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In this work, we examine the propagation of gravitational waves in cosmological and astrophysical
spacetimes in the context of Einstein-Gauss-Bonnet gravity, in view of the GW170817 event. The
perspective we approach the problem with is to obtain a theory which can produce a gravitational wave
speed that is equal to that of light in the vacuum, or at least the speed can be compatible with the constraints
imposed by the GW170817 event. As we show, in the context of Einstein-Gauss-Bonnet gravity, the
propagation speed of gravity waves in cosmological spacetimes can be compatible with the GW170817
event, and we reconstruct some viable models. However, the propagation of gravity waves in spherically
symmetric spacetimes violates the GW170817 constraints, thus it is impossible for the gravitational wave
that propagates in a spherically symmetric spacetime to have a propagating speed which is equal to that of
light in the vacuum. The same conclusion applies to the Einstein-Gauss-Bonnet theory with two scalars. We
discuss the possible implications of our results on spherically symmetric spacetimes.
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I. INTRODUCTION

During the next decade, the focus of modern theoretical
physics and cosmology will be entirely on stage four
cosmic microwave background [1,2] and gravitational
wave experiments [3–11]. Both these experiments will
shed light on the fundamental question of whether inflation
ever occurred. Even recently, the inflationary scenario has
been considerably constrained, since the NANOGrav 2023
stochastic gravitational wave background observation [12]
requires a strongly blue-tilted inflationary era in order to
consistently describe the signal [13], if standard postinfla-
tionary cosmological scenarios occurred. Thus theories that
can yield a mild blue-tilted era can be important phenom-
enologically. In this line of research, string-inspired theo-
ries of gravity like Einstein-Gauss-Bonnet theories may
play an important phenomenological role and for an
important stream of reviews and research articles on this
topic, see, for example, [14–64] and references therein. The
Einstein-Gauss-Bonnet theories were severely restricted by
the GW170817 neutron star merger event [65–67] which
indicated that the speed of the gravitational waves should
nearly coincide with that of the light in the vacuum. This

GW170817 event imposed a severe constraint on the form
of the scalar coupling factor of the scalar field on the Gauss-
Bonnet invariant, which is a function often denoted by
ξðϕÞ, and several scenarios were developed for the con-
struction of a GW170817-compatible Einstein-Gauss-
Bonnet theory [42,68–70]. The constraint is, however,
valid only in the Friedmann-Lemaître-Robertson-Walker
(FLRW) Universe background and it has been shown that
any constraint cannot be satisfied around the static and
spherically symmetric spacetime, which includes black
holes, stellar objects, and wormholes [59].
In this paper, we again show that it is impossible to

obtain a model where the propagating speed of the
gravitational wave coincides with that of light in spherically
symmetric spacetimes. We also consider the gravitational
wave speed in cosmological spacetime and a scenario in
which the Gauss-Bonnet coupling function ξðϕÞ asymp-
totically approaches a constant in the late Universe when
the speed of the gravitational wave has been observed,
although the Gauss-Bonnet coupling may play important
roles in the early Universe. This cosmological scenario is a
possible description of the early Universe, and it is diverse
compared to some previous approaches [42,68–70].
Although from a theoretical point of view, this scenario
basically indicates that for some reason the graviton
changes its mass at late times, becoming entirely massless,
it is nevertheless a possibility that might be examined.
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We construct a realistic model of Einstein-Gauss-Bonnet
gravity, where the coupling function rapidly goes to a
constant in the late Universe. The model could describe the
whole evolutionary history of the Universe, including
inflation, reheating, the late accelerating expansion, and
so on. We firstly consider a standard Einstein-Gauss-
Bonnet gravity coupled with one scalar field ϕ, and we
clarify the condition that the propagating speed of the
gravitational waves is equal to that of light and we show
that the matter fluids do not affect the propagation speed.
Since the propagating speed of the gravitational waves
cannot coincide with that of light in a nontrivial spherically
symmetric background, as shown in [59], we consider the
scenario that the Gauss-Bonnet coupling function ξðϕÞ
goes to a constant in the late Universe and the propagating
speed of the gravitational wave approaches that of light. We
construct a more realistic model by using this scenario. The
model describes both the inflationary era in the early
Universe and the accelerating expansion of the present
Universe, without introducing the parameters without
hierarchy. We also estimate the speed of the gravitational
wave in the epochs of inflation and at the end of the
inflationary. We also discuss the reheating era and estimate
the temperature and the propagating speed of the gravita-
tional waves in this epoch. In Sec. III, we investigate the
propagation of the gravitational wave in the background of
a spherically symmetric spacetime. First, we consider the
spherically symmetric and also time-dependent spacetime
but also static and spherically symmetric spacetimes,
and we show that the condition is not satisfied in the
nontrivial spacetime including black holes, stellar objects,
wormholes, etc. After that, we estimate the propagating

speed of the gravitational wave inside the stellar objects.
We give a general constraint when we require that the
observational results in the GW170817 event should be
applied inside the stellar objects. Also, we consider a model
of the Einstein-Gauss-Bonnet gravity coupled with two
scalars, in a spherically symmetric but time-dependent
background. We show, however, that it is impossible to
obtain a model where the propagating speed of the
gravitational wave coincides with that of light. The last
section is devoted to the summary and discussion.

II. SCALAR-EINSTEIN-GAUSS-BONNET
GRAVITY

First, we consider the Einstein-Gauss-Bonnet gravity,
with the action of the theory being given by1

Sϕχ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ2

−
1

2
∂μϕ∂

μϕ − VðϕÞ − ξðϕÞG

þ Lmatter

�
; ð1Þ

where VðϕÞ is the potential for ϕ, ξðϕÞ is also a function of
ϕ, and finally Lmatter denotes the Lagrangian density of the
matter perfect fluids. Furthermore, G is the Gauss-Bonnet
invariant defined by

G ¼ R2 − 4RαβRαβ þ RαβρσRαβρσ: ð2Þ

By the variation of the action (84) with respect to the metric
gμν, we obtain

0 ¼ 1

2κ2

�
−Rμν þ

1

2
gμνR

�
þ 1

2
gμν

�
−
1

2
∂ρϕ∂

ρϕ − VðϕÞ
�
þ 1

2
∂μϕ∂νϕ

− 2ð∇μ∇νξðϕ; χÞÞRþ 2gμνð∇2ξðϕ; χÞÞRþ 4ð∇ρ∇μξðϕ; χÞÞRν
ρ þ 4ð∇ρ∇νξðϕ; χÞÞRμ

ρ

− 4ð∇2ξðϕ; χÞÞRμν − 4gμνð∇ρ∇σξðϕ; χÞÞRρσ þ 4ð∇ρ∇σξðϕ; χÞÞRμρνσ þ
1

2
Tmatter μν; ð3Þ

and the field equation for the scalar field is obtained by
varying the action with respect to ϕ, and it is given by

0 ¼ ∇μ
∂μϕ − V 0 − ξ0G: ð4Þ

In (3), Tmatter μν is the energy-momentum tensor of the
perfect matter fluids, which obeys the continuity equation.

A. Gravitational waves
in Einstein-Gauss-Bonnet gravity

In this subsection, we consider the condition that the
propagating speed of the gravitational waves is equal to that
of light in vacuum, and we show that matter is irrelevant to
the speed as long as the matter minimally couples with
gravity.

1In [71], a model similar to (1) has been studied and claimed that
a scalar-Gauss-Bonnet coupling could induce tachyonic instabil-
ities in perturbations during accelerated epochs. In the model,
although the cosmological term with a cosmological constant
appears in the paper, themodel does not include the potential for the
scalar field asVðϕÞ in (1). In themodel (1), the effective potential is
given by

VeffðϕÞ ¼ VðϕÞ þ ξðϕÞG ¼ VðϕÞ þ 24ðH3H0 þH4ÞξðϕÞ:
In the last equality, we have assumed the FLRW Universe (14),
H ≡ 1

a
da
dt . Therefore as long as V

00
effðϕÞ > 0, which corresponds to

the effective mass of the scalar field, the tachyon does not appear.
The condition V 00

effðϕÞ > 0 could correspond to the slow-roll
condition and we can construct the model to satisfy the condition
V 00
effðϕÞ > 0.
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For the general variation of the metric,

gμν → gμν þ hμν; ð5Þ

we have the following formulas in leading order in terms of hμν:

δΓκ
μν ¼

1

2
gκλð∇μhνλ þ∇νhμλ −∇λhμνÞ;

δRμ
νλσ ¼ ∇λδΓ

μ
σν −∇σδΓ

μ
λν;

δRμνλσ ¼
1

2
½∇λ∇νhσμ −∇λ∇μhσν −∇σ∇νhλμ þ∇σ∇μhλν þ hμρRρ

νλσ − hνρRρ
μλσ�;

δRμν ¼
1

2
½∇ρð∇μhνρ þ∇νhμρÞ −∇2hμν −∇μ∇νðgρλhρλÞ�

¼ 1

2
½∇μ∇ρhνρ þ∇ν∇ρhμρ −∇2hμν −∇μ∇νðgρλhρλÞ − 2Rλ

ν
ρ
μhλρ þ Rρ

μhρν þ Rρ
μhρν�;

δR ¼ −hμνRμν þ∇μ∇νhμν −∇2ðgμνhμνÞ: ð6Þ
Then the variation of (3) is given by

0 ¼
�
1

4κ2
Rþ 1

2

�
−
1

2
∂ρϕ∂

ρϕ − V

�
− 4ð∇ρ∇σξÞRρσ

�
hμν

þ
�
−
1

4
gμν∂τϕ∂ηϕ − 2gμνð∇τ∇ηξÞR − 4ð∇τ∇μξÞRη

v − 4ð∇τ∇νξÞRη
μ þ 4ð∇τ∇ηξÞRμν

þ 4gμνð∇τ∇σξÞRησ þ 4gμνð∇ρ∇τξÞRρη − 4ð∇τ∇σξÞRμ
η
νσ − 4ð∇ρ∇τξÞRμρν

η

�
hτη

þ 1

2
f2δμηδνζð∇κξÞR − 2gμνgηζð∇κξÞR − 4δρ

ηδμ
ζð∇κξÞRν

ρ − 4δρ
ηδν

ζð∇κξÞRμ
ρ

þ 4gηζð∇κξÞRμν þ 4gμνδρηδσζð∇κξÞRρσ − 4gρηgσζð∇κξÞRμρνσggκλð∇ηhζλ þ∇ζhηλ −∇λhηζÞ

þ
�

1

4κ2
gμν − 2ð∇μ∇νξÞ þ 2gμνð∇2ξÞ

�
f−hμνRμν þ∇μ∇νhμν −∇2ðgμνhμνÞg

þ 1

2

��
−

1

2κ2
− 4∇2ξ

�
δτμδ

η
ν þ 4ð∇ρ∇μξÞδηνgρτ þ 4ð∇ρ∇νξÞδτμgρη − 4gμν∇τ∇ηξ

�
× f∇τ∇ϕhηϕ þ∇η∇ϕhτϕ −∇2hτη −∇τ∇ηðgϕλhϕλÞ − 2Rλ

η
ϕ
τhλϕ þ Rϕ

τhϕη þ Rϕ
τhϕηg

þ 2ð∇ρ∇σξÞf∇ν∇ρhσμ −∇ν∇μhσρ −∇σ∇ρhνμ þ∇σ∇μhνρ þ hμϕRϕ
ρνσ − hρϕRϕ

μνσg

þ 1

2

∂Tmatter μν

∂gτη
hτη; ð7Þ

where we have assumed that the perfect matter fluids are
minimally coupled with gravity. We now choose a con-
dition to fix the gauge as follows:

0 ¼ ∇μhμν: ð8Þ

Since we are interested in the massless spin-two tensor
mode, we also impose the traceless condition,

0 ¼ gμνhμν: ð9Þ

We do not consider the perturbation of the scalar mode in
the metric like the trace part, which may couple with the
scalar field ϕ (see [72] for example) because we are now
interested in the massless and spin-two mode, which
corresponds to the usual gravitational wave. As long as
we consider the leading order of the perturbation, the
massless spin-two mode does not mix with the scalar mode,
which is a massive spin-zero mode although the second-
order perturbation of the scalar field plays the role of the
source of the gravitational wave. The traceless condition (9)
makes the massless spin-two mode decouple with the
massive spin-zero mode.
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Then Eq. (7) is reduced as follows:

0 ¼
�
1

4κ2
Rþ 1

2

�
−
1

2
∂ρϕ∂

ρϕ − V

�
− 4ð∇ρ∇σξÞRρσ

�
hμν

þ
�
1

4
gμνf−A∂τϕ∂ηϕ − Bð∂τϕ∂ηχ þ ∂

ηϕ∂τχÞ − C∂τχ∂ηχg

− 2gμνð∇τ∇ηξÞR − 4ð∇τ∇μξÞRν
η − 4ð∇τ∇νξÞRμ

η þ 4ð∇τ∇ηξÞRμν

þ 4gμνð∇τ∇σξÞRησ þ 4gμνð∇ρ∇τξÞRρη − 4ð∇τ∇σξÞRμ
η
νσ − 4ð∇ρ∇τξÞRμρν

η

�
hτη

þ 1

2
f2δμηδνζð∇κξÞR − 4δρ

ηδμ
ζð∇κξÞRν

ρ − 4δρ
ηδν

ζð∇κξÞRρ
μ

þ 4gμνδρηδσζð∇κξÞRρσ − 4gρηgσζð∇κξÞRμρνσggκλð∇ηhζλ þ∇ζhηλ −∇λhηζÞ

−
�

1

4κ2
gμν − 2ð∇μ∇νξÞ þ 2gμνð∇2ξÞ

�
Rμνhμν

þ 1

2

��
−

1

2κ2
− 4∇2ξ

�
δτμδ

η
ν þ 4ð∇ρ∇μξÞδηνgρτ þ 4ð∇ρ∇νξÞδτμgρη − 4gμν∇τ∇ηξ

�
× f−∇2hτη − 2Rλ

η
ϕ
τhλϕ þ Rϕ

τhϕη þ Rϕ
τhϕηg

þ 2ð∇ρ∇σξÞf∇ν∇ρhσμ −∇ν∇μhσρ −∇σ∇ρhνμ þ∇σ∇μhνρ þ hμϕRϕ
ρνσ − hρϕRϕ

μνσg þ
1

2

∂Tmatter μν

∂gτη
hτη: ð10Þ

The observation of GW170817 gives the constraint on the propagating speed cGW of the gravitational wave as follows:				 cGW2

c2
− 1

				 < 6 × 10−15; ð11Þ

where c denotes the speed of light. In order to investigate if the propagating speed cGW of the gravitational wave hμν could
be different from that of the light c, we only need to check the parts including the second derivatives of hμν,

Iμν ≡ Ið1Þμν þ Ið2Þμν ;

Ið1Þμν ≡ 1

2

��
−

1

2κ2
− 4∇2ξ

�
δτμδ

η
ν þ 4ð∇ρ∇μξÞδηνgρτ þ 4ð∇ρ∇νξÞδτμgρη − 4gμν∇τ∇ηξ

�
∇2hτη;

Ið2Þμν ≡ 2ð∇ρ∇σξÞf∇ν∇ρhσμ −∇ν∇μhσρ −∇σ∇ρhνμ þ∇σ∇μhνρg: ð12Þ

Since we are assuming that the matter fluids minimally
couple with gravity, any contribution of the matter fluids
does not couple with any derivative of hμν, and the
contribution does not appear in Iμν. In other words, matter
is not relevant to the propagating speed of the gravitational

wave. We should note that Ið1Þμν does not change the speed of
the gravitational wave from the speed of light. On the other

hand, Ið2Þμν changes the speed of the gravitational wave
from that of the light in general, which may violate the
constraint (11). If ∇μ∇νξ is proportional to the metric gμν,

∇μ∇νξ ¼ 1

4
gμν∇2ξ; ð13Þ

then Ið2Þμν does not change the speed of the gravitational
wave from that of light. We should note that ξ is a function
specifying the model. Equation (13) is a condition for

models so that the propagating speed of the gravitational
wave coincides with that of light.
As long as we consider the FLRW Universe, we can find

the solution of Eq. (13) as explicitly given in (18). As shown
in [59], the condition Eq. (13) cannot be satisfied in more
general background like nontrivial spherically symmetric
spacetime. Then instead of considering nontrivial solution of
Eq. (13), we will consider the scenario where ξ goes to a
constant or vanishes in the late Universe as the gravitational

waves have been detected and Ið2Þij can be neglected in the
late Universe.

B. Method for reconstructing realistic models
of early and late-time cosmic expansion

In this subsection, we will focus on the scenario that the
Gauss-Bonnet coupling function ξðϕÞ goes to a constant in
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the late-time Universe and also that the propagating speed
of the gravitational wave approaches that of light. In this
line of research, we construct a realistic model of cosmic
expansion. Both the inflationary era in the early Universe
and the accelerating expansion of the present Universe can
be described in a unified way in this model, without
introducing various parameters with different scales. The
speed of the gravitational wave in the epochs of the
inflation and at the end of the inflation are also estimated.
We consider the FLRW universe with a flat spatial

section, the line element of which is given by

ds2 ¼ −dt2 þ aðtÞ2
X

i¼1;2;3

ðdxiÞ2: ð14Þ

Here t is the cosmic time, and aðtÞ denotes the scale factor.
We often useH ¼ ȧ

awhich is the Hubble rate. Now we have

Γt
ij ¼ a2Hδij; Γi

jt ¼ Γi
tj ¼Hδij;

Ritjt ¼ −ðḢþH2Þa2hij; Rijkl ¼ a4H2ðδikδlj − δilδkjÞ;
Rtt ¼ −3ðḢþH2Þ; Rij ¼ a2ðḢþ 3H2Þδij;
R¼ 6Ḣþ 12H2; other components¼ 0; ð15Þ

therefore if ξ only depends on the cosmic time t, we obtain

∇t∇tξ ¼ ξ̈; ∇i∇jξ ¼ −a2Hδijξ̇;

∇t∇iξ ¼ ∇i∇tξ ¼ 0; ∇2ξ ¼ −ξ̈ − 3Hξ̇: ð16Þ

Then Eq. (13) becomes a second-order ordinary differential
equation with respect to the cosmological time t as follows:

ξ̈ ¼ Hξ̇; ð17Þ

whose solution is

ξ̇ ¼ ξ0 þ ξ1

Z
dtaðtÞ: ð18Þ

Because the differential equation (17) is second order, the
solution includes two constants of the integration ξ0 and ξ1.
In the case ξ1 ¼ 0, ξ becomes a constant and therefore the
Gauss-Bonnet term becomes a total derivative term and the
term does not contribute to any equation. We should note
that the condition ξ1 ¼ 0 is not an initial condition or
something else but the condition ξ1 ¼ 0 is the condition
defining the model. Instead of choosing the condition
ξ1 ¼ 0, which makes the Gauss-Bonnet term trivial, if
we choose the condition ξ1 ≠ 0, ξ is given by a function of
the cosmological time t. Furthermore, if we use the relation
H ¼ dN

dt , the function ξ can be expressed as a function of the
e-foldings N. By using the relation between the scalar field
ϕ and the e-foldings N in (26), which appears later, we can
determine ξ as a function of the scalar field ϕ, which
specifies the model.

We should note, however, that the propagating speed of
the gravitational wave cannot be equal to that of light in the
nontrivial spherically symmetric background, as it was
shown in [59].
Since the propagating speed of the gravitational wave

cannot be equal to the speed of light near black holes or
stellar objects, we consider the scenario that Ið2Þij can be
neglected in the late Universe. This requires that ξ goes to a
constant or vanishes in the late Universe, which is a special
solution of (13) corresponding to ξ1 ¼ 0 in (18). In this
solution, the Gauss-Bonnet term in the action (1) becomes a
total derivative and does not give any contribution to the
expansion of the Universe, although the term may become
necessary in the early Universe. If this scenario is realized,
then the theory reduces to the scalar-tensor theory in the
late Universe.
The equations corresponding to the FLRW equations

have the following forms, which are given by Eq. (3):

0 ¼ −
3

κ2
H2 þ 1

2
ϕ̇2 þ VðϕÞ þ 24H3

dξðϕðtÞÞ
dt

;

0 ¼ 1

κ2
ð2Ḣ þ 3H2Þ þ 1

2
ϕ̇2 − VðϕÞ − 8H2

d2ξðϕðtÞÞ
dt2

− 16HḢ
dξðϕðtÞÞ

dt
− 16H3

dξðϕðtÞÞ
dt

;

0 ¼ ϕ̈þ 3Hϕ̇þ V 0ðϕÞ þ ξ0ðϕÞG: ð19Þ
The third equation in (19) can be obtained by combining
the first and second equations and therefore we forgot the
third equation in the following. By using the e-foldings
number N defined by a ¼ a0eN instead of the cosmic time
t, we now rewrite (19) as follows:

0 ¼ −
3

κ2
H2 þ 1

2
H2ϕ0ðNÞ2 þ VðϕÞ þ 24H4

dξðϕðNÞÞ
dN

;

0 ¼ 1

κ2

�
2H

dH
dN

þ 3H2

�
þ 1

2
H2ϕ0ðNÞ2 − VðϕÞ

− 8H4
d2ξðϕðtÞÞ

dN2
− 24H3

dH
dN

dξðϕðNÞÞ
dN

− 16H4
dξðϕðtÞÞ

dN
: ð20Þ

We should note d
dt ¼ H d

dN and therefore d2

dt2 ¼ H2 d2

dN2 þ
dH
dN

d
dN. By deleting VðϕÞ in (20), we obtain

0 ¼ 2

κ2
H0ðNÞ þHðNÞϕ0ðNÞ2 − 8HðNÞ3 d

2ξðϕðtÞÞ
dN2

− 24HðNÞ2 dH
dN

dξðϕðNÞÞ
dN

þ 8HðNÞ3 dξðϕðtÞÞ
dN

¼ 2

κ2
H0ðNÞ þHðNÞϕ0ðNÞ2

− 8eN
d
dN

�
e−NHðNÞ3 dξðϕðtÞÞ

dN

�
; ð21Þ
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which can be integrated with respect to ξðNÞ and we obtain

ξðϕðNÞÞ ¼ 1

8

Z
N
dN1

eN1

HðN1Þ3
Z

N1 dN2

eN2

×

�
2

κ2
H0ðN2Þ þHðN2Þϕ0ðN2Þ2

�
: ð22Þ

By substituting Eq. (22) into the first equation in (20), we
find

VðϕðNÞÞ ¼ 3

κ2
HðNÞ2 − 1

2
HðNÞ2ϕ0ðNÞ2 − 3eNHðNÞ

×
Z

N dN1

eN1

�
2

κ2
H0ðN1Þ þHðN1Þϕ0ðN1Þ2

�
:

ð23Þ

Equations (22) and (23) and tell that by using functions
hðNÞ and fðϕÞ, if ξðϕÞ and VðϕÞ are given by

VðϕÞ¼ 3

κ2
hðfðϕÞÞ2−hðfðϕÞÞ2

2f0ðϕÞ2 −3hðfðϕÞÞefðϕÞ

×
Z

ϕ
dϕ1f0ðϕ1Þe−fðϕ1Þ

�
2

κ2
h0ðfðϕ1ÞÞþ

h0ðfðϕ1ÞÞ
f0ðϕ1Þ2

�
;

ð24Þ

ξðϕÞ ¼ 1

8

Z
ϕ
dϕ1

f0ðϕ1Þefðϕ1Þ

hðfðϕ1ÞÞ3
Z

ϕ1

dϕ2f0ðϕ2Þe−fðϕ2Þ

×

�
2

κ2
h0ðfðϕ2ÞÞ þ

hðfðϕ2ÞÞ
f0ðϕ2Þ2

�
; ð25Þ

a solution of the equations in (19) is given by

ϕ ¼ f−1ðNÞ ðN ¼ fðϕÞÞ; H ¼ hðNÞ: ð26Þ

Therefore we obtain a general Einstein-Gauss-Bonnet
model realizing the time evolution of H given by an
arbitrary function hðNÞ as in (26). We often solve the
model with given potential, etc. but here, we have consid-
ered the solution H ¼ hðNÞ first and we have constructed
the model that realizes the given solution H ¼ hðNÞ. We
should also note that the time evolution is determined only
by one function hðNÞ but in the action (1), there appear two
functions VðϕÞ and ξðϕÞ. There is one additional functional
degree of freedom in the model compared with the
evolution. We can separate the two functional degrees of
freedom in the action into the function hðNÞ relevant to the
evolution of H and the function fðϕÞ irrelevant to the
evolution. Therefore if we change fðϕÞ, the functional form
of ξðϕÞ changes but, of course, the functional form of VðϕÞ
also changes. The changes of ξðϕÞ and VðϕÞ compensate
with each other and the time evolution of the expansion of
the Universe given by H ¼ hðNÞ does not change.

We should note again that the history of the expansion of
the Universe is determined only by the function hðNÞ and
does not depend on the choice of fðϕÞ. By using this
indefiniteness of the choice of fðϕÞ, we consider the
possibility that ξ goes to a constant or vanishes in the late
Universe. The possibility can be satisfied if

0 ∼
2

κ2
H0ðNÞ þHðNÞϕ0ðNÞ2; ð27Þ

which can be solved as

ϕðNÞ ¼ f−1ðNÞ ∼
Z

dN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
2H0ðNÞ
κ2HðNÞ

s
: ð28Þ

The above expression can be valid as long as H0ðNÞ < 0,
which corresponds to the case that the effective equation of
state parameter, which is defined by

weff ≡ −1 −
2H0

3H
; ð29Þ

and is greater than −1. Compared with the past Universe, in
the late Universe, the Hubble rateH goes to a constant, and
we expect that H become asymptotically constant in the
future, that is, the spacetime becomes an asymptotically
de Sitter spacetime. This feature indicates that if the
scalar field ϕ goes to a constant in the late Universe, the
condition (28) is satisfied. This is natural because ξ is a
function of ϕ, if ϕ goes to a constant, then ξ ¼ ξðϕÞ
becomes a constant as long as ξ is not a singular function.
For example, we may assume,

ξ ¼ ξ0ð1 − e−ξ1NÞ: ð30Þ

Here ξ0 and ξ1 are constants and we assume ξ1 is positive.
Then ξ rapidly goes to a constant ξ → ξ0 when N becomes
large. And therefore, the Einstein-Gauss-Bonnet gravity
transits to the standard scalar-tensor theory. The cosmic
time of the transition can be adjusted by fine-tuning the
parameter ξ1. For example, if we choose 1=ξ1 ≲ 60, ξðϕÞ
becomes almost constant in the epoch of the reheating.
Equation (22) indicates that

ϕ02 ¼ −
2H0

κ2H
þ 8ξ0ξ1f2HH0 − ðξ1 þ 1ÞH2ge−ξ1N: ð31Þ

The second term decreases rapidly due to the factor e−ξ1N

and the first term vanishes, and therefore ϕ also goes to a
constant consistently if the spacetime becomes asymptoti-
cally a de Sitter spacetime.
We may estimate the propagating speed cGW of the

gravitational waves. We now consider the plain wave
hij ∝ Reðe−iωtþik·xÞ. Under the condition (8) and (9), by
using (16), Eq. (12) gives the following dispersion relation
for high energy gravitational waves,
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0 ¼ 1

2

�
−

1

2κ2
þ 4ðξ̈þ 3Hξ̇Þ

��
ω2 −

k2

a2

�
þ 2ξ̈ω2: ð32Þ

Here k2 ¼ k · k. Equation (32) shows that the

cGW2 ¼ 1 − 8κ2ðξ̈þ 3Hξ̇Þ
1 − 8κ2ð2ξ̈þ 3Hξ̇Þ c

2 ∼ ð1þ 8κ2ξ̈Þc2: ð33Þ

Now the speed of light c is given by c2 ¼ 1
a2. We also we

assumed jκ2ξ̈j ≪ 1. Equation (33) shows that if ξ̈ > 0

ðξ̈ < 0Þ, then the propagating speed of the gravitational
wave is larger (smaller) than that of light. The observation
of GW170817 in (11) gives the following constraint:

j8κ2ξ̈j < 6 × 10−15: ð34Þ

Especially in the case of (30), we obtain

j8κ2ξ0ðξ1HH0 − ξ1
2H2Þe−ξ1N j < 6 × 10−15: ð35Þ

In the present Universe, where the speed of the gravitational
wave was measured, we may assume N ¼ 120–140.
We consider the following model in terms of e-foldings

number N, which satisfies the above conditions,

H ¼ hðNÞ ¼ H0ð1þ αNβÞγ: ð36Þ

We construct this model to describe the whole history of the
Universe, that is, inflation, matter-dominant epoch, and the
accelerating expansion of the present Universe. When N is
small, we find H ∼H0ð1þ αγNβÞ and when N is large,
H ∼H1α

γNβγ . Therefore H1 and α should be positive so
that H is positive. We also require β > 0 and γ < 0 so that
H is a monotonically decreasing function.
The effective equation of state parameter is given by

weff ¼ −1 −
2αβγNβ−1

3ð1þ αNβÞ ; ð37Þ

which goes to −1 when N → 0 or N → ∞, We should note
that N → 0 corresponds to the early Universe and N → ∞
corresponds to the present or future Universe. Therefore
because the effective equation of state parameter weff goes
to −1 when N → 0 and when N → ∞, the model (36)
describes both the inflation and the accelerating expansion
in the late Universe.
We now check if the model (36) also describes the

matter-dominated area. When weff ¼ − 1
3
, we find

−αβγNβ−1 ¼ 1þ αNβ: ð38Þ

Let the two solutions of (38) N ¼ N1 and N ¼ N2

ð0 < N1 < N2Þ. Then the period where N < N1 corre-
sponds to the inflation in the early Universe and the period

where N > N2 to the accelerating expansion in the present
Universe. During N1 < N < N2, we expect weff goes to
vanish at least if we include the contribution of the matter
that is dust.
The parameters α and γ are given in terms of β, N1, and

N2, as follows:

α ¼ N2
β−1 − N1

β−1

ðN1N2Þβ−1ðN2 − N1Þ
; γ ¼ −

N2
β − N1

β

βðN2
β−1 − N1

β−1Þ :

ð39Þ

We should note that α and γ are positive as long as β > 1 as
we required. We now estimate the parameters α, β, and γ in
order to obtain realistic models compatible with the
constraint on the gravitational wave speed. Let the beginning
of the inflation correspond to N ¼ 0. Then the end of the
inflation corresponds to N ¼ N1 ¼ 60–70 and the recombi-
nation (clear up of the Universe) to N ¼ 120–140. The
redshift of the recombination is z ¼ 1100. Because
1þ z ¼ 1=a, where a is the scale factor, we obtain
N0 − N ¼ ln ð1þ zÞ, whereN0 is the redshift of the present
Universe. We note ln 1; 100 ∼ 7. The redshift corresponding
to the beginning of the accelerating expansion of the late
Universe is approximately 0.4 and ln 1.4 ∼ 0.3. Therefore
N2 ∼ 2N1. In order to estimate α and β in (39), we assume
N2 ¼ 2N1 ¼ Oð102Þ. Then we find

α ¼ 1 − 21−β

2−βN2
β ; γ ¼ −

ð1 − 2−βÞN2

βð1 − 21−βÞ : ð40Þ

In the early Universe, where N → 0, Eq. (36) has the
following form:

H ∼H0ð1þ αγNβÞ: ð41Þ

Therefore, H0 corresponds to the scale of inflation and we
now chooseH0 ∼ 1014 GeV ¼ 1023 eV. On the other hand,
when N is large ðN ∼ 102Þ, which corresponds to the period
of the accelerating expansionof the presentUniverse,we find

H ¼ H0α
γNβγ; ð42Þ

which requires αγNβγ ∼ 10−56 because H ∼ 10−33 eV.
Because N ∼ N2, by using (40), we find

ð2β − 2Þ−
ð1−2−βÞN2

βð1−21−βÞ ∼ 10−56: ð43Þ

When β → 1, we find ð2β − 2Þ−
ð1−2−βÞN2

βð1−21−βÞ → 0. On the other

hand, when β ¼ 2, we find ð2β − 2Þ−
ð1−2−βÞN2

βð1−21−βÞ ¼ 2−
3
4
N2 ∼

10−22 ≫ 10−56. Therefore, there is a solution β for
Eq. (43) when 1 < β < 2. Then Eq. (40) shows that
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α ∼Oð10−ð2−4ÞÞ and γ ∼Oð102Þ, and therefore these param-
eters are not too small or large.

C. Gravitational waves during the inflationary era

We now consider the propagating speed of the gravita-
tional wave during the inflationary era. The expression of
the propagating speed of the gravitational wave in (33) is
valid and at the beginning of the inflation N ∼ 0, we find

8κ2ξ̈ ¼ 8κ2ξ0ξ1ðḢ − ξH2Þe−ξ1N ∼ −8κ2ξ02ξ1H0
2: ð44Þ

Here we have assumed that Eqs. (30) and (36) hold true. On
the other hand, at the end of the inflation, we obtain

cGW2 ∼ ð1 − 8κ2ξ0H0
2ð1þ αN1

βÞ2γðξ1 þ ξ1
2Þe−ξ1N1Þc2:

ð45Þ

Here we have used (36) and (38) for N ¼ N1.
The gravitational wave generated in the epoch of

inflation has not been detected. Therefore there still be
the possibility that the propagating speed of the gravita-
tional wave might be significantly different from the speed
of light. As a working hypothesis, we now assume that the
speed of the gravitational wave is smaller by 10% than that
of light during inflation. Then Eq. (33) shows

8κ2ξ0
2ξ1H0

2 ∼
1

10
: ð46Þ

If we assume ξ1 ¼ Oð1Þ, then the factor e−ξ1N in (45) is
very small,

e−ξ1N ∼ e−60 ≒ 8.8 × 10−27: ð47Þ

Therefore, we expect that the difference between the speed
of the gravitational wave and that of light can be neglected
after the inflationary era, including the epoch of the
reheating, a scenario that we discuss in the next subsection.

D. Reheating scenario

In this subsection, we estimate the temperature and the
propagating speed of the gravitational wave in the epoch of
reheating. We expect that the inflationary will end when
N ¼ N1, which is one of the solutions of Eq. (38). So far,
we have neglected the contributions from the matter fluids.
After N ¼ N1, if the scalar field ϕ couples with matter, it
could affect the reheating era and the evolution of H
deviates from that in Eq. (36). In order to investigate the
behavior of the scalar field dynamics, we expand the
quantity around N ¼ N1 as follows:

N ¼ N1 þ δN: ð48Þ

Then by using (30) and (36), we find

ξ0 ∼ ξ0ξ1e−ξ1N1ð1 − ξ1δNÞ;
H ∼H0ð1þ αN1

βÞγð1 − δNÞ;
H0 ∼ αβγH0ð1þ αN1

βÞγ−1N1
β−1

×

�
1þ

�
−
γ − 1

γ
þ β − 1

�
δN
N1

�
: ð49Þ

Here we have used Eq. (38) with N ¼ N1 and the scalar
potential reads

V ∼ V0 −

(
6

κ2

�
1þ αβγ

ð1þ αN1
βÞγ

�
þ 2ϕ0

2e−
2N1
N0

N0

)

×H2
0ð1þ αN1

βÞ2γδN; ð50Þ

where V0 and ξ1 are constants of integration, which can be
determined by using (19), which gives when N ¼ N1,

0 ¼ −
�
3

κ2
−
ϕ0

2e−
2N1
N0

2N0

�
H2

0ð1þ αN1
βÞ2γ þ V0

þ 24H4
0ð1þ αN1

βÞ4γξ0ξ1e−ξ1N1 ;

0 ¼ 1

κ2

�
1 −

αβγN1
β−1

1þ αN1
β

�
H2

0ð1þ αN1
βÞ2γ − V0

−H4
0ð1þ αN1

βÞ4γ
�
16þ 24αβγN1

β−1

1þ αN1
β

�
ξ0ξ1e−ξ1N1 ;

ð51Þ

that is,

ξ0ξ1e−ξ1N1 ¼
�
1

κ2

�
2þ αβγN1

β−1

1þ αN1
β

�
−
ϕ0

2e−
2N1
N0

2N0

�

×H−2
0 ð1þ αN1

βÞ−2γ
�
8 −

24αβγN1
β−1

1þ αN1
β

�−1
;

V0 ¼
1

κ2

�
1 −

αβγN1
β−1

1þ αN1
β

�
H2

0ð1þ αN1
βÞ2γ

−H2
0ð1þ αN1

βÞ2γ
�
16þ 24αβγN1

β−1

1þ αN1
β

�

×

�
1

κ2

�
2þ αβγN1

β−1

1þ αN1
β

�
−
ϕ0

2e−
2N1
N0

2N0

�

×

�
8 −

24αβγN1
β−1

1þ αN1
β

�−1
: ð52Þ

We now estimate the reheating temperature Tre. The
effective energy density at the end of the inflationary era
is given by

ρeff ¼
3

κ2
HðN1Þ2 ¼

3

κ2
H0

2ð1þ αN1
βÞ2γ: ð53Þ
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We now assume that all the energy density is transformed
into radiation. The Stefan-Boltzmann law indicates that

3

κ2
H0

2ð1þ αN1
βÞ2γ ¼

�
π2gre
30

�
Tre

4: ð54Þ

Here gre denotes the number of the massless degrees of
freedom when the reheating era occurred. Then we obtain

Tre ¼
3

κ2
ffiffiffiffiffiffi
H0

p
ð1þ αN1

βÞγ2
�

30

π2gre

�1
4

: ð55Þ

In the epoch of the reheating, by using (33), we find the
propagating speed of the gravitational wave as follows:

cGW2 ∼


1þ 8κ2ξ0H0

2ð1þ αNrh
βÞ2γ−1ðξ1αβγNrh

β−1

− ξ1
2ð1þ αNrh

βÞÞe−ξ1Nrh

�
c2; ð56Þ

where Nrh is the e-folding number corresponding to the
reheating. So from the above relation, we have a concrete
idea on the behavior of the gravitational wave speed during
the reheating era, which is nontrivial, as expected, and
somewhat model dependent.

III. PROPAGATIONOFGRAVITATIONALWAVES
IN SPHERICALLY SYMMETRIC SPACETIME

In this section, we consider the propagation of the
gravitational waves in a spherically symmetric spacetime

background. First, we consider the spherically symmetric
and also time-dependent spacetime. The spacetime includes
both the static spherically symmetric spacetime and the
FLRW spacetime as special cases. We show that the con-
dition (13) cannot be satisfied in the nontrivial but general
spherically symmetric spacetime. After that, we estimate
the deviation of the propagating speed of the gravitational
wave from the speed of light inside a stellar object.

A. Spherically symmetric time-dependent spacetime

In this subsection, we show that the condition (13)
cannot be satisfied in the nontrivial but general spherically
symmetric spacetime. The most general form of the spheri-
cally symmetric and time-dependent spacetime is given by

ds2 ¼ −Aðτ; ρÞdτ2 þ 2Bðτ; ρÞdτdρþ Cðτ; ρÞdρ2
þDðτ; ρÞðdθ2 þ sin2θdϕ2Þ: ð57Þ

We should note that the spatially flat FLRW universe is a
special class of the above spacetime. We define the radial
coordinate r by

r2 ≡Dðτ; ρÞ; ð58Þ

assuming Dðτ; ρÞ is positive. In principle, Eq. (58) can be
solved with respect to ρ as ρ ¼ ρðτ; rÞ. Then the metric
in (57) can be rewritten as

ds2 ¼
�
−Aðτ; ρðτ; rÞÞ þ 2Bðτ; ρðτ; rÞÞ ∂ρ

∂τ

�
dτ2 þ 2Bðτ; ρðτ; rÞÞ ∂ρ

∂r
dτdr

þ Cðτ; ρðτ; rÞÞ
�
∂ρ

∂r

�
2

dr2 þ r2ðdθ2 þ sin2θdϕ2Þ: ð59Þ

Furthermore, we introduce a new time coordinate t as τ ¼ τðt; rÞ. Then the metric in (59) can be further rewritten as

ds2 ¼
�
−Aðτðt; rÞ; ρðτðt; rÞ; rÞÞ þ 2Bðτðt; rÞ; ρðτðt; rÞ; rÞÞ ∂ρðτðt; rÞ; rÞ

∂τ

��
∂τðt; rÞ

∂t

�
2

dt2

þ 2

�
Bðτðt; rÞ; ρðτðt; rÞ; rÞÞ ∂ρðτðt; rÞ; rÞ

∂r
∂τðt; rÞ

∂t

þ
�
−Aðτðt; rÞ; ρðτðt; rÞ; rÞÞ þ 2Bðτðt; rÞ; ρðτðt; rÞ; rÞÞ ∂ρðτðt; rÞ; rÞ

∂τ

�
∂τðt; rÞ

∂t
∂τðt; rÞ
∂r

�
dtdr

þ
�
Cðτ; ρðτ; rÞÞ

�
∂ρ

∂r

�
2

þ Bðτðt; rÞ; ρðτðt; rÞ; rÞÞ ∂ρðτðt; rÞ; rÞ
∂r

∂τðt; rÞ
∂r

×

�
−Aðτðt; rÞ; ρðτðt; rÞ; rÞÞ þ 2Bðτðt; rÞ; ρðτðt; rÞ; rÞÞ ∂ρðτðt; rÞ; rÞ

∂τ

��
∂τðt; rÞ
∂r

�
2
�
dr2

þ r2ðdθ2 þ sin2θdϕ2Þ: ð60Þ
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We can choose the time-coordinate t so that

0 ¼ Bðτðt; rÞ; ρðτðt; rÞ; rÞÞ ∂ρðτðt; rÞ; rÞ
∂r

∂τðt; rÞ
∂t

þ
�
−Aðτðt; rÞ; ρðτðt; rÞ; rÞÞ þ 2Bðτðt; rÞ; ρðτðt; rÞ; rÞÞ ∂ρðτðt; rÞ; rÞ

∂τ

�
∂τðt; rÞ

∂t
∂τðt; rÞ
∂r

: ð61Þ

Then finally, the metric has the following form:

ds2 ¼ −e2νðr;tÞdt2 þ e2λðr;tÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ;

− e2νðr;tÞ ≡
�
−Aðτðt; rÞ; ρðτðt; rÞ; rÞÞ þ 2Bðτðt; rÞ; ρðτðt; rÞ; rÞÞ ∂ρðτðt; rÞ; rÞ

∂τ

��
∂τðt; rÞ

∂t

�
2

;

e2λðr;tÞ ≡ Cðτ; ρðτ; rÞÞ
�
∂ρ

∂r

�
2

þ Bðτðt; rÞ; ρðτðt; rÞ; rÞÞ ∂ρðτðt; rÞ; rÞ
∂r

∂τðt; rÞ
∂r

×

�
−Aðτðt; rÞ; ρðτðt; rÞ; rÞÞ þ 2Bðτðt; rÞ; ρðτðt; rÞ; rÞÞ ∂ρðτðt; rÞ; rÞ

∂τ

��
∂τðt; rÞ
∂r

�
2

: ð62Þ

We define the metric g̃ij of the unit sphere by
P

i;j¼1;2 g̃ijdx
idxj ¼ dθ2 þ sin2θdϕ2. For the metric (62), the nonvanishing

connections are the following:

Γt
tt ¼ ν̇; Γr

tt ¼ e−2λþ2νν0; Γt
tr ¼ Γt

rt ¼ ν0; Γt
rr ¼ e2λ−2νλ̇; Γr

tr ¼ Γr
rt ¼ λ̇; Γr

rr ¼ λ0;

Γi
jk ¼ Γ̃i

jk; Γr
ij ¼ −e−2λrg̃ij; Γi

rj ¼ Γi
jr ¼

1

r
δij: ð63Þ

Here Γ̃i
jk is the connection given by g̃ij. Since

Rλ
μρν ¼ −Γλ

μρ;ν þ Γλ
μν;ρ − Γη

μρΓλ
νη þ Γη

μνΓλ
ρη; ð64Þ

we find that

Rrtrt ¼ −e2λfλ̈þ ðλ̇ − ν̇Þλ̇g þ e2νfν00 þ ðν0 − λ0Þν0g; Rtitj ¼ rν0e2ðν−λÞg̃ij;

Rrirj ¼ λ0rg̃ij; Rtirj ¼ λ̇rg̃ij; Rijkl ¼ ð1 − e−2λÞr2ðg̃ikg̃jl − g̃ilg̃jkÞ;

Rtt ¼ −fλ̈þ ðλ̇ − ν̇Þλ̇g þ e2ðν−λÞ
�
ν00 þ ðν0 − λ0Þν0 þ 2ν0

r

�
;

Rrr ¼ e−2ðν−λÞfλ̈þ ðλ̇ − ν̇Þλ̇g − fν00 þ ðν0 − λ0Þν0g þ 2λ0

r
;

Rtr ¼
2λ̇

r
; Rij ¼ ½1þ f−1 − rðν0 − λ0Þge−2λ�g̃ij;

R ¼ 2e−2νfλ̈þ ðλ̇ − ν̇Þλ̇g þ e−2λ
�
−2ν00 − 2ðν0 − λ0Þν0 − 4ðν0 − λ0Þ

r
þ 2e2λ − 2

r2

�
: ð65Þ

By assuming that ξ only depends on r and t because we are considering spherically symmetric spacetime, we find

∇t∇tξ ¼ ∂t
2ξ − ν̇∂tξ − e−2λþ2νν0∂rξ; ∇r∇rξ ¼ ∂r

2ξ − e2λ−2νλ̇∂tξ − λ0∂rξ;

∇i∇jξ ¼ e−2λrg̃ij∂rξ; ∇r∇tξ ¼ ∇t∇rξ ¼ ∂r∂tξ − ν0∂tξ − λ̇∂rξ;

∇t∇iξ ¼ ∇i∇tξ ¼ ∇r∇iξ ¼ ∇i∇rξ ¼ 0;

∇2ξ ¼ −e−2νð∂t2ξ − ν̇∂tξ − e−2λþ2νν0∂rξÞ þ e−2λð∂r2ξ − e2λ−2νλ̇∂tξ − λ0∂rξÞ þ
2e−2λ

r
∂rξ: ð66Þ
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Then the condition (13) gives

0 ¼ 3e−2νð∂t2ξ − ν̇∂tξ − e−2λþ2νν0∂rξÞ þ e−2λð∂r2ξ − e2λ−2νλ̇∂tξ − λ0∂rξÞ þ
2e−2λ

r
∂rξ;

0 ¼ −e−2νð∂t2ξ − ν̇∂tξ − e−2λþ2νν0∂rξÞ − 3e−2λð∂r2ξ − e2λ−2νλ̇∂tξ − λ0∂rξÞ þ
2e−2λ

r
∂rξ;

0 ¼ ∂r∂tξ − ν0∂tξ − λ̇∂rξ: ð67Þ

By combining the first and second equations in (67), we obtain

0 ¼ eνþλfe−2ν∂tðe−ν−λ∂tξÞ þ e−2λ∂rðe−ν−λ∂rξÞg: ð68Þ

0 ¼ −ð∂r2ξ − e2λ−2νλ̇∂tξ − λ0∂rξÞ þ
1

r
∂rξ; ð69Þ

0 ¼ ð∂t2ξ − ν̇∂tξ − e−2λþ2νν0∂rξÞ þ
e−2λþ2ν

r
∂rξ: ð70Þ

For simplicity, we consider the case that the spacetime is static, that is, ν and λ do not depend on time coordinate t. Then the
equations in (67) reduce to

0 ¼ 3e−2νð∂t2ξ − e−2λþ2νν0∂rξÞ þ e−2λð∂r2ξ − λ0∂rξÞ þ
2e−2λ

r
∂rξ;

0 ¼ −e−2νð∂t2ξ − e−2λþ2νν0∂rξÞ − 3e−2λð∂r2ξ − λ0∂rξÞ þ
2e−2λ

r
∂rξ;

0 ¼ ∂r∂tξ − ν0∂tξ; ð71Þ

and Eqs. (69) and (70) reduce to

0 ¼ −ð∂r2ξ − λ0∂rξÞ þ
1

r
∂rξ; ð72Þ

0 ¼ ∂t
2ξ − e−2λþ2νν0∂rξþ

e−2λþ2ν

r
∂rξ: ð73Þ

The general solution of the last equation in (71) is given by

ξðt; rÞ ¼ ξðtÞðtÞeνðrÞ þ ξðrÞðrÞ: ð74Þ

Here ξðtÞ and ξðrÞ are arbitrary functions of t and r,
respectively. By substituting (74) into (72), we obtain

0 ¼ −ðν00 þ ν02ÞξðtÞeν − ξ00ðrÞ þ
�
λ0 þ 1

r

�
ðν0ξðtÞeν þ ξ0ðrÞÞ;

ð75Þ

which gives

0¼ −ν00 þ ν02 þ
�
λ0 þ 1

r

�
ν0; 0¼ −ξ00ðrÞ þ

�
λ0 þ 1

r

�
ξ0ðrÞ:

ð76Þ

The first equation in (76) gives a nontrivial relation for the
spacetime geometry,

0 ¼ − ln
ν0

ν00r
þ νþ λ: ð77Þ

Here ν00 is an integration constant. On the other hand, the
second equation in (76) can be solved as follows:

ξ0ðrÞ ¼ ξ0reλ: ð78Þ

Here ξ0 is an integration constant. By substituting Eqs. (74)
and (78) into (73) and by using Eq. (77), we obtain

0 ¼ ξ̈ðtÞeν −
�
ν0 −

1

r

�
ν020
ν02

e4νðν0ξðtÞeν þ ξ0ðrÞÞ; ð79Þ

which gives

0 ¼ ξ̈ðtÞ; ν0 ¼ 1

r
; ð80Þ

which yields

ξðtÞ ¼ ξ1; 0 ¼ ν0ξ1eν þ ξ0ðrÞ; ð81Þ
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where ξ1 is a constant. The second equation in (80) gives

ν ¼ ln
r
r0
; ð82Þ

where r0 is a constant. On the other hand, when Eq. (81) is
satisfied, Eq. (74) indicates that ξ does not depend on the
time coordinate t. Then Eq. (73) yields

ν0 ¼ 1

r
; ð83Þ

which gives (82), again. Equation (82) indicates that there
is no horizon and therefore there is no solution for the black
hole when the speed of the propagating speed exactly
coincides with that of the light, even if we include two
scalar fields ϕ and χ in addition to matter. Equation (83)
also prohibits more general but nontrivial spherically
symmetric spacetime, including the stellar configuration
and wormholes.
In the next subsection, we try to solve the problem of the

propagating speed of gravitational waves, by considering
a model of Einstein-Gauss-Bonnet gravity coupled with
two scalar fields. As we will show we reobtain the
condition (13) again, and therefore the propagating speed

of the gravitational wave does not coincide with that
of light.

IV. TWO-SCALAR EINSTEIN-GAUSS-BONNET
GRAVITY

Since the propagating speed of the gravitational waves
cannot be equal to that of light in the nontrivial spherically
symmetric background as we have shown in [59], we
consider the model including two scalar fields ϕ and χ to
investigate if the problem could be solved or not.
The action with two scalar fields is given by

Sϕχ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ2

−
1

2
Aðϕ;χÞ∂μϕ∂μϕ−Bðϕ;χÞ∂μϕ∂μχ

−
1

2
Cðϕ;χÞ∂μχ∂μχ −Vðϕ;χÞ− ξðϕ;χÞGþLmatter

�
:

ð84Þ

Here Vðϕ; χÞ is the potential for ϕ and χ and ξðϕ; χÞ is also
a function of ϕ and χ. By varying the action (84) with
respect to the metric gμν, we obtain

0 ¼ 1

2κ2

�
−Rμν þ

1

2
gμνR

�

þ 1

2
gμν

�
−
1

2
Aðϕ; χÞ∂ρϕ∂ρϕ − Bðϕ; χÞ∂ρϕ∂ρχ −

1

2
Cðϕ; χÞ∂ρχ∂ρχ − Vðϕ; χÞ

�

þ 1

2
fAðϕ; χÞ∂μϕ∂νϕþ Bðϕ; χÞð∂μϕ∂νχ þ ∂νϕ∂μχÞ þ Cðϕ; χÞ∂μχ∂νχg

− 2ð∇μ∇νξðϕ; χÞÞRþ 2gμνð∇2ξðϕ; χÞÞRþ 4ð∇ρ∇μξðϕ; χÞÞRν
ρ þ 4ð∇ρ∇νξðϕ; χÞÞRμ

ρ

− 4ð∇2ξðϕ; χÞÞRμν − 4gμνð∇ρ∇σξðϕ; χÞÞRρσ þ 4ð∇ρ∇σξðϕ; χÞÞRμρνσ þ
1

2
Tmatter μν; ð85Þ

and the field equation for the scalar field is obtained by varying the action with respect to ϕ and χ, and it is equal to

0 ¼ 1

2
Aϕ∂μϕ∂

μϕþ A∇μ
∂μϕþ Aχ∂μϕ∂

μχ þ
�
Bχ −

1

2
Cϕ

�
∂μχ∂

μχ þ B∇μ
∂μχ − Vϕ − ξϕG;

0 ¼
�
−
1

2
Aχ þ Bϕ

�
∂μϕ∂

μϕþ B∇μ
∂μϕþ 1

2
Cχ∂μχ∂

μχ þ C∇μ
∂μχ þ Cϕ∂μϕ∂

μχ − Vχ − ξχG: ð86Þ

HereAϕ ¼ ∂Aðϕ; χÞ=∂ϕ, and similar notation is used in other
functions. Also in (85), Tmatter μν is the energy-momentum
tensor of perfect matter fluids. We should note that the field
equations in (86) are nothing but the Bianchi identities. We
again consider the equation that describes the gravitational

waves andweobtain the condition that the propagating speed
of the gravitational wave is equal to that of light.
By considering the variation of the metric in (5), we

obtain the equation describing the propagation of the
gravitational waves as follows:
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0 ¼
�
1

4κ2
Rþ 1

2

�
−
1

2
A∂ρϕ∂ρϕ − B∂ρϕ∂ρχ −

1

2
C∂ρχ∂ρχ − V

�
− 4ð∇ρ∇σξÞRρσ

�
hμν

þ
�
1

4
gμνf−A∂τϕ∂ηϕ − Bð∂τϕ∂ηχ þ ∂

ηϕ∂τχÞ − C∂τχ∂ηχg

− 2gμνð∇τ∇ηξÞR − 4ð∇τ∇μξÞRν
η − 4ð∇τ∇νξÞRμ

η þ 4ð∇τ∇ηξÞRμν

þ 4gμνð∇τ∇σξÞRησ þ 4gμνð∇ρ∇τξÞRρη − 4ð∇τ∇σξÞRμ
η
νσ − 4ð∇ρ∇τξÞRμρν

η

�
hτη

þ 1

2
f2δμηδνζð∇κξÞR − 2gμνgηζð∇κξÞR − 4δρ

ηδμ
ζð∇κξÞRν

ρ − 4δρ
ηδν

ζð∇κξÞRμ
ρ

þ 4gηζð∇κξÞRμν þ 4gμνδρηδσζð∇κξÞRρσ − 4gρηgσζð∇κξÞRμρνσggκλð∇ηhζλ þ∇ζhηλ −∇λhηζÞ

þ
�

1

4κ2
gμν − 2ð∇μ∇νξÞ þ 2gμνð∇2ξÞ

�
f−hμνRμν þ∇μ∇νhμν −∇2ðgμνhμνÞg

þ 1

2

��
−

1

2κ2
− 4∇2ξ

�
δτμδ

η
ν þ 4ð∇ρ∇μξÞδηνgρτ þ 4ð∇ρ∇νξÞδτμgρη − 4gμν∇τ∇ηξ

�
× f∇τ∇ϕhηϕ þ∇η∇ϕhτϕ −∇2hτη −∇τ∇ηðgϕλhϕλÞ − 2Rλ

η
ϕ
τhλϕ þ Rϕ

τhϕη þ Rϕ
τhϕηg

þ 2ð∇ρ∇σξÞf∇ν∇ρhσμ −∇ν∇μhσρ −∇σ∇ρhνμ þ∇σ∇μhνρ þ hμϕRϕ
ρνσ − hρϕRϕ

μνσg þ
1

2

∂Tmatter μν

∂gτη
hτη: ð87Þ

Here we have assumed that the matter fluids minimally couple with gravity, once more. By choosing the conditions in (8)
and (9), we can reduce Eq. (87) as follows:

0 ¼
�
1

4κ2
Rþ 1

2

�
−
1

2
A∂ρϕ∂ρϕ − B∂ρϕ∂ρχ −

1

2
C∂ρχ∂ρχ − V

�
− 4ð∇ρ∇σξÞRρσ

�
hμν

þ
�
1

4
gμνf−A∂τϕ∂ηϕ − Bð∂τϕ∂ηχ þ ∂

ηϕ∂τχÞ − C∂τχ∂ηχg

− 2gμνð∇τ∇ηξÞR − 4ð∇τ∇μξÞRν
η − 4ð∇τ∇νξÞRη

μ þ 4ð∇τ∇ηξÞRμν

þ 4gμνð∇τ∇σξÞRησ þ 4gμνð∇ρ∇τξÞRρη − 4ð∇τ∇σξÞRμ
η
νσ − 4ð∇ρ∇τξÞRη

μρν

�
hτη

þ 1

2
f2δμηδνζð∇κξÞR − 4δρ

ηδμ
ζð∇κξÞRρ

ν − 4δρ
ηδν

ζð∇κξÞRρ
μ

þ 4gμνδρηδσζð∇κξÞRρσ − 4gρηgσζð∇κξÞRμρνσggκλð∇ηhζλ þ∇ζhηλ −∇λhηζÞ

−
�

1

4κ2
gμν − 2ð∇μ∇νξÞ þ 2gμνð∇2ξÞ

�
Rμνhμν

þ 1

2

��
−

1

2κ2
− 4∇2ξ

�
δτμδ

η
ν þ 4ð∇ρ∇μξÞδηνgρτ þ 4ð∇ρ∇νξÞδτμgρη − 4gμν∇τ∇ηξ

�
× f−∇2hτη − 2Rλ

η
ϕ
τhλϕ þ Rϕ

τhϕη þ Rϕ
τhϕηg

þ 2ð∇ρ∇σξÞf∇ν∇ρhσμ −∇ν∇μhσρ −∇σ∇ρhνμ þ∇σ∇μhνρ þ hμϕRϕ
ρνσ − hρϕRϕ

μνσg þ
1

2

∂Tmatter μν

∂gτη
hτη: ð88Þ

In order to investigate the propagating speed cGW of the
gravitational wave hμν, we check the parts including
the second derivatives of hμν and we reobtain (13), although
ξ is now a function of the two scalar fields ϕ and χ,
ξ ¼ ξðϕ; χÞ. Therefore even in the case of Einstein-
Gauss-Bonnet gravity coupled with two scalars, it is
impossible to obtain a model for which the propagating

speed of the gravitational wave coincides with that
of light.

A. Propagating speed of gravitational
wave inside stellar objects

We have shown that the propagating speed of gra-
vitational waves in a nontrivial spherically symmetric
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spacetime is always different from the speed of light, even
in the Einstein-Gauss-Bonnet gravity with two scalar fields
(84). In this subsection, we estimate the shift of the
gravitational wave speed in stellar objects in the context
of Einstein-Gauss-Bonnet gravity with only one scalar field
ϕ in (1).
For the metric given by Eq. (62), the ðt; tÞ-, ðr; rÞ-, the

angular components of Eq. (85) and the equation for the
scalar field ϕ, have the following forms:

−4r2e2λκ2ρ¼ −16ð1− e−2λÞξ00 − 4f−4ð1− 3e−2λÞξ0 þ rgλ0
þ 2þ r2ϕ02 þ 2e2λðVr2 − 1Þ; ð89Þ

4r2e2λκ2p ¼ 4f−4ð1 − 3e−2λÞξ0 þ rgν0 þ 2 − r2ϕ02

− 2e−2λ þ 2e2λVr2; ð90Þ

8re2λκ2p ¼ 2ðrþ 8ξ0e−2λÞðν00 þ ν02Þ þ 16ξ00ν0e−2λ

þ f−2ðrþ 24ξ0e−2λÞλ0 þ 2gν0
− 2λ0 þ rðϕ02 þ 2e2λVÞ; ð91Þ

0 ¼ −8ξ0ðe−2λ − 1Þðν00 þ 2ν02Þ þ ϕ0ϕ00r2

− 8ν0ξ0fν0ð1 − e−2λÞ − λ0ð3e−2λ − 1Þg
þ rðν0rþ 2 − λ0rÞϕ02 − e2λV 0r2: ð92Þ

Here ρ is the energy density and p is the pressure of matter,
which we assume to be a perfect fluid and satisfies an
equation of state, p ¼ pðρÞ. The energy density ρ and the
pressure p satisfy the following conservation law:

0 ¼ ∇μTμr ¼ ν0ðρþ pÞ þ dp
dr

: ð93Þ

The conservation law is also derived from Eqs. (89)–(92).
Here we have assumed that ρ and p depend only on the
radial coordinate r. Other components of the conservation
law are trivially satisfied. If the equation of state ρ ¼ ρðpÞ
is given, then Eq. (93) can be integrated as follows:

ν ¼ −
Z

r
dr

dp
dr

ρþ p
¼ −

Z
pðrÞ dp

ρðpÞ þ p
: ð94Þ

Because Eq. (93) and therefore (94), can be obtained from
Eqs. (89)–(92), as long as we use (94), we forget one
equation in Eqs. (89)–(92). In the following, we do not
use Eq. (92). Inside the compact stellar object, we can use
Eq. (94) but outside the stellar object, we cannot use
Eq. (94). Instead of using Eq. (94), we may assume the
profile of ν ¼ νðrÞ so that νðrÞ and ν0ðrÞ are continuous at
the surface of the compact stellar object.
By combining Eqs. (89) and (90), we obtain

V ¼ κ2ð−ρþ pÞ þ e−2λ

r2
f−4ðe−2λ − 1Þξ00 − 4ð1 − 3e−2λÞðλ0 − ν0Þξ0 þ e2λ − 1g þ e−2λ

r
ðλ0 − ν0Þ; ð95Þ

ϕ0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2e2λκ2ðρþ pÞ − 8

r2
fðe−2λ − 1Þξ00 þ ð1 − 3e−2λÞðλ0 þ ν0Þξ0g þ 2

r
ðλ0 þ ν0Þ

r
: ð96Þ

Furthermore, the combination of Eqs. (89) and (91) gives

0 ¼ −8fe−2λðν0r − 1Þ þ 1gξ00 − 8e−2λfrðν00 þ ν02 − 3ν0λ0Þ þ λ0ð3 − e2λÞgξ0
− r2ðν00 þ ν02 − ν0λ0Þ − 2rðν0 þ λ0Þ − e2λ þ 1 − 2κ2r2e2λðρþ pÞ; ð97Þ

which can be regarded as a differential equation for ξ0 and therefore for ξ if ν ¼ νðrÞ, λ ¼ λðrÞ, ρ ¼ ρðrÞ, and p ¼ pðrÞ
given, the solution is

ξðrÞ ¼ −
1

8

Z �Z
e2λfe2λ þ r2ðν00 þ ν02 − ν0λ0Þ þ rðν0 þ λ0Þ − 1 − 2κ2r2e2λðρþ pÞg

Uðν0r − 1þ e2λÞ drþ c1

�
Udrþ c2;

UðrÞ≡ exp

�
−
Z

rðν00 þ ν02Þ þ λ0ð3 − e2λ − 3ν0rÞ
ν0r − 1þ e2λ

dr

�
; ð98Þ

where c1 and c2 are integration constants. We may properly assume the profile of ν ¼ νðrÞ and λ ¼ λðrÞ. Therefore, by
using (98), we find the r dependence of ξ, ξ ¼ ξðrÞ and by using Eqs. (95) and (96), we find the r dependencies of V and ϕ,
V ¼ VðrÞ, and ϕ ¼ ϕðrÞ. By solving ϕ ¼ ϕðrÞ with respect to r, r ¼ rðϕÞ, we find ξ and V as functions of ϕ,
ξðϕÞ ¼ ξðrðϕÞÞ, VðϕÞ ¼ VðrðϕÞÞ, which realize the model which has a solution given by ν ¼ νðrÞ and λ ¼ λðrÞ. We
should note, however, that the expression of ϕ in (96) gives the following constraint:

−2e2λκ2ðρþ pÞ − 8

r2
fðe−2λ − 1Þξ00 þ ð1 − 3e−2λÞðλ0 þ ν0Þξ0g þ 2

r
ðλ0 þ ν0Þ ≥ 0; ð99Þ
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so that the ghost could be avoided. If Eq. (99) is not satisfied,
then the scalar field ϕ becomes pure imaginary. We may
define a new real scalar field ζ by ϕ ¼ iζ ði2 ¼ −1Þ but
because the coefficient in front of the kinetic term of ζ
becomes negative, ζ is rendered a ghost. The existence of the
ghost generates the negative norm states in the quantum
theory and therefore the theory becomes inconsistent.
When we consider compact stellar objects like neutron

stars, we often consider the following equation of state:
(1) Energy polytrope

p ¼ Kρ1þ1
n; ð100Þ

with constants K and n. It is known that for the
neutron stars, n could take the value 0.5 ≤ n ≤ 1.

(2) Mass polytrope

ρ ¼ ρm þ Np; p ¼ Kmρ
1þ 1

nm
m ; ð101Þ

where ρm is rest mass energy density and Km, N are
constants.

Now let us study the case of the energy polytrope (100), in
detail, in which we can rewrite the equation of state as
follows,

ρ ¼ K̃pð1þ1
ñÞ; K̃ ≡ K

− 1

1þ1
n; ñ≡ 1

1
1þ1

n
− 1

¼ −1 − n:

ð102Þ

For the energy polytrope, Eq. (94) takes the following form:

ν ¼ −
Z

pðrÞ dp

K̃p1þ1
ñ þ p

¼ c
2
þ ñ ln ð1þ K̃−1p−1

ñÞ

¼ c
2
− ð1þ nÞ ln ð1þ Kρ

1
nÞ; ð103Þ

where c is an integration constant. Similarly, in the case of
mass polytrope (101), we obtain

ν ¼ c̃
2
þ ln ð1 − Kmρ

1
nmÞ; ð104Þ

where c̃ is an integration constant.
We now consider the energy polytrope in Eq. (94)

and investigate the behavior of the solution in the region
around the center of the stellar object. In order to avoid a
conical singularity at the center of the stellar object, we
require the following behavior of ρ near the center of
the star:

ρ ∼ ρ0 þ ρ2r2; λ ¼ λ2r2; ð105Þ

where ρ0, ρ2, and λ2 are constants. We should note that
when r → 0, we need to require λ; λ0 → 0 in order to avoid
the conical singularity. Then Eqs. (100) and (103) give

p ∼ p0 þ p2r2; p0 ≡ Kρ0
1þ1

n; p2 ≡ Kρ01þ
1
n

�
1þ 1

n

�
ρ2
ρ0

;

ν ∼ ν0 þ ν2r2; ν0 ≡ c
2
− ð1þ nÞ ln

�
1þ Kρ0

1
n

�
; ν2 ≡ −

�
1þ 1

n

�
Kρ0

1
n−1ρ2

1þ Kρ0
1
n

: ð106Þ

Therefore, by using (98), we obtain

ξ0ðrÞ ¼ ξ1 þ 2ξ2r; ξ1 ≡ c1
8
; ξ2 ≡ −

2ðν2 þ λ2Þ þ κ2ðρ0 þ Kρ01þ
1
nÞ

8ðν2 þ λ2Þ
: ð107Þ

In order to avoid the conical singularity, we need to require ξ1 ¼ 0.
For simplicity, we assume

hij ¼
Reðe−iωtþikrÞhð0Þij

r

�
i; j ¼ θ;ϕ;

X
i

hð0Þii ¼ 0

�
; other components ¼ 0; ð108Þ

where hð0Þij s are constants corresponding to the polarization. At the center of the stellar object, by using (66), we find

∇t∇tξ ¼ ∇i∇jξ ¼ ∇r∇tξ ¼ ∇t∇rξ ¼ ∇t∇iξ ¼ ∇i∇tξ ¼ ∇r∇iξ ¼ ∇i∇rξ ¼ 0;

∇r∇rξ ¼ 2ξ2; ∇i∇jξ ¼ 2ξ2g̃ij; ∇2ξ ¼ 6ξ2: ð109Þ

PROPAGATION OF GRAVITATIONAL WAVES IN EINSTEIN- … PHYS. REV. D 109, 044046 (2024)

044046-15



Then when the energy of the gravitational wave is large, by
using (12), we find the following dispersion relation:

0 ¼ −
1

2

�
1

2κ2
þ 24ξ2

�
e−2ν0ω2 þ 1

2

�
1

2κ2
þ 16ξ2

�
ξ2k2;

ð110Þ

which indicates that the propagating speed cGW of the
gravitational wave is given by

cGW2 ¼
�
1þ 32κ2ξ2
1þ 48κ2ξ2

�
c2: ð111Þ

We should note that the speed of light c is now given by
c2 ¼ e2ν0 . If jκ2ξ2j ≪ 1, then Eq. (112) is approximated as

cGW2 ∼ ð1 − 16κ2ξ2Þc2: ð112Þ

Therefore if ξ2 > 0 ðξ2 < 0Þ, the propagating speed of
the gravitational wave becomes larger (smaller) than that
of light.
The GW170817 event in (11) gives a strong constraint

on the parameter ξ2 as follows:

j16κ2ξ2j < 6 × 10−15: ð113Þ

In the limit ξ2 → 0, ξ becomes almost constant near the
center of the stellar objects and Eq. (107) indicates that

0 ¼ 2ðν2 þ λ2Þ þ κ2ðρ0 þ Kρ0
1þ1

nÞ; ð114Þ

which is consistent with Einstein’s gravity with ξðϕÞ ¼ 0.
In fact, Eq. (114) is obtained from Eq. (97) by putting
ξðϕÞ ¼ 0 and by using (105) and (106) at the center.

V. SUMMARY AND DISCUSSION

In this paper, we have investigated the propagating speed
of the gravitational waves in the spherically symmetric
spacetime and cosmological spacetimes of the FLRW form,
which are solutions of Einstein-Gauss-Bonnet gravity. We
have found, that there is no possibility that the speed could
coincide with that of light in spherically symmetric back-
grounds. We estimated the shift of the propagating speed
inside stellar objects and in several epochs like during the
inflation, the end of inflation, the reheating, and late time
era in the framework of the Einstein-Gauss-Bonnet gravity
coupled with one scalar field. In order not to conflict with
the GW170817 observations [65–67], we have proposed a
scenario that Einstein-Gauss-Bonnet gravity reduces to the
standard scalar-tensor theory in late times by requiring that
the Gauss-Bonnet coupling ξðϕÞ of the scalar field in the
action (1) and also the scalar field ϕ goes to a constant in
the late time era, although the Gauss-Bonnet coupling may

play important and nontrivial roles in the early Universe.
We constructed a rather realistic model that could satisfy
the above requirement. An interesting point could be that
the model would describe both the inflationary era in the
early Universe and the accelerating expansion of the late
Universe without introducing parameters with so large a
hierarchy.
What could happen when the propagating speed of the

gravitational wave is different from that of light in the early
Universe? For the fixed frequency, the wavelength becomes
longer (shorter) if the speed is larger (smaller) than the
light speed. Usually, the wave with a longer wavelength
generates higher output. Therefore if the speed is larger
(smaller), the primordial gravitational wave becomes more
(less) abundant. Another point is a cosmological horizon.
For gravity-related fluctuations, the cosmological horizon
becomes larger (smaller) if the speed of the gravitational
wave becomes larger (smaller) than those of other modes
including light and scalar fields. Therefore the tensor mode
and so-called B-mode polarization could be affected.
In the case of the stellar object, we have estimated the

propagating speed of the gravitational wave at the center of
the stellar object, in order to avoid any ambiguities. If the
Gauss-Bonnet coupling ξðϕÞ becomes almost constant,
most of the gravitational waves propagate at the speed
of light. Such a behavior ξðϕÞ strongly depends on the
details of the model. There could be, however, the model
where ξðϕÞ could depend on the coordinates even outside
of the stellar objects, especially in the case of compact stars
like neutron stars. Furthermore, there might be a small
portion of the gravitational wave that goes through inside
the stellar objects. If the propagating speed of the gravi-
tational wave is larger than that of light, there might be a
small signal before the main part of the gravitational wave
is observed. If the propagating speed of the gravitational
wave is larger than that of light, however, the causality
could be violated and therefore it might be prohibited. In
this case, there could be some interesting phenomena. For
example, some information inside the black hole horizon,
which is a null surface, might go through outside the
horizon, which may solve the problem of the information
paradox of the black hole. Finally, let us note that Einstein-
Gauss-Bonnet gravity may lead to finite-time future sin-
gularity (for a review see [73]) and it would be of interest to
study the gravitational wave speed in Einstein-Gauss-
Bonnet theory when the Universe reaches a future finite-
time singularity.
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