform. The simplicity of our
background comes at a price. We are only able to describe
infalling radiation that (i) can be modeled in the eikonal
approximation, and (ii) is almost perfectly spherically
symmetric. In particular, we provide a model that, by
coupling the amplitudes, frequencies and phases to the
evolving mass of the BH, is able to accurately capture the
whole waveform, even in regimes where the timescale of
the mass change is comparable to the oscillation frequency
of the QNMs. An open question which we are also able to
answer—in the negative—concerns possible echoes of
GWs [57,58], caused by reflections off the infalling matter.
We find no evidence for such a phenomena within our
setup. Previous studies of perturbations on Vaidya space-
time [59,60] were restricted to scalar perturbations, which
do not couple to neither the gravitational nor the pure
radiation fluctuations. These studies already showed the
coupling between the ringdown frequencies and the
instantaneous mass of the BH. A Teukolsky-like equation
for gravitational perturbations on the Vaidya spacetime
was obtained in [61], but solutions where only explored in
the case of mass profiles changing linearly in time. In this
work we consider fluctuations on an exact, accreting
background solution. By using the perturbation theory
approach of [62], specialised to double-null coordinates,
we are able to show that the dynamics of the radiation and
gravitational fields in the axial sector is governed by a

simple system of equations, (21) and (22). This frame-
work allows us to uncover the coupling between gravity
and null matter fluctuations, as well as to provide heuristic
and accurate models of the ringdown signal on a Vaidya
spacetime.
The paper is organized as follows: first, in Sec. II we

provide a simple heuristic argument that nevertheless
captures some of the main features of ringdown in an
accreting spacetime. In Sec. III we discuss the exact
framework that we will be working with (gravitational
perturbations in Vaidya spacetime), obtaining the master
equation describing axial perturbations and discussing our
numerical methods. We study our solutions in Sec. IV,
including extracting the mode content from the signal and
finally proposing a novel waveform model based on time-
varying amplitudes and frequencies, which captures better
the waveform in the presence of accretion. We summarize
our findings in Sec. V.
In the following we use geometric units G ¼ c ¼ 1,

spacetime indices in 4-dimensions are labelled with greek
letters μ; ν;… ¼ 0;…; 3, lower case roman letters are used
to denote indices in the Lorentzian 2-dimensional sphere
sheaves a, b ¼ 0, 1, and upper case letters label coordinates
in the 2-sphere A; B ¼ 2, 3.

II. HEURISTICS

As a first exercise, we consider a simplified problem
that may, however, illustrate some of the main features of
BH relaxation in the presence of accretion. In particular,
we will deal with the case of a very quick accretion
process. The regime of very slow or adiabatic accretion
presents additional difficulties due to the presence of
possible secular effects, and we leave its study for
future work.
Take a BH with initial mass m1 relaxing in a ringdown

process. The metric perturbation h can be recovered

uniquely1 from the Weyl scalar Ψ½1�
4 ≡Ψ½1�, where the

“[1]” superscript refers to the metric perturbation around
the BH with mass m1, and for simplicity we take it as a
pure quadrupole QNM, with angular number l ¼ 2. The
time evolution of modes with any angular number m is
identical, by virtue of the spherical symmetry of the
background.
Now consider that at some time, t1, the BH undergoes an

“instantaneous” mass increase m1 → m2 with m2 > m1.
Then, the evolution of the Weyl scalar at t > t1, denoted by
Ψ½2�, is governed by the wave operators of the BH with

mass m2, O
½2�
s¼−2Ψ½2� ¼ 0, subject to the initial conditions at

t1 given by a QNM of the BH with mass m1, that is,
Ψ½1�ðt ¼ t1Þ. At intermediate times t > t1 the solution can

1Up to gauge redundancies, and for propagating modes, i.e.,
modes with l ≥ 2. Changes in the mass and spin of the BH need
to be worked out separately [63,64].
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be approximated by a superposition of QNMs ψ ½2�
n of the

larger BH2

Ψ½2�ðt; rÞ ¼
X∞
n¼0

c½2�n e−iω
½2�
n ðt−t1Þψ ½2�

n ðrÞ; ð1Þ

where c½2�n are excitation factors to be determined from the

initial conditions at t ¼ t1, ω
½2�
n are the QNFs of the BHwith

mass m2 and ψ ½2�
n are the radial wave functions of the

QNMs with frequency ω½2�
n . In [66] (see also [53]) it was

shown that such QNM excitation coefficients can be
computed from the initial conditions by projecting them
onto QNMs using a bilinear form, denoted ⟪·; ·⟫, with
respect to which QNMs with different frequencies are
orthogonal. We provide a summarized discussion of this
bilinear in Appendix A. In particular, if Ψ½1�ðt ¼ t1Þ are the
initial conditions, then we can write

c½2�n ¼ ⟪Ψ½1�ðt ¼ t1Þ;ψ ½2�
n ⟫

⟪ψ ½2�
n ;ψ ½2�

n ⟫
: ð2Þ

Now if for simplicity we take the initial perturbation to
consist only of the fundamental mode (n ¼ 0), the solution
at all times can be written as

ΨðtÞ ¼ A0

8<
:

e−iω
½1�
0
tψ ½1�

0 ; t < t1;P∞
n¼0 e

−iðω½1�
0
−ω½2�

n Þt1C0ne−iω
½2�
n tψ ½2�

n ; t > t1:

ð3Þ

Above we have defined the mixing coefficients Ckn,

Ckn ¼
⟪ψ ½1�

k ;ψ ½2�
n ⟫

⟪ψ ½2�
n ;ψ ½2�

n ⟫
: ð4Þ

Thus, at late times we can observe two distinct effects: (i) the
off-diagonal termsC0n excite overtones of the final BH from
the initial fundamental mode. This can be seen as an
absorption induced mode excitation (AIME) effect [53].
(ii) The diagonal term, C00, can be generically different than
1. This results in a renormalization of the amplitude of the
fundamental mode, a similar effect to that of second order
perturbation theory [47]. We refer to this process as a
decoherence effect, since in practice the absorption is causing
the initially coherent signal of a single mode to become a
superposition of several modes, with different amplitudes.
We can then quantify which fraction of the initial QNMs

amplitude projects into the fundamental mode of the BH

after accretion, and which fraction is transmitted into
certain number of overtones through AIME. We define
the decoherence factor Q as

Q≡ C00 − 1 ¼ ⟪ψ ½1�
0 ;ψ ½2�

0 ⟫

⟪ψ ½2�
0 ;ψ ½2�

0 ⟫
− 1: ð5Þ

This factor estimates how different is the amplitude that we
would measure of the fundamental mode before and after
accretion. Figure 1 shows that the decoherence grows
approximately linearly with the change of mass δm ¼
m2 −m1 (although higher order terms become important as
δm becomes larger), consistently with [53]. Moreover, the
decoherence degree can be as large as ∼10% for an
accretion process where the mass changes only by a few
percent. Although we will discuss in Sec. V in more detail
the phenomenological implications of our work, this
already suggests that absorption can have a large effect
in the amplitude evolution of QNMs.
The mass transition considered in this section is “instan-

taneous,” and thus should only be regarded as an illustrative
example. In what follows we consider instead a physically
well-defined setup, where the effects of accretion on GWs
are incorporated nonperturbatively.

(a)

10–2

10–1

(b)

10–2

10–1

10–3 10–2 10–1

FIG. 1. Decoherence factor Q ¼ jC00 − 1j as a function of the
relative change of mass δm=m2. (a) Absolute value jQj. (b) Argu-
ment, defined asQ ¼ jQje−iArgðQÞ. For comparison, we show the
fit to a line of the form αδm, where we find after fitting m2α ∼
4.19� 0.13 and m2β ¼ 5.07� 0.03.

2This way of writing the fluctuation is very suggestive for the
ongoing discussion, but one should bear in mind it is only an
approximation to the exact solution, that does not capture neither
the direct emission nor the power-law tail contributions [65].

RINGDOWN OF A DYNAMICAL SPACETIME PHYS. REV. D 109, 044048 (2024)

044048-3



III. FRAMEWORK

The aim of this work is to explore the effects of accretion
on the free oscillations of a BH. To do so we will consider
fluctuations of exact solutions of GR that describe BHs
accreting high frequency radiation, e.g., a GW. This setup
allows us to account for the nonlinear interactions between
gravity and infalling radiation, while retaining the relative
simplicity of perturbation theory.

A. Pure radiation fields and Vaidya spacetimes

A pure radiation field, or null dust [67], is a spacetime
satisfying

Gμν ¼ ΦKμKν; KμKμ ¼ 0; ð6Þ

where Kμ and Φ are a null vector and a function.
Conservation of the energy-momentum tensor (an imme-
diate consequence of (6) implies that Kμ is geodesic, and
without loss of generality, by simultaneous rescalings of Φ
and Kμ, it can be chosen to be affinely parametrized

Kμ∇μKν ¼ 0: ð7Þ

Physically, this is a spacetime describing the high-
frequency (eikonal) approximation to unpolarized radia-
tion, with energy density Φ, propagating along the null
direction Kμ. This class of spacetimes was introduced by
Vaidya [68], and have proved useful in a wide range of
physical scenarios ever since.
In double-null coordinates ðu; v; θ;ϕÞ, the spherically

symmetric line element reads [69]3

ds2 ¼ −2fðu; vÞdudvþ r2ðu; vÞdΩ2; ð8Þ

which are well-defined coordinates as long as fðu; vÞ ≠ 0.
Above, r is the area radius function, and dΩ2 denotes the
metric on the unit round 2-sphere. Without loss of general-
ity, Kμ can be taken to point along one of the null
directions, say K ∼ ∂u. Then, up to rescalings of Kμ that
depend on v only, Eq. (7) fixes

K ¼ 1

fðu; vÞ ∂u: ð9Þ

The remaining equations do not fix the solution completely,
and allow the free choice of a “mass-profile function”mðvÞ
(in terms of the Riemann tensor, m ¼ 1

2
r3 Rθϕ

θϕ) [70].
Restricting to mass profiles with ∂vmðvÞ ≠ 0, Einstein’s
equations can be reduced to a transport equation for rðu; vÞ
along ∂v (the direction transverse to the null dust Kμ),

∂vr ¼ −ε
�
1 −

2mðvÞ
r

�
; ε≡ −

∂vmðvÞ
2j∂vmðvÞj ; ð10Þ

which has a unique solution once an initial condition
rðu; v0Þ is prescribed. Then, the functions f and Φ are4

f ¼ 2ε∂ur;

Φ ¼ −4ε
∂vm
r2

¼ 2
j∂vmj
r2

: ð11Þ

Notice that the second of these equations implies that the
weak-energy condition holds automatically. We shall
restrict to solutions with f > 0 in the regime of validity
of the double-null coordinates, and fix the time orientation
by declaring Kμ in (9) to be future-oriented (so that ∂u and
∂v are future-oriented, too). Along the trajectories of Kμ the
area-radius function rðu; vÞ varies according to

Kμ∇μr ¼ 2ε: ð12Þ

Therefore, increasing (ε < 0) or decreasing (ε > 0) profiles
of mðvÞ correspond to ingoing or outgoing pure-radiation
fields, respectively. We will consider smooth mass profiles
that interpolate between constant initial and final values

mðv → �∞Þ ¼
�
m1; v → −∞
m1; v → þ∞

; ð13Þ

and will choose the asymptotic condition for the flow
equation (10) of rðu; vÞ as follows. At a slice v ¼ vmax,
where vmax ≫ 1 is taken large enough to achieve the
condition

����m2 −mðvmaxÞ
m2

���� ≪ 1; ð14Þ

we demand that rðu; vmaxÞ satisfies

rðu; vmaxÞ ¼
m2 −m1

jm2 −m1j
vmax − u

2
ð15Þ

−2mðvmaxÞ ln
���� rðu; vmaxÞ
2mðvmaxÞ

− 1

����: ð16Þ

This choice allows us to interpret ðu; vÞ, at large v, as the
usual retarded and advanced times corresponding to the
asymptotic state of the Vaidya background. The future
event horizon and future null infinity are located at u → ∞,
v → ∞, respectively.
Before considering a specific example, we notice that

given an ingoing pure-radiation solution associated to

3The factor 2 is perhaps unconventional, but we choose to
include it to follow the convention of [59,69]. For the Schwarzs-
child geometry with mass m, 2f ¼ ð1 − 2m=rÞ.

4We have implicitly made some nongeneric choices in reduc-
ing the equations of motion to (10) and (11) [70], but the class of
solutions considered here are general enough for our purposes.
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rðu; vÞ with increasing mass profile mðvÞ (i.e. where
f;Φ; K… are constructed from rðu; vÞ and mðvÞ using
the equations above), there is an outgoing pure-radiation
solution associated to r̃ðu; vÞ≡ rð−u;−vÞ with decreasing
mass profile m̃ðvÞ≡mð−vÞ.
As a case study, consider a mass function of the form

mðvÞ ¼ m1 þ
m2 −m1

2

�
1þ tanh

�
v − v1

τ

��
; ð17Þ

where the mass increases from m1 → m2 in a timescale
controlled by the parameter τ. This allows us to easily
model different kinds of situations: ranging from the almost
adiabatic increase of mass to very sudden changes.
Integrating Eq. (10) numerically subject to condition
(15), one finds a solution that describes a spherically
symmetric BH increasing its mass from m1 to m2, as
illustrated in the diagram in Fig. 2.

B. Linear fluctuations

Fluctuations of pure radiation fields consist of a gravi-
tational perturbation hμν and the matter fields perturbations
δΦ and δKμ, governed by Eq. (6) linearised on the
background introduced above. While our background is
spherically symmetric (and thus axial and polar sectors of
the fluctuation decouple, see Appendix B), the fact that it is
not vacuum entails a coupling between hμν, δΦ, and δKμ

that makes the analysis considerably more involved. Here
we follow the covariant and gauge-invariant approach put
forward in Ref. [62] to handle spherically symmetric
background spacetimes with arbitrary matter content,
which builds on previous groundbreaking work [71–76].
We shall simply report the master wave equations, and refer
the interested reader to Appendix B and Ref. [62] for
details.

Being concerned mostly with free oscillations of BHs, in
this work it will suffice to restrict to the axial sector of the
fluctuation. As shown in Appendix B, after projection into
spherical harmonics this sector is governed by two gauge-
invariant master variablesΨðu; vÞ and ṽðu; vÞ, encoding the
gravitational and matter degrees of freedom respectively.
These are subject to two coupled equations, following from
the (linearized) Einstein’s equation and the conservation of
the energy-momentum tensor,5

r2∇aðr−2∇aðrΨÞÞ − lðlþ 1Þ − 2

r
Ψ ¼ r2εabKb∇aðΦṽÞ;

Ka∇aðr2ΦṽÞ ¼ 0: ð18Þ

In double-null coordinates, evaluating the above equations
on the background implies that we can substitute the
derivatives of rðu; vÞ by

∂vr ¼ −ε
�
1 −

2mðvÞ
r

�
; ð19Þ

∂ur ¼
fðu; vÞ
2ε

; ∂
2
uvr ¼ −

mðvÞfðu; vÞ
r2

: ð20Þ

Remarkably, the second of Eq. (18) can be solved exactly
for ṽ, giving

ṽ ¼ FðvÞ
r2Φ

; ð21Þ

where FðvÞ is a free function of v, which corresponds to an
initial condition for ṽ. In parallel, the first equation in (18)
gives

�
∂
2
uv −

f
r

�
3mðvÞ
r2

−
lðlþ 1Þ

2r

��
Ψ ¼ 2f

r2
εFðvÞ; ð22Þ

which is the master wave equation we are seeking for. In a
static background of mass m one recovers the classic
Regge-Wheeler equation (in particular, the only consistent
choice in that case is FðvÞ ¼ 0, as follows from (21) and
the fact that for constant m one has Φ ¼ 0).
Equations (21) and (22) are one of our main results.

Matter perturbations are completely determined once FðvÞ
is prescribed and do not depend on the gravitational
perturbationsΨ. Axial GWs, on the other hand, are sourced
by matter fluctuations in a very simple way. We can
contrast this behavior to axial perturbations of perfect
fluids in stationary backgrounds [54,77–80], where the
gravitational fluctuation satisfies an homogeneous equa-
tion. In the other extreme are polar fluctuations (not

FIG. 2. Lines of constant u for the mass profile (17), with
m2 ¼ 1.5m1, v1 ¼ 5, and τ ¼ 0.5. The red line shows the
evolution of the mass profile 2mðvÞ. Lines below this mass
profile have always r0 < 0 and fall inevitably towards the
singularity.

5Here, lower case latin indices run from 0 to 1, and all the
geometric pieces (such as the volume form εab and covariant
derivative ∇a) are associated to the metric gab induced on
surfaces of constant spherical angles (see Appendix B).
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considered here) which couple efficiently to the matter
sector even in static spacetimes [79,80]. Thus, results (21)
and (22) are an interesting outcome of dealing with a
special type of matter, null radiation, in a nonstationary
background.

C. Numerical framework

We will solve the previous master equation numerically,
making use of a characteristic algorithm. Here, we present
the details of the numerical evolution, as well as the class of
initial conditions that we will consider. The master equation
that we are dealing with has the general form

∂
2
uvΨþ Vðu; vÞΨ ¼ S½F�; ð23Þ

where Ψ is the master variable, Vðu; vÞ is the potential
and S is a source term that depends on the matter
fluctuations F. We consider a finite discrete grid in the
range ½u0; umax� × ½v0; vmax�, as shown in Fig. 3.
In order to prescribe initial conditions, we assume that

the v ¼ v0 surface is located far enough that we can set
Ψðu; v0Þ ¼ 0, giving initial data only in the Ψðu0; vÞ
surface. We consider a Gaussian wave packet

Ψðu0; vÞ ¼ Ψ0 exp

�
−
ðv − vΨÞ2

σ2Ψ

�
: ð24Þ

Whenever we consider nonvanishing matter fluctuations,
the profile FðvÞ will also be given by a Gaussian of the
form (24).
The evolution proceeds through the usual characteristic

algorithm [81]. We integrate the equations from left to right
at each new constant v slice. The first order equations of the
background (10) and (11) are solved using a fourth order
finite difference approximation. The time update for the
wave equation is given by

ΨN ¼ ΨE þΨW −ΨS þ
ΔuΔv

2
VSðΨE þΨWÞ − SS; ð25Þ

where N, E, S, W denote the north, east, south, and west
points as seen from the Penrose diagram, andΔu,Δv are the
grid resolutions in the u and v directions. A challenging
point of the evolution appears when solving the radial
equation Eq. (10), which needs instant conditions given by
Eq. (15). In order to efficiently solve for the initial
conditions, we combine two different algorithms, depend-
ing on whether r⋆ ¼ ðv − uÞ=2 is large enough [81]. When
r⋆ is large, a simple root-finding algorithm converges
quickly. When r⋆ ≲ 0, we iterate the equation in its form
r=2m2 ¼ 1þ exp½ðr⋆ − rÞ=2m2� until the desired accuracy
is achieved. We denote the solution close to the horizon as
ΨH ∼Ψðumax; vÞ, and at infinityΨþ

I ∼ Ψðu; vmaxÞ. We have
tested the accuracy of our algorithm by recovering the
Schwarzschild QNFs to good accuracy, as well as Price’s
law tail exponents, as will be discussed below. Moreover,
our code shows the expected convergence rate
when increasing resolution. The code is implemented in
Julia and is made available through the VaidyaPT.jl
repository [82].

IV. RESULTS

Once we have set up our problem and described the
numerical methods employed to solve it, we move toward
our goal of understanding ringdown processes in an
accreting spacetime. First, we discuss the general features
of the problem, including the excitation of a ringdown
process by matter fluctuations. Second, we attempt to
extract the mode characteristics on short timescales.
Finally, we introduced a novel model, adapted to dynamical
scenarios, and show convincing evidence that it outper-
forms the usual damped sinusoids framework.

A. General features

The evolution of the master variable Ψ [directly related
to the GW strain h via (B28)], is shown in Fig. 4, for a
background (17) with ðv1=m1; τ=m1Þ ¼ ð100; 10Þ and
different intensity of accretion, as measured by m2=m1.
In the following, we focus on the dominant quadrupolar
l ¼ 2 mode. For m2 ¼ m1 we are simply describing the
dynamics of slightly disturbed vacuum Schwarzschild
BHs. For m2=m1 ¼ 1.5 on the other hand, we are discus-
sing a violently accreting spacetime, which saw a 50%
increase in its mass on a very short timescale (roughly 5
light-crossing times).
Consider first a sourceless evolution, where matter

fluctuations are set to zero (F in Eq. (22) vanishes).
The top panels show the evolution for different values of
the final mass m2, with the black line corresponding to
the evolution on a purely Schwarzschild background
m2 ¼ m1. This relaxation process is known as quasinormal
ringdown and can be understood as leakage from the light

FIG. 3. Upper half of the Penrose diagram describing Vaidya
spacetime. The horizon grows due to absorption of null matter
falling (red shaded region). Here, fu0; v0g represent the region
where we impose the initial conditions (blue curve), and
fumax; vmaxg control how close does our grid get to the horizon
and null infinity, respectively.

REDONDO–YUSTE, PEREÑIGUEZ, and CARDOSO PHYS. REV. D 109, 044048 (2024)

044048-6



ring [2,10,83–88]. At early times it is the same for all
backgrounds, since all backgrounds have samem1; thus the
light ring properties are identical early on. During this stage,

Ψ ∼ e−iωQNMt ¼ e−t=τQNM cosðωR
QNMtþ ϕÞ; ð26Þ

where we assumed that there is a dominant QNM frequency
which we write as

ωQNM ¼ ωR
QNM − i=τQNM: ð27Þ

It is instructive to note that, for a fixed-mass, Schwarzschild
spacetime of mass m, then for the quadrupole fundamental
mode, l ¼ 2, n ¼ 0

mωR
QNM ¼ 0.373672; m=τQNM ¼ 0.0889623: ð28Þ

Onemight therefore expect that early relaxation is described
as above with m → m1, an expectation which is consistent
with our results.
However, once accretion starts, the region near the light

ring changes and so does the relaxation of the spacetime.
Spacetimes with larger mass relax with a lower frequency
and over longer timescales. Indeed, from Fig. 4, we observe
that at early times the behavior is as in Eq. (28) with

m → m1. The late-time behavior also corresponds to a
QNM damping, and we will later show that the frequency
associated is just the one corresponding to Eq. (28) with
m → m2. Both regimes are connected by a transient. We
will explore this in more detail below. Notice, also, that the
relaxation changes both in the waveforms extracted at the
horizon (panel a) and in the waveform extracted at future
null infinity (panel c). The frequency change as seen from
Iþ is a direct consequence of the fact that the light
ring grows.
We also see power-law tails at very late times, when the

field decays as Ψ ∼ t−p [65,89–91] at fixed radius and at
null infinity. Similar power law tails form at the horizon,
but only at much later times, for the class of initial
conditions considered here. The exponent of the tail in
this case is in agreement with Price’s law [89], (t−7 for this
case) when extracting at a fixed radius [panels (b) and (e)].
Despite the spacetime being dynamical, it asymptotes
towards a Schwarzschild background, hence we expect
Price’s law to be satisfied [81,92].
The bottom panels of Fig. 4 show the excitation of

gravitational perturbations due to a matter fluctuation. We
consider a matter profile for FðvÞ given by a Gaussian pulse
analog to (24), centered at v1 ¼ 50m1, with fixed amplitude
and vary the width σ (see legend in panel f). We find that
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FIG. 4. Top: evolution of the quadrupolar gravitational master variableΨ extracted at (a) the horizon, (b) a fixed radius r� ¼ 20m1, and
(c) null infinity. Matter fluctuations vanish, while initial conditions are given by Eq. (24) with ðΨ0; vΨ=m1; σΨ=m1Þ ¼ ð1; 15; 2.5Þ,
evolving on a Vaidya background (17) with ðv1=m1; τ=m1Þ ¼ ð100; 10Þ and m2=m1 as indicated in the legend. The shaded yellow
region, thus, represents the region where the background is most dynamical. Bottom: evolution of Ψ when the initial conditions are
trivial, Ψ0 ¼ 0, but there are matter fluctuations present. The profile for the matter fluctuations FðvÞ is given by a Gaussian pulse, as in
Eq. (24), with amplitude 0.01, centered at v=m1 ¼ 50 and width σ. In this case, m2 ¼ 1.2m1.
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very thin profiles excite a larger overtone contribution, as
can be seen from the rapid decay at early times at the
horizon, whereas wider pulses excite the tail more effi-
ciently, as is clearly seen in panels (d)–(f), consistently with
[93]. It is important to remark that in this case the matter
fluctuations satisfy a first-order evolution equation that
could be solved analytically. As a consequence, the
evolution of the gravitational perturbations Ψ is qualita-
tively equivalent to having a nonzero initial condition forΨ.

B. Mode content of a dynamical ringdown

Once we have numerical evolutions of gravitational
perturbations in the Vaidya background, we consider the
problem of modeling those waveforms. Since the matter
fluctuations do not add additional dynamical modes, for
simplicity we consider only the case where the matter
fluctuations vanish (therefore, the equation is homo-
geneous), and the gravitational perturbations are sourced
by some initial conditions. Moreover, the frequency content
should be independent on whether the perturbations are
extracted at infinity or at the horizon. Since the matter that
is accreted into the BH falls along the ∂u null direction,
studying the waveform at the horizon (which is transverse
to ∂u) provides a cleaner picture. Thus, in the following we
will study the metric perturbation at the horizon, Ψ≡ΨH.
Ultimately we are describing a ringdown process, there-

fore, the fundamental ingredient of the waveform model
used to describe the signal is expected be a combination of
damped sinusoids,

Ψ ¼
X
n

An cosðωR
nvþ ϕnÞe−v=τn ; ð29Þ

where An are the amplitudes, ϕn the phases, ωR
n the

oscillation frequencies and τn the damping times [see
definition (26)]. There is an ambiguity in defining the
amplitudes and phases, since shifting the zero of the time
v ↦ v − v0 rescales their values. We fix that ambiguity by
rescaling always the time axis so that v ¼ 0 corresponds to
the peak of the waveform. Therefore, amplitudes and
phases reported here are always referred to the peak of
the signal.
We employ a least squares fitting algorithm [94,95], with

performance boosted via automatic differentiation. We
choose initial conditions for the algorithm by sampling
from uniform priors in the ranges A∈ ½0; 1�, ϕ∈ ½0; 2π�,
m1ω

R ∈ ½0; 1�, and τ=m1 ∈ ½1; 20�. We iterate on the algo-
rithm until the mismatch between the reconstructed wave-
form ΨR (i.e., the waveform evaluated at the best fit
parameters) and the numerical signal is below a certain
threshold. We have tested our algorithm by simulating
mock data and extracting accurately the parameters, even in
the presence of Gaussian noise.
By looking at Fig. 4(a), we can already observe that the

waveform changes behaviour during the transient, in a way
that depends on the value of the change of mass
δm ¼ m2 −m1. When the mass changes, the oscillation
frequencies and the damping time change. This is to be
expected: intuitively the behavior at early times should be
governed by some combination of QNMs of the BH with
mass m1, and at late times the same should be true for a
BH with mass m2: hence, the dimensionless quantity
ωRmðvÞ should be the same at early and late times,
although it may oscillate in the transient. This is consistent
with the findings of [59,60] for scalar perturbations in the
(charged) Vaidya metric.
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FIG. 5. In all panels, we fit the waveform obtained for a Vaidya background with m2=m1 ¼ 1.05 and τ ¼ 5ð25Þ in blue (red), with a
template containing one free damped sinusoid, at a time starting at v ¼ v1 (referred to the peak of the waveform), for 6 half-periods.
(a) Relative error in the frequency δf compared to the Schwarzschild value, see Eq. (30). (b) Same, but for the damping time.
(c) Extracted amplitude, normalized with respect to the initial amplitude. The shaded regions represent starting times such that the fitting
window overlaps with the region where spacetime is most dynamical. Oscillations of the extracted values at late times are most likely
due to contamination with numerical noise of the signal.
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In order to test this, we extract the average frequency
over a time span ½v1; v1 þ vN �, where vN is chosen such that
the signal contains approximately N half-periods, and we
choose N ¼ 6.6 This serves as an estimate for the “instanta-
neous” frequency, amplitude, and phase of the signal. We
do so using different starting times, and show our results in
Fig. 5. We use only one damped sinusoid in these fits.
First, we define the frequency and damping time shifts

δωR ¼
����1 − mðvÞωR

m1ω
R
QNM

����; δτ ¼
����1 − m1τ

mðvÞτQNM

����; ð30Þ

where ωR and τ are the extracted oscillation frequency and
damping time, and m1ω

R
QNM, m1τQNM are their QNM

values for Schwarzschild with mass m1. Since we are
rescaling by the appropriate mass dimension, we expect, as
Fig. 5 shows, that these errors go to zero as v1 → 0, and
they also decrease significantly once the accretion event is
finished, although the late time extraction of the frequen-
cies is somewhat more contaminated by numerical noise.
As one could naturally expect, when the mass absorption
occurs more adiabatically (red line), the error in the
frequency extraction is larger for a larger fraction of the
evolution. On the other hand, when the mass absorption
occurs very abruptly, the frequency errors δωR and δτ are
quite small (of the order of ∼10−4 or below, notice that the
scale is logarithmic), except for a very short time, related to
the time when the background is dynamical, where they
become larger than for their adiabatic counterpart. In [59]
this was reported, and associated to the fact that the
timescale of the background dynamics became smaller
than the damping time of the fundamental mode, leading to
a more prominent nonstationary behaviour at intermedi-
ate times.
The right panel in Fig. 5 shows the evolution of the

amplitude of the fundamental mode, Aðv1Þ≡ A0, where the
fit occurs over 6 half-periods starting at v1. For convenience
we normalize the amplitude with respect to the amplitude
measured at early times (but once it is compatible with a
constant), which we label as Að0Þ. We observe that at early
times it is constant, which hints that a single damped
sinusoid is providing an accurate representation of the
signal. It is only at very late times that it becomes constant
again, but the final value of the amplitude is substantially
smaller than the initial one. Remarkably, it does not depend
on the timescale at which the background changes, τ.
We remark that at all times the mismatch between the

reconstructed waveform and the numerical data is always
below ∼10−3. The mismatch achieves its largest values
whenever the fitting window overlaps with the timescale
where the BH mass is growing more significantly.

Taking one step further towards modeling the signal, we
extract directly the final (initial) amplitudes and phases,
Að∞Þ (Að0Þ), ϕð∞Þ (ϕð0Þ), in the regime where they are
approximately constant. If the discussion in Sec. II is a
good approximation, these should be related directly to the
QNM decoherence factor Q, as defined in Eq. (5).
However, that factor relates the amplitudes as referred to
the time at which the mass changes (that time is given by v1
in the mass profile (17). On the other hand, the amplitudes
and phases extracted from the fits are referred to the peak of
the waveform, vpeak. Thus, we would expect a relation
given by

Ãð∞Þ
Ãð0Þ ¼ ð1þQÞ e

iωð∞Þðv1−vpeakÞ

eiωð0Þðv1−vpeakÞ
≡ Q̃; ð31Þ

where Ã ¼ Aeiϕ is the complex amplitude, and ωð∞Þ (resp.
ωð0Þ) are the final (initial) ringdown frequencies of the
fundamental mode. Figure 6 shows the extracted values for
the absolute value and the phase from three different
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FIG. 6. (a) Ratio between the final amplitude, Að∞Þ, extracted
using 6 half-cycles starting at v ≥ v1 þ 4τ, and the initial
amplitude, extracted using 6 cycles starting at v ¼ 50, for
different values of the background profile fm2; τg, as indicated
in the legend. The dashed black line represents the (absolute value
of the) rescaled decoherence factor Q̃, as defined in Eq. (31). In
order to evaluate it, we use the linear fit extracted from Fig. 1.
(b) Same, but for the phase difference. In this case the black
dashed line represents the complex argument of the decoherence
factor.

6This was the smaller value of N capable of recovering
accurate enough the frequencies in tests containing Schwarzs-
child waveforms.
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regimes: τ ¼ 1, 10, 50, ranging from nonadiabatic, to a
more adiabatic situation, as a function of the mass increase
δm ¼ m2 −m1. Our extracted values from the fit agree
surprisingly well with the rescaled decoherence factor Q̃.
The agreement is remarkably good for all values of τ
considered. On the other hand, the largest value of τ
considered is only comparable to a few decades of decay
of the fundamental mode frequency, and thus it is not yet
exploring the really adiabatic regime. Pushing beyond this
regime would require specifically targeted numerical meth-
ods that go beyond the scope of this work.

C. A dynamical ringdown model

The previous analysis motivates a template that goes
beyond damped sinusoids with fixed amplitudes and
frequencies. Having knowledge of the mass function
mðvÞ, and some analytical control as given by the
decoherence factor Q ∼ αδme−iβδm [(with α ∼ 4.19 and
β ∼ 5.03), as discussed in Fig. 1], we propose the following
model, with only two free parameters:

Ψ ¼ ℜðAðvÞeiωðvÞvÞ;

AðvÞ ¼ Ã

�
1þ Q̃

δmðvÞ
m2 −m1

�
; ωðvÞ ¼ m1ω220

mðvÞ ; ð32Þ

this is, the (complex) amplitude interpolates between some
initial value Ã (which contains the two free parameters of
the model), and a final amplitude given by Q̃ Ã, and the
ringdown frequency is equal tom1ω220=mðvÞ. In the above,
δmðvÞ ¼ mðvÞ −m1, and mðvÞ is the time-varying mass,
and ω220 is the (dimensionful, complex) ringdown fre-
quency of the Schwarzschild fundamental mode with mass
m1. We refer to this model as the dynamical ringdown (DR)
model, to distinguish it from the usual (linear) ringdown
templates with constant amplitudes and frequencies. At this
stage, this model is only adapted to a single mode.
However, extending it to contain overtones and capture
their time dependence, as well as the AIME effect, is
possible, but we leave that for future explorations.
In order to compare this model with the usual damped

sinusoids, we consider a situation that resembles somewhat
more closely what could happen after merger. We consider
a reasonably mild accretion process, m2=m1 ¼ 1.05. The
accretion occurs “shortly” after the peak of the waveform,
since we set v1 ∼ 27, with a timescale comparable to the
decay rate of the fundamental mode, τ ¼ 10m1. We inject
our numerical waveforms into Gaussian white noise,
defining at each time step tj

Ψinjection½tj�¼Ψnum½tj�þe½tj�; e∼N ð0;σ¼10−4Þ: ð33Þ

We fit the waveform with both a damped sinusoids
model containing one single damped sinusoid (we refer
to this as the DS model), and with the DR model defined

above. Comparing the performance of both models using
the mismatch would not be completely fair, since they also
contain different number of parameters. For this reason, we
compute the Bayes factor between both models, defined as

BDR=DS ¼
pðdjDRÞ
pðdjDSÞ ; ð34Þ

where pðdjDRðDSÞÞ is the evidence for the model
DR (DS) when observing the data d. We compute the
evidence (and also estimate the parameters in the model)
through a Bayesian method, sampling from the posterior
distribution using the nested sampling algorithm [96]
using ellipsoidal bounding [97] as implemented in the
NestedSamplers.jl package [98]. Our priors are
uninformative uniform distributions in the ranges
lnA∈ ½−5; 2�,7 f∈ ½0; 1�, τ∈ ½1; 20� and ϕ∈ ½0; 2π�. We
sample using 64 live points, achieving fast convergence.
Our code for the inference is made available through the
VaidyaPT.jl repository [82].
The reconstructed waveform for the different models,

compared to the injected waveform (including noise) as
well as the numerical waveform, is shown in Fig. 7. A
simple visual inspection shows that the DR model captures
much better the dynamical evolution of the waveform, even
in the presence of noise. While the DS model is not able to
capture the change in, e.g., the frequency and damping time
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FIG. 7. Numerical waveform (black) for a BH accreting 5% of
its initial mass m2=m1 ¼ 1.05 with v1 ¼ 40 and τ ¼ 10, as
extracted at the horizon. The initial data is given by a Gaussian
profile with ðAΨ; vΨ; σΨÞ ¼ ð1; 10; 2Þ. Overlapped, we show the
injected waveform (including Gaussian white noise at a level of
10−4, and the reconstructed waveforms using the damped
sinusoids (DS) model (in blue) and the dynamical ringdown
(DR) model (in red). We use as starting and end time of the fit
vstart ¼ 10 and vend ¼ 150. The yellow band represents the times
at which spacetime is being highly dynamical.

7For efficiency we sample on lnA rather than on the amplitude
itself.
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of the ringdown due to accretion, this is perfectly captured
by the DR model. Moreover, the amplitude and phase is
consistent all throughout the evolution. The Bayes factor
further supports this, obtaining a value of

logBDR=DS ∼ 3 × 104: ð35Þ

This is very strong quantitative evidence, beyond the
qualitative evidence provided by Fig. 7, that in the presence
of accretion a model containing varying amplitudes and
frequencies is preferred with respect to a damped sinusoids
(with fixed amplitudes and frequencies).

V. DISCUSSION

We have studied gravitational perturbations of
accreting spacetimes, namely a Vaidya geometry describ-
ing a BH growing through accretion of null radiation
fields. This setup mimics that of a highly dynamical
spacetime—like that resulting from the coalescence of
equal-mass BHs, albeit with short-comings such as the
assumption that the falling radiation is almost spherically
symmetric, resulting only in a change of the mass of the
BH and not of its spin. Our interest in this problem is to
complete our knowledge of the relaxation stage of BHs,
and to understand whether one can extend a ringdown
description based on (dynamical) damped sinusoids to
earlier stages of the coalescence.
We showed that axial matter perturbations can be freely

specified, and that they in turn source gravitational fluc-
tuations that relax in a ringdown at late times. However, for
the setups we considered, with null radiation being
accreted, we find no evidence of other effects, such as
echoes, that can arise in some situations due to the coupling
to matter.
Our results indicate that accreting BHs have quasichar-

acteristic modes, which are now a function of their mass, as
might be expected for mass-changing spacetimes. Their
ringdown process is qualitatively described by damped
sinusoids, but with varying frequencies and amplitudes. By
coupling these to the BH mass we provide a template,
which might be useful in interpreting results from full
nonlinear simulations of BH spacetimes. Another interest-
ing question regards the behavior of fluctuations when the
accretion happens very slowly. For the timescales consid-
ered here we find that the accretion timescale does not seem
to play a significant role, but a careful analysis of the
adiabatic limit is left for future explorations.
Breaking down the stationarity assumption of the back-

ground metric opens the way for new physics, of interest in
realistic astrophysical scenarios. The framework developed
here can be a starting point to study the gravitational
dynamics in the presence of accretion in several configu-
rations, such as its imprint on the inspiral of small bodies,
or extending our findings to include a (time-varying)
BH spin.

Software. The manuscript content has been derived
using publicly available software: Differential-
Equations.jl, Interpolations.jl, Line-
Searches.jl, NestedSamplers.jl, Noise.jl,
Optim.jl, and Roots.jl [98–100]. This work makes
use of the Black Hole Perturbation Toolkit [101].
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APPENDIX A: BILINEAR FORMS IN THE SPACE
OF FLUCTUATIONS

A useful tool that we make use of in Sec. II is the bilinear
form introduced in [66], allowing us to define a notion of
orthogonality in the space of solutions of the Teukolsky
equation. Here we review the construction of this bilinear
form, as well as its basic properties. In the following, we
work in the Teukolsky formalism but restricting to non-
rotating BHs, i.e., the following can be recovered as the
spinless limit of the general definition in the Kerr
spacetime.
A fluctuation of the Weyl scalar ψ0 is governed by a

second order linear PDE

Oðδψ0Þ ¼ 0; ðA1Þ
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whereOð·Þ is Teukolsky’s operator [53,102]. Associated to
Oð·Þ there is an adjoint operator O†ð·Þ acting on functions8

which is uniquely defined by the equation [64]

O†ðϒÞϒ̃ −ϒOðϒ̃Þ ¼ ∇μπμ½ϒ̃;ϒ�; ðA2Þ

where πμ½ϒ̃;ϒ� is a local functional 1-form of any two
functions ϒ̃ and ϒ (both O† and πμ½ϒ̃;ϒ� follow by direct
computation from Teukolsky’s operator O [64]). If the
equations Oðϒ̃Þ¼O†ðϒÞ¼0 hold (equivalently ϒ̃∈ kerO
and ϒ∈ kerO†), then ⋆π½ϒ̃;ϒ� is closed so its integral
over any codimension-1 surface Σ, is invariant under local
deformations Σ0 that keep the corners fixed, that is,

Z
Σ
⋆π½ϒ̃;ϒ� ¼

Z
Σ0
⋆π½ϒ̃;ϒ�: ðA3Þ

In particular, this means that if Σt is a 1-parameter family of
spacelike hypersurfaces with common corners, then (A3)

evaluated on Σt does not depend on t. That is, the integral
(A3) is conserved in time. If, in addition, there is an
operator Cð·Þ with the property Cϒ∈ kerO for all
ϒ∈ kerO† (i.e., mapping solutions of O† into solutions
of O), then

⟪ϒ1;ϒ2⟫≡
Z
Σ
⋆π½Cϒ1;ϒ2� ðA4Þ

gives rise to a bilinear form in the space of solutions kerO†

that is conserved in time. Notice that the latter corresponds
to the space of solutions with spin s ¼ −2 (i.e., solutions
for δψ4 instead of δψ0). The authors in [66] considered a
bilinear form (A4) arising from the isometry ðt;ϕÞ ↦
ð−t;−ϕÞ present in Kerr’s solution, and chose Σ as a slice
of constant Boyer-Lindquist (BL) time that extends from
the bifurcation surface to spatial infinity. Explicitly, in the
case of a nonrotating BH, in Schwarzschild coordinates and
relative to a Kinnersley frame the product reads

⟪ϒ1;ϒ2⟫ ¼ m4=3
2

Z
Σ
dr dθdϕ

sin θ
r4f2

�
ϒ1j t→−t

ϕ→−ϕ

�
r2

2f
∂t − 2

�
r −

m2

2f

��
ϒ2 þϒ2

��
r2

2f
∂t − 2

�
r −

m2

2f

��
ϒ1

�
t→−t
ϕ→−ϕ

�
; ðA5Þ

where 2f ¼ 1–2M2=r.
9 This bilinear is well defined and

satisfies a number of desirable properties for solutions with
compact support on Σ. This is, however, not the case of
QNMs,

sϒlω ¼ e−iωtsRlmωðrÞsSlmωðθÞ; ðA6Þ

where we can restrict ourselves to axisymmetric modes,
since we do not consider rotating BHs. Indeed, the spatial
wave functions sRlmωðrÞ diverge both at the bifurcation
surface and at spatial infinity. Specialized to modes of the
form (A6) (with s ¼ −2) and using the orthogonality
properties of the spherical harmonics sSlmωðθÞ, the bilinear
(A5) reads

⟪ϒl1ω1
;ϒl2ω2

⟫ ¼ 2πm4=3
2 δl1l2e

−iðω2−ω1Þt

×
Z

dr⋆
r4f2

R1ðrÞR2ðrÞð−ir2ðω1 þ ω2Þ

− 4ðr − 3m2ÞÞ; ðA7Þ

where we beware the reader that Eq. (55) in [66] contained
some small typos. The above expression diverges if taken
from r⋆ ¼ −∞ to r⋆ ¼ ∞, where dr⋆ ¼ dr=2f is the
usual tortoise coordinate. In order to render this integral
finite, the authors in [66] proposed promoting r⋆ into a
complex coordinate and performing the integral along a
contour consisting of three pieces C ¼ CH ∪ C0 ∪ Cþ,
satisfying

8>><
>>:

r�ðu; ϵÞ ¼ u for r−� < r� < rþ� ðC0Þ
arg r�ðu; ϵÞ → π − ϵ for r� → ∞ ðCþÞ
arg r�ðu; ϵÞ → −ϵ for r� → −∞ ðCHÞ;

ðA8Þ

where r−� < 0 < rþ� and ϵ > 0 are arbitrary parameters (see
Fig. 8 for an example).
As shown in [66], with this prescription QNMs with

ω1 ≠ ω2 are orthogonal relative to the bilinear (A7).
Moreover, if a function ϒ admits a decomposition in
QNMs ϒlmn (where n labels the overtones),

ϒ ¼
X
lmn

clmnϒlmn; ðA9Þ

8Working in the NP or GHP formalisms introduces further
redundancies in the description of the gravitational field, namely
the choice of frame, and a systematic approach to deal with those
is that of principal fiber bundles. The idea is that in typeD spaces
the Lorentz frame bundle can be reduced significantly by
restricting to frames aligned with the (globally defined) principal
null directions, and GHP scalars can be seen as sections in the
associated vector bundles. This allows one to work in a language
where it becomes manifest that equations like (A2) are frame
independent, a fact that is not obvious from the perspective that
GHP scalars are just functions, as we do in our discussion.

9Notice that this is not the usual convention, however this is
consistent with our convention for the Vaidya background,
cf. Eq. (8).
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then the coefficients

clmn ¼
⟪ϒ;ϒlmn⟫

⟪ϒlmn;ϒlmn⟫
; ðA10Þ

coincide with the QNM excitation coefficients as defined in
the usual Laplace transform approach [93,103].

APPENDIX B: PERTURBATION THEORY ON
SPACETIMES WITH GENERIC MATTER AND
APPLICATION TO VAIDYA’S SPACETIME

Perturbation theory on spherically symmetric back-
grounds simplifies due to the well-known decoupling
between axial and polar sectors of the fluctuations.
However, if the background is not vacuum gravitational
and matter perturbations couple at first order, and this
makes the analysis considerably more involved. We shall
review briefly the formalism introduced in [62], which
builds upon [71–76], referring the interested reader to
Ref. [62] for details, and then apply it to the case of
Vaidya spacetimes.
The basic idea is to consider background spacetimes

whose metric and energy-momentum tensor have the
general form

ds2 ¼ gabðyÞdyadyb þ r2ðyÞΩABðzÞdzAdzB;
T ¼ TabðyÞdyadyb þ r2ðyÞT ðyÞΩABdzAdzB; ðB1Þ

where the spacetime manifold has structureM ¼ N 2 × S2.
Here, gabðyÞ, TabðyÞ, r2ðyÞ, and T ðyÞ are a Lorentzian
metric, a symmetric tensor, and two functions inN 2, which

is a 2-dimensional manifold parametrized by the coordi-
nates ya (with a ¼ 1, 2). The coordinates zA (with A ¼ 3, 4)
parametrize the unit round 2-sphere S2 with metric ΩABðzÞ
(no assumption is made about the choice of neither ya nor
zA). In our background the line element is (8), while the
energy-momentum tensor is

T ¼ ΦKμKνdxμdxν ¼ Φdv2; ðB2Þ

and therefore it falls in the general class of spacetimes (B1).
The metric and energy-momentum fluctuations, hμν and
δTμν, can be expanded in tensor harmonics as

h¼ hlabðyÞYldyadybþ2½hlaðyÞZl
Aþ jlaðyÞXl

A�dyadzA
þ½jlðyÞWl

ABþklðyÞUl
ABþmlðyÞVl

AB�dzAdzB; ðB3Þ

δT¼ θlabðyÞYldyadybþ2½θlaðyÞZl
AþρlaðyÞXl

A�dyadzA
þ½ρlðyÞWl

ABþθlðyÞUl
ABþσlðyÞVl

AB�dzAdzB; ðB4Þ

where Yl; Zl
A; U

l
AB; V

l
AB, and X

l
A;W

l
AB are the even and odd

spherical tensor harmonics [62], respectively, labeled by
the harmonic indices l ¼ ðl; mÞ and summation over
repeated l’s is assumed (we may omit writing l from
now on). The so-called even and odd (equivalently polar
and axial) sectors of the fluctuation consist of their
components relative to the even and odd spherical har-
monics, respectively (e.g., hlabðyÞ; hlaðyÞ; klðyÞ; mlðyÞ
form the even sector of hμν while jlaðyÞ; jlðyÞ form the
odd one). The linearized Einstein’s equations can be written
for these variables, and one finds a decoupling of sectors. It
is also convenient to work with gauge-invariant variables.
A gauge transformation acts on hμν and δTμν as

hμν ↦ hμν − £ξgμν; ðB5Þ

δTμν ↦ δTμν − £ξTμν; ðB6Þ

where ξμ is a vector field. Then, it is easy to check that the
fluctuation-dependent vector field η½h� ¼ ηla½h�Yldyaþ
ðηl½h�Zl

A þ υl½h�Xl
AÞdzA, with

ηla½h�≡ −hla þ
r2

2
∇a

�
ml

r2

�
; ðB7Þ

ηl½h�≡ −
ml

2
; υl½h�≡ −

jl

2
; ðB8Þ

transforms as

ημ½h� ↦ ημ½h� þ ξμ: ðB9Þ

–6

–4

–2

0

2

4

6

–4 –2 0 2 4

FIG. 8. Integration contour C used to construct the bilinear form

(A7). Here, rð−=þÞ
� are the regularization parameters that control

where is the contour modified. Convergence of this deformation
scheme is shown extensively in [53,66].
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Thus, the variables

h̃≡ ðhμν þ £ηgμνÞdxμdxν; ðB10Þ

θ̃≡ ðδTμν þ £ηTμνÞdxμdxν; ðB11Þ

are manifestly gauge-invariant, and we shall work in terms
of their harmonic components, denoted10

h̃ ¼ h̃labY
ldyadyb þ 2j̃laXl

Ady
adzA þ k̃lUl

ABdz
AdzB;

θ̃ ¼ θ̃labY
ldyadyb þ 2½θ̃laZl

A þ ρ̃laXl
A�dyadzA

þ ½ρ̃lWl
AB þ θ̃lUl

AB þ σ̃lVl
AB�dzAdzB: ðB12Þ

The linearized Einstein’s equations in terms of h̃μν and θ̃μν
can be found in [62], together with the conservation laws of
the energy-momentum tensor.
Using the framework above, the only remaining task is to

write the gauge-invariant energy-momentum tensor fluc-
tuation θ̃μν in terms of our particular matter model. Here we
are considering null dust, which is described by a density
function Φ and a null vector field Kμ. The matter fluctua-
tions are thus δΦ and δKμ, which we expand as

δΦ ¼ HlYl; ðB13Þ

δK ¼ klaYldya þ ðklZl
A þ vlXl

AÞdzA: ðB14Þ

Their gauge-invariant counterparts are

δΦþ £ηΦ≡ H̃lYl; ðB15Þ

δK þ £ηK ≡ k̃laYldya þ ðk̃lZl
A þ ṽlXl

AÞdzA; ðB16Þ

which explicitly read

H̃l ¼ Hl þ ηla∇aΦ; k̃la ¼ kla þ∇aðηlbKbÞ; ðB17Þ

k̃l ¼ kl þ ηlbK
b; ṽl ¼ vl: ðB18Þ

In terms of these, the gauge-invariant pieces of the energy-
momentum tensor are

θ̃lab ¼ H̃lKaKb þ 2Φk̃lðaKbÞ;

θ̃la ¼ ΦKak̃
l; ρ̃la ¼ ΦKaṽl: ðB19Þ

while ρ̃l ¼ θ̃l ¼ σ̃l ¼ 0.
The equations governing our fluctuation are the linear-

ized Einstein’s equations and the conservation law of the
energy-momentum tensor given in [62], where the compo-
nents of the energy-momentum tensor are given by (B19).

Next, we reduce such equations to decoupled wave
equations in double-null coordinates, focusing on the axial
sector which is the relevant one for this work. Consider first
modes with l > 1. The Einstein equations are [62]

r2∇aðr−2∇aΩÞ − λ2 − 2

r2
Ω ¼ r2εabKb∇aðΦṽÞ;

∇aj̃a ¼ 0; ðB20Þ

where from now on ∇a denotes the covariant derivative of
the 2-dimensional metric gab, εab its natural volume-form,
λ2 ¼ lðlþ 1Þ, and the gravitational variable is

Ω ¼ −
r4

2
εab∇a

�
j̃b
r2

�
: ðB21Þ

These equations are supplemented with (and actually
imply) the conservation of the null-dust’s energy-momen-
tum tensor, which gives [62]

Ka∇aðr2ΦṽÞ ¼ 0: ðB22Þ

The first of Eqs. (B20) and (B22) are Eq. (18) of the main
text, with Ω ¼ rΨ. Let us now consider the special odd
mode, l ¼ 1. As shown in [62], the solution is determined
by a potential τ, associated to the matter fluctuation,
defined by

∇aτ ¼ r2εabρ̃b: ðB23Þ

Using the general solution for matter in (21), Eq. (B23)
gives

∇aτ ¼ −FðvÞðdvÞa → τ ¼ −
Z

v
dvFðvÞ; ðB24Þ

and the gravitational variable is simply given by

ΩðvÞ ¼ −
Z

v
dvFðvÞ þ Ω0; ðB25Þ

where Ω0 is a constant. If the fluctuation FðvÞ does not
extend to future null infinity this mode asymptotically
entails only a small change in angular momentum of
the BH.
We conclude by relating Ψ to the gravitational wave

polarizations of the axial sector, hþ and h×. For an ingoing
radiation field, and assuming that the infalling wave is
supported in a domain that does not extend to future null
infinity (as is the case of the profile (17), by the same
arguments of [75] the leading term of the axial metric
fluctuation close to infinity in the radiation gauge is

hrad ¼ r
X
l

Ψl
radðuÞWl

ABdz
AdzB; ðB26Þ

10The multipoles l ¼ 0, 1 need to be treated separately [62].
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where

Ψl
radðuÞ≡ −4

ðl − 1Þðlþ 2ÞΨ
lðu; r ¼ ∞Þ; ðB27Þ

and we recall that u is the retarded time of the remnant BH.
This, in turn, allows us to extract hþ and h× giving

hþ ≡ hradθθ

r2
¼ 1

r

X
l

Ψl
radðuÞWl

θθ;

h× ≡ hradθϕ

r2 sin θ
¼ 1

r sin θ

X
l

Ψl
radðuÞWl

θϕ: ðB28Þ
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