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In this paper, we investigate the thermodynamic properties of a regular black hole model which exhibits
the most significant subleading corrections to the Schwarzchild asymptotic behavior, in the context of
general relativity, using the Euclidean path integral approach. We review the derivation of the Lagrangian
for the matter fields which act as a source for this geometry, explicitly derive the proper thermodynamic
quantities introduced in the first law of black hole mechanics, and show that they satisfy the Smarr formula.
This analysis naturally leads to the emergence of an effective temperature that is distinct from the one
associated with surface gravity. Furthermore, we study the phase structure in anti–de Sitter, Minkowski,
and de Sitter spacetimes in the canonical ensemble, considering this effective temperature as the
appropriate choice. We show that in this case the regularization of the singularity prevents the
Hawking-Page transition and also leads to a deviation from the “universal” mean-field theory critical
ratio. We conjecture that the way a singularity is rendered smooth plays a pivotal role to the degree of this
deviation. Finally, we provide remarks on constraints imposed on the minimal length scale by observational
data and the viability of regular black holes.
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I. INTRODUCTION

Despite the incontrovertible evidence for the existence of
dark massive ultracompact objects [1–7], their true identity
remains elusive, with a plethora of scenarios under consid-
eration [8–10]. Themost commonly used type of black holes
for comparison with available observational data are math-
ematical black holes, which are solutions of the Einstein
equations in general relativity. Their hallmark features,
which make them distinct from other categories like
regular black holes (RBHs) [11–13], gravastars [14,15],
wormholes [16–18], and fuzzballs [19,20] are the existence
of an event horizon and a singularity. The problems
associated with these two characteristics are the teleological
nature of the event horizon and breakdown of general
relativity at the singularity.
The former of these issues can be dealt with by

replacing event horizons with quasilocally observable
apparent horizons [21], while the latter one is resolved
in two possible ways, which arise from the requirement of
violation of Penrose’s singularity theorem or more spe-
cifically at least one of its assumptions [22]. The singu-
larity is inherently linked to the geodesic incompleteness
of the geometry, so if we want to successfully eliminate it,
we need to sufficiently modify the geometry surrounding
the focusing point, i.e., the singularity. This can be

achieved by two methods, namely either with the creation
of a defocusing point at finite or infinite affine distance, or
by displacing the focusing point at infinity [23]. The first
case corresponds to regular black holes with the defocus-
ing point coinciding with its inner horizon in spherically
symmetric cases.
We assume the existence of a full quantum gravity theory

that can lead to such a regularization, but its quantum
nature is restricted to a finite domain, possibly of Planckian
scale. The outcome of such a theory should be a globally
hyperbolic and regular geometry, but since we do not
possess such a theory yet, we turn our focus on how to
source geometries of this nature in the context of general
relativity. Historically, nonlinear electrodynamics (NED)
was first used by Born and Infeld [24] to cure the infinities/
singularities associated with the self-energy of a point
charge, but in a large number of cases these types of
theories coupled to general relativity are sufficient to
generate regular geometries and eliminate singularities
only at the cost of using exclusively magnetic charge [25].
The first source for such a geometry was found in Ref. [26]
for the Bardeen black hole and further generalized to a
variety of two-parameter families of spherically symmetric
RBHs solutions in Ref. [27]. One notable issue with this
type of sources is that magnetic monopoles have not been
observed in nature despite significant observational efforts
[28–30]. Additionally, some of these theories fail to provide
a Maxwell weak-field limit [25], but exceptions do exist,*ioannis.soranidis@hdr.mq.edu.au
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and the model under consideration in this paper falls into
this category.
In the case of classical singularities associated with the

point charge, quantum electrodynamics was sufficient to
remove them but at the same time make new predictions,
which is a key feature of a successful theory, and therefore
replaced the NED theories. Similar behavior is anticipated
in the gravitational theory with general relativity to be
replaced by a more fundamental theory, namely a full
quantum gravity theory. In the absence of such a theory,
NED coupled to general relativity may prove a valuable
model/tool to extract features of quantum gravity. Based on
this assumption, the magnetic charge will not be considered
a fundamental parameter in our analysis, but rather the
minimal length scale will be treated as one. By taking this
approach, we can gain valuable insights into the quantum
gravity theory within the framework of general relativity.
The four laws of black hole mechanics were first derived

in Ref. [31] and close analogies with the four laws of
thermodynamics were established. This important link
connecting the two fields has since proven to be an
important tool in advancing our understanding of black
holes. In particular, the physical insights revealed in the
rigorous mathematical derivation of the first law in the
integral and differential formalism of Ref. [31] have
provided strong motivation for further investigating their
thermodynamic properties. If we believe in a quantum
gravity theory which smooths out the singularity, the study
of thermodynamic properties of RBHs cannot be an
exception. To have a complete understanding of RBHs’
thermodynamic properties necessitates the study of a
plethora of these models which differ in the way they
achieve singularity regularization and extract as much
information as possible in order to establish some kind
of universal behavior of the singularity smoothing and how
it propagates into the classical sector.
In this paper, we will study a certain geometry proposed

in Ref. [32]. The significance of investigating its properties
lies in two distinct attributes that set it apart from RBH
models proposed by Bardeen and Hayward: Firstly, the
NED theory employed to generate this geometry admits the
Maxwell weak-field limit, which is a highly desirable
property in this type of theories. Potential corrections to
the well-established Maxwell theory may manifest in
higher energy regimes, while remaining absent in lower
energies, giving rise to the conventional Maxwell theory. It
is worth pointing out this is not the case for Bardeen or
Hayward model which admit a weak-field limit stronger
than Maxwell’s theory. Therefore, this model is a better
candidate for the description of actual astrophysical black
holes, since it admits a weak-field limit compatible with a
well-established theory. Secondly, this model has the
strongest subleading corrections to the Schwarzschild
asymptotic behavior, and therefore surpass the ones exhib-
ited by Bardeen or Hayward RBHs. This is a noteworthy

feature because effects of singularity smoothing will be
more pronounced, making comparison with real astronomi-
cal data feasible. Based on these two features we try to
establish to what extent there is a deviation of this model
from the Bardeen model, studied in Appendix D, and the
Hayward model studied extensively in Ref. [33]. Since in a
number of black hole cases in anti–de Sitter (AdS) we have
seen remarkable equivalence with the liquid-gas critical
behavior, we mainly focus on the study of the mean-field
theory critical ratio and exponents.
The paper is organized as follows. In Sec. II we describe

how to generate the geometry using NED coupled to general
relativity embedded in a spacetime with a cosmological
constant by explicitly calculating theLagrangian density.1 In
Sec. III we perform a detailed analysis of the Euclidean
action and how to derive the proper thermodynamic quan-
tities. In the beginning of Sec. IV, we provide some argu-
ments on the reason we allow the cosmological constant and
minimal length to vary, and then move on to the study of
phase transitions. In Sec. IVA, we study the phase structure
and thermodynamic stability of this model embedded in
anti–de Sitter spacetime along with its behavior near the
critical point. In Sec. IV B, we analyze the phase structure in
asymptotically Minkowski spacetime with the implementa-
tion of an isothermal cavity to establish thermodynamic
equilibrium. We also comment on the bounds imposed on
the minimal length and its comparison with astronomical
data, leading us to conclusions about the viability of RBHs.
We perform a similar thermodynamic analysis in Sec. IV C
for embedding in de Sitter spacetime with the isothermal
cavity restricted between the outer black hole horizon radius
and the cosmological horizon. In all of the above cases we
demonstrate the existence of a proper Smarr formula [34]
and first law of black hole thermodynamics. We conclude in
Sec. V with a discussion of our main results and their
ramifications, along with potential future research direc-
tions. Throughout this article, we restrict ourselves to four
spacetime dimensions and we work in dimensionless units
such that ℏ ¼ c ¼ G ¼ kB ¼ 1.

II. REGULAR BLACK HOLE MODEL

In this paper, we focus on the spherically symmetric
RBH model proposed in Ref. [32], which is described by a
line element given by

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2; ð1Þ

where dΩ2 ¼ dθ2 þ sin2 θdϕ2 and

1To avoid confusion, we explicitly mention that we use the
terms “Lagrangian” and “Lagrangian density” interchangeably
throughout this article, but we always mean the Lagrangian
density.
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fðrÞ ¼ 1 −
2mr2

ðrþ lÞ3 −
Λ
3
r2; ð2Þ

with Λ being the cosmological constant and l the minimal
length scale with the Schwarzschild limit attained for
vanishing minimal length scale, i.e., when l ¼ 0. We
now explicitly derive the matter Lagrangian that serves
as a source for this geometry. It is established that the
majority of RBH models are generated by NED coupled to
gravity [25,27,35] with the inclusion of magnetic charge.
Nevertheless, it is worth noting that certain RBH metrics
demand the presence of additional fields beyond the NED
theory. An illustrative example of such a case is the
Simpson-Visser metric [18], which interpolates between
an RBH and a wormhole, where an additional phantom
scalar field [36,37] is present in the matter content. For the
case under consideration, we have the following action

I ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
R − LðF ;ΛÞ�; ð3Þ

with R being the Ricci scalar and LðF ;ΛÞ the Lagrangian
density for the matter content which is comprised of the
NED theory along with the cosmological constant compo-
nent. For consistency, we require this Lagrangian to reduce
to 2Λ, when the minimal length scale vanishes. Therefore,
we have

lim
l→0

L ¼ 2Λ; ð4Þ

which is equivalent to the NED theory being absent. This
Lagrangian is in general some NED Lagrangian, which is a
function of the field strength F ¼ FμνFμν combined with
the cosmological constant term. The electoromagnetic field
tensor is defined in the usual way from the relation

Fμν ¼ ∂μAν − ∂νAμ: ð5Þ

In our analysis, we examine a metric that exhibits spherical
symmetry. The commonly adopted form of the vector
potential Aμ in this case is given by

Aμ ¼ ð−ϕðrÞ; 0; 0; Qm cos θÞ; ð6Þ

which corresponds to the presence of an electric and a
magnetic charge [27]. To generate this geometry, we only
need the presence of a magnetic charge Qm, and thus the
electric potential ϕðrÞ will vanish. Therefore, we are led to
the potential

Aμ ¼ ð0; 0; 0; Qm cos θÞ: ð7Þ

The only nonvanishing components of the electromagnetic
strength tensor are

F23 ¼ −F32 ¼ −Qm sin θ; ð8Þ

which leads to the field strength of the following form

F ¼ 2Q2
m

r4
: ð9Þ

To determine the appropriate Lagrangian LðF ;ΛÞ for the
matter fields, our initial step will be to use the Einstein
equations and extract the Lagrangian by requiring that they
yield as solution the metric described in Eq. (1) with the
corresponding metric function of Eq. (2). In what follows
the derived Lagrangian will be a function of the radial
coordinate, but it may equivalently be expressed in terms
of the field strength with Eq. (9) providing us with the
connection between these two expressions/representations.
Regardless of its specific form, the corresponding energy-
momentum tensor (EMT) can be found after varying the
action with respect to gμν, which leads to the Einstein
equations,

Gμν ¼ 8πTμν; ð10Þ

with an EMT of the form

Tμν ¼ −4
∂L
∂F

Fα
νFμα þ Lgμν: ð11Þ

For our case, the identification of the Lagrangian requires
using the following components of the Einstein tensor Gμν,

G00 ¼
fðrÞ
r2

ð1 − fðrÞ − rf0ðrÞ�; ð12Þ

G11 ¼
−1þ fðrÞ þ rf0ðrÞ

r2fðrÞ ; ð13Þ

G22 ¼
1

2
rð2f0ðrÞ þ rf00ðrÞÞ; ð14Þ

along with the corresponding EMT components on the
right-hand side of Eq. (10), which are calculated by using
the EMT of Eq. (11), and are given by

T00 ¼ −fðrÞL; ð15Þ

T11 ¼ fðrÞ−1L; ð16Þ

T22 ¼ r2L − 4
∂L
∂F

Q2
m

r2
: ð17Þ

In this derivation, we have assumed that the Lagrangian
density shares the spherical symmetry of the geometry, and
thus it is a function only of the radial coordinate r. Using
the above equations, we find that the Lagrangian is given in
terms of r by
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LðrÞ ¼ 2ð1 − fðrÞ − rf0ðrÞÞ
r2

: ð18Þ

Therefore, to generate the regular geometry we want to
study in this paper, we need to substitute the metric
function of Eq. (2) in Eq. (18), and arrive at the following
Lagrangian:

LðrÞ ¼ 12ml
ðrþ lÞ4 þ 2Λ; ð19Þ

where it is evident that in the absence of the minimal length
scale we are led to LðrÞ ¼ 2Λ as is required for consis-
tency. The mass m is the Komar mass [38] of the metric,2

and we can write it as a function of the outer horizon radius
rh and the minimal length scale l by using the condition
fðrhÞ ¼ 0, which leads to

m ¼ ðrh þ lÞ3ð3 − Λr2hÞ
6r2h

: ð20Þ

The root rh corresponds to the largest root of the equation
fðrÞ ¼ 0, except in the case of a de Sitter spacetime which
admits one more horizon, the cosmological one, at larger
distance in comparison with the outer horizon of the
black hole.
The source of this RBH is a particular case of the sources

presented in Ref. [27] whose Lagrangian density, as a
function of the field strength F , is given by3

L̃ðF Þ ¼ 4μ

σ

σF
ð1þ ðσF Þ1=4Þμþ1

; ð21Þ

which leads to a geometry of the form

fðrÞ ¼ 1 −
2σ−1q3rμ−1

ðrþ qÞμ ; ð22Þ

in an asymptotically flat spacetime (Λ ¼ 0) with the
magnetic charge given by

Qm ¼ q2ffiffiffiffiffi
2σ

p : ð23Þ

The spacetime geometry analyzed in this article can be
generated by the following choice of parameters

μ ¼ 3; q ¼ l; σ ¼ l3

m
; ð24Þ

which lead to a magnetic charge

Qm ¼
ffiffiffiffiffiffi
ml
2

r
; ð25Þ

and the Lagrangian density given by Eq. (19) once we use
Eq. (9), which provides the link from one representation to
another. Two brief comments are in order; firstly, the
Lagrangian of Eq. (21) has a Maxwell weak-field limit,
which can be seen by performing an expansion around F ,
and leads to

L̃ðF Þ ¼ 4μF þOðF 5=4Þ: ð26Þ

This is a different feature of this subclass of NED
Lagrangians in comparison with the ones used to generate
other well-known models such as Bardeen or Hayward,
which exhibit stronger weak-field limits than the Maxwell
theory. To make this statement more precise, one finds
using the sources described in Ref. [27] that for the Bardeen
model the weak-field limit is OðF 5=4Þ, whereas for the
Hayward model is OðF 5=2Þ.
Secondly, it is evident from relation (25) that the

existence of the magnetic charge is tied to the presence
of the minimal length scale. This means that in the case of
vanishing charge, the minimal length vanishes as well and
we retrieve the singular Schwarzschild geometry.
Conversely, if we maintain a fixed nonzero magnetic
charge, as we will in the study of phase transitions in
the canonical ensemble, the minimal length persists as a
fundamental feature.
Having established the matter Lagrangian that serves as a

source for this theory, we can now proceed with the study
of thermodynamics. We can approach this either using
Hamiltonian methods [42] or Euclidean path integral
methods. Both approaches lead to congruent thermody-
namic quantities, in the regimes where they can be directly
compared, which is a prerequisite for consistency. A
detailed analysis on the consistency of these approaches
has been conducted in Ref. [33] using as example the
Hayward model. Without loss of generality, we restrict
ourselves to the Euclidean path integral method described
in the following section.

III. THERMODYNAMICS
WITH EUCLIDEAN ACTION

In spite of its inherent technical issues, the path integral
has been firmly established as an invaluable tool for our
understanding of gravity beyond the classical realm. Aside
from formally defining a quantum theory of gravity, it
provides us with a powerful way to study gravitational
thermodynamics, even in spacetimes that do not admit a

2When it comes to de Sitter spacetime, caution must be taken
with this interpretation. This spacetime does not admit a globally
timelike Killing vector field, so the construction of conserved
charges is problematic [39–41]. This is due to the presence of a
cosmological horizon leading to a spacelike character of the
Killing vector ∂t, assocciated with time translations at distances
larger than the cosmological horizon.

3To avoid issues with the notation in this article we have
replaced the parameter a used in Ref. [27] with the letter σ.
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straightforward definition of temperature, as for example
the de Sitter case, which we will analyze later on. In this
application, we exploit the relation between the classical
Euclidean action IE and the quantum mechanical partition
function Z,

F ¼ −T logZ ≈ TIE; ð27Þ

where F is the free energy of the system and T the
temperature. The above relation holds in the semiclassical
approximation. We are concerned with the interaction of
quantum matter fields with the presumably quantum
gravitational field. Thus the path integral measure should
include both the metric associated with the gravitational
field along with the matter fields. At leading order in
mp=M, with mp representing the Planck mass, the matter
fields do not contribute to the path integral. Consequently,
the measure in use will solely originate from topologically
distinct metrics. With all of these assumptions, the partition
function can be approximated as

Z ¼
Z

gðτ̃Þ

gð0Þ
D½g�e−IE½g�=ℏ; ð28Þ

where τ̃ is the periodicity. One further approximation can
be made by considering only the leading contribution to the
integral, which comes from metrics that are classical
solutions to the equations of motion, namely those for
which δIE½gcl� ¼ 0. This is the saddle point approximation,
in which

Z
gðτ̃Þ

gð0Þ
D½g�e−IE½g�=ℏ ≈ e−IE½gcl�=ℏ: ð29Þ

Therefore, we conclude that

Z ≈ e−IE½gcl�=ℏ ⇒ F ≈ TIE: ð30Þ

This can be regarded as the zero loop approximation to the
full partition function, which only includes the dominant
contribution from the gravitational field. Using the partition
function, we can define thermodynamic quantities using
well-known formulas from statistical mechanics. Using the
approximation (30), one can determine the internal energy
and entropy of the system through the Euclidean action
with the following formulas:

E ¼ ∂IE
∂β

; S ¼ β
∂IE
∂β

− IE; ð31Þ

where β denotes the inverse temperature T−1. This
approach, in the case of black holes, was first developed
by Gibbons and Hawking [43], and analyzed further by
York in Ref. [44].

Having introduced the basic notation and methodology
for the Euclidean path integral approach, we start our
analysis with the calculation of the proper Euclidean action.
For the model under consideration the total reduced action4

Ir is given by

Ir ¼ IEH þ IGHY þ IM þ IEMB − I0: ð32Þ

We will proceed with the explanation and calculation (see
Appendix A) of each term separately and then combine
them to arrive at the final expression for the total reduced
action. We start with the Einstein-Hilbert action IEH. We do
not consider the cosmological constant in this action term
since it is already implemented in the matter term IM of the
action. We have that

IEH ¼ −
1

16π

Z
d4x

ffiffiffi
g

p
R; ð33Þ

where R is the Ricci scalar for the Euclidean spacetime
geometry. The next term of the action is the Gibbons-
Hawking-York term [43,44] that is introduced when we
perform an integration over a region of spacetime bounded
by a hypersurface ∂M. This term of the action is computed
at r ¼ rc and is given by

IGHY ¼ 1

8π

Z
∂M

ffiffiffi
k

p
K; ð34Þ

where K is the trace of the extrinsic curvature.
The matter part of the action which, as we saw in the

derivation of the source of this geometry in Sec. II, contains
the cosmological fluid part as well and is given by

IM ¼ 1

16π

Z
d4x

ffiffiffi
g

p
LðrÞ; ð35Þ

where L is the Lagrangian density described by Eq. (19).
The next action term is the electromagnetic boundary

term, which is introduced to keep the magnetic charge fixed
since the thermodynamic analysis of this paper will be
restricted to the canonical ensemble [45]. For an NED
theory this term is given by

IEMB ¼ −
1

16π

Z
∂M

ffiffiffi
k

p �
∂L
∂F

�
FμνnνAμ; ð36Þ

where nν is the unit normal vector to the boundary ∂M
[46,47]. This term will vanish since we are integrating over
a time slice of the spacetime and the only nonvanishing
components of the electromagnetic tensor Fμν are
F23 ¼ −F32, as can be seen from Sec. II.

4We use the term “reduced” action to distinguish it from the
original general form, i.e., before any integration has been
carried out.
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The final term of the action I0 corresponds to a
subtraction term introduced to regularize the action. It is
chosen such that the total action vanishes when a black hole
is not present, i.e., m ¼ 0. Before we explicitly write the
final expression for the reduced action, we point out that in
order to properly compare a black hole spacetime to a

spacetime without a black hole, we need to match the
boundaries (cavity) in these two spacetimes leading to a
new parameter β in the background action instead of βh
[45,48]. Once we combine all of the nonvanishing parts of
the action, namely Eqs. (A7), (A12), (A14), and (A16), we
are led to the final expression for the reduced action,

Ir ¼ −πr2h þ
βrc
3

 
3 − r2cΛ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − r2cΛ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − r2cΛþ r2cðrh þ lÞ3ð−3þ r2hΛÞ

ðrc þ lÞ3r2h

s !
: ð37Þ

Following the methodology in Ref. [45], we now
proceed with the computation of the proper thermodynamic
quantities. For the calculation of the temperature, we need
to identify the stationary points of the action. This involves
extremizing it with respect to the horizon radius rh and
leads to the equation,

∂Ir
∂rh

¼ 0; ð38Þ

which can be used to determine β. The solution β is a
function of the cavity radius rc, the horizon radius rh, the
minimal length scale l, and the cosmological constant Λ.
Therefore, the temperature for this black hole will be
T ¼ β−1ðrh; rc; l;ΛÞ and it is given by

T ¼ r3cðrh þ lÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − r2cΛ

p
ð2l − rh þ r3hΛÞ

4πðrc þ lÞ3r4hX
; ð39Þ

where X is given by the following, rather long expression

X ¼

−ðrc − rhÞð9l2rcrh − 3r2cr2h þ 3l3ðrc þ rhÞ þ r2cr2hð3l2 þ r2c þ rcrh þ r2h þ 3lðrc þ rhÞÞΛÞ

ðrc þ lÞ3r2h

s
: ð40Þ

We proceed with the calculation of the remaining
thermodynamic quantities in the same manner as in
Ref. [45]. For the minimal length scale l, the conjugate
potential that appears in the first law of black hole
thermodynamics and the Smarr formula is given by

Φ ¼ 1

β

∂Ir
∂l

; ð41Þ

and an explicit calculation yields

Φ ¼ r3cðrc − rhÞðlþ rhÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − r2cΛ

p
ð3 − r2hΛÞ

2ðlþ rcÞ4r2hX
: ð42Þ

In the presence of a cosmological constant we have a
relevant pressure/tension (depending on the sign) arising
from it, which is defined via P ¼ −Λ=8π. In a similar way,
we find the conjugate variable to the pressure/tension P,
which will correspond to the thermodynamic volume V. It
is defined by

V ¼ −8π
β

∂Ir
∂Λ

; ð43Þ

which leads to a rather long expression that does not
provide any insight for the reader, so it is given in

Appendix C. We emphasize here that we are working in
the extended phase space, allowing for variations of Λ in
the first law [49]. Motivation for permitting the variation of
the cosmological constant and the minimal length scale is
given in Sec. IV.
There is one more relevant potential, denoted as λ, that

needs to be computed. It is conjugate to the area of the
cavity Ac ¼ 4πr2c. We will interpret this term as the surface
pressure or tension, depending on the sign, resulting from
the presence of the cavity. We have that

λ ¼ 1

β

∂Ir
∂Ac

: ð44Þ

In the above calculation, we first replace rc →
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ac=4π

p
and then take the derivative. After that, we substitute Ac

with 4πr2c and we have the conjugate potential λ as a
function of the cavity radius. The full expression is
provided in Appendix C. In the absence of a cavity this
term will not contribute to the first law or the Smarr
formula, as we will see in the AdS and Minkowski cases
later on.
Now that we have completed the computation of the

conjugate potentials, we can proceed with the calculation of
two highly significant quantities for thermodynamics,
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namely the mean thermal energy E and the entropy S.
These calculations are carried out using Eq. (31). The mean
thermal energy plays the role of the internal energy in the
first law and is given by

E ¼ ∂Ir
∂β

; ð45Þ

which in the presence of an isothermal cavity yields

E ¼ rc
3

 
3 − r2cΛ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − r2cΛ

q

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − r2cΛþ r2cðlþ rhÞ3ð−3þ r2hΛÞ

ðlþ rcÞ3r2h

s !
: ð46Þ

The entropy is calculated from the Euclidean action from
the relation

S ¼ β
∂Ir
∂β

− Ir; ð47Þ

which leads to the well-known result due to Bekenstein and
Hawking,

S ¼ A
4
¼ πr2h; ð48Þ

with A being the horizon area. The above quantities define a
proper Smarr relation with the appropriate scaling argu-
ments [50], which is written as

E ¼ 2TSþΦlþ 2λAc − 2PV: ð49Þ

The scaling arguments correspond to the following sub-
stitutions:

E→cE; l→cl; rh→crh; Λ→c−2Λ; S→c2S;

T→c−1T; Φ→Φ; λ→c−1λ; V→c3V: ð50Þ

The first law of black hole mechanics is given by

dE ¼ TdSþΦdlþ λdAc þ VdP: ð51Þ

We note that in the above expression of the first law E is
identified as the Komar mass in the absence of a cosmo-
logical constant, whereas if Λ < 0 is present E has to be
interpreted as the enthalpy of the system [49]. Intuitively,
this means that now E will correspond to the internal
energy M of the system (Komar mass) in addition to the
energy PV needed to displace the vacuum energy from its
environment, or in other words, to embed the black hole in
the spacetime with the negative cosmological constant. We
note here that it is trickier to give, in an analogous way,
thermodynamic/physical interpretations of quantities in

de Sitter spacetime due to the presence of the cosmological
horizon.
We will use the derived thermodynamic quantities with

their appropriate limits, when possible, in the following
section where we will analyze the phase structure of the
model described by Eq. (2).

IV. FIRST LAW OF BLACK HOLE
THERMODYNAMICS, SMARR FORMULA AND

PHASE STRUCTURE

The first law of black hole mechanics derived in Ref. [31]
has been proven to hold in any theory of gravity arising
from a diffeomorphism-invariant Lagrangian [51,52].
Extension of the first law for the case of NED was first
studied in Ref. [53], although the Smarr formula was not
satisfied. This problematic behavior was fixed later on in
Ref. [42], where the Bardeen black hole and the Born-Infeld
theory [24] were studied, by appropriate accounting of the
extra parameters of the theory. The mathematical formu-
lation of the first law in an asymptotically flat spacetime in
the case of NED theory is

dM ¼ T dSþΦedQe þ ΨHdQm þ
X
i

Kidβi; ð52Þ

whereM is the Komar mass, T is the temperature given by
the surface gravity κ as T ¼ κ=2π, S is the entropy, Φe and
ΨH are the electric and magnetic potentials associated with
the electric and magnetic charge Qe and Qm, respectively,
and the termsKi correspond to potentials linked to the extra
parameters βi of the theory. UsingHamiltonianmethods it is
possible to calculate these potentials and with appropriate
change of variables we arrive at the thermodynamic quan-
tities arising naturally from the Euclidean action [33].
In the following, the minimal length will be considered

as a fundamental parameter and we will allow its variation
in a region that will admit a regular black hole geometry
(although not extremal). Before we proceed to the analysis
of the first law, Smarr formula, and phase structure for each
case of spacetime, it is useful to provide some motivation
for allowing parameters such as the minimal length l and
the cosmological constant Λ to vary and therefore appear in
the first law. In general, we expect that there are more
fundamental theories in which coupling constants or the
cosmological constant are not predetermined but on the
contrary emerge from vacuum expectation values allowing
for possible variations thereof. Consequently, it is
physically justified to include their variation in the first
law [54,55]. In the presence of a cosmological constant or
extra parameters of the theory, i.e., minimal length in the
majority of RBHs, one can see that the Smarr relation is not
satisfied, and therefore we have to include a variation of
the extra parameters in the first law to ensure consis-
tency [50,56].
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We provide some additional motivation for the varying
minimal length. Usually this length is associated with a
fundamental scale set by a quantum gravity theory, i.e., the
Planck scale [57,58]. However, studies that take into
account backreaction in the black hole interior lead to an
evolving minimal length l [23,59,60], therefore permitting
its variation in the first law.
We now proceed with the study of the thermodynamics

of the RBH in spacetimes with and withoutΛ. In the case of
a negative cosmological constant, i.e., AdS spacetime, the
thermal equilibrium is established naturally. The boundary
of the AdS is timelike and this allows massless particles to
reach it in finite proper time. The commonly accepted
approach involves enforcing reflecting boundary condi-
tions, effectively treating AdS spacetime as closed. As a
result, massless particles will be reflected towards the
center upon reaching r ¼ ∞. The same behavior applies
to massive particles, but this is because of the attractive
nature of the potential when Λ < 0. This feature of the
spacetime allows for sufficiently large black holes to reach
a state where the rate of outgoing radiation matches the one
of the reflected (ingoing) radiation, rendering the black hole
stable. This leads to an equilibrium state with one tempera-
ture T which is the temperature of the black hole, or
equivalently, of the radiation.
To enforce thermal equilibrium in spacetimes such as de

Sitter and Minkowski, we need to introduce an isothermal
cavity [61–65], otherwise this is not possible. In the de
Sitter case, the presence of the cosmological horizon which,
in general, radiates at a different temperature than the black
hole horizon, leads to an observer situated inbetween them
to observe a nonequilibrium state because of this temper-
ature difference [66].
While studying phase transitions, we will consider the

order parameter of the theory to be the horizon radius rh,
which represents the size of the black hole. It is worth
pointing out that in this case the value m ¼ 0 represent the
empty spacetime, which is equivalent to rh ¼ 0 and l ¼ 0
as we saw in Sec. II. We proceed with a separate study for
each spacetime case now.

A. Embedding in anti–de Sitter

The AdS spacetime does not admit any other horizon
apart from the black hole’s inner and outer ones and
therefore we are permitted to study the thermodynamic
properties in the absence of a cavity, i.e., taking the cavity
radius rc to infinity. Based on this, we proceed with the
computation of the appropriate thermodynamic quantities.
We start with the temperature which is calculated, by taking
the limit rc → ∞ of Eq. (39) to be

TAdS ¼ lim
rc→∞

T ¼ ðlþ rhÞ2ðrh − 2l − r3hΛÞ
4πr4h

: ð53Þ

We should emphasize that this is an effective temperature
that arises directly from the Euclidean path integral
approach and differs from the ordinary/conventional def-
inition of the temperature linked to the surface gravity κ.5

To illustrate this point clearly, we provide the expression for
this temperature as

T ¼ κ

2π
¼ rh − 2l − r3hΛ

4πrhðrh þ lÞ : ð54Þ

An elegant relationship between these two temperatures
becomes apparent, demonstrating that the effective temper-
ature is slightly higher due to the regularization of the
singularity through the introduction of the minimal length.
This relation is

TAdS ¼
�
1þ l

rh

�
3

T ; ð55Þ

which leads to TAdS > T , although by a small amount since
we expect in general l ≪ rh.

6

We will now comment on the possible reasons behind
this distinction between surface gravity and effective
temperature. One possible explanation lies in the definition
of the temperature as the surface gravity which is derived
solely from the kinematic aspects of the spacetime geom-
etry. Gravitons also contribute to the Hawking radiation and
therefore their kinematic properties will play a significant
role in the computation of the temperature/surface gravity.
It is usually assumed that they move at the speed of light,
although, it has been shown in Ref. [68] that when we have
scalar-tensor theories of gravity the propagation speed of
gravitons is altered and they can move on timelike/space-
like trajectories. This could lead to a justified modification
of the temperature. This reasoning was proposed as a

5We point out that in the form of the first law described by
Eq. (52) the temperature T is given by the surface gravity. In our
case, except for the magnetic charge Qm, we have an additional
parameter βi ¼ σ, which appears in the NED Lagrangian of
Eq. (21). If we treat as fundamental thermodynamic variables the
magnetic charge Qm and the parameter σ, instead of the minimal
length scale l, then the first law, in the AdS case, takes the form
dM ¼ T dSþ ΨHdQm þ Kσdσ þ VdP. Under this assumption,
using the Euclidean path integral formalism, the extremization
of the action with respect to the horizon radius leads to the
temperature being the surface gravity and the entropy remains
the Bekenstein-Hawking entropy. For a detailed derivation of
this result and a comparison between considering Qm and σ as
fundamental variables versus the minimal length scale l we refer
the reader to Appendix B.

6We emphasize that this higher effective temperature is not
unique to our scenario. It also manifests in singular geometries,
as the one explored in Ref. [67]. This “modified” temperature
should be attributed to the presence of matter. However, in the
case we are considering, the matter fields are tied to the
singularity regularization allowing us to make a direct connec-
tion between this increased temperature and the absence of
singularity.
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possible explanation in Ref. [67] for the case of 4D scalar-
tensor Einstein-Gauss-Bonnet gravity. An analogous phe-
nomenon might be present in RBHs, as some of them can
also be generated in the same framework. Recently, the
Hayward metric has been derived in this context in
Ref. [69]. Another equally possible explanation relies in
the interpretation of quantities introduced in the first law of
black hole thermodynamics. When we consider variations
of the energy in the first law, this energy represents the total
energy of the spacetime, including the matter which may or
may not be thermalized with respect to the Killing time. In
this variation, maintaining the entropy of the total matter
content as the geometric entropy necessitates a modifica-
tion of the temperature, which is the one derived using the
Euclidean path integral approach. However, when matter
content is absent, for example by taking l → 0 in Eq. (55),
the two temperature definitions coincide.
We continue with the calculation of the conjugate

potential for l, which is derived by taking the limit rc → ∞
of Eq. (42), and find

ΦAdS ¼ ðlþ rhÞ2ð3 − r2hΛÞ
2r2h

: ð56Þ

Similarly, we derive the thermodynamic volume VAdS by
taking the limit rc → ∞ of Eq. (43), which leads to

VAdS ¼
4π

3
ðrh þ lÞ3: ð57Þ

We observe here the well-known result of the thermo-
dynamic volume being different than the geometric one,
while they happen to coincide when the minimal length
scale vanishes, i.e., l ¼ 0, which corresponds to the
Schwarzschild-AdS case. The mean thermal energy is
given by relation (46) taking the limit rc → ∞, and it is

EAdS ¼
ðlþ rhÞ3ð3 − r2hΛÞ

6r2h
: ð58Þ

We see that the thermal energy is the same as the Komar
mass that someone will calculate by solving the equation
fðrhÞ ¼ 0 given by Eq. (20). This is not the case in de Sitter
spacetime as we can see from Eq. (46). Lastly, as the cavity
is positioned at infinity, it does not contribute any pressure,
so there is no term λ present in the first law or the Smarr
formula.
Therefore, in the AdS spacetime for this RBH, we have

that the first law of black hole thermodynamics is given by

dE ¼ TAdSdSþΦAdSdlþ VAdSdP: ð59Þ

We can also see that the Smarr formula is satisfied and it
can be written in the form

EAdS ¼ 2TAdSSþΦAdSl − 2PVAdS; ð60Þ

where the scaling arguments (50) hold. We note that the
above Smarr relation is characterized by linearity even
though the vector potential does not share the symmetry of
the spacetime.7 The symmetry inheritance of the spacetime
from the fields is a sufficient condition for linearity [70],
but in this case we see that this condition is not satisfied
although linearity is preserved.
Since we have calculated the proper thermodynamic

quantities for AdS, we can now proceed with the study of
the phase structure of this geometry. We analyze it in the
canonical ensemble, but before that, we need to calculate
the crucial quantity for this study, which is the Gibbs free
energy defined as

FAdS ¼ EAdS − TAdSS: ð61Þ

After using Eqs. (58), (53), and (48), we have that

FAdS ¼
ðlþ rhÞ2ð12lþ 3rh þ r2hΛðrh − 2lÞÞ

12r2h
: ð62Þ

The equilibrium state of the thermodynamic system cor-
responds to the global minimization of the free energy. To
properly study the phase structure, we need to study the free
energy as a function of temperature by drawing parametric
plots using the outer horizon radius as a parameter. Figure 1
reveals two distinct yet quite similar behaviors. The
distinction comes from the fact that we vary different
parameters in Figs. 1(a) and 1(b), i.e., the minimal length
and the cosmological constant, respectively. We observe
from Fig. 1 a characteristic swallowtail behavior. For a
fixed value of the cosmological constant Λ ¼ −1, there is a
critical value for the minimal length lc ≈ 0.156 below
which there is a first-order phase transition from a small
to a large black hole, while above this critical value, no
phase transition occurs. The same behavior is exhibited
when we vary the cosmological constant, where the critical
value is Λc ≈ −2.02 below which no phase transition
occurs, and above there is a small to large black hole
first-order phase transition. The parameter that changes
here is the horizon radius rh; it increases from left to right
along the near horizontal lines, which is the same direction
as the increasing temperature. The direction of increasing
radius is also indicated with arrows for the dashed light blue
curve. Starting from low temperatures on this curve and
increasing it gradually, we reach the crossing point. At this
point, the system chooses the direction that minimizes the
free energy which is downwards, indicating that from a
small horizon radius, we go straight to a large horizon
radius, i.e., a small to large phase transition. At the critical

7The fourth component of the vector potential Aμ depends on
the angle θ as can be seen from Eq. (7).
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point indicated by a black dot in Fig. 1, the transition
becomes second order.
Therefore, in the extended phase space, this RBH model

embedded in AdS exhibits the same critical behavior as
ordinary fluid systems [49]. Combining all the crossing
points, a swallowtail is created and it closes at the critical
point. These crossing points represent states where the
small and large phases coexist. Combining all of these
points, we can illustrate the coexistence line in a P − T
diagram which terminates at the critical point, as can be

seen from Fig. 2. At temperatures above TðcÞ
AdS and/or

pressures above PðcÞ there is no difference between the

two phases, so as the temperature increases we have a
smooth transition from a small to a large black hole. This
behavior is reminiscent of the liquid-gas transition.
The phase structure of this RBH is similar to the one

encountered when studying the Reissner-Nordstörm metric
in the canonical ensemble. There, the presence of a nonzero
electric charge makes the line F ¼ 0, i.e., pure radiation,
inaccessible, thus preventing the Hawking-Page transition
from occurring. This happens because in the presence of a
nonzero charge the black hole cannot evaporate completely.
This situation is similar to our case, where in the canonical
ensemble the magnetic charge is fixed, leading to the same
behavior. The main difference here is that the magnetic
charge is inherently linked to the presence of the minimal
length, as seen from Eq. (25), and therefore the singularity
regularization. This suggests that there might be a strong
connection between the presence of the singularity and the
existence of a Hawking-Page transition. Similar behavior
has been encountered before in the study of the Hayward
black hole in Ref. [33].
We proceed now with the calculation of the critical point

and examine if we have the usual mean-field theory
behavior encountered in other black hole cases in AdS [49].
To do that, we write the pressure as a function of the
temperature TAdS and the thermodynamic volume VAdS.
The volume expression, given in Eq. (57), is a monotonic
function of the horizon size rh, and we can freely use this
parameter to calculate the critical points in its stead.
Therefore, we write the pressure as a function Pðrh; TAdSÞ
which is computed by solving Eq. (53) for Λ. The pressure
is identified as −Λ=8π and thus we conclude that

Pðrh; TAdSÞ ¼
TAdS

2rhð1þ l
rh
Þ2 −

rh − 2l
8πr3h

: ð63Þ
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FIG. 2. Coexistence line for the RBH model in AdS for a
fixed minimal length scale l ¼ 0.1. The orange line represents
points where first-order phase transitions occur, and the
black dot represents the termination of the swallowtail with a
second-order phase transition occurring at the critical point

ðPðcÞ; TðcÞ
AdSÞ ¼ ð0.2776; 0.0973Þ. The origin (0,0) of the diagram

does not belong to the curve since the pressure must be positive
in AdS.
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FIG. 1. (a) Free energy FAdS as a function of the temperature TAdS for a constant value of the cosmological constant Λ ¼ −1 with
varying minimal length l; (b) Free energy FAdS as a function of the temperature TAdS for a constant value of the minimal length l ¼ 0.11
with varying cosmological constant Λ; In both cases, the arrows denote the direction in which the horizon radius rh increases. For the
sake of readability, we omit the arrows in the remaining curves, although the same pattern is implied.
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From the above relation, we can extract information about
the reduced volume, i.e., the volume over the number of
particles, which is the inverse coefficient of the linear term
of the temperature [71]. Therefore, we conclude that the
reduced volume is given by

v ¼ 2rh

�
1þ l

rh

�
2

: ð64Þ

The definition of the reduced volume arises naturally from
the Van der Waals-like form of Eq. (63), and here it is
different than the usually assumed value 2rh [49], although
in the limit of vanishing minimal length we retrieve the
usually defined quantity.
To calculate the critical point, we need to find solutions

for the following system of equations:

∂P
∂rh

¼ 0;
∂
2P
∂r2h

¼ 0: ð65Þ

Remarkably, analytic solutions for these equations are
possible but because of their lengthy and complicated
nature we omit them here and give instead approximate
expressions. We find that

rðcÞh ≈ 4.66433l; TðcÞ
AdS ≈

0.027758
l

: ð66Þ

Substituting these expressions into Eqs. (63) and (64) we
find the respective critical values,

PðcÞ ≈
0.0009728

l2
; vðcÞ ≈ 13.7574l: ð67Þ

For temperatures and pressures larger than the derived
above critical values, phase transitions are not possible.
This is also reflected later on in the study of the heat
capacity.
When studying thermodynamic systems, stability

requirements dictate the presence of a positive heat capac-
ity, and pressure to be monotonically decreasing function of
the volume. We can see from Fig. 3 (orange isotherm) that
above the critical temperature the pressure is a monoton-
ically decreasing function of the horizon radius rh, and
therefore the thermodynamic volume VAdS, due to their
monotonically increasing relation. At the critical temper-
ature (dark red line) we have a certain horizon radius for
which ∂P=∂rh ¼ 0 and ∂

2P=∂r2h ¼ 0. Below the critical
temperature, where phase transitions are possible, we have
different monotonicity of the pressure with respect to the
volume for different segments of the isotherm. The seg-
ments AB and CD correspond to the pressure being a
decreasing function of the volume, and they represent
metastable states (AB and CD correspond to superheated
liquid and supercooled vapor in the liquid-gas case,
respectively). The thermodynamic inequality ∂P=∂rh < 0

is satisfied in these segments, but this is not the case in the
segment BC where pressure is an increasing function of the
volume, which signifies the violation of the thermodynamic
inequalities and consequently thermodynamic instability.
The dashed horizontal light blue line in Fig. 3 corre-

sponds to the coexistence pressure Pcoex derived by
Maxwell’s construction. In a P − V diagram, the area
enclosed between the isotherm and the line representing
the coexistence pressure vanishes. This is a condition
derived directly from the assumption of thermodynamic
equilibrium between two phases which can be written as

Z
VD

VA

�
Pðrh; TAdSÞ − Pcoex

�
dV ¼ 0: ð68Þ

Here VA corresponds to the small black hole phase and VD
to the large one. We can see by direct calculation that
Eq. (68) holds and that the coexistence pressure is the same
as the one extracted from the F − T diagram. We point out
that proper calculation requires using the volumes rather
than the radii of the small and large black holes. If we
attempt to use the radii to perform the integration of the
pressure, we are led to an inconsistency, namely that the
coexistence pressure defined from Maxwell’s construction
does not coincide with the one found from the F − T
diagram.
We proceed now with the calculation of the critical ratio,

which can be calculated using the critical values of the
pressure, temperature, and reduced volume and find that

PðcÞvðcÞ

TðcÞ
AdS

≈ 0.482197 ≠
3

8
: ð69Þ
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FIG. 3. Isotherms of the equation of state Pðrh; TAdSÞ for the
RBH model in AdS for a fixed value of the minimal length l ¼
0.1 for various TAdS. The solid horizontal black line represents
the critical pressure PðcÞ ≈ 0.973, while the dashed horizontal
light blue line depicts the coexistence line for the isotherm with
temperature TAdS ¼ 0.179.
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This result indicates a deviation from the “universal”mean-
field theory critical ratio. On the other hand, if we consider
the ordinary definition of the reduced volume ṽ ¼ 2rh used
in the majority of studies of black hole phase transition, we
are led to a different critical ratio,

PðcÞṽðcÞ

TðcÞ
AdS

≈ 0.326968 ≠
3

8
; ð70Þ

which also signifies the departure from the usual value for
the Van der Waals fluids, although there is a significant
difference between the critical values calculated for differ-
ent definitions of the volume. This is in contrast with what
we have seen in Ref. [33] and we attribute this deviation to
the stronger deformation due to the minimal length in
comparison with the Hayward model (See Table I).
It is interesting to compare the deviation from the value

of the critical ratio of mean-field theory for a variety of
RBH models that exhibit different corrections to the
Schwarzschild asymptotic behavior. For this purpose, we
consider the Hayward and Bardeen models8 along with the
one analyzed in this paper. We can see from Table I that the
deviation from the mean-field theory ratio becomes larger
as the deformations of the asymptotic behavior become
larger. This indicates that there is a connection between the
way the singularity is smoothed out and the thermodynamic
properties of black holes in AdS. It appears that the stronger
the deformation from the Schwarzschild behavior using a
minimal length scale, the larger the deviation from the
mean-field theory critical ratio.
We now turn to the study of the thermodynamic stability

of this RBH, where the critical quantity for this analysis
will be the heat capacity at constant volume defined as

CV ¼ T
�
∂S
∂T

�				
V
; ð71Þ

and it is calculated to be

CV ¼ 2πr2hðrh þ lÞð2l − rh þ r3hΛÞ
ðr2h − 8l2 þ r4hΛ − lrhð1þ r2hΛÞÞ

: ð72Þ

We can see from Fig. 4 that there are regions where the heat
capacity is positive. They correspond to the thermodynamic
stability of the RBH, whereas regions with the negative
sign of CV represent thermodynamically unstable regions.
Caution must be taken in our analysis since there is one
additional constraint when we are studying RBHs. The
smaller possible radius will be the one of the extremal black
hole. In this case, the RBH will have one horizon [72]
which is characterized by zero surface gravity since it is
degenerate leading to zero temperature. To identify this
condition, we solve the following equation:

κ ¼ f0ðrhÞ
2

¼ 0 ð73Þ

for rh, which yields three solutions, only one of which is
viable, and is given by

rext¼−
31=3Λþ�9lΛ2þ ffiffiffi

3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ3ð−1þ27l2ΛÞ
p �

2=3

32=3Λ
�
9lΛ2þ ffiffiffi

3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ3ð−1þ27l2ΛÞ
p �

1=3 : ð74Þ

We note that demanding the surface gravity to be zero is
equivalent to demanding the effective temperature to be
zero as seen from Eqs. (54) and (55). The extremal radius is
a function of both the minimal length and the cosmological

TABLE I. In this table, the left column represents the RBH
models we are considering, where the last model is the one
analyzed in this paper. The middle column describes the
asymptotic behavior where we have omitted the cosmological
constant term. The right column describes the magnitude of the
difference jPðcÞvðvÞ=TðcÞ

AdS − 3=8j between the critical ratios for
these models with the usual mean-field theory (MFT) value 3=8.
In the calculation of the MFT ratio deviation, we have used only
the reduced volume that appears as an inverse coefficient of the
temperature in the Van der Waals-like equation of state, which
should be considered the appropriate choice.

RBH model Asymptotic behavior MFT ratio deviation

Hayward 1 − 2m
r þ 4m2l2

r4 þOðr−7Þ 0.016

Bardeen 1 − 2m
r þ 3ml2

r3 þOðr−5Þ 0.025

Cadoni et al. 1 − 2m
r þ 6ml

r2 þOðr−3Þ 0.107
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FIG. 4. Heat capacity CV as a function of the horizon radius rh
for constant value Λ ¼ −1 of the cosmological constant. Differ-
ent colors/types represent different values of the minimal length
parameter l. The thin vertical black lines correspond to infinities/
discontinuities of the heat capacity while the thick vertical black
line represents the minimal radius enforced by the extremal limit
for the case l ¼ 0.1.

8The thermodynamics of the Bardeen black hole is analyzed in
the Appendix D.
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constant which in this case is negative. An example
of where this extremal radius is located can be seen in
Fig. 4 depicted as a thick vertical black line for the values
l ¼ 0.1 and Λ ¼ −1 with the approximate radius being
rext ≈ 0.193. This indicates that the heat capacity exhibits a
divergent behavior at radii larger than the extremal limit,
which makes the study of phase structure meaningful. We
see that as we increase l past a certain value, we have no
longer infinities/discontinuities, which is a restatement of
the result we obtained in Fig. 1, i.e., the existence of a
critical point. This behavior agrees, as required for con-
sistency, with the critical values we derived in Eq. (67). For
Λ ¼ −1, it is easy to find that the corresponding critical
minimal length is lðcÞ ≈ 0.156. We see in Fig. 4 that for
critical lengths above this value, no phase transition occurs
since there are no discontinuities of the heat capacity.
We now derive, once again, using this time the heat

capacity, the critical values for the minimal length, and the
cosmological constant. To do that we have to examine the
discriminant of the denominator of the heat capacity. It is
given by

Δ ¼ −4
�
33l2Λþ 2170l4Λ2 þ 33561l6Λ3 þ 432l8Λ4

�
:

ð75Þ

Solving the equation Δ ¼ 0, treating Λ as a variable, yields
four solutions. Two of the roots are Λ ¼ 0 and Λ ¼ ΛðcÞ ¼
−8πPðcÞ, and the two remaining ones are

Λ1 ≈ −
77.6228

l2
; Λ2 ≈ −

0.0402495
l2

: ð76Þ

The discriminant in between these solutions has a positive
sign, but yields only negative or imaginary solutions for the
denominator, which means that in this region we do not
have any discontinuities for the heat capacity. We conclude
that for Λ < ΛðcÞ or, equivalently, for P > PðcÞ, no dis-
continuities occur, and therefore no phase transitions in
agreement with what we saw/derived previously using the
critical point equations.

1. Critical exponents

The behavior of thermodynamic quantities near the
critical point is described by the critical exponents. They
do not depend on the details, i.e., microscopic structure of
the physical system, but only on some general features. To
calculate them in AdS for the RBH under consideration, we
first define the quantity

t ¼ TAdS

TðcÞ
AdS

− 1; ð77Þ

which is called the reduced temperature. The main relations
we are going to use are the following:

CV ∝ jtj−α; g¼vl−vs∝ jtjβ;

κT ¼−
1

V
∂V
∂P

				
T
∝ jtj−γ; jP−PðcÞj∝ jV−VðcÞjδ; ð78Þ

where CV is the heat capacity at constant volume, g is the
order parameter, and κT is the isothermal compressibility.
We start with the calculation of the critical exponent α.

We see from Eq. (72) that the heat capacity is independent
of the temperature, and since this is also true for the entropy
as seen from Eq. (48), we conclude that α ¼ 0.
To find the critical exponent β we need to find a way to

relate the difference between the reduced volumes of the
small and large black hole phases with the reduced temper-
ature near the critical point. To proceed in an analytic way
one can identify the points where the two phases coexist,
i.e., Fjvs ¼ Fjvl and TAdSjvs ¼ TAdSjvl , where vs and vl are
the reduced volumes for small and large black holes,
respectively. This requires finding solutions of fifth-degree
polynomials to identify the point of the phase transition.
Since this is not possible, we focus on finding the critical
exponent β in a numerical way. We keep the minimal length
fixed at l ¼ 0.1 and start varying Λ near the critical value
Λc ¼ −8πPðcÞ ≈ −2.445 calculated from Eq. (67). Then,
we find numerical solutions for the point of the phase
transition, and by identifying the temperature TAdS at this
point, we also have the reduced temperature. For every
value of the cosmological constant, we generate different
points shown in Fig. 5. By appropriate fitting of curves of
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FIG. 5. Behavior of the order parameter g near the critical point
as a function of the reduced temperature. Different colors/types
represent different values of the coefficient β. The light blue dots
represent numerical values of the points ðt; vl − vsÞ obtained by
keeping fixed minimal length l ¼ 0.1 and varying the cosmo-
logical constant Λ in the vicinity of the critical value
ΛðcÞ ≈ −2.445.
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the form jtjβ we see that the exponent β ¼ 1=2 is a perfect
fit for the points obtained numerically.
For the critical exponent γ we need to plot the isothermal

compressibility κT as a function of the reduced temperature,
although in this case we can do the calculation analytically.
Using the monotonicity of the volume with respect to the
horizon radius, we have

κT ¼ −
1

V

�
∂V
∂rh

��
∂P
∂rH

�
−1
				
TAdS

: ð79Þ

Calculation near the critical point yields a behavior

κT ∝ jtj−1; ð80Þ

and thus we conclude that the exponent γ ¼ 1.
The last exponent we calculate is δ. This requires

evaluating the absolute value of the difference between
the pressure P given by Eq. (63) and the critical pressure
PðcÞ given by Eq. (67). This can be done straightforwardly

if we also use the critical radius rðcÞh . Once we have the
difference jP − PðcÞj, we can plot it and compare it with the
difference jV − VðcÞj near the critical point, and we see that
the best-fit is for δ ¼ 3.
In summary, the four critical exponents are given by

α ¼ 0; β ¼ 1

2
; γ ¼ 1; δ ¼ 3; ð81Þ

which are exactly the values expected from mean-field
theory, even though we have a deviation from the critical
ratio 3=8.

B. Embedding in Minkowski

In this section, we will study the thermodynamics in
Minkowski spacetime starting with the definition of the
proper thermodynamic quantities and continuing with the
phase structure. As we saw at the beginning of Sec. III,
here we no longer have an effective potential that confines
the radiation as in the AdS case, so the implementation of
an isothermal cavity is necessary to provide thermal
equilibrium for the system. The temperature of the black
hole is found by Eq. (39) taking the limit Λ → 0 since a
cosmological constant is not present in the spacetime. We
find that

TM ¼ r3cðrh − 2lÞðlþ rhÞ2

4πðlþ rcÞ3r4h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðrc−rhÞð3l2rcrh−r2cr2hþl3ðrcþrhÞÞ

ðlþrcÞ3r2h

r : ð82Þ

Similarly, we calculate the conjugate potential for the
minimal length l and cavity area Ac through Eq. (42)
and (C2), respectively. They are given by

ΦM ¼ 3r3cðrc − rhÞðlþ rhÞ2

2ðlþ rcÞ4r2h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðrc−rhÞð3l2rcrh−r2cr2hþl3ðrcþrhÞÞ

ðlþrcÞ3r2h

r ; ð83Þ

and

λM ¼ 1

48πrc

 
6þ 3r2cð2l− rcÞðlþ rhÞ3

ðlþ rcÞ5=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðrc − rhÞð3l2rcrh − r2cr2h þ l3ðrc þ rhÞÞ

p − 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðrc − rhÞð3l2rcrh − r2cr2h þ l3ðrc þ rhÞÞ

ðlþ rcÞ3r2h

s !
:

ð84Þ

Two additional quantities need to be computed: First, the
internal energy of the system, which is given by setting
Λ ¼ 0 in Eq. (46), and leads to

EM ¼ rc

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2cðlþ rhÞ3
ðlþ rcÞ3r2h

s !
; ð85Þ

and second, the entropy of the system which remains the
Bekenstein-Hawking entropy as seen from the general
result of Eq. (48). The above quantities give rise to a
proper Smarr formula of the form

EM ¼ 2TMSþΦMlþ 2λMAc: ð86Þ
The above quantities are the ones that will be used for the
study of the phase structure, although it is worth writing the

explicit form of the thermodynamic quantities when we
position the cavity at infinity. To indicate the absence of the
cavity, we will use the superscript (0) in these expressions.
The temperature is given by

Tð0Þ
M ¼ ðlþ rhÞ2ðrh − 2lÞ

4πr4h
; ð87Þ

and it is easy to check that it is connected to the surface
gravity by the relation

Tð0Þ
M ¼

�
1þ l

rh

�
3

T jΛ¼0; ð88Þ

as was the case for AdS. The conjugate potential Φ in the
limit rc → ∞ takes the form
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Φð0Þ
M ¼ 3ðlþ rhÞ2

2r2h
; ð89Þ

while the energy becomes

Eð0Þ
M ¼ ðlþ rhÞ3

2r2h
; ð90Þ

which is the Arnowitt-Deser-Misner mass [73] of the
spacetime. In terms of these quantities, it is obvious that
the Smarr formula becomes

Eð0Þ
M ¼ 2Tð0Þ

M SþΦð0Þ
M l; ð91Þ

since we do not have a term due to the cavity. Having
defined the proper thermodynamic quantities TM, ΦM, and
EM we proceed with the calculation of the free energy and
move on to the study of the phase structure. The free energy
is given by

FM ¼ EM − TMS; ð92Þ

which is calculated using Eqs. (82), (85), and (48), to be

FM ¼ rc
4ðrcþ lÞ3

0
B@4l3þ12l2rcþ12lr2cþ4r3c

−
4l3þ12l2rcþ4r3c−

3r2c
r2h
ð2l3þ5l2rhþ r3hÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− r2cðlþrhÞ3
ðlþrcÞ3r2h

r
1
CA: ð93Þ

We see from Fig. 6 that we have the swallowtail structure
once again, and the presence of the minimal length prevents

the Hawking-Page transition from occurring. In Fig. 6(a)
we keep the cavity radius constant at rc ¼ 2 and vary the
minimal length. We see that with increasing temperature we
are led to a first-order phase transition, which is from a
small to a large black hole since the direction of increasing
rh is the same as that of the increasing temperature (the
direction of increasing horizon radius is also indicated with
arrows on the dashed light blue curve in Fig. 6). We have a
critical value lc ≈ 0.25 of the minimal length above which
no phase transition occurs. The same behavior is encoun-
tered in Fig. 6(b), where the minimal length scale remains
constant at l ¼ 0.3 and we vary the cavity radius rc. Again,
a first-order small to large phase transition occurs. There is

a critical cavity radius rðcÞc ≈ 2.5 below which no phase
transition occurs.

1. Constraints on the minimal length

In Ref. [32] corrections to the perihelion precession
angle of test particles’ orbits were found to scale linearly
with the minimal length l. Using this result, it is possible to
check if the bounds imposed on the minimal length from
the requirement of thermodynamic stability and the
extremal limit are compatible with available astrophysical
data for the orbits of the S2 star around the Sagittarius A*.
In this paper, we have an effective temperature, that
differs from the one linked to surface gravity, and thus it
will prove useful to once again check the minimal length’s
range of values. We start our analysis by taking the limit of
Λ → 0− of the heat capacity defined by Eq. (72). We find
that

CV ¼ 2πr2hðlþ rhÞð2l − rhÞ
r2h − lrh − 8l2

; ð94Þ
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FIG. 6. (a) Free energy FM as a function of the temperature TM for a constant value of the cavity radius rc ¼ 2 with varying minimal
length l; (b) Free energy FM as a function of the temperature TM for a constant value of the minimal length l ¼ 0.3 with varying cavity
radius rc. In both cases, the arrows denote the direction in which the horizon radius rh increases. For the sake of readability, we omit the
arrows in the remaining curves, although the same pattern is implied.
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and it is shown in Fig. 7. We can see that there is only one
infinity/discontinuity that separates thermodynamically
stable and unstable regions. We have to point out that
for this analysis, we have considered the cavity radius to be
at infinity to retrieve the ordinary thermodynamic quan-
tities. The point at which the discontinuity occurs is the
positive root of the denominator of Eq. (94), which is

rdisc ¼
1þ ffiffiffiffiffi

33
p

2
l: ð95Þ

For values of the horizon radius smaller than rdisc, we have
a thermodynamically stable RBH. It will be much more
intuitive and useful for comparison with observational
data to impose bounds on l with respect to the mass of
the black hole. The extremal limit is the result of the outer
horizon merging with the inner one forming a degenerate
horizon [72]. In this case, we note that this occurs when l
takes the value

l̃ ¼ 8m
27

; ð96Þ

although we will refrain from calling a “critical” length to
avoid confusion with the one introduced while studying
phase transitions.
We can see from Fig. 8 that the value l ¼ l̃ corresponds

to one double root of the function indicating the presence of
an extremal black hole. For minimal lengths l > l̃ there is
no black hole and this geometry represents a horizonless
configuration whereas for l < l̃ we have an RBH. This
condition places a constraint on the minimal length, which

is a crucial factor to consider when assessing the feasibility
of RBHs. Using Eq. (74) and taking the limit Λ → 0−, we
find that the extremal radius is rext ¼ 2l̃. This result can
also be obtained directly from Eq. (82) by demanding the
temperature to vanish. For the existence of a thermo-
dynamically stable black hole, we must have then that
rdisc > rext, which enforces the following lower bound on
the minimal length:

rdisc > rext ⇒ l >
4

1þ ffiffiffiffiffi
33

p l̃: ð97Þ

Combining the constraints mentioned above we have the
following bounds for the minimal length:

4

1þ ffiffiffiffiffi
33

p l̃ < l < l̃; ð98Þ

which can be rewritten, using Eq. (96), as

0.176 <
l
m

< 0.296: ð99Þ

This demonstrates that using the effective temperature
derived from the Euclidean path integral approach leads
to a lower bound than the one presented in Ref. [32], hence
allowing for even smaller values of the parameter l, yet still
affirming the potential of identifying the observed ultra-
compact objects as RBHs. We note that the bounds derived
in this subsection are calculated within the framework of an
asymptotically Minkowski spacetime. It is important to
emphasize that the ultracompact objects under observation
are situated within a spacetime characterized by a positive
cosmological constant. Consequently, there will be correc-
tions to these bounds due to its presence but we expect them
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FIG. 7. Heat capacity CV as a function of the horizon radius rh
for Minkowski spacetime. Different colors/types represent differ-
ent values of the minimal length parameter l. The thin vertical
black lines correspond to infinities/discontinuities of the heat
capacity, while the thick vertical black line represents the minimal
radius enforced by the extremal limit for the case l ¼ 0.1.
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FIG. 8. Metric function f as a function of the radial coordinate r
with vanishing cosmological constant Λ ¼ 0 and mass m ¼ 1.
Different colors/types represent different values of the minimal
length.
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to be negligible since the cosmological constant is of the
order 10−122l−2p [74].

C. Embedding in de Sitter

Finally, in this section we are going to study the most
physically relevant case, that of an asymptotically de Sitter
spacetime. The cavity radius is now restricted to a domain
between the black hole horizon and the cosmological
horizon. The proper thermodynamic quantities in this case
are defined by Eqs. (39), (42), (46), (C1), and (C2) but now
with Λ > 0. The sign of Λ indicates that the quantity P ¼
−Λ=8π < 0 should be interpreted as tension and not
pressure. We explicitly add to these quantities a subscript
dS to separate them from the general quantities derived
from the Euclidean action in Sec. III, even though they are
identical, and also to maintain consistency with the notation
used in previous subsections. These thermodynamic quan-
tities define the following Smarr relation written as

EdS ¼ 2TdSSþΦdSlþ 2λdSAc − 2PVdS: ð100Þ

The free energy FdS is calculated in the same manner as in
previous subsections by using the mean thermal energy, the
temperature, and the entropy,

FdS ¼ EdS − TdSS: ð101Þ

We omit the full expression for the free energy in the main
text and provide it in Appendix C instead due to its
extensive nature.
We once again create parametric plots of the free energy

as a function of the temperature using the horizon radius rh
as a parameter. We see from Fig. 9 that we observe the same
behavior as in the asymptotically flat spacetime with the

variation of the cavity radius and the minimal length
leading us to the swallowtail behavior. We can see that
the first-order small to large phase transitions are in general
present when the cavity radius is close to the black hole
horizon rh or the cosmological horizon rcosm. Fig. 9(a)
represents the case where the cavity is close to the
cosmological horizon rcosm ≈

ffiffiffiffiffiffiffiffiffiffiffiffið3=ΛÞp
≈ 17.32. It is

important to acknowledge that this approximation is
because the cosmological horizon is influenced by the
presence of the black hole, causing it to be situated closer to
the black hole horizon than it would be if the black hole was
absent. The same behavior is exhibited, as seen in Fig. 9(b),
when the cavity is close to the black hole horizon and we
vary the minimal length.
However, there is a main difference in comparison with

the AdS spacetime. The variation of Λ leads to the
swallowtail, but instead of terminating at one point, which
represents a second-order phase transition, we now have
two values of Λ that can lead to the closure of the
swallowtail, and therefore it is transformed into a swal-
lowtube. The one obvious value is Λ → 0þ since we are
considering a de Sitter spacetime and the cosmological
constant must remain positive, but independently of this
restriction we see from Fig. 10 that for certain values of l
and rc the termination happens at a value of the parameter

ΛðcÞ
1 ≈ 0.0216 larger than zero. A second value of the

cosmological constant ΛðcÞ
2 ≈ 0.225 also leads to a termi-

nation of the first-order phase transitions. Therefore in de
Sitter, we have two critical points with the coexistence line
shown in Fig. 11.
To summarize, in a spacetime with a positive cosmo-

logical constant, under the choice of an appropriate
parameter for the minimal length and the cavity radius,
there is an interval ðPmin; PmaxÞ in which first-order small to
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FIG. 9. (a) Free energy FdS as a function of the temperature TdS for constant value l ¼ 0.1 for the minimal length and constant
cosmological constant Λ ¼ 0.01 with varying cavity radius rc; (b) Free energy FdS as a function of the temperature TdS for constant
value of cavity radius rc ¼ 2 and cosmological constant Λ ¼ 0.01 with varying minimal length l. In both cases, the arrows denote the
direction in which the horizon radius rh increases. For the sake of readability, we omit the arrows in the remaining curves, although the
same pattern is implied.

EUCLIDEAN METHODS AND PHASE TRANSITIONS FOR THE … PHYS. REV. D 109, 044041 (2024)

044041-17



large phase transitions are possible, but outside of which no
phase transitions occur, i.e., the small to large phase
transition is compact. This behavior is in stark contrast
with AdS, where only one critical point exists, and for
temperatures or pressures higher than this no phase
transitions occur. Direct comparison of Fig. 11 with Fig. 2
makes evident the different and richer phase structure of
the RBH in de Sitter spacetime in comparison with AdS.
This novel feature can be solely attributed to the existence
of a cosmological horizon, as the swallowtube behavior is
absent in both AdS and Minkowski spacetime, rather than
being influenced by the cavity’s presence [62].

V. CONCLUSIONS

Studying various RBH models is crucial for gaining
insights into how the smearing of the singularity, found in
mathematical black holes, influences the classical sector.
Assuming the existence of a quantum gravity theory that
achieves such a regularization while preserving the hall-
mark feature of the horizon, RBHs emerge as the sole
viable description for ultracompact objects. Numerous
models have been proposed in the literature to describe
such objects, with the common thread being the introduc-
tion of a minimal length scale, while allowing for distinct
asymptotic behaviors. Most of these models can be
described in the context of general relativity, having as a
source an NED theory coupled to gravity with the incor-
poration of a magnetic charge, although alternative theories
to describe such geometries are possible [69].
In this paper we analyzed the way to generate the model

proposed in Ref. [32] in the framework of general
relativity and derived the appropriate thermodynamic
quantities using the Euclidean path integral approach.
We conducted a comprehensive analysis of the thermo-
dynamic properties and the phase structure of this model
across anti–de Sitter, Minkowski and de Sitter spacetimes.
Our findings imply/reveal a fundamental connection
between the presence of a minimal length and the absence
of the Hawking-Page transition in all three scenarios.
Additionally, we observed that the method of singularity
regularization influences the extent of the deviation
from mean-field theory critical ratio in AdS. Both of
these results arise from the fact that the singularity is
not present. In AdS and Minkowski spacetime, the
phase structure exhibits a typical swallowtail behavior,
characterized by a unique critical point. However, in de
Sitter spacetime, the swallowtail transforms into a swal-
lowtube due to the emergence of a second critical point
under specific values of the cavity radius and minimal
length. In the asymptotically flat spacetime we established
bounds on the minimal length, assuming the existence
of a thermodynamically stable RBH. Our results indicate
a lower bound smaller than the one previously
predicted, implying the possibility of even smaller min-
imal length scales underpinning the possible existence
of RBHs.
Our analysis has been restricted to a comparison of

spherically symmetric RBHs, although realistic ultracom-
pact objects are rotating and consequently characterized by
axial symmetry. On this account, it will be intriguing to
extend our investigation to include rotating RBHs. This
extension should be based on the Euclidean path integral
approach and will allow us to explore the thermodynamic
properties and phase structure of these axially symmetric
objects. Last but not least, the implications of singularity
regularization in spherically symmetric setups have become
evident in this paper, and thus analogous extensions
should be considered in axially symmetric spacetimes.
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FIG. 10. Free energy FdS as a function of the temperature TdS
for a constant value of the minimal length l ¼ 0.256 and constant
cavity radius rc ¼ 2.01 with varying cosmological constant Λ.
The arrows denote the direction in which the horizon radius rh
increases. For the sake of readability, we omit the arrows in the
remaining curves, although the same pattern is implied.
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FIG. 11. Coexistence line for the RBH model in de Sitter
spacetime. The black dots represent second-order phase
transitions. The two horizontal dashed black lines illustrate the
absolute value of the two critical pressures. The bottom line
corresponds to jPðcÞ
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Furthermore, this extension to physically realistic scenarios
could potentially allow us to make contact with gravita-
tional wave observations.
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APPENDIX A: CALCULATION OF REDUCED
EUCLIDEAN ACTION

In this section of the appendix we provide the explicit
calculation of each term introduced in the reduced action,
defined as

Ir ¼ IEH þ IGHY þ IM þ IEMB − I0: ðA1Þ

We start with the Einstein-Hilbert action IEH, given by
Eq. (33). We first perform the transformation t → −iτ
(Wick rotation) in the metric of Eq. (1), where τ is the
Euclidean time, to obtain the Euclidean metric,

ds2 ¼ fðrÞdτ2 þ dr2

fðrÞ þ r2dΩ2; ðA2Þ

and we find that the Ricci scalar is

R ¼ 2 − f00ðrÞr2 − 4rf0ðrÞ − 2fðrÞ
r2

: ðA3Þ

Therefore,

IEH¼−
1

16π

Z
βh

0

dτ
Z

π

0

dθ
Z

2π

0

dϕ
Z

rc

rh

r2 sinθRdr; ðA4Þ

where the integration of the radial part is up to the cavity
radius rc which is subject to restrictions in the presence of a
cosmological horizon rcosm with rh < rc < rcosm. If a
cosmological horizon, is not present then the cavity radius
is not bounded from above and we are allowed to take the
cavity to be at infinity. The upper bound βh of the integral
over dτ is chosen as to eliminate the conical singularity at
the origin of τ − r plane in the Euclidean section, which
corresponds to the black hole horizon in the Lorentzian
geometry. After integration of the angular part and inte-
gration by parts of the radial part, we have

IEH ¼ βh
4
ð2ðrc − rhÞ − 2rcfðrcÞ − r2cf0ðrcÞÞ −

βh
4
r2hf

0ðrhÞ:
ðA5Þ

Upon identifying the periodicity βh with the Killing surface
gravity κ [75,76] through the relation

β−1h ¼ κ

2π
¼ f0ðrhÞ

4π
; ðA6Þ

we finally obtain

IEH¼−πr2h−
βh
4

�
2ðrc−rhÞ−2rcfðrcÞ−r2cf0ðrcÞ

�
; ðA7Þ

where the first term is shown to be the black hole entropy in
Sec. III. We now proceed with the next term of the action
which is the Gibbons-Hawking-York term

IGHY ¼ 1

8π

Z
∂M

ffiffiffi
k

p
K ¼ 1

8π

Z
βh

0

dτ
Z

π

0

dθ
Z

2π

0

dϕ
ffiffiffi
k

p
K

				
rc

:

ðA8Þ

The induced metric kab on the boundary hypersurface is
given by the line element,

ds2 ¼ fðrcÞdτ þ r2cdΩ2; ðA9Þ

and the square root of the determinant k of the induced
metric is

ffiffiffi
k

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p
r2c sin θ: ðA10Þ

The trace of the extrinsic curvature Kab evaluated at the
boundary is

KðrcÞ ¼ −
2
ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p
rc

−
f0ðrcÞ

2
ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p : ðA11Þ

Combining now Eqs. (A8), (A10) and (A11), we have that

IGHY ¼ βh
2
r2cKðrcÞ

ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p
: ðA12Þ

We now proceed with the calculation of the matter part of
the action given by Eq. (35). The Lagrangian depends only
on the radial coordinate so we proceed with the integration
of the angular and Euclidean time parts to arrive at

IM ¼ βh
4

Z
rh

rc

r2LðrÞdr: ðA13Þ

Instead of using Eq. (19), we can produce a more general
result by using the original solution of the Einstein
equations for L which is given by Eq. (18) and perform
the integration, which gives the rather simple result,
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IM ¼ βh
2
ððrc − rhÞ − rcfðrcÞÞ: ðA14Þ

Since the next action term is the electromagnetic
boundary term, which vanishes as explained in Sec. III,
we proceed with the calculation of the final term I0. We
calculate this term by demanding the reduced action to
vanish in the absence of a black hole. A comment is
necessary here as to what condition we need to impose.
Having a look at Eq. (20), we see that the condition rh → 0
does not correspond to vanishing massm ¼ 0. We point out
that the proper condition in this case corresponds to first
taking the limit l → 0 and then taking the limit rh → 0. The
limit cannot be taken in reverse order because there is no
meaning in having a minimal length scale l without the
presence of a horizon radius, i.e., a black hole.9

Consequently, we have the following equivalence between
these two conditions,

lim
m→0

Ir ¼ 0 ⇔ lim
rh→0

ðlim
l→0

IrÞ ¼ 0: ðA15Þ

This condition leads to a vanishing action for the absence of
a black hole, i.e., an empty spacetime which can either be
Minkowski or AdS/dS, depending on the value of the
cosmological constant. Implementing the above condition
and taking into account the introduction of the new
parameter β for appropriate comparison of the spacetimes
with and without a black hole, leads to the expression,

I0 ¼
1

3
βð−3þ r2cΛÞ; ðA16Þ

for the subtraction term.

APPENDIX B: CONSIDERING Qm AND σ AS
FUNDAMENTAL THERMODYNAMIC

VARIABLES

In this section of the appendix, we derive the reduced
Euclidean action when our RBH is embedded in AdS
spacetime, treating Qm and σ as fundamental thermody-
namic variables. Choosing the AdS case, allows us to take
the cavity radius rc to infinity, simplifying considerably the
expressions while still enabling a proper comparison. Using
Eqs. (24), (25), and (20), we rewrite the metric function of
Eq. (2) solely in terms of Qm and σ. This results in

fðrÞ ¼ 1 −
27=4Q3=2

m r2

ðrþ 21=4σ1=4Q1=2
m Þ3σ1=4

−
Λ
3
r2: ðB1Þ

We proceed with the calculation of the Euclidean action,
using Eqs. (A7), (A12), (A14), (A16), and Eq. (B1) as the
metric function. This leads to the reduced action

Ir ¼ Irðrh; rc; Qm; σ;ΛÞ; ðB2Þ

where we highlight once again that Qm and σ are treated as
independent thermodynamic variables. Upon taking the
cavity to infinity we have that

Irðrh; Qm; σ;ΛÞ ¼ lim
rc→∞

Irðrh; rc; Qm; σ;ΛÞ; ðB3Þ

and we obtain

Irðrh; Qm; σ;ΛÞ ¼ −πr2h þ β

��
rh
2
þ 27=4Q3=2

m

4σ1=4

�
−
Λ
6

�
r3h þ

3 · 23=4Q3=2
m

Λσ1=4

�

þQ2
mð6r2h þ 3 · 25=4Q1=2

m rhσ1=4 þ 23=2Qmσ
1=2Þ

ðrh þ 21=4Q1=2
m σ1=4Þ3

�
: ðB4Þ

Not surprisingly this action is precisely the one derived
in Eq. (37) if we take the limit rc → ∞ and we also
substitute Qm, σ, and m in terms of rh and l using
Eqs. (24), (25), and subsequently Eq. (20). Importantly,

both derivations of the action of Eq. (37) and Eq. (B4) are
on shell, as indicated by Eq. (A6), where we have selected
the inverse surface gravity as the periodicity and therefore
we have eliminated the conical singularity [75,76].
However, there is a major difference between these two

calculations arising from the choice of thermodynamic
variables. Initially, we calculate the temperature by extrem-
izing the action of Eq. (B4) with respect to the horizon
radius, i.e.,

∂Irðrh;Qm; σ;ΛÞ
∂rh

¼ 0; ðB5Þ

9The existence of a nonzero minimal length scale l is
conceivable even in the absence of a horizon. However, under
these circumstances, the object under consideration will no
longer quantify as a black hole, i.e., a trapped region of
spacetime. Instead, it would be classified as a horizonless object
[23,35]. In such scenarios, the application of the Euclidean
formalism, in this form, for the thermodynamic analysis becomes
unsuitable, as it relies on the presence of a horizon.
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and solve for β which leads to the following relation for the
temperature:

T ¼ 1 − r2hΛ
4πrh

−
12Q2

mrh
4πðrh þ 21=4Q1=2

m σ1=4Þ4
: ðB6Þ

After using Eqs. (24), (25), and (20) in the above
expression we retrieve exactly the relation (54), i.e., the
temperature being the surface gravity. Since now Qm and σ
are independent variables, they will have their own con-
jugate quantities in the first law and Smarr formula. We
calculate them using a similar methodology as in Sec. III,
but we only present here the expressions after we have
substituted Qm and σ in terms of rh and l. These quantities,
for the magnetic charge Qm, the parameter σ, and the
cosmological constant Λ, respectively, are given by the
following relations:

ΨH¼1

β

∂Irðrh;Qm;σ;ΛÞ
∂Qm

; Kσ ¼
1

β

∂Irðrh;Qm;σ;ΛÞ
∂σ

ðB7Þ

and

V ¼ −
8π

β

∂Irðrh; Qm; σ;ΛÞ
∂Λ

; ðB8Þ

where now β ¼ T −1. Explicit calculation yields

ΨH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3lðlþ rhÞð3 − r2hΛÞ

p
2rhðlþ rhÞ3

ð4r3h þ 6r2hlþ 4rhl2 þ l3Þ;

ðB9Þ

Kσ ¼ −
ðlþ rhÞ2ðl2 þ 4lrh þ 6r2hÞð3 − r2hΛÞ2

144lr4h
; ðB10Þ

V ¼ 4πr3h
3

: ðB11Þ

Finally, we calculate the internal energy and entropy from
Eq. (45) and Eq. (47), respectively, and we find

E ¼ ∂Irðrh; Qm; σ;ΛÞ
∂β

¼ ðlþ rhÞ3ð3 − r2hΛÞ
6r2h

¼ m; ðB12Þ

S ¼ β
∂Irðrh; Qm; σ;ΛÞ

∂β
− Irðrh; Qm; σ;ΛÞ ¼ πr2h: ðB13Þ

The application of the Euclidean path integral formalism
and its on shell consideration leads us to the Smarr
formula,

E ¼ 2T Sþ ΨHQm þ 2Kσσ − 2VP: ðB14Þ

We note that this is exactly the Smarr formula obtained
from Hamiltonian methods as can be verified from the
methodology of Ref. [42]. The choice of Qm and σ as
thermodynamic variables is based on the dependence of the
NED Lagrangian of Eq. (21) on F and therefore Qm while
at the same time there is dependence on the parameter σ,
which is one of the parameters βi appearing in Eq. (52).
(We refer the reader to Ref. [42] for a discussion and a
general derivation of the above using Hamiltonian
methods.)
The first law takes the form

dE ¼ T dSþ ΨHdQm þ Kσdσ þ VdP; ðB15Þ

with E ¼ m. In this derivation, the temperature coincides
with the surface gravity. However, it is important to
emphasize two key points: Firstly, considering Qm and σ
as independent variables is nonphysical, given that both
depend on m and l. Any variations of Qm and σ in the first
law would result in variations of m and l on the right-hand
side of Eq. (B15). This observation leads us to the second
point, emphasizing that variation of the total energy of the
spacetime should be present only on the left-hand side of
Eq. (B15). Therefore, it is muchmore physicallymeaningful
to consider the minimal length as a fundamental parameter
and allow for its variation. With this in mind, we have that

dQm ¼ ∂Qm

∂m
dmþ ∂Qm

∂l
dl; ðB16Þ

and

dσ ¼ ∂σ

∂m
dmþ ∂σ

∂l
dl: ðB17Þ

So implementing the above in the first law of Eq. (B15)
leads to

dE ¼ T

ð1 − ΨH
∂Qm
∂m − Kσ

∂σ
∂mÞ

dSþ ΨH
∂Qm
∂l þ Kσ

∂σ
∂l

ð1 −ΨH
∂Qm
∂m − Kσ

∂σ
∂lÞ

dl

þ V

ð1 −ΨH
∂Qm
∂m − Kσ

∂σ
∂lÞ

dP; ðB18Þ

and consequently to the effective thermodynamic
quantities

T ¼ T

ð1 − ΨH
∂Qm
∂m − Kσ

∂σ
∂mÞ

; ðB19Þ

and
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Φ¼ ΨH
∂Qm
∂l þKσ

∂σ
∂l

ð1−ΨH
∂Qm
∂m −Kσ

∂σ
∂lÞ

; V ¼ V

ð1−ΨH
∂Qm
∂m −Kσ

∂σ
∂lÞ

:

ðB20Þ

The above quantities are the conjugate potentials when
we treat l as a fundamental variable. If we do their explicit
calculation, using the relations (24), (25), and (20), we
retrieve exactly the same conjugate potentials as the ones
derived by the on shell Euclidean action method in

Sec. IVA and specifically Eqs. (53), (56), and (57). This
demonstrates consistency between the two derivations.

APPENDIX C: THERMODYNAMIC POTENTIALS

In this part of the appendix we give the rather long
expressions for the thermodynamic volume V, the con-
jugate potential for the cavity area λ and the free energy F
which will have the same expression as FdS but with
positive cosmological constant. They are calculated to be

V ¼ −8πr3c
6ðlþ rcÞ3r2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − r2cΛ

p
Y

�
18l2rcr2h − 3r2hð−l3 þ 3l2rh þ 3lr2h þ r3hÞ − 6lr2hr

4
hΛ − 2r5cr2hΛ − 6r3cr2hð−1þ l2ΛÞ

þ r2c
�
−3ðl3 þ 3l2rh − 3lr2h þ r3hÞ þ 2r3hð3l2 þ 3lrh þ r2hÞΛ

�þ ð−2l3r2h − 6l2rcr2h − 6lr2cr2h − 2r3cr2hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − r2cΛ

q
Y
�
;

ðC1Þ

λ¼ 1

48πrc

�
6ð1−r2cΛÞþ

2r2cΛffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3− r2cΛ

p X −2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3− r2cΛ

q
X

þ r2c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3− r2cΛ

p
ð3ð2l−rcÞðlþ rhÞ3þ r2hðl3ð9rc−6rhÞþ3l2ð4r2cþ rcrh−2r2hÞþ lð8r3cþ3rcr2h−2r3hÞþ rcð2r3cþ r3hÞÞΛÞ

ðlþ rcÞ5=2rh

−ðrc−rhÞð3l3ðrcþ rhÞþ3lr2cr2hðrcþ rhÞΛþ3l2rcrhð3þ rcrhΛÞþ r2cr2hð−3þðr2cþ rcrhþ r2hÞΛÞÞ

p �
;

ðC2Þ

FdS ¼
−rc

12r2hðlþ rcÞ3Y


ð12l3r2h − 18l3r2c − 45l2r2crh þ 36l2rcr2h þ 12r3cr2h − 9r2cr3h − 12l2r3cr2hΛ − 12lr4cr2hΛ − 4r5cr2hΛ

þ 9l2r2cr3hΛþ 6lr2cr4hΛþ r2cr5hΛÞωþ ð−12l3r2h − 36l2rcr2h − 36lr2cr2h − 12r3cr2h þ 4l3r2cr2hΛþ 12l2r3cr2hΛ

þ 12lr4cr2hΛþ 4r5cr2hΛÞY
�
; ðC3Þ

where we have defined for simplicity

Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − r2cΛþ r2cðlþ rhÞ3ð−3þ r2hΛÞ

ðlþ rcÞ3r2h

s
; ðC4Þ

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − r2cΛ

q
: ðC5Þ

It is worth pointing out that these are the general expres-
sions we derive from the Euclidean action and they
coincide with the de Sitter case quantities.

APPENDIX D: THERMODYNAMICS
OF THE BARDEEN RBH

In this part of the appendix we will derive the temper-
ature for the Bardeen black hole model using exactly the

same methodology as in Sec. III. This model is desrcibed
by the metric function given by

fðrÞ ¼ 1 −
2mr2

ðr2 þ l2Þ3=2 −
Λ
3
r2: ðD1Þ

We can easily derive the total reduced action by substituting
this metric function to the general relations (A7), (A12),
(A7), and (A16) derived in Appendix A. This metric is also
derived exclusively by magnetic charge as shown in
Ref. [27] and the only nonvanishing components of the
electromagnetic tensor are F23 ¼ −F32. Since we want to
study thermodynamics in the canonical ensemble, we need
to introduce an electromagnetic boundary term in the action,
which will vanish once again due to the integration on a
constant time slice. Combining all of the above, we arrive at
the following reduced action IB for the Bardeen model:
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IB ¼ −πr2h þ βrc

0
B@1 −

r2cΛ
3

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − r2cΛ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − r2cΛþ r2cðl2 þ r2hÞ3=2ð−3þ r2hΛÞ

ðl2 þ r2cÞ3=2r2h

s 1
CA: ðD2Þ

To find the temperature, we extremize it with respect to the horizon radius rh and solve for β. We find that the temperature
given by T ¼ β−1 is calculated to be

T ¼ r3c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ r2h

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − r2cΛ

p
ð2l2 − r2h þ r4hΛÞ

4πðl2 þ r2hÞ3=2r4hXB
; ðD3Þ

where XB has been introduced for convenience and is given by

XB ¼

l4r2hð3 − r2cΛÞ þ r2cr2hð3r2c − r4cΛþ YBð−3þ r2hΛÞÞ þ l2r2cðr2hð6 − 2r2cΛþ YBΛÞ − 3YBÞ

ðl2 þ r2cÞ2r2h

s
; ðD4Þ

with YB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ r2h

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ r2c

p
. We introduced this section

in the appendix because we are interested in the AdS case
and the critical ratio. As we explained in the main part of
this paper in the AdS case we are allowed to take the cavity
radius at infinity and thus we have that the temperature is
given by

TB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ r2h

p
ð−2l2 þ r2h − r4hΛÞ
4πr4h

: ðD5Þ

Identifying the pressure as P ¼ −Λ=8π we can solve the
above equation with respect to Λ and then find the pressure
which will yield a Van der Walls-like equation of the form

PB ¼ TB

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2h þ l2

p −
1

8πr2h
þ l2

4πr4h
: ðD6Þ

Using the above equation for the pressure, we can identify
the critical radius and temperature by solving the system of
equations

∂PB

∂rh
¼ 0;

∂
2PB

∂r2h
¼ 0; ðD7Þ

which remarkably can be solved exactly and leads to the
following solutions

rðcÞh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2þ

ffiffiffiffiffi
10

p
Þ

q
l; ðD8Þ

and

TðcÞ
B ¼ 25ð31þ 13

ffiffiffiffiffi
10

p Þ
432πð5þ 2

ffiffiffiffiffi
10

p Þ3=2l : ðD9Þ

The reduced volume is derived by observing the inverse
coefficient of the temperature TB in Eq. (D6) for the
pressure and it is given by

vB ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2h þ l2

q
; ðD10Þ

with the critical value calculated, using Eq. (D8), to be

vðcÞB ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 2

ffiffiffiffiffi
10

pq
l: ðD11Þ

The last quantity we need for the calculation of the critical
ratio is the critical pressure which is found by substituting
Eqs. (D8) and (D9) in (D6), and leads to

PðcÞ
B ¼ 5

�
53þ 17

ffiffiffiffiffi
10

p �
24ð30þ 9

ffiffiffiffiffi
10

p Þ2πl2 : ðD12Þ

Combining now Eqs. (D12), (D11), and (D9) we have that
the critical ratio is given by

PðcÞ
B vðcÞB

TðcÞ
B

¼ 2

5
¼ 0.4: ðD13Þ
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Phys. 11 (2023) 195.
[68] K. Hajian, S. Liberati, M. M. Sheikh-Jabbari, and M. H.

Vahidinia, Phys. Lett. B 812, 136002 (2021).
[69] S. Nojiri and G. G. L. Nashed, Phys. Rev. D 108, 024014

(2023).
[70] L. Gulin and I. Smolić, Classical Quantum Gravity 35,

025015 (2017).

IOANNIS SORANIDIS PHYS. REV. D 109, 044041 (2024)

044041-24

https://doi.org/10.1038/35030032
https://doi.org/10.1038/s41550-019-0967-9
https://doi.org/10.3847/2041-8213/abe949
https://doi.org/10.3847/2041-8213/abe949
https://doi.org/10.1103/RevModPhys.89.025001
https://doi.org/10.3847/2041-8213/ab0e85
https://doi.org/10.3847/2041-8213/ab0e85
https://doi.org/10.1016/j.newar.2020.101524
https://doi.org/10.1016/j.newar.2020.101524
https://doi.org/10.1016/S0370-1573(02)00584-7
https://doi.org/10.1016/S0370-1573(02)00584-7
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1088/1361-6382/ab0587
https://doi.org/10.1142/S0218271823420129
https://doi.org/10.1007/BF00760226
https://doi.org/10.1103/PhysRevLett.96.031103
https://doi.org/10.1073/pnas.0402717101
https://doi.org/10.1073/pnas.0402717101
https://doi.org/10.3390/universe9020088
https://doi.org/10.1063/1.1666161
https://doi.org/10.1119/1.15620
https://doi.org/10.1088/1475-7516/2019/02/042
https://doi.org/10.1088/1475-7516/2019/02/042
https://doi.org/10.1016/S0550-3213(01)00620-4
https://doi.org/10.1002/prop.200410203
https://doi.org/10.1103/PhysRevD.90.127502
https://doi.org/10.1103/PhysRevLett.14.57
https://arXiv.org/abs/2302.00028
https://doi.org/10.1098/rspa.1934.0059
https://doi.org/10.1103/PhysRevD.63.044005
https://doi.org/10.1016/S0370-2693(00)01125-4
https://doi.org/10.1016/S0370-2693(00)01125-4
https://doi.org/10.1103/PhysRevD.94.124027
https://doi.org/10.1140/epjc/s10052-008-0597-3
https://doi.org/10.1140/epjc/s2002-01046-9
https://doi.org/10.1140/epjc/s2002-01046-9
https://doi.org/10.1038/s41586-021-04298-1
https://doi.org/10.1038/s41586-021-04298-1
https://doi.org/10.1007/BF01645742
https://doi.org/10.1007/BF01645742
https://doi.org/10.1103/PhysRevD.107.044038
https://arXiv.org/abs/2309.09439
https://doi.org/10.1103/PhysRevLett.30.71
https://doi.org/10.1103/PhysRevD.105.044039
https://doi.org/10.1103/PhysRevD.105.044039
https://doi.org/10.1103/PhysRevD.107.044064
https://doi.org/10.1103/PhysRevD.107.044064
https://doi.org/10.1103/PhysRev.129.1873
https://doi.org/10.1103/PhysRevD.65.123508
https://doi.org/10.1103/PhysRevD.65.123508
https://doi.org/10.1103/RevModPhys.74.825
https://doi.org/10.1088/0264-9381/28/17/175019
https://doi.org/10.1088/0264-9381/28/17/175019
https://doi.org/10.1088/1361-6382/aac9d4
https://doi.org/10.1088/1361-6382/aac9d4
https://doi.org/10.1103/PhysRevD.15.2752
https://doi.org/10.1103/PhysRevD.15.2752
https://doi.org/10.1103/PhysRevD.33.2092
https://doi.org/10.1103/PhysRevD.42.3376
https://doi.org/10.1016/j.nuclphysb.2021.115593
https://doi.org/10.1016/j.nuclphysb.2021.115593
https://doi.org/10.1016/j.nuclphysb.2022.115731
https://doi.org/10.1016/j.nuclphysb.2022.115731
https://doi.org/10.1088/0264-9381/20/16/319
https://doi.org/10.1088/0264-9381/20/16/319
https://doi.org/10.1088/1361-6382/aa5c69
https://doi.org/10.1088/1361-6382/aa5c69
https://doi.org/10.1088/0264-9381/26/19/195011
https://doi.org/10.1088/0264-9381/26/19/195011
https://doi.org/10.1103/PhysRevD.48.R3427
https://doi.org/10.1103/PhysRevD.50.846
https://arXiv.org/abs/hep-th/9702087
https://doi.org/10.1103/PhysRevLett.77.4992
https://doi.org/10.1103/PhysRevLett.77.4992
https://doi.org/10.1103/PhysRevD.52.4569
https://doi.org/10.1103/PhysRevD.52.4569
https://doi.org/10.1007/s10714-005-0051-x
https://doi.org/10.1088/1475-7516/2019/09/067
https://doi.org/10.1142/S0217751X95000085
https://doi.org/10.1088/1361-6382/abf89c
https://doi.org/10.1103/PhysRevD.106.124006
https://doi.org/10.1088/0264-9381/33/24/245001
https://doi.org/10.1088/0264-9381/33/24/245001
https://doi.org/10.1088/1361-6382/aaf445
https://doi.org/10.1088/1361-6382/aaf445
https://doi.org/10.1007/JHEP05(2019)136
https://doi.org/10.1007/JHEP05(2019)136
https://doi.org/10.1103/PhysRevD.101.084051
https://doi.org/10.1007/JHEP02(2021)219
https://doi.org/10.1007/JHEP02(2021)219
https://doi.org/10.1142/S0218271823420233
https://doi.org/10.1007/JHEP11(2023)195
https://doi.org/10.1007/JHEP11(2023)195
https://doi.org/10.1016/j.physletb.2020.136002
https://doi.org/10.1103/PhysRevD.108.024014
https://doi.org/10.1103/PhysRevD.108.024014
https://doi.org/10.1088/1361-6382/aa9dfd
https://doi.org/10.1088/1361-6382/aa9dfd


[71] L. D. Landau and E. M. Lifshitz, Statistical Physics
(Pergamon Press, Oxford, 1969).

[72] S. Murk and I. Soranidis, Phys. Rev. D 108, 124007 (2023).
[73] R. Arnowitt, S. Deser, and C.W. Misner, Phys. Rev. 116,

1322 (1959).

[74] Planck Collaboration, Astron. Astrophys. 641, A6 (2020).
[75] V. Frolov and I. Novikov, Black Hole Physics, Basic

Concepts and New Developments (Springer Verlag,
Heidelberg, 1998).

[76] S. N. Solodukhin, Phys. Rev. D 51, 609 (1995).

EUCLIDEAN METHODS AND PHASE TRANSITIONS FOR THE … PHYS. REV. D 109, 044041 (2024)

044041-25

https://doi.org/10.1103/PhysRevD.108.124007
https://doi.org/10.1103/PhysRev.116.1322
https://doi.org/10.1103/PhysRev.116.1322
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1103/PhysRevD.51.609

