
Scalar field instabilities in charged BTZ black holes

R. D. B. Fontana *

Universidade Federal do Rio Grande do Sul, Campus Tramandaí-RS Estrada Tramandaí-Osório,
CEP 95590-000, Rio Grande do Sul, Brazil

and Departamento de Matemática, Universidade de Aveiro and Center for Research
and Development in Mathematics and Applications (CIDMA),

Campus Santiago, 3810-183, Aveiro, Portugal

(Received 19 November 2023; accepted 25 January 2024; published 20 February 2024)

We investigate the charged scalar field propagating in a (2þ 1) charged Bañados-Teitelboim-Zanelli
black hole. The conditions for stability are studied unveiling, for each black hole geometry, the existence of
a critical scalar charge as of the evolution is unstable. The existence of growing profiles is substantiated by
the deep in the effective potential that intensifies as the scalar charge increases. The phenomenon happens
in every black hole geometry even for small geometry charge. In the small scalar charge regime, the field
evolution is stable and in such we calculate the quasinormal modes.
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I. INTRODUCTION

Lower dimensional gravity is an active field of research in
the last decades in many different directions. Some of the
pioneer works were launched in the 1980s and 1990s [1–7]
and a decade later singular solutions were discovered [8–10]
describing spacetimes with mass, charge, rotation, and
cosmological constant. Although no graviton is to be found
in such theory (since no dynamical degrees of freedom are
present) the nontrivial spacetime solutions of the curvature
equations produce valuable dynamical consequences worth
of investigation and simpler as the 4-dimensional counterpart
theory [for a detailed study of the different geometries in
(2þ 1)-dimensions, refer to [11]].
In particular the black holes of lower dimensional gravity

exhibit interesting properties simpler then that of general
relativity. As an example, demonstrated in [12], the poles of
the retarded correlation function of the 2-dimensional con-
formal field theory represent exactly the quasinormal modes
of the solution, emphasizing the interpretation of their
imaginary part as relaxation time in the perturbed regime.
In the present work wewill be concerned with the statical

Bañados-Teitelboim-Zanelli (BTZ) black hole with charge.
From the perspective of thermodynamics, the Wald semi-
classical limit for particles absorption was tested in [13], the
charged case in [14], and other semiclassical aspects
considered in [15–19]. The geodesic motion of test par-
ticles in the nonlinear regime was examined in [20,21],
the scale dependence in [22–24] and the accelerated version
of the black hole in [25]. Other solutions of (2þ 1)
dimensional charged black holes in alternative theories
or accelerated geometries are found in [26–28].

In this paper we will be interested particularly in a
charged scalar field that propagates in a charged BTZ
geometry. The scalar perturbation considering a nonlinear
Maxwell term was studied, e.g., in [29,30] (with/without
scalar charge) and in [31] in the linear theory.
Charged scalar perturbations and instabilities in charged

black holes are expected to coexist, in strict relation to the
superradiance of real waves [32–35]. The superradiance in
BTZ geometries was analyzed in different studies, e.g.,
with rotation in [36–38] and in [39] with the Maxwell
charge, but not considering a perturbative treatment. In AdS
and asymptotically flat charged black holes a thorough
investigation is performed in [40–42].
We will study the charged scalar field perturbation in the

BTZ geometry, focusing on the instabilities that may be
present. In the next section, we introduce the fundamentals
of this black hole and the numerics used to evolve the scalar
field in the background, following with the instability
analysis in Sec. III. In Sec. IV we calculate the quasinormal
modes (QNMs—for an incomplete list with other studies
on QNMs in BTZ geometries, refer to [30,31,43–57]) and
unstable frequencies for different scalar charges presenting
our conclusions in Sec. V.

II. CHARGED BTZ BLACKHOLEANDNUMERICS

We start by considering a charged BTZ black hole
without rotation with metric

ds2 ¼ −fdt2 þ f−1dr2 þ r2dx2; ð1Þ
in which

f ¼ −M þ r2 −Q2 lnðrÞ ð2Þ*rodrigo.dalbosco@ufrgs.br
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is the lapse function. The geometry (1) is spherically
symmetric since we are considering x as an angular variable
with a 2π range. Such choice brings nontrivial conse-
quences in stablishing the ansatz for the scalar field (as
described below). The spacetime has two horizons
(Cauchy, rc, and event, rh). For each specific value of
rh, the maximum value of the charge reads Qmax ¼

ffiffiffiffiffiffiffi
2rh

p
which is not extremal [31]. Extremal charged BTZ black
holes happen only for M < 1 divided in two branches
according to the path for a naked singularity (relative to the
addition or subtraction of charge) [9,10].
The lapse functions has its minimum value at rmin ¼

Q=
ffiffiffi
2

p
in which

fmin ¼ −M þQ2

�
1

2
− ln

�
Qffiffiffi
2

p
��

: ð3Þ

Whenever fmin ≤ 0 we have a spacetime with two horizons
covering the singularity at r ¼ 0 and cosmic censorship
(weak) is preserved. We shall take this condition as granted
by imposingM ≥ 1. For our study, it is convenient to define
the quantity Q ¼ Q2=Q2

max ¼ Q2=2rh in the range [0, 1],
that we use to analyze the scalar field dynamics in the next
sections.
We want to study the free charged scalar field in the

black hole geometry, whose motion equation is written as

gμνð∇μ − iqAμÞð∇ν − iqAνÞΦs ¼ 0 ð4Þ

in which A ¼ Aμdxμ ¼ Atdt ¼ −Q
ffiffiffi
2

p
lnðrÞdt is the vector

potential and Φs the scalar field. Choosing an usual field
transformation [31], Φs → e−ikx ψffiffi

r
p we obtain the Klein-

Gordon equation as

−
∂
2

∂t2
ψ þ ∂

2

∂r2�
ψ þ VðrÞψ þ 2iqAt

∂

∂t
ψ þ q2A2

tψ ¼ 0; ð5Þ

in which VðrÞ the scalar potential,

VðrÞ ¼ f

�
f
4r2

−
∂rf
2r

−
k2

r2

�
; ð6Þ

and dr� ¼ f−1dr is the tortoise coordinate. The ansatz in
the x coordinate, ΦsðxÞ ¼ e−ikx fixes the quantization rule
k∈Z, settling the continuity of the field and its derivatives
at the limits of x. We apply an integration scheme in double
null coordinates similar to that described in [58] to achieve
the quasinormal signal with initial data

Ψr→∞ ¼ 0; Ψu0;v ¼ Gaussian ð7Þ

and filter the field profile to obtain the frequencies with the
Prony technique [59]. As a second method to check the data
we obtain, we use the Frobenius expansion similar to [60],
considering the Klein-Gordon equation in the null direction

v instead of t. Taking the radial vector z ¼ 1=r, the scalar
equation in such coordinate system reads

�
fz4

∂
2

∂z2
þ ð2fz3 − z2∂rf þ 2iωz2Þ ∂

∂z

þ
�
fz2

4
þ 2qωAt

f
−
z∂rf
2

− k2z2
��

Ψ ¼ 0; ð8Þ

in which ω ¼ ℜðωÞ þ iℑðωÞ is the eigenvalue to be
numerically obtained through the implementation of (7).
As in [58] we apply a more suitable vector potential A in
order to better converge the Frobenius series by choosing
At ¼ −Q

ffiffiffi
2

p
lnðr=rhÞ, which allows us to avoid the first

term of the potential (expanded around the event horizon,
zþ) of the above equation.

III. INSTABILITIES

In view of previous literature of charged scalar fields
propagating in charged spherically symmetric black holes
[29,30,32,33], we apprehend two conditions for the pres-
ence of field instabilities.
The first is related the behavior ofℜðωÞ (usually referred

as the superradiant condition) [32]. In the case of the CBTZ
black hole, the necessary (but not sufficient) condition for
the presence of unstable quasinormal modes is (see the
Appendix for details)

ℜðωÞ > Φh ð9Þ
where Φh stands for the value of the electric potential
Φ ¼ qQ

ffiffiffi
2

p
lnðrÞ at the black hole event horizon. For the

particular case where rh ≤ 1 every mode fulfill such con-
dition. Even in such case, a second condition must be
accomplished as we describe bellow, preventing the Φ→0
situation. Although for small black holes the requirement is
trivially satisfied, that is not the case for rh > 1. It is worth to
mention that the result come as a novelty when compared
with similar geometries: in the Reissner-Nordström black
hole [61–63] or the Reissner-Nordström with anisotropic
fluid spacetime [32,64] the presence of instabilities is limited
by a maximum value ofΦh for the real part of ω. The reason
for such discrepancy is that, in both cases (also in RNAdS
geometry) the electromagnetic potential is a monotonically
decreasing function, contrary to our spacetime. A figure
representing that special behavior is given in panel 2. A
similar condition can be obtained when studying the scatter-
ing of real-frequency waves in the geometry with physical
boundary conditions. Following the usual method of analy-
sis, a superradiant condition can be demonstrated to be given
by ω > Φh, consonant with (9).
The second condition is related to the signal of the

effective potential in the region between the event horizon
and AdS infinity [29,60]. If

ϑ≡ VðrÞ − q2A2
t > 0 ð10Þ
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all modes have ℑðωÞ < 0 being stable (see the Appendix for
specifics). On the other hand, if we have VðrÞ−q2A2

t <0
at last in some region between rh and AdS infinity, ℑðωÞ>0
is allowed.
This is the case for sufficient large scalar charges

expression as it can be seen in Fig. 1. As of some particular
value of q, the potential develops a depth that eventually
becomes negative for larger q’s. The deep grows indefi-
nitely with increasing charge, implying the existence of a
critical scalar field charge qc for every charged black hole
from which point the field is considered unstable (q > qc).
It is also worth mentioning that angular momenta k > 0
bring instabilities as well, for sufficient high scalar charge
(see, e.g., the right panel of 1), although k ¼ 0 represents
the most unstable case or equivalently the smallest q for
stable evolutions.
Integrating the differential equation (5) with the method

described in [65] (for a specific description see, e.g., [31]),
we obtain the field evolution that presents a threshold for
stability for each black hole charge. In Fig. 2, left panel, we
see the critical value qc ≃ 2.05 of the scalar charge for a
black hole with rh ¼ 2Q ¼ 1 considering field evolutions
with different qc’s and k ¼ 0. Such behavior is general and
was found for every black hole investigated considering
different Q’s. The presence of a threshold of stability is
robust in charged BTZ black holes: depending on the hole

Q, the frontier for stable profiles is higher or smaller in q,
but instabilities are always present for sufficient high scalar
charge. In Fig. 2 we can see this behavior illustrated: in the
left panel the scalar field profiles are stable if q < qc ∼ 2.05
and unstable for q > qc. In that case, the higher the scalar
charge, the higher the instability (see the different frequen-
cies for different q’s in the next section).
In Fig. 2, the right panel displays the threshold of

stability relating the scalar potential term Qq and the
absolute charge of the geometry. The panel shows that
the higher the geometric charge, the smaller the scalar
charge that destabilizes the geometry. Scalar field configu-
rations with q < qc evolve as damped oscillations, the
quasinormal modes. Profiles with higher charges, q > qc
interact nontrivially with the geometry, and are expected to
condensate in scalar clouds around the black hole, chang-
ing the background spacetime [66–68]. That interaction act
as a mechanism for the black hole to lose its charge, until
the instability settles down if the scalar charge is not high.
The timescale for such classical instability is not

bounded by the usual limitations of charged spacetimes.
That is, the instability is enhanced as the scalar charge
increases and this is not the case for specific charged
spacetimes in four dimensions. In these geometries, the
limitation on ℜðωÞ provided by Φh prevents the timescale
of instability τi to be of order of the scalar cloud oscillation

FIG. 1. The scalar field potential in charged BTZ black hole geometries. The geometry parameters read rh ¼ Q ¼ 1 and the scalar
parameters k ¼ 0 (left panel) and q ¼ 3 (right panel).

FIG. 2. The scalar field profiles and critical charges for different BTZ black hole geometries. The geometry event horizon reads rh ¼ 1
with scalar angular momentum k ¼ 0 (in left panel Q ¼ 0.5).
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period [τo ∼ 1=ℜðωÞ]. As a consequence, τi ≫ τo and the
instabilities are mild (very small ℑðωÞ, e.g., [32,64]). In
such sense they coexist with the event horizon extracting
charge of it until balance of the background is restored.
In the absence of a constraining mechanism, the response

on the final stage of the geometry considering the triggered
instability for high scalar charges is outside the scope of
this work and has to be investigated with the full nonlinear
perturbation theory.
The scalar field configurations with small charges

evolve stably, decaying exponentially through the quasi-
normal modes. We calculate those frequencies (or the
unstable growing mode when it is the case) using the
Prony technique in the next section.

IV. QUASINORMAL FREQUENCIES
AND UNSTABLE MODES

The quasinormal frequencies and unstable modes of the
massless charged scalar field are displayed in Table I. The
results were obtained through characteristic integration and
the Prony methods. We also explore the Frobenius expan-
sion in order to check those results for the quasinormal
frequencies.That can be achieved starting from Eq. (8)
considering just the same relations as that of [31],
Eqs. (13) to (18), adding the charge term to the potential,
uðzÞc ¼ 2fωΦ. The implementation is similar to that
described in [31] with this small modification.
The expansion is poorly convergent for high values of

charge (scalar, geometric) and small rh. The results with the
method are though, less than 0.2% deviant from that of

Table I, for q ¼ 0.1. When q increases, the deviation
increases as well to a (maximal of a) few percents for
the quasinormal modes with q ≤ 1. The smaller the q the
smaller the deviation between both methods. It is though
not possible to calculate unstable frequencies through the
Frobenius series as they do not converge in that limit.
Our results of Table I and Fig. 2 are consonant with that

obtained in the nonlinear electrodynamical regime: the
higher the black hole charge, the smaller the scalar charge
at which instabilities are found. This can be seen, e.g.,
in [29], where unstable modes are present with smaller
scalar charges when the geometric charge is increased (see,
e.g., Tables V and VI).
In the quasi-adiabatic regime, q ∼ qc when the timescale

of the scalar field is large (its energy being small compared
to the black hole), we can calculate the amplification factor
from the ingoing to the outgoing fluxes, as evidence of the
presence of the instabilities through the current,

J ¼
ffiffiffiffiffiffi−gp

grr

2i
ðΨ�

∂rΨ −Ψ∂rΨ�Þ: ð11Þ

Following [29] we can solve the Klein-Gordon equation in
three different regions matching the solutions to produce
the amplification factor of real frequency waves ω, as

R ¼ jω1j2r3h þ rh þ 2r2hω1

jω1j2r3h þ rh − 2r2hω1

ð12Þ

in which ω1 ¼ ω −Φh. We find the same turning point
for the amplification factor as of (9), ω1 > 0 which results

TABLE I. Quasinormal modes and unstable frequencies of the massless charged scalar field without angular momentum (k ¼ 0) for a
charged BTZ black hole with rh ¼ 1. The positive values listed are stable, ℑðωÞ < 0.

Q ¼ 0.1 Q ¼ 0.3 Q ¼ 0.5 Q ¼ 0.7

q ℜðωÞ −ℑðωÞ ℜðωÞ −ℑðωÞ ℜðωÞ −ℑðωÞ ℜðωÞ −ℑðωÞ
0.1 0.076176 1.439703 0.060603 0.961214 0.043370 0.618032 0.026291 0.339187
0.2 0.147961 1.421744 0.119667 0.94883 0.085908 0.608882 0.052119 0.333115
0.3 0.212973 1.395426 0.175797 0.92884 0.126764 0.593759 0.076993 0.322935
0.4 0.270768 1.363693 0.227847 0.902112 0.165060 0.572897 0.100311 0.308604
0.5 0.321839 1.328619 0.274983 0.869688 0.199919 0.546676 0.121355 0.290142
0.6 0.366935 1.291527 0.316684 0.832659 0.230508 0.515647 0.139287 0.267692
0.7 0.406781 1.253241 0.352699 0.792073 0.256104 0.480526 0.153182 0.241604
0.8 0.442002 1.214289 0.382982 0.748872 0.276136 0.442144 0.162107 0.212473
0.9 0.473116 1.175015 0.407629 0.703874 0.290213 0.401397 0.165207 0.181139
1 0.500549 1.135654 0.426819 0.657766 0.298112 0.359177 0.161767 0.148635
2 0.628472 0.759345 0.367113 0.225175 0.037119 0.010730 0.366647 −0.035514
3 0.578287 0.439879 0.070318 −0.014484 0.943204 −0.061985 1.894894 −0.079005
4 0.404143 0.193551 0.940762 −0.067772 2.524917 −0.099083 4.070260 −0.121084
5 0.118868 0.032758 2.167639 −0.097798 4.506017 −0.134793 6.706323 −0.162825
6 0.295264 −0.042065 3.644955 −0.126166 6.794021 −0.170221 9.702066 −0.205235
7 0.855631 −0.070071 5.321460 −0.153900 9.332879 −0.205998 12.99489 −0.249342
8 1.537081 −0.088964 7.164914 −0.181437 12.08530 −0.242819 16.54344 −0.296610
9 2.313147 −0.106378 9.152723 −0.209198 15.02505 −0.281516 20.31969 −0.349008
10 3.168653 −0.123160 11.26827 −0.237487 18.13329 −0.323188 24.30481 −0.409207
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in R > 1. The instabilities of the scalar field we found are
robust and physically motivated as we can see from the
above calculations.

V. DISCUSSION

In this paper we studied a charged scalar field propa-
gating in the nonspinning charged BTZ black hole. We
verify that small charge fields have stable evolutions in the
fixed geometry, providing a quasinormal spectrum that
depends on the geometry parameters (i.e., black hole
charge, mass, and AdS radius).
With two different numerical methods we calculate those

quasinormal spectra examining the influence of the scalar/
geometric charges in it verifying that the black hole charge
acts in different directions for the real and imaginary parts
of ω. In this sense, the key aspect to understand the
quasinormal spectrum is the presence of a particular scalar
charge qc as of the scalar field destabilizes the geometry.
Whenever the propagating field has q < qc, its evolution

is dictated by a quasinormal spectrum whose fundamental
mode diminishes (both imaginary and real parts) as Q
increases. For high scalar charges though q ≫ qc, not only
the field profile is unstable, but the instability increases
with the augmentation of Q. Similarly, in such regime,
ℜðωÞ increases with Q.
The field instabilities are also unveiled through the

potential analysis as demonstrated in Fig. 1: the higher the
potential depth, the more likely the scalar field is to evolve
unstably. In that sense, for every geometry configuration
scalar fields with sufficient high charges are unstable.
The shape of the electromagnetic potential produces

interesting nontrivial consequences for the field evolution.
Since it is represented by a monotonically increasing
function, the higher the scalar charge the more unstable
the field profile evolves. This is a specific behavior of the
BTZ black holes not appearing in multiple different
charged spacetimes [32,35,64]. As a consequence, the
typical timescale of the threshold region of stability
changes drastically both at instability and oscillatory levels
if we consider higher scalar charges.
The expected timescales are such that τi≫ τo≫ τBHð∼rhÞ.

This seems to be true for small scalar charges until a near
value q ∼ qc fromwhich such approximation is not anymore
valid. In this range we calculate the energy flux across the
event horizon and the amplification factor of real wave
scatterings finding a similar condition for superradiance in
both cases.
Possible lines of investigation in the topic include the

study of other probe fields in the same geometry and in the
rotating black hole with charge.
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APPENDIX: INSTABILITY CONDITIONS
TO THE KLEIN-GORDON CHARGED FIELD

In order to obtain the first condition of Sec. III, we start by
considering the scalar equation in a similar form as in (5),

ψ 00 þ ðω −ΦÞ2ψ − VðrÞψ ¼ 0 ðA1Þ

in which Φ ¼ −qAt is the electric potential, ψðtÞ → e−iωt

(the usual temporal Ansatz for the field was used) and prime
denotes derivation relative to r�. Mutiplying (A1) by ψ�,
substituting ψ�ψ 00 ¼ ðψ�ψ 0Þ0 − jψ 0j2 and integrating the
remaining equation we obtain

ðψ�ψ 0Þj0−∞ þ
Z

0

−∞
ðω −ΦÞ2jψ j2dr�

¼
Z

0

−∞
ðjψ 0j2 þ VðrÞjψ j2Þdr� ðA2Þ

Now, the right-hand side (rhs) of Eq. (A2) is real. If we
consider the imaginary part of (A2), we have

ℑðψ�ψ 0Þj0−∞ þ 2

Z
0

−∞
ðωiωr − ωiΦÞjψ j2dr� ¼ 0 ðA3Þ

where for simplicity we rewriteℑðωÞ ¼ ωi andℜðωÞ ¼ ωr.
Now, if ωi > 0,

FIG. 3. The electromagnetic potential of charged spacetimes:
BTZ geometry and RN-like black holes (pure, dS, AdS, with
fluids). Equation (A3) is satisfied when ωr lies within the scope
of Φ, what in the BTZ case brings inequality (A5) as a result.
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ðψ�ψ 0Þj0−∞ ¼ ðψ�ψ 0Þj0 − ðψ�ψ 0Þj−∞
¼ ie2ωir� ðω −ΦhÞj−∞ ¼ 0 ðA4Þ

Since Φ is a monotonically increasing function between rh
and r∞—a very specific condition of the charged BTZ
spacetime and different from the 4-dimensional case (see
Fig. 3)—it has its minimum value at rh, ωr must lie between
both limits of Φ so that (A3) holds. Then

ωr > Φh ðA5Þ

is the necessary, but not sufficient condition for the existence
of unstablemodes. This inequality is similar to the designated

“superradiant” condition for quasinormal modes as that
found in [32].
The second condition for instability or the destabilization

of the scalar field comes from the effective potential. Let us
consider Eq. (A1) in a different form,

ψ 00 − ψ̈ −Uψ ¼ 0 ðA6Þ

in which dot is the derivative with relation to t, prime to r�
and U ¼ VðrÞ −Φ2 − 2ωΦ. Let us apply ψ ¼ e−iωr�Ψ
in (A6), multiply the resultant equation by Ψ�, substitute
Ψ�ðfΨ0Þ0 ¼ ðfΨ�Ψ0Þ0 − fjΨ0j2, and integrate between rh
and AdS infinity. Then Eq. (A6) turns to

−
Z

∞

rh

fjΨ0j2dr − 2iω
Z

∞

rh

Ψ�Ψ0dr − 2

Z
∞

rh

f−1ωqAtjΨj2dr −
Z

∞

rh

f−1ðVðrÞ þ q2A2
t ÞjΨj2dr ¼ 0 ðA7Þ

in which we take fΨ�Ψ0j∞rh ¼ 0. We will replace the second and third terms of this equation with a series of operations in
what follows. Let us consider the imaginary part of (A7),

ℑ

�
−2iω

Z
∞

rh

Ψ�Ψ0dr
�
þ 2ωiq

Z
∞

rh

Atf−1jΨj2dr ¼ 0: ðA8Þ

Now taking the first term of the above equation (≡ℑ) as

ℑ ¼ −
Z

∞

rh

ωrðΨ�Ψ0 þΨ�0ΨÞdr − iωi

Z
∞

rh

ðΨ�Ψ0 −Ψ�0ΨÞdr

¼ ωr

ω

�
−
Z

∞

rh

ωðΨ�ΨÞ0drþ 2iωi

Z
∞

rh

Ψ�0Ψdr
�

¼ ωrωi

jωj2
�jωj2jΨj2

ωi

����
∞

rh

− 2iω
Z

∞

rh

Ψ0Ψ�dr
��

ðA9Þ

and substituting Eqs. (A8) and (A9) into (A7) we get

Z
∞

rh

ðfjΨ0j2 þ f−1ðVðrÞ − q2A2
t ÞjΨj2Þdr ¼ −

jωj2jΨj2
ωi

����
∞

rh

: ðA10Þ

In this relation we can see the necessary (but not sufficient) condition for the field destabilization, ωi > 0, that of Eq. (10).
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