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Massive Brans-Dicke (BD) theory is among the simplest general relativity extensions. It is commonly
found as the weak-field limit of other gravitational theories. Here we do a detailed post-Newtonian analysis
of massive BD theories. We start by expanding the massive BD field equations following the Will-
Nordtvedt parametrized post-Newtonian (PPN) formalism, without point-particle approximations. A single
potential that is not present in the standard PPN formalism is found. This new potential hinders immediate
PPN conclusions. To proceed, we do a complete first-order post-Newtonian analysis and explicitly derive
all the conserved quantities. After demanding that there exists a Newtonian limit by requiring the BD mass
to be sufficiently large, we find, as expected, that γ ¼ 1; but there is no effective β parameter that can have
the same physical role of the standard β in PPN formalism. All the others standard PPN parameters can be
extended to the massive BD case without issues and are shown to have the same values of general relativity.
At last, we consider numerical relations on the periastron advance and the BD mass in two different
physical contexts, the orbit of Mercury about the Sun and the orbit of the star S2 about the expected
supermassive black hole in the Milky Way.
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I. INTRODUCTION

Scalar-tensor theories are among the most popular
alternative theories of gravity. Part of this status is due
to the fact that adding to the metric tensor a scalar field to
describe gravitational interaction can be seen as one of
the most simple ways to modify general relativity without
incurring into higher than second-order field equations. The
Brans-Dicke theory [1], the precursor of the scalar-tensor
models, has a clear meaning for the scalar field Φ: to
replace the gravitational constant G by a scalar function of
the coordinates. The consequences of this theory are well
known and exhaustively discussed in the literature [2–10].
A more sophisticated model emerges if one introduces to

the original Brans-Dicke theory a potential function VðΦÞ
to drive its self-interactions [11]. The scalar-field dynamics
assume the form of a massive field equation, from which
these models are usually called massive Brans-Dicke

theories. The characteristic feature of these theories is
the presence of a Yukawa-like potential in the weak-field
approximation, breaking the Newtonian limit, in general.
The Newtonian limit can be restored if the scalar-field mass
is either sufficiently small or sufficiently large (e.g., [12]).
The breaking of the Newtonian limit makes not so simple

the task of testing massive Brans-Dicke theories of gravity.
Specifically, the theory is not suitable to the parametrized
post-Newtonian formalism (PPN) [13–19], a practical
framework to compare theoretical predictions with Solar
system observational constraints [20–26]. Although many
conclusions have been drawn from the perspective of
effective β and γ parameters (they are replaced by
coordinate functions), we do not agree with such an
approach [27–29]. The presence of a single nonstandard
potential to the metric expansion of the PPN formalism can
be enough to modify the physical meaning of the PPN
parameters. In this sense, to encode the PPN deviations into
effective parameters that can vary in time and space does
not guarantee that the observational constraint originally
derived from the PPN formalism can still be applied to its
effective counterpart.

*matheus.s.alves@edu.ufes.br
†junior.toniato@ufes.br
‡davi.rodrigues@ufes.br

PHYSICAL REVIEW D 109, 044045 (2024)

2470-0010=2024=109(4)=044045(12) 044045-1 © 2024 American Physical Society

https://orcid.org/0000-0003-2634-1850
https://orcid.org/0000-0002-1887-2531
https://orcid.org/0000-0003-1683-5443
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.044045&domain=pdf&date_stamp=2024-02-21
https://doi.org/10.1103/PhysRevD.109.044045
https://doi.org/10.1103/PhysRevD.109.044045
https://doi.org/10.1103/PhysRevD.109.044045
https://doi.org/10.1103/PhysRevD.109.044045


Amore safe procedure is to consider equations of motion
and the definition of the conserved quantities, within the
PPN approximation method, in order to infer how the
new potentials affect the physical meaning of each PPN
parameter. This was the methodology used to study Palatini
fðRÞ gravity in Ref. [30]. For the specific case of scalar-
tensor theories, Ref. [12] made a detailed analysis of the γ
parameter, which is determined in the linear order of
approximation. Moving to the nonlinear order, a variety
of new potentials arise, making this task considerably
laborious.
However, once the use of PPN formalism presumes the

existence of a Newtonian limit for the theory, it is
reasonable for the scalar-tensor case to deal with a scalar
field of negligible or large mass compared with the system
scale. In the first scenario, the theory reduces to the
original Brans-Dicke model, which post-Newtonian limit
is well known. But, for the large mass case, the Yukawa
correction can be transferred from the linear to the next
order of approximation, leaving it as the single one
potential not included in the PPN formalism, a way more
treatable situation.
This is the goal of this paper: to study the PPN

parameters in a massive Brans-Dicke theory with a
Yukawa-like potential at the nonlinear order of approxi-
mation. The article is organized as follows. In Sec. II we
describe and obtain the field equations of the Brans-Dicke
theory with a potential. In Sec. III we perform a post-
Newtonian expansion of these field equations. In Sec. IV
we perform a derivation of all conserved quantities. In
Sec. V we proceed to obtain the acceleration of the center of
mass. In Sec. VI we discuss the periastron shift and the
effect of the Yukawa correction in this phenomenon. In
Sec. VII we discuss the meaning of the β parameter and the
Nordtvedt effect. We end with a conclusion in Sec. VIII.

II. MASSIVE BRANS-DICKE THEORIES

Brans-Dicke theories are a variation of scalar-tensor
theories of gravity, in which the gravitational constant G is
substituted by a scalar field Φ, referred to as the Brans-
Dicke field. The original theory only has a kinetic term that
depends on a dimensionless function ωðΦÞ (in particular, it
can be a constant). Here we consider a Brans-Dicke theory
with a potential VðΦÞ. We study this theory in a post-
Newtonian context, aiming to find the PPN parameters
when possible [17]. In this context, and assuming a
sufficiently smooth potential V, V can be expanded in
powers of Φ. The relevant contribution from V is the one
that defines the Brans-Dicke field mass. These topics are
further detailed below.
The Brans-Dicke action with a potential is given by

S ¼
Z ffiffiffiffiffiffi−gp

2κ

�
ΦRþ 2

ωðΦÞ
Φ

X − VðΦÞ
�
d4xþ Sm; ð1Þ

where Sm is the action of the matter fields, κ is the
dimensionless coupling constant since we are using
G ¼ 1, and

X ¼ −
1

2
gμν∂μΦ∂νΦ; ð2Þ

is the kinetic term. There are two free functions in the theory,
the scalar field potential V and the coupling function ω. We
remark that in the form above, with a potential, Brans-Dicke
theory is more general than metric and Palatini fðRÞmodels.
Indeed, ω¼0 leads to the former [31–33], while ω ¼ −3=2
leads to the latter [34,35].
The field equations are obtained from (1) by varying it

with respect to gμν and Φ:

Gμν ¼
κ

Φ
Tμν þ

1

Φ
½∇ν∇μΦ − gμν□Φ�

þ ω

Φ2

�
∂μΦ∂νΦþ Xgμν − gμν

V
2Φ

�
; ð3Þ

2ω

Φ
□Φ ¼ −Rþ 2ω0

Φ
X −

2ω

Φ2
X þ V 0; ð4Þ

where Gμν is the Einstein tensor, Tμν is the usual energy-
momentum tensor, ∇μ indicates a covariant derivative,
□≡∇μ∇μ is the d’Alembertian operator, and the
prime “ 0” represents a derivative with respect to Φ.
In the following section, we will expand these field

equations in a post-Newtonian approximation.

III. POST-NEWTONIAN LIMIT OF MASSIVE
BRANS-DICKE THEORIES

In this section,wewill expand the field equations (3) and (4)
up to the first post-Newtonianorder. For this purpose,wemake
use of the PPN formalism following [17–19].
The starting point of our calculation is to consider

the energy-momentum tensor as that of a perfect fluid,
which is given by

Tμν ¼ ðρþ ρΠþ pÞuμuν þ pgμν; ð5Þ

where ρ is the mass density (we are working also with
c ¼ 1), Π is the fluid’s internal energy per unit mass,
p is the pressure, and uμ ¼ u0ð1; vÞ is the fluid four-
velocity. Following the slow-motion condition, the energy-
momentum tensor components can be expanded in “orders
of smallness,”

U ∼ v2 ∼
p
ρ
∼ Π ∼Oð2Þ: ð6Þ

As standard within PPN formalism, we use the notation
OðNÞ to represent quantities of order vN or smaller. Time
derivatives are also taken to have an order of smallness
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associated with them, relative to spatial derivatives,
i.e., ∂0 ∼Oð1Þ.
The fluid dynamics are subjected not only to null

divergence of the energy-momentum ∇μTμν ¼ 0, but also
to the conservation of rest mass density,

∇μðρuμÞ ¼ 0: ð7Þ
This equation can be reexpressed as an effective flat-space
continuity equation as follows:

∂tðρ�Þ þ ∂iðviÞ ¼ 0; ð8Þ
with

ρ� ≡ ffiffiffiffiffiffi
−g

p
u0ρ: ð9Þ

Latin subindexes are used for spatial components only.
From (8) we see that the conserved mass density is ρ�, and
therefore, it is more convenient to use it to express the
energy-momentum tensor components.
To accurately depict the motion of massive bodies in

the first post-Newtonian approximation, it is sufficient to
calculate h00 up toOð4Þ, h0i up toOð3Þ, and hij up toOð2Þ.
In order to utilize the PPN formalism in Brans-Dicke’s

theory, it is necessary to expand the scalar field, Φ, in a
post-Newtonian approximation. To achieve this, we expand
Φ about a constant background given by φ0. The latter is
the value of Φ if the system in question is removed,

Φ ¼ φ0 þ φ; with φ0 ∼Oð0Þ: ð10Þ

Furthermore, we also need to expand the functions ωðΦÞ
and VðΦÞ around φ0. Expanding these functions we get

ω ¼ ω0 þ ω1φþ ω2φ
2 þ… ð11Þ

V ¼ V0 þ V1φþ V2φ
2 þ…; ð12Þ

where all expansion coefficients we assume to be of Oð0Þ.
Following the PPN formalism, we neglect any effective
cosmological constant that could emerge by considering
V0 ¼ 0. Furthermore, from (4) in the lowest velocity order
Oð0Þ, we obtain V1 ¼ 0.

A. Second order

We start by considering the leading term in (4). Taking
into account the above expansions, we have

ð∇2 −m2
φÞφ ¼ −

κ

ð2ω0 þ 3Þ ρ
�; ð13Þ

with the mass term given by

m2
φ ≡ 2φ0

ð2ω0 þ 3ÞV2: ð14Þ

Equation (13) solution, with the boundary condition that φ
should approach zero far from the source, is a Yukawa
potential, which is expressed by

φ ¼ κ

4πð2ω0 þ 3Þ
Z

ρ�ðt;x0Þ
jx − x0j e

−mφjx−x0jd3x0: ð15Þ

Keeping only the second-order terms in (3), knowing
that u0 ≈ 1, due to its normalization and that the relevant
component of the energy-momentum tensor is T00 ≈ ρ ≈ ρ�
because of Eq. (9), we obtain the following equations for
the temporal and spatial components of the metric tensor:

∇2hð2Þ00 ¼ −
κ

φ0

ρ� þ 1

φ0

∇2φ; ð16Þ

∇2hð2Þij ¼ −
1

φ0

ðδij∇2φþ δijκρ
�Þ: ð17Þ

In order to solve these equations we need to fix a gauge for
the metric tensor. A useful choice for the class of scalar-
tensor theories we consider is given by [36]

∂khki þ
1

2
∂ih00 −

1

2
∂ihkk ¼

1

φ0

∂iφ: ð18Þ

In this gauge we can write the solution for (16) and (17) as

hð2Þ00 ¼
�

κ

4πφ0

U þ 1

φ0

φ

�
; ð19Þ

hð2Þij ¼
�

κ

4πφ0

U −
1

φ0

φ

�
δij; ð20Þ

where we are using

U ¼
Z

ρ�ðt;x0Þ
jx − x0j d

3x0: ð21Þ

As discussed in Ref. [12], this theory has a Newtonian
limit only if the mass is sufficiently small or sufficiently
large. In the first case, the exponential of Eq. (15) can be
expanded, and one finds that the metric assumes the
standard PPN form, leading to the massless Brans-Dicke
theory (e.g., [37]). The sufficiently large mass case is
commonly evoked to vanish the scalar field contribution,
recovering general relativity results. We recall that one of
the assumptions of the PPN formalism is that any non-
Newtonian correction must appear beyond the Newtonian
order, never in the Newtonian order. An alternative for
these cases is to perform a post-Yukawa expansion as
discussed in Ref. [38].
Here we are concerned with the scenario in which mφ is

large enough to not violate the Newtonian limit only.
Thus, a natural assumption, in order to be consistent with
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standard post-Newtonian analysis, is to consider a scalar
field mass sufficiently large such that any correction to the
Newtonian physics appears only in the fourth order. Under
such conditions, the Yukawa correction magnitude cannot
be larger than Oð4Þ, that is, it needs to satisfy

φ ∼Oð4Þ: ð22Þ

Thus, from now on we restrict our analysis to models
where the scalar field does not have impact on the
Newtonian limit, but it will have influence on the first
post-Newtonian order.1 Under the former assumption, the
Oð2Þ terms are

hð2Þ00 ¼ κ

4πφ0

U and hð2Þij ¼ κ

4πφ0

Uδij: ð23Þ

Furthermore, to obtain a well-posed Newtonian limit
we must impose the relation κ=4πφ0 ¼ 2. Therefore, the
components of the metric up to Oð2Þ are simply

hð2Þ00 ¼ 2U; ð24Þ

hð2Þij ¼ 2Uδij: ð25Þ

From the above, one concludes that the second-order metric
in this massive Brans-Dicke theory with φ ∼Oð4Þ
[cf. Eq. (22)] is identical as in general relativity (GR).
Once post-Newtonian corrections to the light motion are
derived from this second-order metric only, one can also
conclude that it necessarily yields

γ ¼ 1: ð26Þ

Therefore, the present model is consistent with observa-
tional data coming from light bending and Shapiro time
delay. This is consistent with several works, and a more
precise discussion on the PPN parameter γ in scalar-tensor
theories can be found in Ref. [12].

B. Third order

Moving to the third order, only the 0j-components of the
field equation (3) contribute, then we have the equation

∇2hð3Þ0j ¼ 2
κ

φ0

vjρ� −
1

2
∂0∂jh

ð2Þ
00 : ð27Þ

The solution is then easily obtained to be

hð3Þ0j ¼ −4Uj −
1

2
∂tjX; ð28Þ

where

Uj ¼
Z

ρ�ðt;x0Þvj
jx − x0j d3x0; ð29Þ

and

X ¼
Z

ρ�ðt;x0Þjx − x0jd3x0: ð30Þ

C. Fourth order

To derive the 00-component of the metric in Oð4Þ we
first compute u0 and ρ� up to Oð2Þ,

u0 ¼ 1þ ð2U þ v2Þ; ð31Þ

ρ� ¼ ρ

�
1þ 3U þ v2

2

�
: ð32Þ

With the expressions above, we find

∇2hð4Þ00 ¼ ∇2½3Φ1 − 2Φ2 þ 2Φ3 þ 6Φ4 − 2U2 þ φ�: ð33Þ
Therefore, by using that the metric is asymptotically flat,
the general solution reads

hð4Þ00 ¼ 3Φ1 − 2Φ2 þ 2Φ3 þ 6Φ4 − 2U2 þ a1ΦY; ð34Þ
where

Φ1 ¼
Z

ρ�0v02

jx − x0j d
3x0; Φ2 ¼

Z
ρ�0U0

jx − x0jd
3x0; ð35Þ

Φ3 ¼
Z

ρ�0Π0

jx − x0j d
3x0; Φ4 ¼

Z
p0

jx − x0jd
3x0; ð36Þ

ΦY ¼
Z

ρ�0

jx − x0j e
−mφjx−x0jd3x0; ð37Þ

and

a1 ¼
2φ0

ð2ω0 þ 3Þ : ð38Þ

The primed fluid variables are evaluated at time t and
position x0.
Collecting together the previous results, one can write

g00 ¼ −1þ 2U þ 2ðψ −U2Þ þ a1ΦY; ð39Þ

g0j ¼ −4Uj −
1

2
∂tjX; ð40Þ

gij ¼ ð1þ 2UÞδij; ð41Þ

1The case φ ∼Oð3Þ cannot be considered within the PPN
formalism since the g00 component is broken into Oð0Þ, Oð2Þ,
and Oð4Þ terms. Therefore, a third-order scalar field would, in
general, lead to high-precision corrections on the Newtonian
order that would also be too large in comparison with the post-
Newtonian corrections.
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where we have defined,

ψ ≡ 3

2
Φ1 −Φ2 þΦ3 þ 3Φ4: ð42Þ

As expected, the limit of general relativity is obtained
when ω0 → ∞ with φ0 fixed. Under some specific sit-
uations, GR may not be recovered in the previous limit
(e.g., [39]), indeed, when φ0 depends on ω0.
In the metric above, we have the presence of a new

potential ΦY that is outside the standard Will-Nordtvedt
parametrization, so it is not correct to infer any immediate
limit on any PPN parameter.
To obtain information about the other parameters it is

necessary to derive the equations of motion of the fields of
matter to confront the theory with observational data from
experiments performed in the Solar system. For this, a few
more details are needed, and the first step is to examine the
PN hydrodynamics in order to find the conserved quantities.

IV. CONSERVED QUANTITIES

Within the PPN formalism, five of its ten parameters
are directly related to the possibility of a theory to
satisfy conservation laws for the total energy and total
momentum [17–19]. These laws can be obtained from the
integration of the energy-momentum tensor conservation
equation

∇μTμν ¼ 0; ð43Þ
in a finite-volume V with boundaries outside the region
occupied by matter.
The rescaled density ρ� defined in (9) allows us to define

the fluid total rest mass in a given volume V as

m ¼
Z
V
ρ�d3x: ð44Þ

Using that for any arbitrary function fðx; tÞ, one has

d
dt

Z
V
ρ�fðt;xÞd3x ¼

Z
V
ρ�

dfðt;xÞ
dt

d3x; ð45Þ

and we have that the mass m is conserved. The steps to
obtain (45) are straightforward, and they rely on the
continuity equation (8), Gauss’s theorem, and the fact that
ρ� vanishes on the boundary of the domain of integration.
From the energy-momentum tensor conservation, we

write

∂νð
ffiffiffiffiffiffi
−g

p
TμνÞ þ Γμ

ανð ffiffiffiffiffiffi
−g

p
TανÞ ¼ 0: ð46Þ

For μ ¼ 0 and up to Oð5Þ, one gets

ρ�
d
dt

�
1

2
v2 þ Π

�
þ ∂jðpvjÞ − ρ�vj∂jU ¼ 0: ð47Þ

This result can be expressed as an energy conservation
statement for a bounded matter source, i.e.,

dE
dt

¼ 0; ð48Þ

with

E ¼
Z �

1

2
ρ�v2 þ ρ�Π −

1

2
ρ�U

�
d3x: ð49Þ

The total mass-energy of the fluid is defined as

M ¼ mþ E; ð50Þ

and, through (44) and (49), it satisfies dM=dt ¼ 0.
Considering now μ ¼ i up to Oð6Þ, one finds

∂0ðμρ�vjÞ þ ∂kðμρ�vjvkÞ þ ∂jp − ρ�∂jU

− ρ�
�
3

2
v2 −U þ Πþ p

ρ�

�
∂jU − ρ�∂jΨ

þ 2ρ�
d
dt

ðUvjÞ þ 2U∂jp − 4ρ�
dUj

dt
þ 4ρ�vk∂jUk

−
1

2
ρ�a1∂jΦY ¼ 0; ð51Þ

with

μ≡ 1þ 1

2
v2 þU þ Πþ p

ρ�
: ð52Þ

We next integrate (51) over the volume occupied by the
fluid. All terms with the exception of the term with ΦY
are general relativity terms and can be found in [17]. To
integrate the extra term we use the “switch trick,” which
consists of interchanging the variables x ↔ x0 inside the
integral. This leads us to

Z
ρ�∂jΦYd3x ¼ 0: ð53Þ

At the end, one finds the following vector conservation
law:

dPj

dt
¼ 0; ð54Þ

with

Pj ¼
Z

ρ�vj

�
1þ 1

2
v2 −

1

2
U þ Πþ p

ρ�

�
d3x

−
1

2

Z
ρ�Φjd3x: ð55Þ

From the above one sees that Pj does not depend on ΦY

and that it has exactly the same expression as in GR.
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The previous results show that massive Brans-Dicke
theories, φ ∼Oð4Þ, do not violate the total conservation of
energy and momentum up to first post-Newtonian order.
This is a direct consequence of all the PPN parameters ζ
and α3 being null, i.e.,

ζ1 ¼ ζ2 ¼ ζ3 ¼ ζ4 ¼ α3 ¼ 0: ð56Þ
Therefore, Eqs. (49) and (55) can be directly compared to
their counterparts in the PPN formalism [19]. For E the
expression is identical to (49), not being dependent on any
PPN parameter. For the momentum one has

PPPN
j ¼

Z
ρ�vj

�
1þ 1

2
v2 −

1

2
UþΠþ p

ρ�

�
d3x

−
1

2

Z
ρ�
�
ð1þ α2ÞΦj þ

1

2
ðα1 − α2ÞVj

�
d3x; ð57Þ

which gives

α1 ¼ α2 ¼ 0; ð58Þ
for the massive Brans-Dicke theory with φ ∼Oð4Þ. Thus,
the model is a fully conservative one, and it also does not
present preferred-frame effects.

V. EQUATION OF MOTION FOR
MASSIVE BODIES

In this section, we want to obtain the PN equations of
motion for the center of mass of massive bodies. For that,
we split the fluid description of the source into N separated
bodies. This is a realistic way to deal with the trajectories of
massive and finite-volume bodies, instead of assuming test
particles. Each body indexed by A has a total rest mass
given by

mA ¼
Z
A
ρ�d3x: ð59Þ

The volume of integration above is calculated as a time-
independent region of space that extends beyond the
volume occupied by the body. Let us assume that this
volume is large enough that, in a time interval dt, the body
does not cross its boundary surface, but it is also small
enough to not intersect with any other body of the system.
The center of mass, its velocity, and acceleration of a body
A are then defined as

rA ≡ 1

mA

Z
A
ρ�xd3x; ð60Þ

vA ≡ drA
dt

¼ 1

mA

Z
A
ρ�vd3x; ð61Þ

aA ≡ dvA
dt

¼ 1

mA

Z
A
ρ�

dv
dt

d3x: ð62Þ

Following [17], the center of mass acceleration of each
body is decomposed into three parts,

aA ¼ aA½Newt� þ aA½PN� þ aA½Str�: ð63Þ
The first term is the Newtonian contribution. The second
term is the PN corrections apart from any contribution due
to the internal structure of the bodies, which are encoded
within the third term. In order to obtain the integrand of
Eq. (62) we need the PN extension of the Euler equation,
which comes from (46), and it reads

ρ�
dvj

dt
¼ −∂jpþ ρ�∂jU þ ρ�

�
1

2
v2 þU þ Πþ p

ρ�

�
∂jp

− vj∂tpþ ρ�ðv2 − 4UÞ∂jU
− ρ�vjð3∂tU þ 4vk∂kUÞ
þ 4ρ�∂tUj þ 4ρ�vkð∂kUj − ∂jUkÞ

þ ρ�∂jΨþ 1

2
ρ�a1∂jΦY ¼ 0: ð64Þ

To obtain the acceleration of the center of mass we
substitute (64) into (62) and calculate the integrals. As
before, the only term different from general relativity is the
one containing the new potential ΦY . To integrate this term
we use the fact that the gravitational potentials can be
separated into an internal part, produced by body A, and an
external part originated by the other bodies of the system.
When integrating the terms containing the inner parts, both
the integrals will have the same domain, so they can be
calculated with the help of the switch trick mentioned
earlier. Assuming a large separation between the bodies
implies that, when evaluating an external potential inside
the body A, they can be expanded in a Taylor series. In this
context we have

Φext
Y;A ≈Φext

Y;Aðt; rAÞ þ x̄j∂jΦext
Y;Aðt; rAÞ þ � � � ; ð65Þ

where x̄ gives the position of a fluid element relative to the
center of mass rAðtÞ. This expansion is used to extract the
outer pieces of potentials from the integrals and obtain

Z
A
ρ�∂jΦYd3x ¼ mA∂jΦext

Y;A: ð66Þ

The above result is achieved because the second term in
Eq. (65) contains an odd number of internal vectors and, by
considering that the bodies are “reflect symmetric” with
respect to their center of mass, i.e., ρ�ðt; x̄Þ ¼ ρ�ðt;−x̄Þ,
their integral vanishes. With this result, we calculate the
individual contribution of this new term to the gravitational
force. We get

∂jΦext
Y;A ¼ −

X
B≠A

ð1þmφrABÞ
mBn

j
AB

r2AB
e−mφrAB : ð67Þ
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In the end, one finds the following center of mass acceleration:

aA½Newt� ¼ −
X
B≠A

mB

r2AB
nAB; ð68Þ

aA½PN� ¼ −
X
B≠A

mB

r2AB

�
v2A − 4ðvA · vBÞ þ 2v2B −

3

2
ðnAB · vBÞ2 −

5mA

rAB
−
4mB

rAB

�
nAB þ

X
B≠A

mB

r2AB
½nAB · ð4vA − 3vBÞ�ðvA − vBÞ

þ
X
B≠A

X
C≠A;B

mBmC

r2AB

�
4

rAC
þ 1

rBC
−

rAB
2r2BC

ðnAB · nBCÞ
�
nAB

−
7

2

X
B≠A

X
C≠A;B

mBmC

rABr2BC
nBC −

1

2
a1
X
B≠A

ð1þmφrABÞ
mB

r2AB
e−mφrABnAB; ð69Þ

aA½Str� ¼ −
X
B≠A

EB

r2AB
nAB; ð70Þ

where

EB ¼ TB þ ΩB þ Eint
B ð71Þ

is the total energy. In the above expressions, we use the
definitions rAB ¼ rA − rB, rAB ¼ jrABj, and nAB ¼ rAB

rAB
.

It is worth noting that aA ½Newt� and aA ½Str� together
form the quasi-Newtonian contribution to the body’s A
acceleration. It goes with the inverse square of the distance
between bodies A and B, but it is proportional to the total
mass energy of body B, namely MB [cf. Eq. (50)].
Moreover, the terms mB in aA ½PN� can be substituted by
MB without affecting the dynamics within the first PN
order. Therefore, we can conclude that the equations of
motion depends on the bodies internal structure only
through their total mass energy. The independence with
respect to any specific internal quantity, like the body’s
gravitational energy ΩB, is a confirmation that the theory
satisfies the strong equivalence principle.

VI. PERIASTRON ADVANCE

The equation for the acceleration of the center of mass
obtained earlier applies to any number of well-separated
bodies. Now let us specialize to a two-body system with the
center of mass at the origin; to this end let us define

m ≔ M1 þM2; η ≔
M1M2

ðM1 þM2Þ2
; ð72Þ

where m is a type of total mass and η a symmetric mass
ratio; it should be noted that m differs from the total mass-
energyM introduced earlier by terms of order Oð2Þ. Let us
also introduce the separation r ≔ r1 − r2, the relative
velocity v ≔ v1 − v2, and let us make r ≔ jrj ¼ r12,
n ≔ r

r ¼ n12, and v ≔ jvj. Writing ṙ ≔ v · n, we have

a ¼ −
m
r2
n −

m
r2

��
ð1þ 3ηÞv2 − 3

2
ηṙ2 − 2ð2þ ηÞm

r

�
n

− 2ð2 − ηÞṙv þ a1
2
ð1þmφrÞe−mφrn

�
: ð73Þ

With the equation of motion in hand, we can visualize the
post-Newtonian corrections together with the terms origi-
nated by ΦY as perturbations of Kepler’s orbit and employ
the method of osculating elements [17] to obtain an
expression for the periastron advance of the binary system.
Using the method of osculating elements, we arrive at the

equations

dp
df

≃ 4mð2 − ηÞe sin f; ð74Þ

de
df

≃
m
p

��
3 − ηþ 1

8
ð56 − 47ηÞe2

�
sin f

þ ð5 − 4ηÞe sin 2f −
3

8
ηe2 sin 3f

�

−
a1
2
sin fð1þmφrÞe−mφr; ð75Þ

dω
df

≃
1

e
m
p

�
3e −

�
3 − η −

1

8
ð8þ 21ηÞe2

�
cos f

− ð5 − 4ηÞe cos 2f þ 3

8
ηe2 cos 3f

�

þ a1
2e

cos fð1þmφrÞe−mφr: ð76Þ

From Eqs. (74)–(76) we can calculate the secular change
in the Keplerian orbital parameters, the semilatus rectum p,
the longitude of pericenter ω, and the eccentricity e, all
three produced by post-Newtonian perturbations. It is
worth noting that variations on p is not affected by the
scalar field, and this is due to the fact that the Yukawa-like
term in the relative acceleration (73) has influence in the
radial direction only. Once p is directly related with the
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body’s angular-momentum norm, only force terms acting in
the angular direction can affect its variation.
In order to obtain the secular changes we integrate the

above equations over a complete orbital period (from f ¼ 0
to f ¼ 2π) and one gets

Δp ¼ 0; ð77Þ

Δe ¼ 0; ð78Þ

Δω ¼ 6πm
p

þ δω; ð79Þ

where

δω ¼ a1
2e

Z
2π

0

ð1þmφrÞ cos fe−mφrdf ð80Þ

is the correction due to Yukawa’s contribution. The fact that
p undergoes no secular change is a consequence of angular-
momentum conservation, and the absence of a secular
change in e is a consequence of energy conservation. The
only parameter that undergoes a secular evolution is the
longitude of periastron ω.
The advance per orbit Δω can be converted to a rate by

dividing by the orbital period P. The result is

ω̇ ¼ 3

�
2π

P

�
5=3 m2=3

1 − e2
þ δω̇; ð81Þ

after using Kepler’s third law, P2 ¼ 4π2a3=m, with a being
the semimajor axis, defined by p ¼ að1 − e2Þ. The first
term on the right hand side of (81) is the GR standard result,
and δω̇ ¼ δω=P is the scalar-field contribution to the
periastron secular variation.
One can verify that, as expected, for constant r one finds

δω ¼ 0. In order to understand the physical impact of δω,
we proceed with a numerical analysis. To illustrate the
analysis, we consider Mercury’s orbit. Since

r ¼ p
ð1þ e cos fÞ ; ð82Þ

we substitute (82) into (80). Integrating the latter, we can
get the curves for δω̇ values shown in Fig. 1. The lower
mass bound utilized in this analysis ensures the preserva-
tion of the Newtonian limit. For the Solar system, this
bound is determined by considering a reference distance of
r ¼ 1 AU and an approximation ofU ≈ 10−8. By imposing
the condition under which we are working, specifically
φ ∼Oð4Þ, and a constant density approximation, we can
infer that mφ ≳ 9.6 AU−1 or mφ ≳ 1.3 × 10−17 eV.
Our analysis is not limited to the Solar system. As an

example, we consider the star S2 orbiting Sgr A�, which is
likely to be a supermassive black hole. Here it is only

assumed that S2 orbits a massive compact object, it need
not be a black hole (i.e., a stationary compact massive
object with a horizon [40]). To determine the lower mass
bound in this case, we take the pericenter distance of S2 as
the reference, denoted as r ¼ 120 AU [41]. Given that the
orbital velocity v is approximately 7700 km s−1, we have
U ∼ v2 ≈ 10−4. By applying our condition, considering a
distribution of a point mass, we obtain mφ ≳ 0.077 AU−1

or mφ ≳ 1.02 × 10−19 eV. Following that, we get the curve
for δω values shown in Fig. 2. It is worth noting that the
influence of the spin over the pericenter advance of S2 is
smaller than Oð4Þ, as has been discussed in Refs. [42,43].

FIG. 1. Numerical solution for δω̇ as a function of mφ, in the
case of Mercury (e ¼ 0.2056, p ¼ 0.370 AU, P ¼ 87.97 days),
is shown for different ω0 values. The black-dashed line is the
uncertainty limit of Mercury’s perihelion shift [26].

FIG. 2. Numerical solution for δω̇ as a function of mφ, in the
case of S2 (e ¼ 0.88, p ¼ 210.8 AU, P ¼ 87.97 days), is shown
for different ω0 values. The black-dashed line is the uncertainty
limit of S2 perihelion shift [41].
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We are treating δω̇ as the observational error in (81) and
checking for which values ofmφ and ω0 [which are related
to ωðφÞ via Eq. (11)] the Yukawa potential ΦY would not
influence the observations because δω̇ would not be
detected. Therefore, values of δω̇ below the black dashed
line, which correspond to the uncertainty value of the
experiment, imply values for mφ and ω0 in which this
model has no observational influence of ΦY . From Figs. 1
and 2 we can see that the Yukawa correction decreases as
the mass of the scalar field increases. Furthermore, the
lower the value of ω0, the more effective the correction,
δω̇, and consequently, we have a bigger deviation from the
GR result.
Once the Yukawa correction (80) depends on the orbital

parameters p and e, we will study the influence of these
parameters on δω̇. First, in order to exemplify the effect of
eccentricity e in the correction δω̇ we consider a semilatus
rectum of p ¼ 0.3 AU. Figure 3 shows that orbits with a
bigger eccentricity have a greater effect of the Yukawa
correction. This is an expected result since more eccentric
orbits have a bigger periastron advance. To study the
effect of p on the correction δω̇ we need to fix the
eccentricity e. Note that as we do this the semilatus rectum
p measures the average distance between the two bodies
of our system. To exemplify this effect we consider the
eccentricity of e ¼ 0.5. As shown in Fig. 4, the bigger the
distance, the smaller the effect of the δω̇ correction. This is
also expected.
Due to the Yukawa correction (81) we do not have a

well-defined parameter β since δω̇ depends on the system
constants p and e (see discussion in Sec. VII). Despite this,
we can use the fact that the best constraint in the β

parameter is about 10−5 [26] and obtain constraints on
the values of the parameters ω0 and mφ. We can visualize
these constraints by plotting the experimentally excluded
region in parameter space. Figure 5 shows the complete
region of the parameter space, which is excluded by values
of δω̇ ≥ 10−4 for the case of Mercury orbit (p ¼ 0.370 AU
and e ¼ 0.2056). The blue region shows for which param-
eter values we cannot define β due to the Yukawa

FIG. 3. Numerical solution for δω̇. It was used ω0 ¼ 4000,
p ¼ 0.3 AU, and P ¼ 87.97 days for the semilatus rectum and
the orbital period. The blue, yellow, and green curves are
constructed with e ¼ 0.1, e ¼ 0.5, and e ¼ 0.99, respectively.
The black-dashed line is the uncertainty of the Mercury peri-
helion shift experiment [26].

FIG. 4. Numerical solution for δω̇. It was used ω0 ¼ 100,
e ¼ 0.5 AU, and P ¼ 87.97 days for the orbit eccentricity and
orbital period. The blue, yellow, and green curves are constructed
with p ¼ 0.2 AU, p ¼ 0.4 AU, and p ¼ 0.6 AU, respectively.
The black-dashed line is the uncertainty of the Mercury peri-
helion shift experiment [26].

FIG. 5. The blue region shows the excluded parameter region
due to Mercury perihelion advance. It was used e ¼ 0.2056
and p ¼ 0.370 AU for the orbit eccentricity and the semilatus
rectum.
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correction. Outside this region, we can neglect the Yukawa
correction, and consequently, we will get the same expres-
sion for ω̇ as in GR. In this case, it is possible to conclude
that β ¼ 1, exactly as in GR.
In the next section, we will present another way to obtain

a well-defined β through an extended PPN version and the
introduction of a new parameter that quantifies the dynamic
effects associated with the Yukawa potential.

VII. THE β PARAMETER AND THE
NORDTVEDT EFFECT

In Secs. III and IV it was shown that fourth-order
weighed Yukawa potential ΦY does not affect light motion,
neither the conserved post-Newtonian energy or momen-
tum. Within the PPN formalism, these results demonstrate
that the physical meaning associated to parameters γ, ζ,
and α are not changed by the presence of the potential ΦY
outside the formalism. Once it was shown that photon
geodesics and total energy and momentum expressions are
the same as in GR, it was possible to conclude γ ¼ 1, as
well as all ζ’s and α’s vanish.
The remaining PPN parameter to be determined, β,

can be directly fixed by its influence on post-Newtonian
periastron variations (since the other nine parameters are
already fixed). This can be seen in the general PPN
expression for Δω, namely,

ΔωPPN ¼ 6πm
p

�
1

3
ð2þ 2γ − βÞ

þ 1

6
ð2α1 − α2 þ α3 þ 2ζ2Þ

μ

m

�
: ð83Þ

In the above expression, μ is the reduced mass of the
binary system. Thus, one might find tempting, by com-
paring expressions (79) and (83), the definition of an
effective β parameter that would encompass the GR
deviations brought by ΦY. However, we understand that
such treatment is not appropriate, once every PPN
parameter must be considered strictly as a constant. If
an effective parameter is defined as a function of coor-
dinates or some system-dependent constants, then one
could not simply substitute the original parameter with its
effective one in each observable physical phenomenon.
For instance, if an effective β were defined through (79)
and (83), then this new parameter would not have any
influence on the so called Nordtvedt effect: the violation
of the weak equivalence principle due to explicit con-
tributions of self-gravitational energy to a body’s inertial
and gravitational mass.
The Nordtvedt effect can be tested in the Earth-Moon

system by studying its motion in the Sun’s gravitational
field. If there is any difference between the free-fall
acceleration of the Earth and Moon towards the Sun, this
effect will be parametrized by the Nordtvedt parameter,

η ¼ 4β − γ − 3 −
10

3
ξ − α1 þ

2

3
α2 −

2

3
ζ1 −

1

3
ζ2; ð84Þ

where ξ is the PPN parameter related to the existence
of preferred-location effects. It has been shown that ΦY
does not bring any dependence in the acceleration of a
body A with its internal structure [cf. Eqs. (68)–(70)].
Consequently, no Nordtvedt effect is present and η ¼ 0,
just like in GR. Therefore, a simple substitution of β,
in (84), by an effective parameter obtained from the
periastron advance would bring drastic and erroneous
conclusions for any theory.
The correct approach to this issue would be to propose a

new parameter, say β̃, to quantify the dynamical effects
associated with ΦY . In this extended PPN version, the
Nordtvedt parameter will remain the same, while the
periastron advance per orbit will be given by

ΔωEPPN ¼ ΔωPPN þ β̃δω: ð85Þ

In general relativity, for instance, β ¼ 1 and β̃ ¼ 0, while in
the case of a massive scalar-tensor theory with φ ∼Oð4Þ
one has β ¼ 1 and β̃ ¼ 1. Hence, with η ¼ 0 one also
obtains ξ ¼ 0.
Thus, all the PPN parameters were determined as well as

an extra parameter β̃. Their values are the same as in GR
plus β̃ ¼ 1. However, it is important to emphasize that,
within this extended PPN approach, β alone does not
determine the post-Newtonian periastron advance effect.
In this sense, the β ¼ 1 result is not enough to ensure
agreement with Mercury’s perihelion advance data, but it is
determinant to guarantee no violations of the weak equiv-
alence principle for fully conservative theories.

VIII. CONCLUSION

We discussed the first-order PN approximation of
massive Brans-Dicke theories. This class of scalar-tensor
theories spoils the Newtonian limit, in general, adding a
Yukawa-like contribution to the usual potential. Once the
new gravitational potential is guided by the exponential of
the scalar field effective mass (mφ), two limiting situations
arise. A small mass scalar field would approximate to
the ordinary Brans-Dicke case, in which post-Newtonian
behavior is well known to put a constraint of ω0 ≳
4 × 104 to the theory’s free parameter. On the other hand,
a large mass can recover the Newtonian limit while shifting
the Yukawa correction to the next order of approximation.
We then focus on scenarios where the scalar field is
considered to be of fourth order in the PN expansion.
The presence of this new potential hinders the direct

determination of the PPN parameters from the metric.
Consequently, we perform a derivation of all the conserved
quantities and the acceleration of the center of mass bodies
to verify whether and how ΦY does influence these effects.
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We show that conserved quantities are precisely the same as
in GR, that is, the fourth-order Yukawa correction does not
affect the amount of energy and momentum which is
conserved. Meanwhile, the acceleration of massive bodies
center of mass does have a non-GR correction, leading to
modifications in the orbital periastron advance. In addition to
the well-known ten standard PPN parameters, we introduce
and calculate a new parameter that captures the dynamics of
the potentialΦY , without point-particle approximations. The
inclusion of this new parameter becomes essential to ensure
consistency with the observed perihelion advance data of
Mercury because the parameter β alone is no longer adequate
for explaining this phenomenon.
To quantify the extent of the modification caused by the

new potential on the periastron advance, we introduce a
correction term δω̇ that depends on the orbital parameters
of the system, as well as the scalar field effective mass and
the theory’s parameter ω0. We investigate the influence of
this correction for different values of the theory’s param-
eters and under variations of the orbital eccentricity and the
semilatus rectum. In particular, we analyze the behavior of
δω̇ in the orbits of Mercury and the S2 star orbiting Sgr A�
in the center of our Galaxy. Notwithstanding, the most
strong observational constraint on perihelion shift comes
from Mercury’s orbit. Working with these data, we showed
in Fig. 5 the necessary correlation between ω0 and mφ

in order to obtain a massive Brans-Dicke model with
φ ∼Oð4Þ in complete agreement with Solar system tests.
In Ref. [38] the authors obtain ω0 > 40 000 and the

upper bound limit mφ ≲ 2.5 × 10−20 eV, using data from

Shapiro time delay once they worked with the ordinary
second-order scalar field (which also justifies the presence
of the Nordtvedt effect). Although they also work with the
periastron shift effect, the authors wrote final expressions
for ω̇ only upon the massless and sufficiently large
mass limits. On the other hand, our fourth-order weighed
scalar field model allows to extract a lower bound limit of
mφ ≳ 35 AU−1 or, equivalently, mφ ≳ 4.5 × 10−15 eV.
To finish our discussion we comment on a specific

method to extend the PPN (EPPN) formalism in order to
include the fourth-order Yukawa potential. Instead of defin-
ing an effective β parameter to deal with the Yukawa
corrections to the perihelion shift, the EPPN would have
a new parameter, β̃, apart from the original ten PPN
parameters. Thus β ¼ 1 would not be enough to guarantee
agreement with Mercury’s perihelion advance; it is also
necessary to have β̃ ¼ 0 (GR case) or, as in the case of
massive scalar-tensor theories with φ ∼Oð4Þ, β̃δω̇≲ 10−4.
However, the β ¼ 1 value is necessary to nonviolation of the
weak equivalence principle, and this is independent of β̃.
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