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In this work, we examine the propagation of gravitational waves in cosmological and astrophysical
spacetimes in the context of Einstein-Gauss-Bonnet gravity, in view of the GW170817 event. The
perspective we approach the problem with is to obtain a theory which can produce a gravitational wave
speed that is equal to that of light in the vacuum, or at least the speed can be compatible with the constraints
imposed by the GW170817 event. As we show, in the context of Einstein-Gauss-Bonnet gravity, the
propagation speed of gravity waves in cosmological spacetimes can be compatible with the GW170817
event, and we reconstruct some viable models. However, the propagation of gravity waves in spherically
symmetric spacetimes violates the GW 170817 constraints, thus it is impossible for the gravitational wave
that propagates in a spherically symmetric spacetime to have a propagating speed which is equal to that of
light in the vacuum. The same conclusion applies to the Einstein-Gauss-Bonnet theory with two scalars. We
discuss the possible implications of our results on spherically symmetric spacetimes.
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I. INTRODUCTION

During the next decade, the focus of modern theoretical
physics and cosmology will be entirely on stage four
cosmic microwave background [1,2] and gravitational
wave experiments [3—11]. Both these experiments will
shed light on the fundamental question of whether inflation
ever occurred. Even recently, the inflationary scenario has
been considerably constrained, since the NANOGrav 2023
stochastic gravitational wave background observation [12]
requires a strongly blue-tilted inflationary era in order to
consistently describe the signal [13], if standard postinfla-
tionary cosmological scenarios occurred. Thus theories that
can yield a mild blue-tilted era can be important phenom-
enologically. In this line of research, string-inspired theo-
ries of gravity like Einstein-Gauss-Bonnet theories may
play an important phenomenological role and for an
important stream of reviews and research articles on this
topic, see, for example, [14-64] and references therein. The
Einstein-Gauss-Bonnet theories were severely restricted by
the GW170817 neutron star merger event [65—-67] which
indicated that the speed of the gravitational waves should
nearly coincide with that of the light in the vacuum. This

“nojiri @gravity.phys.nagoya-u.ac.jp
odintsov@ice.csic.es
*yoikonomou @gapps.auth.gr, v.k.oikonomou1979@gmail.com

2470-0010/2024/109(4)/044046(18)

044046-1

GW170817 event imposed a severe constraint on the form
of the scalar coupling factor of the scalar field on the Gauss-
Bonnet invariant, which is a function often denoted by
&(¢), and several scenarios were developed for the con-
struction of a GW170817-compatible Einstein-Gauss-
Bonnet theory [42,68-70]. The constraint is, however,
valid only in the Friedmann-Lemaitre-Robertson-Walker
(FLRW) Universe background and it has been shown that
any constraint cannot be satisfied around the static and
spherically symmetric spacetime, which includes black
holes, stellar objects, and wormholes [59].

In this paper, we again show that it is impossible to
obtain a model where the propagating speed of the
gravitational wave coincides with that of light in spherically
symmetric spacetimes. We also consider the gravitational
wave speed in cosmological spacetime and a scenario in
which the Gauss-Bonnet coupling function &(¢) asymp-
totically approaches a constant in the late Universe when
the speed of the gravitational wave has been observed,
although the Gauss-Bonnet coupling may play important
roles in the early Universe. This cosmological scenario is a
possible description of the early Universe, and it is diverse
compared to some previous approaches [42,68-70].
Although from a theoretical point of view, this scenario
basically indicates that for some reason the graviton
changes its mass at late times, becoming entirely massless,
it is nevertheless a possibility that might be examined.

© 2024 American Physical Society
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We construct a realistic model of Einstein-Gauss-Bonnet
gravity, where the coupling function rapidly goes to a
constant in the late Universe. The model could describe the
whole evolutionary history of the Universe, including
inflation, reheating, the late accelerating expansion, and
so on. We firstly consider a standard Einstein-Gauss-
Bonnet gravity coupled with one scalar field ¢, and we
clarify the condition that the propagating speed of the
gravitational waves is equal to that of light and we show
that the matter fluids do not affect the propagation speed.
Since the propagating speed of the gravitational waves
cannot coincide with that of light in a nontrivial spherically
symmetric background, as shown in [59], we consider the
scenario that the Gauss-Bonnet coupling function &£(¢)
goes to a constant in the late Universe and the propagating
speed of the gravitational wave approaches that of light. We
construct a more realistic model by using this scenario. The
model describes both the inflationary era in the early
Universe and the accelerating expansion of the present
Universe, without introducing the parameters without
hierarchy. We also estimate the speed of the gravitational
wave in the epochs of inflation and at the end of the
inflationary. We also discuss the reheating era and estimate
the temperature and the propagating speed of the gravita-
tional waves in this epoch. In Sec. III, we investigate the
propagation of the gravitational wave in the background of
a spherically symmetric spacetime. First, we consider the
spherically symmetric and also time-dependent spacetime
but also static and spherically symmetric spacetimes,
and we show that the condition is not satisfied in the
nontrivial spacetime including black holes, stellar objects,
wormholes, etc. After that, we estimate the propagating

|
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speed of the gravitational wave inside the stellar objects.
We give a general constraint when we require that the
observational results in the GW170817 event should be
applied inside the stellar objects. Also, we consider a model
of the Einstein-Gauss-Bonnet gravity coupled with two
scalars, in a spherically symmetric but time-dependent
background. We show, however, that it is impossible to
obtain a model where the propagating speed of the
gravitational wave coincides with that of light. The last
section is devoted to the summary and discussion.

II. SCALAR-EINSTEIN-GAUSS-BONNET
GRAVITY

First, we consider the Einstein-Gauss-Bonnet gravity,
with the action of the theory being given by'

5, - / d4x¢_—g{2% 50,009~ V($) ()0
+ *Cmatter}’ (1)

where V(¢) is the potential for ¢, £(¢) is also a function of
¢, and finally £, ., denotes the Lagrangian density of the
matter perfect fluids. Furthermore, G is the Gauss-Bonnet
invariant defined by

G = R> — 4R,yR™ + R ,sRY7°. (2)

By the variation of the action (84) with respect to the metric
Gu» We obtain

1 1 1 1
0=— <_R/u/ + zg/wR> + _gﬂb{_zaﬂqﬁapd) - V(¢)} + Eaﬂ¢ay¢

2x32 2

=2V, V(. 0))R + 29, (VE(. )R + 4(V,V,.E(h.2))RS +4(V,V.E(h.2))R,/

1
- 4(v2§(¢’)()>RMD - 4gﬂu(vpvag<¢’)())Rpg + 4(vpv6§(¢’)())Rﬂpua + Py Tmatter;w’ (3)

and the field equation for the scalar field is obtained by
varying the action with respect to ¢, and it is given by

0=Vro,p—V -&G. (4)

In (3), Thagerp 18 the energy-momentum tensor of the
perfect matter fluids, which obeys the continuity equation.

A. Gravitational waves
in Einstein-Gauss-Bonnet gravity

In this subsection, we consider the condition that the
propagating speed of the gravitational waves is equal to that
of light in vacuum, and we show that matter is irrelevant to
the speed as long as the matter minimally couples with
gravity.

2

Tn [71], a model similar to (1) has been studied and claimed that
a scalar-Gauss-Bonnet coupling could induce tachyonic instabil-
ities in perturbations during accelerated epochs. In the model,
although the cosmological term with a cosmological constant
appears in the paper, the model does not include the potential for the
scalar field as V(¢) in (1). In the model (1), the effective potential is
given by

Verr(#) = V(#) +&5(9)G = V(¢) + 24(H H' + H*)&().

In the last equality, we have assumed the FLRW Universe (14),
H = 1da Therefore as long as V/;(¢) > 0, which corresponds to
the effective mass of the scalar field, the tachyon does not appear.
The condition VZ;(¢) > 0 could correspond to the slow-roll
condition and we can construct the model to satisfy the condition

Vig(¢) > 0.
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For the general variation of the metric,

G = G + Ny (5)

we have the following formulas in leading order in terms of £,,:

1
(SF/SI./ = Eg'd (vyhvi + vvhﬂ/{ - vlhﬂb)’

§RMD/1{; — Vlél—‘ﬁl, - Vﬂér"/{l/,

1
(SR/AMG = 5 [vlvvhaﬂ - vlvuho'y - vavyh/lﬂ + vo'vyhly + hﬂpRpMa - hprp;Mo'],

oR,

1
2
SR = —h,, R*™ + V*V’h,, — V(¢ h,,).

Then the variation of (3) is given by

1
v =5 [V?(V,h,, +V,h,)—V*h,, -V,

u(gplhpﬂ)}

V,V¢h, +V,V’h,, — Vzhﬂy - Vﬂvy(g’”lhl,ﬂ) - 2R’1,/’”hl/, + R’ ,h,, + R’ ,h

ultpu u /w] ’

0= [LR + ! {—% ), P P — V} - 4(V/,V,,§)RP"] hyy

4x? 2

—+ |:_ %g}wa‘f¢()’7¢ - ZQﬂD(vTvqé)R - 4(vrvﬂ§>RZ - 4(v7vv€)RZ + 4(VTV'7€)RW,

+49,,(V'VE)R +4g,,(V, VIERM — 4(VIVER, —4(VPVER,, | h

™m

+ % {25M”5U¢(VK§)R - 2gWg’7§(VK§)R - 45p’75ﬂ§(VK§)RD/’ - 45p’75U‘3(VK§)Rﬂp
+ 4g”§(vK§)R;w + 4guu6p"50§(vK§)Rﬂo— - 4g)r’g”§(vxg)Ru/)va}gd(vnhCl + v§h17/1 - v/lhnC)

1
+ {4_18 9w —2(V,V, ) + 2gw(v2.§)}{—hwmv + V#V¥h,, — V3 (¢*h,,)}

2 2x2

41 { (— 1 4v2g> 5,00, +4(V, V68,9 +4(V,V, 68 ,g" — 49, VVE }

x{V.V?h,4 +V,V?hy —V?h, = V.V, (6" hy;) = 2R"? hyy + R? hy, + R? hy,}

+ 2V, k= VY gy = Vo by + Vb, + g R,

laTmatter/w ]’l
2 99, "

where we have assumed that the perfect matter fluids are
minimally coupled with gravity. We now choose a con-
dition to fix the gauge as follows:

0= Vi, (8)

Since we are interested in the massless spin-two tensor
mode, we also impose the traceless condition,

0= g’wh;w- (9)

- hﬂl/)R{I)ﬂW}

(7)

We do not consider the perturbation of the scalar mode in
the metric like the trace part, which may couple with the
scalar field ¢ (see [72] for example) because we are now
interested in the massless and spin-two mode, which
corresponds to the usual gravitational wave. As long as
we consider the leading order of the perturbation, the
massless spin-two mode does not mix with the scalar mode,
which is a massive spin-zero mode although the second-
order perturbation of the scalar field plays the role of the
source of the gravitational wave. The traceless condition (9)
makes the massless spin-two mode decouple with the
massive spin-zero mode.
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Then Eq. (7) is reduced as follows:

0= {LR +1 {—%6/,(/)00(]5 - V} - 4(vpv6.f;)Rﬂa] Iy,

452 2

1
+ [Z Gu{—Ad"PI"p — B(0"pd"y + d"pdy) — Coy "y}

- 2gyu(v7vr’§)R - 4(VTVM§)RD’7 - 4(v1vy§)Rﬂn + 4(v7v”§)R;w

+ 49, (V'V, )R + 44, (V,VIERT — 4(VTVER, —4(VPVER,,, | h

m

+3 (25165 (VE)R - 43,15, (VRS — 46,155 (VR

+ 4gyu5/)n5rf§(vké)R[m - 4gpnggc<vK§)Rﬂpuﬂ}g’d(vnhé'/l + vghnli - vlhné)

1
- {m G —2(V, V,E) + 2g,,(V3E) }R"”hﬂy

2
x {=V2h,, —2R*? h;y + R? hy, + R? hy,}

+2(VPVe{v, Vv h,, -V,V,h,, -V, V,h, +V,V,h, + hmR‘f’pw - hpd,R‘pr} +-—h

1 1
+5 { (— ek 4V2§> 8,8, + 4V, V08,97 +4(V,V,6)8 9" — 49,V VE }

10Tmatter;w
. (10
3o by (10

The observation of GW170817 gives the constraint on the propagating speed cgw of the gravitational wave as follows:

2

C2

cow —1‘ <6x 1071, (11)

where ¢ denotes the speed of light. In order to investigate if the propagating speed cgw of the gravitational wave h,, could
be different from that of the light ¢, we only need to check the parts including the second derivatives of h,,,

I[HJ = 1[31/) + Ifl%)v

1 1
I =3 { (— S 4V2€) 58, + 4V, Y, + 4(V,V,)5,9" - 4gﬂyvfw5}v2hm,

2

19 = 2V, hgy =V, kg = VoV, + Y,V 0, ) (12)

Since we are assuming that the matter fluids minimally
couple with gravity, any contribution of the matter fluids
does not couple with any derivative of h,, and the
contribution does not appear in /. In other words, matter
is not relevant to the propagating speed of the gravitational

wave. We should note that / ,(,L) does not change the speed of
the gravitational wave from the speed of light. On the other

hand, I,(f) changes the speed of the gravitational wave
from that of the light in general, which may violate the
constraint (11). If V,V*¢ is proportional to the metric g,,,

1
V,Vié = Zgﬂyv%, (13)
then I,(,? does not change the speed of the gravitational
wave from that of light. We should note that ¢ is a function
specifying the model. Equation (13) is a condition for

|
models so that the propagating speed of the gravitational
wave coincides with that of light.

As long as we consider the FLRW Universe, we can find
the solution of Eq. (13) as explicitly given in (18). As shown
in [59], the condition Eq. (13) cannot be satisfied in more
general background like nontrivial spherically symmetric
spacetime. Then instead of considering nontrivial solution of
Eq. (13), we will consider the scenario where & goes to a
constant or vanishes in the late Universe as the gravitational
(2)

waves have been detected and /;;

late Universe.

can be neglected in the

B. Method for reconstructing realistic models
of early and late-time cosmic expansion

In this subsection, we will focus on the scenario that the
Gauss-Bonnet coupling function £(¢) goes to a constant in
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the late-time Universe and also that the propagating speed
of the gravitational wave approaches that of light. In this
line of research, we construct a realistic model of cosmic
expansion. Both the inflationary era in the early Universe
and the accelerating expansion of the present Universe can
be described in a unified way in this model, without
introducing various parameters with different scales. The
speed of the gravitational wave in the epochs of the
inflation and at the end of the inflation are also estimated.

We consider the FLRW universe with a flat spatial
section, the line element of which is given by

a(t)? > (dx')2. (14)

=123

ds? = —dr* +

Here ¢ is the cosmic time, and a(t) denotes the scale factor.

We often use H = % which is the Hubble rate. Now we have
F;] :azH(Sl-]-, Fi» :F;j :Héij,
Ritjt = (H + Hz)azhly Rijkl = a4H2(5ik51j - 51’151{]‘),
R,=-3(H+H?), R;=d*(H+3H?)35;,
R =6H + 12H?,  other components = 0, (15)

therefore if £ only depends on the cosmic time ¢, we obtain

V,\Vi¢é = 51 Vivjf = —02H5ijé,
vtvig = vivtf =0, vzf = _E_ 3H§-- (16)

Then Eq. (13) becomes a second-order ordinary differential
equation with respect to the cosmological time ¢ as follows:

§=H¢, (17)

whose solution is

5:§0+51/dm(t). (18)

Because the differential equation (17) is second order, the
solution includes two constants of the integration &, and & .
In the case &, = 0, £ becomes a constant and therefore the
Gauss-Bonnet term becomes a total derivative term and the
term does not contribute to any equation. We should note
that the condition &£ = 0 is not an initial condition or
something else but the condition & = 0 is the condition
defining the model. Instead of choosing the condition
&, =0, which makes the Gauss-Bonnet term trivial, if
we choose the condition &; # 0, £ is given by a function of
the cosmological time ¢. Furthermore, if we use the relation
H = dt, N the function & can be expressed as a function of the
e-foldings N. By using the relation between the scalar field
¢ and the e-foldings N in (26), which appears later, we can
determine & as a function of the scalar field ¢, which
specifies the model.

We should note, however, that the propagating speed of
the gravitational wave cannot be equal to that of light in the
nontrivial spherically symmetric background, as it was
shown in [59].

Since the propagating speed of the gravitational wave
cannot be equal to the speed of light near black holes or
stellar objects, we consider the scenario that [;; 2 can be
neglected in the late Universe. This requires that 5 goes to a
constant or vanishes in the late Universe, which is a special
solution of (13) corresponding to £, = 0 in (18). In this
solution, the Gauss-Bonnet term in the action (1) becomes a
total derivative and does not give any contribution to the
expansion of the Universe, although the term may become
necessary in the early Universe. If this scenario is realized,
then the theory reduces to the scalar-tensor theory in the
late Universe.

The equations corresponding to the FLRW equations
have the following forms, which are given by Eq. (3):

dr
0= 12(2H+ 3H?) + ¢2 V(p) - SHZdZi(fZ(Z))
161,1,Hd§(¢( ) 16H3d€(¢(t))’
dt dt
0=¢+3Hd+ V' (p)+E(P)G. (19)

The third equation in (19) can be obtained by combining
the first and second equations and therefore we forgot the
third equation in the following. By using the e-foldings
number N defined by a = aye” instead of the cosmic time
t, we now rewrite (19) as follows:

4 dé(p(N))

3 1
0=-SH>+-H*¢(N?*+V 24H ,
SH 4SNP + V(@) + i

0= Kl <2Hd—H+ 3H2> +%H2¢/(N)2 - V(¢)

dN
—16H* (d pir )) (20)
We should note 4 = H-L and therefore & = H2-£; 4
44 By deleting V(¢) in (20), we obtain
0= K—22H’(N) + H(N)¢'(N)* —8H(N)? %
- 24H(N>22—Zw +8H(N)? %;\5’»
—H'(N) + H(N)¢'(N)?
- SeN% <e—NH(N)3 %), (21)
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which can be integrated with respect to £(N) and we obtain

o) =5 [ avi o [

 (ZH0) + HODF 0P ). (22

By substituting Eq. (22) into the first equation in (20), we
find

VIBN) = S HINY = HN) (N)? = 3eVH(N)
« [T (G H ).
23)

Equations (22) and (23) and tell that by using functions
h(N) and f(¢), if £(¢p) and V(¢) are given by

2
V)=S0~ 3 )
(e (2 W (f(¢1))
/ A f'(¢py)e/ @) <K2h(f(¢1))+ 7 )
24

/ f (1) ) i
&(9) :%/(ﬁ d¢1f (1)e 3 /¢ dps f'(pr)e™/ P2

h(f(¢1))

n(f ()
Fgs)? ) )

a solution of the equations in (19) is given by

< (Ze) +

$=1(N) (N=F(¢). H=hN). (26)
Therefore we obtain a general Einstein-Gauss-Bonnet
model realizing the time evolution of H given by an
arbitrary function h(N) as in (26). We often solve the
model with given potential, etc. but here, we have consid-
ered the solution H = h(N) first and we have constructed
the model that realizes the given solution H = h(N). We
should also note that the time evolution is determined only
by one function /(N but in the action (1), there appear two
functions V(¢) and £(¢). There is one additional functional
degree of freedom in the model compared with the
evolution. We can separate the two functional degrees of
freedom in the action into the function &(N) relevant to the
evolution of H and the function f(¢) irrelevant to the
evolution. Therefore if we change f(¢), the functional form
of £(¢) changes but, of course, the functional form of V(¢)
also changes. The changes of £(¢) and V(¢) compensate
with each other and the time evolution of the expansion of
the Universe given by H = h(N) does not change.

We should note again that the history of the expansion of
the Universe is determined only by the function #(N) and
does not depend on the choice of f(¢). By using this
indefiniteness of the choice of f(¢), we consider the
possibility that £ goes to a constant or vanishes in the late
Universe. The possibility can be satisfied if

2
0~ S H'(N) + HIN) (V). (27)
which can be solved as

#4) = 71 (6) ~ [Lany -2

The above expression can be valid as long as H'(N) < 0,
which corresponds to the case that the effective equation of
state parameter, which is defined by

2H'

e 29)

Wepr = —1 —
and is greater than —1. Compared with the past Universe, in
the late Universe, the Hubble rate H goes to a constant, and
we expect that H become asymptotically constant in the
future, that is, the spacetime becomes an asymptotically
de Sitter spacetime. This feature indicates that if the
scalar field ¢ goes to a constant in the late Universe, the
condition (28) is satisfied. This is natural because & is a
function of ¢, if ¢ goes to a constant, then &= &(¢)
becomes a constant as long as ¢ is not a singular function.

For example, we may assume,

&= ¢&(1—eN). (30)

Here &, and ¢, are constants and we assume ¢, is positive.
Then & rapidly goes to a constant £ — &, when N becomes
large. And therefore, the Einstein-Gauss-Bonnet gravity
transits to the standard scalar-tensor theory. The cosmic
time of the transition can be adjusted by fine-tuning the
parameter &;. For example, if we choose 1/&; < 60, &(¢p)
becomes almost constant in the epoch of the reheating.
Equation (22) indicates that

2H'

92 = =g T 8&E{2HH — (& + DH 5N, (31)

The second term decreases rapidly due to the factor e 51V
and the first term vanishes, and therefore ¢ also goes to a
constant consistently if the spacetime becomes asymptoti-
cally a de Sitter spacetime.

We may estimate the propagating speed cgw of the
gravitational waves. We now consider the plain wave
h;; « Re(e~™@+#*) Under the condition (8) and (9), by
using (16), Eq. (12) gives the following dispersion relation
for high energy gravitational waves,
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2

1 " . k "
0= (‘272 +4(E+ 3H§)> <w2 - —2> +2%e?. (32)

a
Here k*> = k - k. Equation (32) shows that the

,  1-8k*E+3HE)

2 . 28 2
= 8R0E 1 3HE c~(148k*¢)c*.  (33)

CGw

Now the speed of light c is given by ¢ = a% We also we

assumed |k*£| < 1. Equation (33) shows that if &> 0
(5 < 0), then the propagating speed of the gravitational
wave is larger (smaller) than that of light. The observation
of GW170817 in (11) gives the following constraint:

I8k%E| < 6 x 1071, (34)
Especially in the case of (30), we obtain
I8k2&y (&, HH' — &2H?)e 5| < 6 x 10715, (35)

In the present Universe, where the speed of the gravitational
wave was measured, we may assume N = 120-140.

We consider the following model in terms of e-foldings
number N, which satisfies the above conditions,

H = h(N) = Hy(1 + aNP)". (36)

We construct this model to describe the whole history of the
Universe, that is, inflation, matter-dominant epoch, and the
accelerating expansion of the present Universe. When N is
small, we find H ~ Hy(1 + ayN”) and when N is large,
H ~ H,a’ NP’ Therefore H, and a should be positive so
that H is positive. We also require > 0 and y < 0 so that
H is a monotonically decreasing function.
The effective equation of state parameter is given by

2apyNP~!

3(1 4+ aNP)’ (37)

Weff = —

which goes to —1 when N — 0 or N — oo, We should note
that N — 0 corresponds to the early Universe and N — oo
corresponds to the present or future Universe. Therefore
because the effective equation of state parameter w.g goes
to —1 when N — 0 and when N — oo, the model (36)
describes both the inflation and the accelerating expansion
in the late Universe.

We now check if the model (36) also describes the
matter-dominated area. When wey = — % we find

—afyNP~! =1+ aN?. (38)
Let the two solutions of (38) N=N; and N=N,

(0 < Ny < N,). Then the period where N < N, corre-
sponds to the inflation in the early Universe and the period

where N > N, to the accelerating expansion in the present
Universe. During N; < N < N,, we expect w.g goes to
vanish at least if we include the contribution of the matter
that is dust.

The parameters a and y are given in terms of 3, N, and
N,, as follows:

N1 — NP1
a= ,
(NiN,)P~H(N, = Ny)

N,/ =N/
BN~ =N /71Y
(39)

v=-

We should note that o and y are positive as long as # > 1 as
we required. We now estimate the parameters a, 3, and y in
order to obtain realistic models compatible with the
constraint on the gravitational wave speed. Let the beginning
of the inflation correspond to N = 0. Then the end of the
inflation corresponds to N = N; = 60-70 and the recombi-
nation (clear up of the Universe) to N = 120-140. The
redshift of the recombination is z = 1100. Because
1 +z=1/a, where a is the scale factor, we obtain
No — N = In (1 + z), where N is the redshift of the present
Universe. We note In 1, 100 ~ 7. The redshift corresponding
to the beginning of the accelerating expansion of the late
Universe is approximately 0.4 and In 1.4 ~ 0.3. Therefore
N, ~2N,. In order to estimate @ and f in (39), we assume
N, = 2N; = O(10%). Then we find

1 —21-#

(1-27)N,
a=——-—
27PN

gz W

v=-

In the early Universe, where N — 0, Eq. (36) has the
following form:

H ~ Hy(1 + ayNP). (41)

Therefore, H,, corresponds to the scale of inflation and we
now choose H,, ~ 10'* GeV = 10> eV. On the other hand,
when N is large (N ~ 10?), which corresponds to the period
of the accelerating expansion of the present Universe, we find

H = Hya/ N¥, (42)

which requires o’ N#7 ~ 107 because H ~ 1073 eV.
Because N ~ N,, by using (40), we find

=2,

(2/} _ 2)_p(|-21—/‘) ~ 10736, (43)

(=279,
When g — 1, we find (2 —2) #0=2" — (. On the other
_=2hw, \
hand, when =2, we find (2/ —2) w27 =272 ~
10722 > 10736, Therefore, there is a solution S for

Eq. (43) when 1 < f < 2. Then Eq. (40) shows that
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a~ 0(10-2%) and y ~ O(10?), and therefore these param-
eters are not too small or large.

C. Gravitational waves during the inflationary era

We now consider the propagating speed of the gravita-
tional wave during the inflationary era. The expression of
the propagating speed of the gravitational wave in (33) is
valid and at the beginning of the inflation N ~ 0, we find

8K°¢ = 88081 (H — EHP)e s ~ —8K60°8 Hy?. (44)

Here we have assumed that Egs. (30) and (36) hold true. On
the other hand, at the end of the inflation, we obtain

cow? ~ (1 = 8k2EH* (1 + aNP)? (& 4 £2)e V1),
(45)

Here we have used (36) and (38) for N = N,.

The gravitational wave generated in the epoch of
inflation has not been detected. Therefore there still be
the possibility that the propagating speed of the gravita-
tional wave might be significantly different from the speed
of light. As a working hypothesis, we now assume that the
speed of the gravitational wave is smaller by 10% than that
of light during inflation. Then Eq. (33) shows

1
8Kk%E)2E Hy? ~—. (46)
10
If we assume & = O(1), then the factor eV in (45) is
very small,

e N ~e 0 =88x107%. (47)

Therefore, we expect that the difference between the speed
of the gravitational wave and that of light can be neglected
after the inflationary era, including the epoch of the
reheating, a scenario that we discuss in the next subsection.

D. Reheating scenario

In this subsection, we estimate the temperature and the
propagating speed of the gravitational wave in the epoch of
reheating. We expect that the inflationary will end when
N = N,, which is one of the solutions of Eq. (38). So far,
we have neglected the contributions from the matter fluids.
After N = Ny, if the scalar field ¢ couples with matter, it
could affect the reheating era and the evolution of H
deviates from that in Eq. (36). In order to investigate the
behavior of the scalar field dynamics, we expand the
quantity around N = N; as follows:

N =N, +6N. (48)

Then by using (30) and (36), we find

&~ Egg e V(1 - £6N),
H~H0(1 —l—OlNlﬁ)y(l —5N),
H/ ~ (Zﬁ}’Ho(l + (ZNlﬁ)y_lNlﬂ_l

x {1+ <—y;1+ﬁ—1) f\],\lf} (49)

Here we have used Eq. (38) with N = N; and the scalar
potential reads

2w,
6 afy 24
VA~Veg—<—=|(1
’ {K2< +(1+a1v]/’>y>+ Ny

x H3(1 + aN#)?5N, (50)

where V, and &; are constants of integration, which can be
determined by using (19), which gives when N = N,

2N,
3 e
0= —<——M>H%(l +aN,A)¥ +V,

K'2 2N0
+24H((1 + aN/) & e=aM,
1 aﬂleﬁ_l
0=—(1-"—— |H3(1+aN,/ )" -V
1<2< 1+ aN,? o(1 +aN/?) 0
24apyN, P!
— H4(1 N A (16 40 22 &N
o1 +aN’) ( + I+ aN,? Sogie
(51)
that is,
PINI\ e
1 Q }’Nl - 0 € No
<N =J_ (2 _
Eotre {K2< +1+GN1,3> =
24apyN,/~1\ !
X Hy?(1+aN /)7 (8 ———— ) |
o (1+aN’) I +aN,?
1 (Xﬁ}/Nlﬂ_l
Vo=—(1—--"——|H3(1 +aN’)>
0 K2( 14+ aN,/ o1+ aN)
24apyN,/!
—HX1+aNA (16 + —F——r
0( +ta 1) + 1+0{N1/}
2N
L, @B e ™
K 1+ aN, 2N
24apyN =1\ !
x 8—0{'3}/71 ) (52)
1+aN1ﬁ

We now estimate the reheating temperature 7. The
effective energy density at the end of the inflationary era
is given by

3 3
Peit = pH(Nl)z = FHOZ(I +aN/)¥.  (53)
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We now assume that all the energy density is transformed
into radiation. The Stefan-Boltzmann law indicates that

ﬂzgre Tre4-
30

Here g,. denotes the number of the massless degrees of
freedom when the reheating era occurred. Then we obtain

3
—2H02(1 + aNI/})ZV =

- (54

3 [ 30
T.= s Hy(1 +0‘N1ﬂ)7< 2

1
1
T gre> '

In the epoch of the reheating, by using (33), we find the
propagating speed of the gravitational wave as follows:

(55)

caw’ ~ (1 + 8k2EgHo* (1 4 aN )7~ (& apy Ny ™!

= &2(1 + aNg!))e e ) 2, (56)
where Ny, is the e-folding number corresponding to the
reheating. So from the above relation, we have a concrete
idea on the behavior of the gravitational wave speed during
the reheating era, which is nontrivial, as expected, and
somewhat model dependent.

III. PROPAGATION OF GRAVITATIONAL WAVES
IN SPHERICALLY SYMMETRIC SPACETIME

In this section, we consider the propagation of the
gravitational waves in a spherically symmetric spacetime
|

background. First, we consider the spherically symmetric
and also time-dependent spacetime. The spacetime includes
both the static spherically symmetric spacetime and the
FLRW spacetime as special cases. We show that the con-
dition (13) cannot be satisfied in the nontrivial but general
spherically symmetric spacetime. After that, we estimate
the deviation of the propagating speed of the gravitational
wave from the speed of light inside a stellar object.

A. Spherically symmetric time-dependent spacetime

In this subsection, we show that the condition (13)
cannot be satisfied in the nontrivial but general spherically
symmetric spacetime. The most general form of the spheri-
cally symmetric and time-dependent spacetime is given by

ds* = —A(z, p)d7* + 2B(z, p)dzdp + C(z, p)dp*
+ D(z, p)(dO* + sin*0dg?). (57)
We should note that the spatially flat FLRW universe is a
special class of the above spacetime. We define the radial
coordinate r by
r> =D(r,p), (58)
assuming D(z, p) is positive. In principle, Eq. (58) can be
solved with respect to p as p = p(z,r). Then the metric
in (57) can be rewritten as

ds* = {—A(T,p(’[, r)) +2B(z,p(z,r)) %}drz +2B(z,p(z. 1)) %drd}’

2
+C@maamz>dﬂ+ﬂu¢+mﬁwwy

(59)

Furthermore, we introduce a new time coordinate ¢ as 7 = z(z, r). Then the metric in (59) can be further rewritten as

ds* = {—A(r(t, r),p(z(t,r), r)) +2B(z(t, r), p(z(t, 1), 1))

ap(z(t,r),r)oc(t, r)

ap(z(t,r), )
or

HEa) o

+2F@@Hw@@ﬁﬁn or

LA plo10.0). ) 4 28000 (0.7 )
 [eteple ) (%) + Blste.pleta, ). )

X {—A(’c(t, r),p(z(t,r),r)) +2B(z(t, r), p(z(t,r), 1))

+ r2(d6? + sin®0d¢?).

ot

ot(t,r)oz(t,r)
ot or

ap(z(t,r), )
or }

ap(z(t,r),r)oc(t,r)
or or

ap(fg;r), r)} <afg; n)z] ”

}dtdr

(60)
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We can choose the time-coordinate ¢ so that

ap(z(t,r),r)oc(t, r)
ar ot

0= B(z(t.r).p(z(t.r).7))

L= Aw ) ple(01. 1) + 20000 ple(), ) LD D 2ET) (61)

Then finally, the metric has the following form:
ds® = —e?r0dp* + 20 dr? + r2(d6* + sin*0dg?),

=0 = - Ale(1. ). plo(0.7). 7))+ 2806 pletr ). ) PR (0N
op(z(t,r),r)oz(t,r)

) = C(z, p(t, 1)) (0,0)2 + B(z(t,r), p(z(t,r), 7))

or or or
x {—A(T(t, 1), ple(t, 1), 7)) + 2B(e(t, 1) ple(t, 1), 1) 2 (’(S’Tr) : r)} (a’gr’ ’)>2. (62)

We define the metric g;; of the unit sphere by Y=, ., , §;;dx'dx/ = d0* + sin*0d¢y*. For the metric (62), the nonvanishing
connections are the following:

ro_ a2 2u, t ! t _ a20-2v9 _ _ 9 o
Il,=p, I =2y T =T =y,  TI,=e%] I=I,=i TI,=2

7

I, =T

) 0
o Th=—ergy, Ty =T, =5 (63)

Here f;k is the connection given by g;;. Since

Rlu/w = _Ffw-v +T /ﬁv,p -r Z/’Fﬁn + szrfm’ (64)
we find that
Ry = —HA+ (A=0)A} + >/ + (V/ = X)W/}, R = rz/ez(”_i)g,»j,
R.ivj = A15j, Ryiv; = Argy, Riju = (1 =) r* (Gl — Gudi)»
. . . 2V
R, =—{i+ (1-0)i} +eX4 {1/’ + (=)W + —y}
.
RN
R, =e? N4+ A=A} -{V + W -V} +—,
r
2] o
R, = - Rjj=[1+{-1-r(-2)}te g,
S AW - ) 2e% -2
R=2e%{l+ (A-v)i} +e {—21/’ 20/ =)W - v . ) | (65)

By assuming that £ only depends on r and ¢ because we are considering spherically symmetric spacetime, we find

vtvl§ = atzé - l/atf - e—2ﬂ+2uy/ar§’ vrvré: = arzf - 62/1—21/}:615 - /Ilarév
vzng = e_Zirgijarfv vrvté = vtvré = araté: - I/atg - /iargv
VViE=V,VE=V V=V V=0,

. 2 —24
VZé: = _e—2y(at2§ - Vat‘): - e_Z/H_ZDI/aré) + e_%(arzg - 62/1_211161,‘5 - /Ilarg) + c aré (66)
r
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Then the condition (13) gives

. 2 —22
0= 3e(02€ — 50, — e 20/0,8) + (0,2 — ¥ A0E — 20,6) + ——0,¢,
r
. 26_%
0= _e—2y(at2§ _ 1/015 _ e—2/1+2yv/ar§) _ Se—2ﬂ (ar2§ _ 62/1—21%015 _ /1’6,5) 4 aré,
’
0 =0,0,6 —1/9,E — 10,¢. (67)
By combining the first and second equations in (67), we obtain
0 = et {e20,(e~40,8) + =20, (¢™0,4) ). (68)
. 1
0= (0,2 — 10,6 — 20,6) +~0,¢, (69)
r
—20+2v
0= (02¢ — 00,6 — e 21/0,€) + 0,¢. (70)
r

For simplicity, we consider the case that the spacetime is static, that is, v and 4 do not depend on time coordinate ¢. Then the

equations in (67) reduce to

2
0 = 3e72(0,26 — e~ 421/ 9,&) + e 24(0,2E — 1',E) + ¢

0= _e—2u(012§ _ e—2/1+201//ar§) _

0=10,0(-1V0¢,

and Egs. (69) and (70) reduce to

1
0= _(ar2§ - A/aré) + - arfv (72)
r
—20+2v
0= 028 — e 229 £ + 0.6 (T3)
r

The general solution of the last equation in (71) is given by

E(t,r) = & (1)) + & (r). (74)

Here &) and &, are arbitrary functions of 7 and r,
respectively. By substituting (74) into (72), we obtain

1
0= —(l/" + 1/2)5(,)6” _ éEl(lr) 4 (/1/ +;> (Ulf(t)ey + 5/(r))’

(75)

which gives

1 1
O:—I//+I/2+ i/+* I/, O:—fﬂ + /‘L/+* 5/ .
r (r) r (r)

(76)

3624(0,26 — 19,8) +

—21

0,
r

26—21
r

0,¢.
(71)

The first equation in (76) gives a nontrivial relation for the
spacetime geometry,

/

0=—In"+v+4 (77)
l/Or

Here 1/, is an integration constant. On the other hand, the
second equation in (76) can be solved as follows:

fzr) = Eyret. (78)

Here &, is an integration constant. By substituting Eqgs. (74)
and (78) into (73) and by using Eq. (77), we obtain

2
0=Epe — (v =)D e e 18,). (19)
(1 2 (1 (r/)s

0=¢&q. Vo=-—, (80)
which yields

Sy = S1s Ozylfleb‘f"f/(r)a (81)
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where &, is a constant. The second equation in (80) gives

r
=In—, 82
v n”o (82)

where r is a constant. On the other hand, when Eq. (81) is
satisfied, Eq. (74) indicates that £ does not depend on the
time coordinate ¢. Then Eq. (73) yields

1
e
V= (83)

which gives (82), again. Equation (82) indicates that there
is no horizon and therefore there is no solution for the black
hole when the speed of the propagating speed exactly
coincides with that of the light, even if we include two
scalar fields ¢ and y in addition to matter. Equation (83)
also prohibits more general but nontrivial spherically
symmetric spacetime, including the stellar configuration
and wormholes.

In the next subsection, we try to solve the problem of the
propagating speed of gravitational waves, by considering
a model of Einstein-Gauss-Bonnet gravity coupled with
two scalar fields. As we will show we reobtain the
condition (13) again, and therefore the propagating speed
|

1 1
0 = ﬁ (—le + Egm/R>

2

of the gravitational wave does not coincide with that
of light.

IV. TWO-SCALAR EINSTEIN-GAUSS-BONNET
GRAVITY

Since the propagating speed of the gravitational waves
cannot be equal to that of light in the nontrivial spherically
symmetric background as we have shown in [59], we
consider the model including two scalar fields ¢ and y to
investigate if the problem could be solved or not.

The action with two scalar fields is given by

1
Soo= [ e/ 33300 00,000 B6.00,00
1
-5 CPLIIL =V 2) =25 L.

(84)

Here V(¢, y) is the potential for ¢ and y and &(¢p, y) is also
a function of ¢ and y. By varying the action (84) with
respect to the metric g,,, we obtain

1 1 1
+ gﬂy{—zA(qﬁ,)()aqu@”qﬁ — B(¢, x)0,0x — 3 C(, x)0,xx — V(¢,x)}

S AW 20,00, + B 1) 0,00, + 0,00,7) + C1)0,10,1)
~ 2V, L )R + 20, (VEG 2R + 49, 9,80 2R + 47,65, 2)) R,

1
- 4(v2§(¢’1)>Rﬂv - 4gyb (vpvaé((ﬁv)())Rpg + 4(vpvgé(¢’)())Rﬂ/wﬁ + Y Tmatter;w’ (85)

2

and the field equation for the scalar field is obtained by varying the action with respect to ¢ and y, and it is equal to

2

1 1
0=-A40,0"¢p + AVF,p + A,0,0"y + <Bx ~5 C¢> o0y +BVFoy -V, — &G,

1 1
0= (—EAZ + B¢) 0updp+ BV'0,p + 5 C,0,00% + CV 0,1 + Cy0,pd'y =V, = £,G. (86)

Here A, = 0A(¢. x)/ ¢, and similar notation is used in other
functions. Also in (85), Terjw 18 the energy-momentum
tensor of perfect matter fluids. We should note that the field
equations in (86) are nothing but the Bianchi identities. We
again consider the equation that describes the gravitational

|
waves and we obtain the condition that the propagating speed
of the gravitational wave is equal to that of light.

By considering the variation of the metric in (5), we
obtain the equation describing the propagation of the
gravitational waves as follows:
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1 1( 1
0= L SR+ {—5A5p¢aﬂ¢—30p¢aﬂ;(

[T 000~ B9+ D) -

2C0 Jy — V} (VPVGS)R/"’} hy,

Coyay}

=29, (VIVIE)R —4(V'V, R — 4(V*V, E)R,T + 4(VVIE)R,

+49,,(V'V, )R + 4g,,(V,VIE R — 4(V'VER, —~

4(VPVIER

Hpv } ™

1
+ 3 {25M”5DC(VK§)R - 2g,wg'7§(VK§)R - 45/,'75”4(VK§)R,,” - 45/,'75,}(V,<§)R/’

+ 49”C(VK§)R/41/ + 4gﬂv5pn56C(VK£)Rp0 -

4gﬂﬂgﬁC(vK§)Rﬂpw}g’d(Vnh& + vih’ﬂ

- vﬁhni)

1
- {4—K2‘q"” - Z(Vﬂvvf) + ZQMV(VZS)}{_}Z””RW + vﬂvbhﬂv - vz(g’whm/)}

(-
2\ 2¢
x AV Vhyy + Y, VN, — V2,

+2(VPVE{V,V,h,, -V, V,h,,

- vrvn (glmhd)/l)

-V, V,h, +V,V,h, + hyR? . — h,yR

4V2§> 6,01, +4(V,V, 88,0 +4(V,V,£)d,¢" —4g DV’V”{}

—2R*? hyy + R? hy, + R? hy,}

1 aTmatier )24 h

3, (81)

;wa} +5

Here we have assumed that the matter fluids minimally couple with gravity, once more. By choosing the conditions in (8)

and (9), we can reduce Eq. (87) as follows:

42 2

0= { L ryl {—;Adpd)d/’d)—dedbd’ —%ca 2y — V} (vpvng)lw} h,

|00 = B g0y + 90 -

Coyd'y}

=29, (V'VIE)R —4(V'V )R, — 4(V'V ER) + 4(VIVIE)R,

+49,,(V'V, )R + 4g,,(V,VIE R — 4(V'VER," —

1
+ 3 {26,75,5(V E)R — 45,75, (V)R] —

+ 4gﬂU5pn56§(vK§)Rp6 - 4gﬁﬂg‘7§(vK§)R#pW}g’d(Vnhﬁ + vghn/l -

1
- {4_1('2 9w — Z(Vnyf) + ZQMD(vzf) }R’whﬂv

N 1
21\ 2
X {=V2he, = 2R, hyy + R? Iy, + R hy, )

+2(VPVee{v,v,n,, -V,V,h,,

In order to investigate the propagating speed cgw of the
gravitational wave h,, we check the parts including
the second derivatives of /1, and we reobtain (13), although
£ is now a function of the two scalar fields ¢ and y,
E=¢&(¢p,x). Therefore even in the case of Einstein-
Gauss-Bonnet gravity coupled with two scalars, it is
impossible to obtain a model for which the propagating

-V, V,h, +V,V,h,+hyR?,,, —

(VPV 6) ﬂ/”/} ™

45p’751/{(vK§)Rl€

Vlh’]c)

4V2§> 5,0, + 4(V,V,8)8,0 + 4(V,V, )6 g — 4gWV’V’7§}

1 aTmatter;w l’l

Fom(88)

hprﬁR ﬂw} +5

speed of the gravitational wave coincides with that
of light.

A. Propagating speed of gravitational
wave inside stellar objects

We have shown that the propagating speed of gra-
vitational waves in a nontrivial spherically symmetric
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spacetime is always different from the speed of light, even
in the Einstein-Gauss-Bonnet gravity with two scalar fields
(84). In this subsection, we estimate the shift of the
gravitational wave speed in stellar objects in the context
of Einstein-Gauss-Bonnet gravity with only one scalar field

¢ in (1).

For the metric given by Eq. (62), the (z,¢)-, (r,r)-, the
angular components of Eq. (85) and the equation for the
scalar field ¢, have the following forms:

—4r2%e%i%p = —16(1 — e 24)&" — 4{~4(1 = 3e™2)¢ + r}

+24 22 + 284Vt = 1), (89)
4r?e? i’ p = 4{-4(1 =3¢ + riv/ +2 — r’¢”
— 272 42?4V P2, (90)
81’62’1K2p — 2(’, + 8516—2,1)(1/// + 1/2) + 165//1/6—2&
+{=2(r +24&e )V + 23/
=20 + r(¢? + 2e*V), (91)

0= -8 (e — 1)(V/ + 20/2) + ¢/ "1
— 8V (1 —eP) — X (3P — 1)}

Here p is the energy density and p is the pressure of matter,
which we assume to be a perfect fluid and satisfies an
equation of state, p = p(p). The energy density p and the
pressure p satisfy the following conservation law:

0:V"Tﬂ,:1/(p—|—p)+%. (93)
The conservation law is also derived from Egs. (89)—(92).
Here we have assumed that p and p depend only on the
radial coordinate r. Other components of the conservation
law are trivially satisfied. If the equation of state p = p(p)
is given, then Eq. (93) can be integrated as follows:

r dp r
1/:—/ dr—4— :_/p()dp . (94)
ptrp p(p)+p
Because Eq. (93) and therefore (94), can be obtained from
Egs. (89)-(92), as long as we use (94), we forget one
equation in Egs. (89)—(92). In the following, we do not
use Eq. (92). Inside the compact stellar object, we can use
Eq. (94) but outside the stellar object, we cannot use
Eq. (94). Instead of using Eq. (94), we may assume the

profile of v = v(r) so that v(r) and ¢/(r) are continuous at
the surface of the compact stellar object.

+r(/r+2=2r)g? — XV, (92) By combining Egs. (89) and (90), we obtain
|
e—2/1 e—2/1
V=i (=p+p) + g {4 ¥ = )& —4(1 =3 2) (X =) + ¥ — 1} +—— (4 =), (95)
I r
/I + 2 24,2 8 —21 1 1/ 1 —21 / AV 2 / /
¢ =E\/ -2 K(ﬂ+P)—p (e =1)&" +(1-3e )(/1+1/)§}+;(/1+V)- (96)

Furthermore, the combination of Eqs. (89) and (91) gives

0=-=8{eXWr—1)+1}¢ =8 {r(t +v? =3/A) + (3 -e*)}¢
PP+ V=V =2r(V + X)) — e+ 1 =232 (p + p), (97)

which can be regarded as a differential equation for & and therefore for & if v = v(r), 1 = A(r), p = p(r), and p = p(r)

given, the solution is

1 62,1{621 + rZ(U// 4 1/2 _ y',{') + r<1/ _|_/1/) —-1= 2K2r2622(/) + [J)}
f(r)_—g/ [/ UWr =1+ dr +c | Udr + ¢y,
r +0V2) + V(3 —e*-3Ur)
U(r) = exp {—/ 1t drp, (98)

where ¢ and ¢, are integration constants. We may properly assume the profile of v = v(r) and 1 = A(r). Therefore, by
using (98), we find the r dependence of &, & = &(r) and by using Egs. (95) and (96), we find the r dependencies of V and ¢,
V =V(r), and ¢ = ¢(r). By solving ¢ = ¢(r) with respect to r, r =r(¢), we find & and V as functions of ¢,
E(p) = E(r(d)), V(¢) = V(r(¢)), which realize the model which has a solution given by v = v(r) and 4 = A(r). We
should note, however, that the expression of ¢ in (96) gives the following constraint:

~282R2(p + p) = 5 (e = E + (1 =3 ) (X +V)E) +2 (2 +1/) 20, (99)
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so that the ghost could be avoided. If Eq. (99) is not satisfied,
then the scalar field ¢ becomes pure imaginary. We may
define a new real scalar field ¢ by ¢ = i (> = —1) but
because the coefficient in front of the kinetic term of {
becomes negative,  is rendered a ghost. The existence of the
ghost generates the negative norm states in the quantum
theory and therefore the theory becomes inconsistent.
When we consider compact stellar objects like neutron
stars, we often consider the following equation of state:
(1) Energy polytrope
p = Kp'*, (100)
with constants K and n. It is known that for the
neutron stars, n could take the value 0.5 <n < 1.
(2) Mass polytrope

1
p=pu+Np,  p=Kupm ™, (101)
where p,, is rest mass energy density and K,,, N are
constants.
Now let us study the case of the energy polytrope (100), in
detail, in which we can rewrite the equation of state as
follows,

- | - L 1

K=K ', n ;
-1
+

=—-1—-n.

—

n (102)
|

1
p~po+part.  po=Kpy'r,

I/~l/0+l/2r2, VoE%—(l—i—n)ln(l—i—KpO%)’ y25_<]+_

Therefore, by using (98), we obtain

5150

&(r) =& +2&r, gl

1
P2 = KP01+$<1 + —) P2

For the energy polytrope, Eq. (94) takes the following form:

p(r) d = |
1/——/ P i Am(+ k)
Klerﬁ_'_p 2

=~ —(14+n)In(1 + Kpi), (103)

N o

where c is an integration constant. Similarly, in the case of
mass polytrope (101), we obtain

+1n (1= K,pm), (104)

DN

UV =

where ¢ is an integration constant.

We now consider the energy polytrope in Eq. (94)
and investigate the behavior of the solution in the region
around the center of the stellar object. In order to avoid a
conical singularity at the center of the stellar object, we
require the following behavior of p near the center of
the star:

p~po+ par, A= Ar?, (105)

where p,, p,, and 1, are constants. We should note that
when r — 0, we need to require 4, /' — 0 in order to avoid
the conical singularity. Then Egs. (100) and (103) give

In order to avoid the conical singularity, we need to require &; = 0.

For simplicity, we assume

—iwt+ikr 0
. :Re(e t+ik )hg/)

. 0)i
s (l’]_g’(b’zhi —0>,

(0)

where h;;

n)po’
1> Kpy™'ps (106)
nj1 + K,D()'LI
5 E_Z(y2+l2) +K2(p0+Kp01+%) (107)
? 8(v2 +42)
other components = 0, (108)

s are constants corresponding to the polarization. At the center of the stellar object, by using (66), we find

ViVE=VVii =V, VE=V V.=V V=V VE=VVi=VV, =0,

vrv}’g = 2525 vlng = 25291.].9

V¢ =68,

(109)
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Then when the energy of the gravitational wave is large, by
using (12), we find the following dispersion relation:

1/ 1 1/1
— __ 24 —2vg ;2 _ 1 2
0 3 <2K2 + §2>e @+ <21<2 + 652) &k,

(110)

which indicates that the propagating speed cgw of the
gravitational wave is given by

cow’ = <71 * 32’(252) c?.

11
1 + 482, (1)

We should note that the speed of light ¢ is now given by

c? = e, If [K*&,| < 1, then Eq. (112) is approximated as

cow? ~ (1 — 16K%&,)c?. (112)
Therefore if & > 0 (& < 0), the propagating speed of
the gravitational wave becomes larger (smaller) than that
of light.

The GW170817 event in (11) gives a strong constraint
on the parameter &, as follows:

[16K%&,| < 6 x 10715, (113)

In the limit & — 0, £ becomes almost constant near the
center of the stellar objects and Eq. (107) indicates that

0 =2(va + ) + 2(py + Kpy' 1), (114)

which is consistent with Einstein’s gravity with &(¢) = 0.
In fact, Eq. (114) is obtained from Eq. (97) by putting
&(¢p) = 0 and by using (105) and (106) at the center.

V. SUMMARY AND DISCUSSION

In this paper, we have investigated the propagating speed
of the gravitational waves in the spherically symmetric
spacetime and cosmological spacetimes of the FLRW form,
which are solutions of Einstein-Gauss-Bonnet gravity. We
have found, that there is no possibility that the speed could
coincide with that of light in spherically symmetric back-
grounds. We estimated the shift of the propagating speed
inside stellar objects and in several epochs like during the
inflation, the end of inflation, the reheating, and late time
era in the framework of the Finstein-Gauss-Bonnet gravity
coupled with one scalar field. In order not to conflict with
the GW170817 observations [65-67], we have proposed a
scenario that Einstein-Gauss-Bonnet gravity reduces to the
standard scalar-tensor theory in late times by requiring that
the Gauss-Bonnet coupling &(¢) of the scalar field in the
action (1) and also the scalar field ¢ goes to a constant in
the late time era, although the Gauss-Bonnet coupling may

play important and nontrivial roles in the early Universe.
We constructed a rather realistic model that could satisfy
the above requirement. An interesting point could be that
the model would describe both the inflationary era in the
early Universe and the accelerating expansion of the late
Universe without introducing parameters with so large a
hierarchy.

What could happen when the propagating speed of the
gravitational wave is different from that of light in the early
Universe? For the fixed frequency, the wavelength becomes
longer (shorter) if the speed is larger (smaller) than the
light speed. Usually, the wave with a longer wavelength
generates higher output. Therefore if the speed is larger
(smaller), the primordial gravitational wave becomes more
(Iess) abundant. Another point is a cosmological horizon.
For gravity-related fluctuations, the cosmological horizon
becomes larger (smaller) if the speed of the gravitational
wave becomes larger (smaller) than those of other modes
including light and scalar fields. Therefore the tensor mode
and so-called B-mode polarization could be affected.

In the case of the stellar object, we have estimated the
propagating speed of the gravitational wave at the center of
the stellar object, in order to avoid any ambiguities. If the
Gauss-Bonnet coupling &(¢) becomes almost constant,
most of the gravitational waves propagate at the speed
of light. Such a behavior £(¢) strongly depends on the
details of the model. There could be, however, the model
where &(¢p) could depend on the coordinates even outside
of the stellar objects, especially in the case of compact stars
like neutron stars. Furthermore, there might be a small
portion of the gravitational wave that goes through inside
the stellar objects. If the propagating speed of the gravi-
tational wave is larger than that of light, there might be a
small signal before the main part of the gravitational wave
is observed. If the propagating speed of the gravitational
wave is larger than that of light, however, the causality
could be violated and therefore it might be prohibited. In
this case, there could be some interesting phenomena. For
example, some information inside the black hole horizon,
which is a null surface, might go through outside the
horizon, which may solve the problem of the information
paradox of the black hole. Finally, let us note that Einstein-
Gauss-Bonnet gravity may lead to finite-time future sin-
gularity (for a review see [73]) and it would be of interest to
study the gravitational wave speed in Einstein-Gauss-
Bonnet theory when the Universe reaches a future finite-
time singularity.
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