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A quantum analysis of the vacuum Bianchi IX model is performed, focusing in particular on the chaotic
nature of the system. The framework constructed here is general enough for the results to apply in the
context of any theory of quantum gravity, since it includes only minimal approximations that make it
possible to encode the information of all quantum degrees of freedom in the fluctuations of the usual
anisotropy parameters. These fluctuations are described as canonical variables that extend the classical
phase space. In this way, standard methods for dynamical systems can be applied to study the chaos of the
model. Two specific methods are applied that are suitable for time-reparametrization invariant systems.
First, a generalized version of the Misner-Chitre variables is constructed, which provides an isomorphism
between the quantum Bianchi IX dynamics and the geodesic flow on a suitable Riemannian manifold,
extending, in this way, the usual billiard picture. Second, the fractal dimension of the boundary between
points with different outcomes in the space of initial data is numerically analyzed. While the quantum
system remains chaotic, the main conclusion is that its strength is considerably diminished by quantum
effects as compared to its classical counterpart.
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I. INTRODUCTION

According to the Belinski-Khalatnikov-Lifshitz (BKL)
conjecture [1] the dynamics of the spacetime near a generic
spacelike singularity becomes local (in the sense that
different spatial points decouple), oscillatory, and domi-
nated by pure gravity. Therefore, the vacuum Bianchi IX
(also known as Mixmaster) model [2,3] is assumed to
provide a proper characterization of the evolution of each
of these points. A formal proof of the BKL conjecture is not
yet available, but it is supported by a large number of
numerical studies [4–6]. Therefore, the general working
assumption is that this conjecture is true, and thus the study
of the Mixmaster model has received much attention. In
particular, regarding its specific properties, there is a wide
literature on the chaotic nature of theMixmaster—and hence
the BKL—dynamics. In fact, in the context of chaos,
this is one of the most discussed solutions of the Einstein
equations [7,8]. However, due to the nature of general
relativity, usual dynamical methods to study chaos cannot
be applied, as they are not covariant (observer independent).
Hence, different techniques have been proposed and imple-
mented to prove the chaotic nature of the Mixmaster model.
The first attempts in this direction were already made by

the original authors of the BKL conjecture [1]. Specifically,

they showed that, under certain assumptions, the full
dynamics of the system given by the Einstein equations
can be approximated by a discrete map. A large number of
iterations of this map corresponds thus to the asymptotic
limit of the evolution toward the singularity. They were then
able to prove that the dependence on the initial conditions
vanished in such a limit. A few years later,making use of this
same discrete map, but considering the topological and
metric entropies of its related one-dimensional Poincaré
section, similar conclusions were found in Refs. [9–11].
Thus, both approaches proved that the discrete dynamics is
chaotic, though the full dynamics was still to be analyzed.
Subsequent studies were then devoted to an analysis

of the full dynamics, solving numerically the corresponding
Einstein equations. Most of them focused on the computa-
tion of the Lyapunov exponents, since, in usual dynamical
systems, a positive value of any of these exponents
characterizes the system to be chaotic. However, in the
present context, this led to several (apparent) contradictions:
depending on the time parametrization, both positive and
nonpositive values were obtained [12–17]. By construction,
all these results were obtained in a given coordinate system
andwere thus observer dependent. Therefore, at the time, the
usual explanation of the controversy pointed to a violation of
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general covariance. However, this was not the case: as
Motter later showed [18], the sign of the Lyapunov expo-
nent, if properly defined, is invariant under coordinate
transformations. In fact, another important conclusion of
this work was that none of the mentioned investigations
satisfied the requirements for a proper definition of the
Lyapunov exponent. More precisely, in order to have an
invariantmeaning, the computation of this exponentmust be
done in certain set of coordinates, so that the system meets
some specific conditions [18]. Hence, one of these suitable
coordinate systems was chosen in [19] and, just by an
analytical computation of the exponent, it was confirmed
that the full Mixmaster dynamics is indeed chaotic. More
specifically, it was proven that it is isomorphic to a billiard on
the two-dimensional Lobachevsky plane, which is well
known to exhibit chaos, as it has convex and therefore
defocusing walls [20].
On the other hand, another completely different

approach was followed to test the chaotic nature of the
Mixmaster dynamics, by means of observer independent—
and therefore covariant—fractal methods [21,22]. These
studies considered both the discrete map, as well as the full
dynamics, and showed that this system is characterized by
the presence of a strange repeller with fractal dimensions,
which ensures chaos. Moreover, the authors of Ref. [21]
were able to quantify chaos by computing different relevant
quantities, such as the uncertainty exponent or the multi-
fractal dimensions of the repeller.
However, even if it is now generally accepted that the

classical Mixmaster dynamics is chaotic, quantum effects
are expected to be relevant asymptotically, and they might
completely modify the classical picture in the extreme
regimes close to the spacelike singularity. Several analyses
can be found in the literature, proposing different quantiza-
tions of this model, and focused on a variety of questions,
such as the avoidance of the singularity, or themodifications
of its oscillatory dynamics (see, e.g., Refs. [23–38]). In
particular, some works have been devoted to analyzing the
survival of chaos, but so far with mixed results [39–42]. In
these approaches specific properties that may reduce chaos
have been identified (such as, for instance, an isotropization
of the system, or a possible bounded curvature), but none of
them has studied these effects in a general way, such that it
can be applied to any quantum-gravity model.
Therefore, in the present paper, we present a systematic

semiclassical analysis that will allow us to study how
quantum effects modify the chaotic behavior of the
Mixmaster model. Our framework is based on a decom-
position of thewave function into its infinite set ofmoments,
and we will introduce certain assumptions (a Gaussian-like
state and small fluctuations) so that quantum effects will be
encoded in a finite set of canonical variables. In this way, the
system can be described in a phase space, which constitutes
an extension of the classical phase space by the fluctuation
degrees of freedom, and thus usual dynamical-systems

techniques can be applied to study chaos. In particular,
the two methods mentioned above (the computation of the
covariant Lyapunov exponent and fractal methods) will be
applied to this quantum system.Ourmain conclusionwill be
that, even if the quantum system is still chaotic, quantum
effects significantly reduce the level of chaos.
The paper is organized as follows. In Sec. II the classical

Mixmaster model is presented. Section III describes the
construction of the framework that will describe the
Mixmaster dynamics in a semiclassical regime. Section IV
contains a qualitative description of this dynamics. In
Sec. V the chaotic nature of the model is studied following
two different approaches. More precisely, in Sec. VA
the covariant Lyapunov exponent is computed, while in
Sec. V B the fractal dimension of the repeller set in the
space of initial data is analyzed. Finally, in Sec. VI the main
results of the paper are discussed and summarized.

II. CLASSICAL MODEL

The vacuum Bianchi IX model, also known as the
Mixmaster model, is described by the metric

ds2 ¼ −N2dt2 þ
X3
i¼1

a2i σ
2
i ; ð1Þ

where N is the lapse function, ai are the expansion rates for
each of the three space directions, and σi are 1-forms on the
three sphere that satisfy dσi ¼ 1

2
ϵijkσj ∧ σk. A particular

parametrization of these forms can be given in terms of the
Euler angles,

σ1 ≔ sinψdθ − cosψ sin θdϕ;

σ2 ≔ cosψdθ þ sinψ sin θdϕ;

σ3 ≔ −dψ − cos θdϕ: ð2Þ

As first pointed out by Misner [3], it is convenient to define
basic variables that, instead of describing the change of
every individual spatial direction, determine the change of
the volume and shape of the three-dimensional geometry.
More precisely, one can perform a change of variables from
the three expansion rates ai to a new set of variables given
by α, defined as

eα ¼ ða1a2a3Þ1=3; ð3Þ
encoding the volume of the spatial sections, and the two
shape parameters βþ and β−, defined as the logarithmic rates

βþ ≔ −
1

2
ln

�
a3

ða1a2a3Þ1=3
�
;

β− ≔
1

2
ffiffiffi
3

p ln

�
a1
a2

�
; ð4Þ

as a description of the anisotropy.
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In terms of these so-called Misner variables, the
Hamiltonian constraint for the Mixmaster model reads

C ¼ 1

2
e−3αð−p2

α þ p2
− þ p2þÞ þ eαVðβþ; β−Þ ¼ 0: ð5Þ

This constraint equation requires an energy balance
between the potential

Vðβþ; β−Þ ≔
1

6

�
e−8βþ þ 2e4βþ

�
coshð4

ffiffiffi
3

p
β−

	
− 1Þ

− 4e−2βþ coshð2
ffiffiffi
3

p
β−Þ



; ð6Þ

whose contour plot is shown in Fig. 1, and the kinetic
term, which is a quadratic combination of the momenta
pα ≔ −ðe3α=NÞdα=dt and p� ≔ ðe3α=NÞdβ�=dt.
The dynamics of this model describes an expanding (or

contracting) universe. Therefore the volume, and thus the
variable α, are monotonic functions of coordinate time,
which allows us to define α as the internal time variable by
imposing the gauge α ¼ t. The deparametrization of the
above constraint then leads to the physical (generically
nonvanishing) Hamiltonian,

H ≔ −pα ¼
�
p2þ þ p2

− þ 2e4αVðβþ; β−Þ


1=2: ð7Þ

In this gauge, the independent dynamical variables are the
shape parameters β� along with their momenta p�. Their
equations of motion are obtained by computing their
Poisson brackets with the Hamiltonian,

β̇þ ¼ fβþ; Hg ¼ pþ
H

; ð8Þ

β̇− ¼ fβ−; Hg ¼ p−

H
; ð9Þ

ṗþ ¼ fpþ; Hg ¼ −
e4α

H
∂Vðβþ; β−Þ

∂βþ
; ð10Þ

ṗ− ¼ fp−; Hg ¼ −
e4α

H
∂Vðβþ; β−Þ

∂β−
; ð11Þ

where the dot stands for a derivative with respect to α.

III. QUANTUM MODEL

Wewill perform a canonical quantization of the system by
promoting the classical Hamiltonian (7) to a quantum
operator Ĥ, which will define the dynamics of the wave
function by the usual Schrödinger equation ĤΨ ¼ iℏ∂Ψ=∂α.
However, instead of analyzing the evolution of the wave
function, we will directly study the dynamics of the central
moments,

Δðβiþβj−pkþpl
−Þ

≔ hðβ̂þ − βþÞiðβ̂− − β−Þjðp̂þ − pþÞkðp̂− − p−ÞliWeyl;

ð12Þ

where the subscript Weyl implies a completely symmetric
ordering of the basic operators, the indices i, j, k, and l are
nonnegative integers, and, from this point on, we define
βþ ≔ hβ̂þi, β− ≔ hβ̂−i, pþ ≔ hp̂þi, and p− ≔ hp̂−i. For
such a purpose, following the framework presented in [43],
one needs to define an effective Hamiltonian HQ as the
expectationvalue of theHamiltonian operatorHQ ≔ hĤi. By
performing a formal series expansion, HQ can be written in
terms of the expectation values of the basic variables, hβþi,
hβ−i, hpþi, hp−i, and the central moments defined above.
The time derivative of each of these variables is then given by
its Poisson bracket with the effective HamiltonianHQ, which
can be computed making use of the definition

fhX̂i; hŶig ¼ 1

iℏ
h½X̂; Ŷ�i ð13Þ

for any two operators X̂ and Ŷ, and extended to products of
expectation values by using the Leibniz rule. Explicit for-
mulas for the Poisson brackets of moments can be found
in [43,44].
In this way, instead of dealing with a partial differential

equation for the wave function, one needs to solve a system
of ordinary differential equations. Both types of differential
equations describe the very same dynamics and solving
ordinary differential equations is usually an easier task.
However, in the present case it does pose a challenge as the

�1.0 �0.5 0.0 0.5 1.0
�1.0

�0.5

0.0

0.5

1.0

FIG. 1. Contour plot of the classical Bianchi IX potential
Vðβþ; β−Þ given by Eq. (6).
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infinitely many moments (12) are evolved by a large
number of equations that in general are strongly coupled
for nonquadratic Hamiltonians. For practical applications,
some approximation is therefore necessary in order to deal
with this system. A standard approach is to introduce a
truncation by neglecting all moments higher than a
certain order, which leads to a finite system that can be
solved numerically. In this context the order of a given
moment (12) is defined as the sum of its indices
iþ jþ kþ l. However, in the present paper, we will follow
another approach by imposing two different assumptions,
spelled out in the next subsection. Instead of truncating the
infinite tower of moments by setting infinitely many
moments equal to zero, the new assumptions implement
a closure condition that maintains nonvanishing higher
moments but assumes suitable expressions for them in a
finite-dimensional parametrization. The specific closure
assumption will allow us to obtain an exact summation
of the infinite series that defines the effective Hamiltonian
HQ, in such a way that we will be able to work with an
extended though finite-dimensional phase space.

A. Closure conditions

Our first approximation concerns the definition of the
effective Hamiltonian HQ. As mentioned above, this
expression is defined as the expectation value of the
Hamiltonian operator Ĥ, such that its Hamilton’s equation
with the Poisson bracket (13) are equivalent to the
evolution of moments of a state following the Schrödinger

dynamics. The resulting HQ therefore depends on the
ordering chosen for the operator Ĥ. For instance, if Ĥ is
Weyl-ordered, the corresponding HQ directly depends on
the moments defined with the same ordering through a
Taylor expansion, and there are no additional terms with an
explicit dependence on ℏ from reordering products.
In the present case, it is more convenient to assume that

Ĥ2 is Weyl-ordered and to define the quantum Hamiltonian

asHQ ≔
ffiffiffiffiffiffiffiffiffiffi
hĤ2i

q
, an assumption that can also be motivated

by first quantizing the constraint (5) and then deparame-
trizing after quantization. The evolution generated by HQ

does not exactly correspond to the Schrödinger evolution
generated by Ĥ. However, these two possible definitions
differ only by a fluctuation term because we have the exact
relation

hĤ2i ¼ hĤi2 þ hðĤ − hĤiÞ2i: ð14Þ

Therefore, as long as the relative fluctuations hðĤ−
hĤiÞ2i=H2 are small, the effective dynamics given by
HQ will accurately describe the Schrödinger flow of states.
The main reason to perform this approximation is that it

implies a greatly simplified expression for the effective
Hamiltonian in terms of the moments. More precisely,
performing an expansion around the expectation values of
the basic operators, the square of the effective Hamiltonian
reads

H2
Q ¼ hĤ2ðβ̂þ; β̂−; p̂þ; p̂−Þi ¼

X∞
i;j;k;l¼0

1

i!j!k!l!
∂
iþjþkþlH2ðβþ; β−; pþ; p−Þ

∂βiþ∂βj−pkþpl
−

Δðβiþβj−pkþpl
−Þ

¼ p2þ þ Δðp2þÞ þ p2
− þ Δðp2

−Þ þ e4α
X∞
i;j¼0

1

i!j!
∂
iþjVðβþ; β−Þ
∂βiþ∂βj−

Δðβiþβj−Þ; ð15Þ

where, as alreadymentioned, we have defined Ĥ2 to beWeyl-
ordered. Note that H is the classical Hamiltonian and, in the
last equality, its precise form (7) has been taken into account.
In particular, since H2 is quadratic in the momenta p�, only
their fluctuations appear in this effective Hamiltonian, and
higher-order moments only depend on the shape parameters.
One can already see at this point that the structure of this
effective Hamiltonian is quite similar to the classical one: it
has a kinetic part, which is, in some sense, quadratic in
momentum variables, and a potential term, that, up to the
global factor e4α, only depends on the position variables. We
will make this structure more explicit below.
At this point one could obtain the equations of motion for

the expectation values of basic operators and the moments
by computing their Poisson brackets withHQ. However, the
equations are very complicated, in particular because the

moments do not have canonical brackets with one another.
Nevertheless, according to Darboux’ theorem, and its
extension to nonsymplectic manifolds, any Poisson mani-
fold can be described locally by canonical coordinates, given
by generalized positions and momenta, as well as Casimir
variables. For instance, for fluctuations and correlations one
can define the following change of variables [45–49],

Δðp2þÞ ¼ p2
s1 þ

U1

s21
; Δðβ2þÞ ¼ s21;

Δðp2
−Þ ¼ p2

s2 þ
U2

s22
; Δðβ2−Þ ¼ s22;

ΔðβþpþÞ ¼ s1ps1 ; Δðβ−p−Þ ¼ s2ps2 ; ð16Þ

ignoring cross-correlations between the two pairs of degrees
of freedom. From these definitions, we note that only the
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sign of either si or psi has physical meaning: both ðsi; psiÞ
and ð−si;−psiÞ represent the same physical state. Thus, we
will choose si to be positive definite (since it parametrizes
the fluctuation of β�, it cannot be vanishing), and let psi be
defined on the whole real line. Under a second-order
truncation (neglecting all moments of an order three and
higher), si and psi are canonically conjugate, satisfying
fsi; psjg ¼ δij, for i, j ¼ 1, 2,whileUi areCasimir variables
that have vanishing Poisson brackets with the different
variables. These encode the information about the
Heisenberg uncertainty relation, since they obey

Δðβ2þÞΔðp2þÞ − ΔðβþpþÞ2 ¼ U1 ≥
ℏ2

4
;

Δðβ2−ÞΔðp2
−Þ − Δðβ−p−Þ2 ¼ U2 ≥

ℏ2

4
: ð17Þ

For higher-order moments, the corresponding canonical
variables are hard to find explicitly, and their expressions
are usually lengthy in cases in which they are known (see
Ref. [49] for a fourth-order derivation for a single pair of
classical degrees of freedom, as well as a second-order
mapping for two pairs of degrees of freedom with cross-
correlations). Since Δðβiþβj−Þ are the only higher-order
moments that appear in the effective Hamiltonian (15), the
second approximation we will perform here is to para-
metrize these higher-order moments solely in terms of the
si defined above. In order to choose a meaningful para-
metrization, we base our choice in the form of the moments
for a Gaussian state and impose

Δðβ2nþ β2m− Þ ¼ s2n1 s2m2
2n2m

ð2nÞ!ð2mÞ!
n!m!

ð18Þ

for nonnegative integers n, m, while Δðβiþβj−Þ ¼ 0 other-
wise. With this second approximation we are thus assuming
that the moments corresponding to the shape parameters
keep the Gaussian form all along the evolution, an
assumption that can be considered valid in a semiclassical
context. More precisely, since, as will be explained in
Sec. IV, the classical dynamics follows periods of free
evolution separated from one another by quick reflections
on steep potential walls, a semiclassical state can be
expected to maintain nearly Gaussian form for a consid-
erable amount of time. In particular, the state is not
expected to split up into separate wave packets and develop
multimodality, as it would happen for instance in tunneling
situations. Our assumptions are therefore justified and they
may be tested further by including higher-order terms in the
Hamiltonian, which we leave for future work.

B. Summation

Replacing now the form of the moments (18) in the
effective Hamiltonian (14), it is possible to perform exactly

the infinite sum. In this way, we obtain the following closed
form for the effective Hamiltonian,

H2
Q ¼ hĤ2i ¼ p2þ þ p2

− þ p2
s1 þ p2

s2 þ
U1

s21

þ U2

s22
þ 2e4αVQðβþ; β−; s1; s2Þ; ð19Þ

with the corresponding effective potential defined as

VQðβþ; β−; s1; s2Þ

≔
1

6

�
e−8βþþ32s2

1 þ 2e4βþþ8s2
1

�
e24s

2
2 coshð4

ffiffiffi
3

p
β−Þ − 1

	
− 4e−2βþþ2s2

1
þ6s2

2 coshð2
ffiffiffi
3

p
β−Þ



: ð20Þ

Hence, the only relevant variables of our quantum model
will be β�, p�, si, psi , and Ui with i ¼ 1, 2. In fact, the
variables Ui are constants of motion. In the Hamiltonian
they appear as centrifugal potential terms and thus can be
regarded as an angular momentum that prevents the
position variables si from reaching the origin, enforcing,
in this way, the uncertainty relation. The Hamiltonian has
now a clear structure of a kinetic part, quadratic in
momenta, plus a potential term, which, up to the global
factor e4α, only depends on position variables. The classical
phase space, given by the two couples ðβ�; p�Þ, is thus
enlarged by the two new degrees of freedom described by
ðsi; psiÞ and by the parameters Ui, which encode the
quantum effects. The vanishing of these quantum variables
leads to the classical limit, as can be easily seen by
comparing (19) with its classical counterpart (7).
The equations of motion for the different variables read

β̇� ¼ fβ�; HQg ¼ p�
HQ

; ð21Þ

ṗ� ¼ fp�; HQg ¼ −
e4α

HQ

∂VQ

∂β�
; ð22Þ

ṡi ¼ fsi; HQg ¼ psi

HQ
; ð23Þ

ṗsi ¼ fpsi ; HQg ¼ 1

HQ

�
Ui

s3i
− e4α

∂VQ

∂si

�
; ð24Þ

which explicitly shows the back-reaction of the quantum
variables ðsi; psi ; UiÞ on the classical evolution.
For later convenience, let us note that the full time-

dependent effective potential term that appears in the
Hamiltonian above can be rewritten in the following way:

2e4αVQ ¼ 1

3

�
e4αE1 þ e4αE2 þ e4αE3

	
−
2

3

�
e4αE4 þ e4αE5 þ e4αE6

	
; ð25Þ
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where the exponents Ej (j ¼ 1, 2, 3, 4, 5, 6) are defined as

E1 ¼ 1 −
2βþ − 8s21

α
; E4 ¼ 1þ βþ þ 2s21

α
;

E2 ¼ 1þ βþ þ ffiffiffi
3

p
β− þ 2s21 þ 6s22
α

; E5 ¼ 1þ
ffiffiffi
3

p
β− − βþ þ s21 þ 3s22

2α
;

E3 ¼ 1þ βþ −
ffiffiffi
3

p
β− þ 2s21 þ 6s22

α
; E6 ¼ 1 −

ffiffiffi
3

p
β− þ βþ − s21 − 3s22

2α
: ð26Þ

IV. A QUALITATIVE DESCRIPTION
OF THE DYNAMICS

The dynamics of the classical Mixmaster model is
characterized by a succession of Kasner regimes and
transitions as the singularity is approached [2,3]. These
regimes are defined as being kinetically dominated, in the
sense that the potential term can be neglected in the
Hamiltonian. Therefore, according to (7), the classical
Hamiltonian is approximately given by the expression
H ≈ ðp2þ þ p2

−Þ1=2, which corresponds to that of the exact
Kasner model, and describes a free motion: the momenta
pþ and p− remain constant and the shape parameters βþ
and β− evolve as linear functions in α. In the two-dimen-
sional plane of the shape parameters, the trajectory is thus a
straight line. During this evolution, however, at least one of
the exponential terms of the potential (6) is growing in time
and, from a certain point on, the potential is no longer
negligible. The Kasner approximation then ceases to be
valid, the system quickly bounces against the exponential
walls depicted in Fig. 1, and enters a new Kasner regime.
The transition between successive Kasner epochs is
described by a well-known map that relates the pre-bounce
to post-bounce values of the momenta ðpþ; p−Þ and of the
constants that characterize the Kasner evolution of the
shape parameters ðβþ; β−Þ (see, e.g., Ref. [50]). In fact, as
mentioned in the introduction, this discrete map was
already used to conclude that the Mixmaster model is
chaotic in the early literature about this subject [1,9–11].
The described behavior is realized for a generic

choice of initial values. Nevertheless, there are certain
specific values of the momenta during a Kasner regime, for
which none of the exponential terms of the potential grows
in time. The system thus never reaches an exponential wall
and follows a Kasner evolution until it reaches the
singularity. More precisely, there are three such possible
values: fp− < 0; pþ ¼ − p−ffiffi

3
p g, fp− > 0; pþ ¼ p−ffiffi

3
p g, and

fp− ¼ 0; pþ ≤ 0g, which respectively correspond to the
system going to infinity in the plane of the shape param-
eters through one of the three vertices of the triangular
shape of Fig. 1. These are sometimes called exits of the
system. Given a set of initial data, some of them end up
reaching one of these exits, while others follow an infinite
succession of Kasner regimes and form the repeller set.

This repeller has a fractal structure, which can be used to
analyze the chaos of the system, as will be explained below.
Let us now analyze how the described picture is modified

by quantum effects. Numerical integration of the semi-
classical evolution equations (21)–(24), not too close to the
singularity and for relatively small values of the fluctua-
tions, shows an evolution qualitatively similar to the
classical one: the system spends most of the time following
Kasner regimes, which are interrupted by rapid transitions
when it hits the exponential walls. (For a recent analytic
study on quantum Kasner transitions with a similar semi-
classical model, we refer the reader to Ref. [38]). This can
also be seen analytically. More precisely, neglecting the
potential (as well as its derivatives) in the equations of
motion (21)–(24), one can easily solve the system and
obtain the following explicit evolution of the different
variables during a Kasner epoch,

p� ¼ const:;

β� ¼ p�
PQ

αþ c�;

si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ui

B2
i
þ B2

i

P2
Q
ðαþ AiÞ2

s
;

psi ¼
B2
i ðαþ AiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

UiP2
Q=B

2
i þ B2

i ðαþ AiÞ2
q ; ð27Þ

where c�, Ai, and Bi (i ¼ 1, 2) are six integration constants.
(See also Ref. [51] for a discussion of free quantum
dynamics in this language.) In particular Bi encode the
constant value of the fluctuation of the momenta:
Δðp2þÞ¼p2

s1þU1=s21¼B2
1, and Δðp2

−Þ¼p2
s2þU2=s22¼B2

2.
The value of the Hamiltonian during these Kasner regimes
is given by PQ ≔ ðp2þ þ p2

− þ B2
1 þ B2

2Þ1=2; thus, quantum
fluctuations increase its value with respect to its classical
counterpart P ≔ ðp2þ þ p2

−Þ1=2. The variables p� and β�
evolve as in the classical model, the only difference being
that the velocity of the anisotropies β̇� is a bit slower, since
it inversely depends on PQ. Toward the singularity, the
variables si, which encode the fluctuations of the shape
parameters, increase, while their momenta psi decrease,
tending to their asymptotic values −jBij.
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At this point, one can wonder about the fate of the
classical exits mentioned above, where the system follows
an infinite Kasner regime all the way to the singularity. It is
clear from (19) that, for such an exit to exist for the
quantum system, all the exponents fEjg6j¼1 in (26) must be
nonnegative during the whole Kasner evolution given by
(27). As a representative example, let us analyze the
behavior of the first exponent, E1. During a Kasner regime,
this exponent evolves as

E1 ¼
PQ − 2pþ

PQ
−
2cþ
α

þ 8U1

B2
1α

þ 8B2
1

P2
Q

ðαþ A1Þ2
α

: ð28Þ

The first two terms are the only ones that appear in the
classical limit: ðPQ − 2pþÞ=PQ is constant, and −2cþ=α
vanishes as α → −∞. Therefore, under the classical
evolution, the sign of ðPQ − 2pþÞ=PQ rules the asymp-
totic behavior of this exponential term. In particular, if it is
negative, it will define the usual “classical” potential wall
asymptotically, with an exponential shape e−m

2α, which
will eventually put an end to the Kasner dynamics.
However, if it is vanishing, the system will be following
one of the exit trajectories (under the additional condition

that all the other exponents Ej are nonnegative). Finally, if
it is positive, E1 will provide a negligible contribution, and
another exponential term Ej will dominate and define the
exponential wall as α → −∞.
Quantum contributions introduce further α-dependence

on the exponent E1. In particular, the term with U1 tends to
zero as the singularity is approached, and thus it does not
change the classical asymptotic picture. However, the last
term, 8B2

1P
−2
Q ðαþ A1Þ2=α, increases as α → −∞ (just like

the variance of a free-particle wave function). Since it is
determined by quantum fluctuations, this term is initially
small in a semiclassical regime. But if the system is on (or
close to) a classical exit trajectory and does not bounce
before this term becomes relevant, it will eventually
dominate in the expression for E1. In such a case, this
term will effectively define a potential of the form ek

2α2 ,
breaking the Kasner evolution.
In fact, performing the same analysis for the different

exponents Ej, there is always a contribution from a term
proportional to the relative fluctuation B2

i =P
2
Q that implies a

negative value for the corresponding exponent Ej as
α → −∞. More specifically, the Kasner dynamics of the
different exponents read as follows,

E2 ¼
PQ þ pþ þ ffiffiffi

3
p

p−

PQ
þ cþ þ ffiffiffi

3
p

c−
α

þ 2U1

B2
1α

þ 6U2

B2
2α

þ 2B2
1

P2
Qα

ðαþ A1Þ2 þ
6B2

2

P2
Qα

ðαþ A2Þ2;

E3 ¼
PQ þ pþ −

ffiffiffi
3

p
p−

PQ
þ cþ −

ffiffiffi
3

p
c−

α
þ 2U1

B2
1α

þ 6U2

B2
2α

þ 2B2
1

P2
Qα

ðαþ A1Þ2 þ
6B2

2

P2
Qα

ðαþ A2Þ2;

E4 ¼
PQ þ pþ

PQ
þ cþ

α
þ 2U1

B2
1α

þ 2B2
1

P2
Qα

ðαþ A1Þ2;

E5 ¼
2PQ − pþ þ ffiffiffi

3
p

p−

2PQ
þ

ffiffiffi
3

p
c− − cþ
2α

þ U1

2B2
1α

þ 3U2

2B2
2α

þ B2
1

2P2
Qα

ðαþ A1Þ2 þ
3B2

2

2P2
Qα

ðαþ A2Þ2;

E6 ¼
2PQ − pþ −

ffiffiffi
3

p
p−

2PQ
−

ffiffiffi
3

p
c− þ cþ
2α

þ U1

2B2
1α

þ 3U2

2B2
2α

þ B2
1

2P2
Qα

ðαþ A1Þ2 þ
3B2

2

2P2
Qα

ðαþ A2Þ2: ð29Þ

Therefore, and contrary to the classical case, there is no combination of parameters that would lead to all Ej being
simultaneously nonnegative as α → −∞. All the classical exits are thus closed by quantum fluctuations.
We will now estimate the ranges of Kasner parameters that characterize the conditions for the system to hit one of those

quantum walls. Let us assume a trajectory that is following a Kasner dynamics with small fluctuations relatively close to the
singularity. That is, α is already large enough (in absolute value) so that all the terms of the form 1=α can be neglected in
(29), but not so large yet as to make terms proportional to B2

i =P
2
Q relevant. In such a scenario, all the dependence on α can be

neglected in the exponentials (29). If one then requires all of them to be nonnegative, so that none of the potential terms is
growing along evolution, the following three ranges of values are obtained,

p− ≥ 0 and
1

4

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 3r

p
−

ffiffiffiffiffiffiffiffiffiffiffi
1þ r

p 	
≤

pþ
ðp2þ þ p2

−Þ1=2
≤
1

2

ffiffiffiffiffiffiffiffiffiffiffi
1þ r

p
;

p− < 0 and
1

4

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 3r

p
−

ffiffiffiffiffiffiffiffiffiffiffi
1þ r

p 	
≤

pþ
ðp2þ þ p2

−Þ1=2
≤
1

2

ffiffiffiffiffiffiffiffiffiffiffi
1þ r

p
;

pþ
ðp2þ þ p2

−Þ1=2
≤ −

1

4

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 3r

p
þ ffiffiffiffiffiffiffiffiffiffiffi

1þ r
p 	

; ð30Þ
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where r ≔ ðB2
1 þ B2

2Þ=ðp2þ þ p2
−Þ. If the parameters of the

system lie in any of these ranges, the system will follow its
Kasner dynamics without hitting any classical potential
wall until the fluctuations B2

i =P
2
Q become dominant.

This is when the system bounces against a quantum wall.
Note that in the classical limit r → 0, the above ranges
correspond to the classical exits, fp− < 0; pþ ¼ − p−ffiffi

3
p g,

fp− > 0; pþ ¼ p−ffiffi
3

p g, and fp− ¼ 0; pþ ≤ 0g, respectively.
Intuitively the above relations define three wedges on the

plane of anisotropies. The classical convex potential walls
depicted in Fig. 1 are pushed back from the three symmetry
axes by the quantum effects creating such wedges. These
wedges do not reach infinity, though, as they are closed by
the new quantum potential walls produced by the fluctua-
tions B2

i =P
2
Q. Therefore, these quantum contributions form

concave caps connecting classical walls, and constraining
the dynamics of the system to a finite region of the
phase space.

V. ANALYSIS OF THE CHAOS

As explained in the introduction, the classical Mixmaster
model shows a chaotic behavior close to the singularity. In
the context of general relativity, and specifically for the
Mixmaster model, two methods have been proposed in the
literature to study the chaotic nature of this system without
ambiguities. The first one makes use of the covariantly
defined Lyapunov exponent [19,52], while the second one is
based on the study of the fractal structure of the space of
initial conditions [21]. In the following, both methods will
be applied to our semiclassical system in order to check how
quantum fluctuations modify the classical results. More
precisely, in Sec. VA we will present a canonical trans-
formation to a set of variables that generalize the Misner-
Chitre variables, which will allow us to compute the
Lyapunov exponent, and construct an isomorphism between
the quantumMixmaster dynamics and the geodesic flow on
a four-dimensional curved manifold. The conclusion of this
method will be that the quantum dynamics is still chaotic. In
Sec. V Bwewill be able to provide a quantitativemeasure of
the chaos bymaking use of the fractalmethod, andwill show
that, as compared to the classical system, the quantum
system has a reduced degree of chaos.

A. Covariant Lyapunov exponent

The Lyapunov exponent is an accurate way of represent-
ing chaos in dynamical systems as long as the following
conditions are satisfied [18]:
(1) The system is autonomous.

(2) The relevant part of the phase space is bounded.
(3) The invariant measure is normalizable.
(4) The domain of the time parameter is infinite.
The classical dynamics of theMixmastermodel described

by the shape parameters β� and their conjugatemomentap�
in terms of the internal time α does not obey all of the above
conditions. Namely, while the domain of the time parameter
α is infinite, the system (8)–(11) is not autonomous due to
the explicit term e4α.Moreover, due to the appearance of this
same factor in theHamiltonian (7), asymptotically the height
of the potential walls is effectively diminished making the
accessible region of the phase space unbounded. However,
for the classical model one can perform a canonical trans-
formation to a new set of variables introduced byMisner and
Chitre [19,53], which defines an asymptotically time-inde-
pendent potential term in the Hamiltonian. In terms of these
variables the potential walls are stationary, defining a
bounded region of the phase space for the dynamics of
the system, and can be approximated by infinite potential
walls fixed at certain positions. Furthermore, the dynamics is
shown to be isomorphic to the geodesic flow of a curved
two-dimensional Riemannian manifold. This picture is very
helpful and allows, in particular, to compute the correspond-
ing Lyapunov exponent by analyzing the geodesic deviation
equation on that manifold.
Here, we will generalize the classical analysis by

constructing a canonical transformation for our quantum
system (21)–(24), which will lead to a new set of variables
that obey the properties detailed above. Furthermore, an
isomorphism to the geodesic motion on a four-dimensional
Riemannian manifold will be obtained, and the correspond-
ing Lyapunov exponent will be computed.

1. Generalized Misner-Chitre variables

Let us start by implicitly defining the generalized
Misner-Chitre variables ðΓ; ξ; θ; σ;ϕÞ by the following
transformation,

α ¼ −eΓξ;

βþ ¼ eΓ
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
cos θ;

β− ¼ eΓ
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
sin θ cos σ;

s1 ¼ eΓ
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
sin θ sin σfþðϕ; pϕÞ;

s2 ¼ eΓ
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
sin θ sin σf−ðϕ; pϕÞ; ð31Þ

for configuration variables, and their conjugate momenta
ðpΓ; pξ; pθ; pσ; pϕÞ by the relations
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pα ¼ e−Γ½ðξ2 − 1Þpξ − ξpΓ�;

pþ ¼ e−Γ
�
cos θ

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
ðξpξ − pΓÞ −

sin θffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p pθ

�
;

p− ¼ e−Γ
�
sin θ cos σ

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
ðξpξ − pΓÞ þ

cos θ cos σffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p pθ −
csc θ sin σffiffiffiffiffiffiffiffiffiffiffiffi

ξ2 − 1
p pσ

�
;

ps1 ¼ e−Γfþðϕ; pϕÞ
�
sin σ sin θ

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
ðξpξ − pΓÞ þ

cos θffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p pθ þ
csc θ cos σffiffiffiffiffiffiffiffiffiffiffiffi

ξ2 − 1
p pσ −

hðpϕÞ csc θ csc σ cos 2ϕ
2pϕf2þðϕ; pϕÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p �
;

ps2 ¼ e−Γf−ðϕ; pϕÞ
�
sin θ sin σ

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
ðξpξ − pΓÞ þ

cos θ sin σffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p pθ þ
csc θ cos σffiffiffiffiffiffiffiffiffiffiffiffi

ξ2 − 1
p pσ þ

hðpϕÞ csc θ csc σ cos 2ϕ
2pϕf2−ðϕ; pϕÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p �
; ð32Þ

where the functions fþðϕ; pϕÞ, f−ðϕ; pϕÞ, and hðpϕÞ are
defined as follows,

fþðϕ; pϕÞ ≔
1ffiffiffi
2

p jpϕj
ðp2

ϕ þ U1 −U2 − hðpϕÞ sin 2ϕÞ1=2;

ð33Þ

f−ðϕ; pϕÞ ≔
1ffiffiffi
2

p jpϕj
ðp2

ϕ − U1 þU2 þ hðpϕÞ sin 2ϕÞ1=2;

ð34Þ

hðpϕÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2

ϕ − ðU1 þU2ÞÞ2 − 4U1U2

q
: ð35Þ

The domain of definition of the different variables is given
by θ; σ ∈ ð0; πÞ, ξ ≥ 1, pξ; pθ; pσ; pΓ;Γ∈R, while the pair
ðϕ; pϕÞ takes values in the ranges ϕ∈ ½0; 2πÞ, and pϕ ∈R is
restricted under the condition that the above functions fþ,
f−, and h are real. For the classical system, only the
variables ðΓ; ξ; θÞ are defined, along with their correspond-
ing conjugate momenta ðpΓ; pξ; pθÞ. In order to encode the
quantum degrees of freedom, the new angular variables
ðσ;ϕÞ and their momenta ðpσ; pϕÞ have been introduced.
The classical configuration space corresponds to the union
of the two half-planes σ → 0 and σ → π. Note that points in
this plane are unreachable for the quantum system since s1
and s2 would be vanishing there, violating the uncertainty
principle. This does not only apply to the classical plane,
but also to other sets of points such as those given by
sin θ ¼ 0, fþðϕ; pϕÞ ¼ 0, or f−ðϕ; pϕÞ ¼ 0.
This canonical transformation is parametrized by the

constants of motion U1 and U2, which encode information
about the saturation of the uncertainty relation. If U1 and
U2 could be ignored, the functions (33)–(35) would
simplify to fþ ¼ jcosðϕþ π=4Þj, f− ¼ jsinðϕþ π=4Þj,
and h ¼ p2

ϕ. The configuration space mapping (31)

would then be a direct generalization of 2-dimensional
polar coordinates on the classical anisotropy plane to a
4-dimensional quantum version. Inclusion of the U-terms
requires a deformation of the 3-sphere mapping according
to (33) and (34). The functions fþ and f− are then nonzero
because U1 and U2 are positive, and so are s1 and s2 due to
the restrictions of θ and σ to the range ð0; πÞ. Note also that
the condition that hðpϕÞ be real imposes a lower bound on
jpϕj for nonzero U1 and U2. The original repulsive terms
U1=s21 andU2=s22 in the effective potential are now replaced
by a lower bound on the angular momentum in the s1 − s2
plane.
If we now choose Γ as the internal time variable, the

Hamiltonian that governs the dynamics of the remaining
variables ðξ; θ; σ;ϕÞ with respect to Γ is given by

H ¼
�
p2
ξðξ2 − 1Þ þ p2

θ

ξ2 − 1
þ p2

σ

ðξ2 − 1Þsin2θ

þ p2
ϕ

ðξ2 − 1Þsin2θsin2σ þ 2e2Γ−4ξe
Γ
VQ

�
1=2

: ð36Þ

The potential term is obtained by simply applying the
above canonical transformation to its definition (20), and its
full contribution to the Hamiltonian can be written as a
linear combination of exponential terms,

2e2Γ−4ξe
Γ
VQ ¼ e2Γ

3

�
e−4ξe

ΓE1 þ e−4ξe
ΓE2 þ e−4ξe

ΓE3

	
−
2

3
e2Γ

�
e−4ξe

ΓE4 þ e−4ξe
ΓE5 þ e−4ξe

ΓE6

	
;

ð37Þ

with the same exponents fEig6i¼1 defined above (26). In
terms of the new variables, these exponents take the
explicit form
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E1 ¼ 1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
ξ

cos θ −
8eΓðξ2 − 1Þ

ξ
sin2θsin2σf2þðϕ; pϕÞ;

E2 ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
ξ

�
cos θ þ

ffiffiffi
3

p
sin θ cos σ

	
−
2eΓðξ2 − 1Þ

ξ
sin2θsin2σ

�
f2þðϕ; pϕÞ þ 3f2−ðϕ; pϕÞ



;

E3 ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
ξ

�
cos θ −

ffiffiffi
3

p
sin θ cos σ

	
−
2eΓðξ2 − 1Þ

ξ
sin2θsin2σ

�
f2þðϕ; pϕÞ þ 3f2−ðϕ; pϕÞ



;

E4 ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
ξ

cos θ −
2eΓðξ2 − 1Þ

ξ
sin2θsin2σf2þðϕ; pϕÞ;

E5 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
2ξ

�
cos θ −

ffiffiffi
3

p
sin θ cos σ

	
−
eΓðξ2 − 1Þ

2ξ
sin2θsin2σ

�
f2þðϕ; pϕÞ þ 3f2−ðϕ; pϕÞ



;

E6 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
2ξ

�
cos θ þ

ffiffiffi
3

p
sin θ cos σ

	
−
eΓðξ2 − 1Þ

2ξ
sin2θsin2σ

�
f2þðϕ; pϕÞ þ 3f2−ðϕ; pϕÞ



: ð38Þ

The singularity is now located at Γ → ∞, which ensures the
fulfillment of condition 4 above, and thus the potential (37)
will be asymptotically negligible as long as all exponential
terms (38) are positive. In the classical case, which can be
recovered simply by imposing sin σ → 0 in (38), all these
exponents turn out to be independent of Γ. Therefore, Π,
defined as the region of the configuration space where the
potential is negligible, can be shown to be compact and
time independent. Outside this region, the potential will
tend to infinity and the system will be prevented from being
located there. In this way, the potential can be asymptoti-
cally approximated by certain combination of stationary
walls and condition 2 above is met.
Quantum contributions, however, render the above

exponents Ei time dependent. Therefore, the shape of
the region Π will also change with Γ. The key issue to
check is whether such a dependence could make the region
Π noncompact and spoil the good properties of the classical
Misner-Chitre variables. The answer, though, is in the
negative. As can be easily checked in the explicit expres-
sion of the exponents (38), all quantum terms have a
negative contribution, so their relevance increases as the
singularity is approached. Thus, as Γ tends to infinity,
quantum contributions decrease the value of every expo-
nent Ei and, in this way, make the region Π shrink. In fact,
except in the planes defined by the values sin σ → 0 and
sin θ → 0, from certain value of Γ on, the relevance of the
quantum effects will be such that all the exponents Ei will
be negative. Therefore, outside the mentioned planes, the
potential term will not be negligible anywhere and the
region Π will be restricted to the sets of points defined by
sin θ → 0 and sin σ → 0, which are forbidden for the
quantum system. This is related to the closed-off classical
exits mentioned above: while in the classical system there
are certain values of the parameters which avoid the
potential all along until the singularity, in the quantum
system any value of the parameters will lead, sooner or
later, to an interaction with the potential.

In the strict limit of Γ → ∞ the region Π is empty, but
any finite range of large values of Γ implies a nonempty
and bounded set. In any such region, independently of
the specific finite range of Γ, the Hamiltonian in terms of
the generalized Misner-Chitre variables is given by just the
kinetic terms, namely,

H ¼
�
p2
ξðξ2 − 1Þ þ p2

θ

ξ2 − 1
þ p2

σ

ðξ2 − 1Þsin2θ

þ p2
ϕ

ðξ2 − 1Þsin2θsin2σ
�
1=2

: ð39Þ

Since it does not depend explicitly on time, it is constant
under evolution and defines the conserved energy of the
dynamical system E ¼ H. Consequently, the system of
equations of motion (21)–(24) written for the new variables
becomes autonomous, and condition 1 above is fulfilled.
As we already showed, by introducing our new set of

variables, we have been able to restrict the relevant part of
the phase space to a bounded regionΠ, and thus condition 2
of the above criteria is satisfied. Moreover, in this same
region and asymptotically, following the same rationale as
in the classical case [52], one can conclude that the
invariant measure is normalizable, satisfying thus also
condition 3. Finally, since the domain of the time parameter
Γ is infinite, condition 4 is met, and thus all conditions 1–4
listed above. The sign of the Lyapunov exponent that can be
computed for these variables is thus invariant, and will
characterize the possible chaos of the system.

2. Isomorphism to a geodesic flow
on a Riemannian manifold

In order to compute the Lyapunov exponent, it is
very useful to note that the above Hamiltonian (39) has
a form similar to the Hamiltonian ð1

2
gμνpμpνÞ1=2 of a free

particle evolving on a curved background with metric gμν.
Therefore, asymptotically (for any finite range of large
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values of Γ, as explained in the preceding subsection), the
Mixmaster dynamics inside the exponential walls is iso-
morphic to the geodesic flow on the 4-dimensional
Riemannian manifold with metric

gμνdxμdxν ¼ E2

�
dξ2

ξ2 − 1
þ ðξ2 − 1Þdθ2 þ ðξ2 − 1Þ sin θ2dσ2

þ ðξ2 − 1Þ sin θ2 sin σ2dϕ2

�
: ð40Þ

[The coordinate transformation ξ ¼ coshψ shows that this
space is a submanifold of a hyperboloid jx⃗j2 − t2 ¼ E2 in
5-dimensional Minkowski space-time with line element
ds2 ¼ E2ðdψ2 þ sinh2 ψðdθ2 þ sin2 θðdσ2 þ sin2 σdϕ2ÞÞÞ.]
This metric is maximally symmetric, with curvature scalar
R ¼ −12=E2, and thus its Riemann tensor can be written as

Rτρσ
μ ¼ R

12
ðgτσgμρ − gρσg

μ
τ Þ ¼ −

1

E2
ðgτσgμρ − gρσg

μ
τ Þ: ð41Þ

Moreover, from this expression, it is easy to compute the
sectional curvature of the manifold. That is, given any two
linearly independent vector fields aμ and bμ, we have

Rτρσνaτbρaσbν

ðaμaμÞðbαbαÞ − ðaμbμÞ2
¼ −

1

E2
: ð42Þ

Therefore, the sectional curvature is constant and negative.
In order to obtain the invariant Lyapunov exponent of the

system, one needs to analyze the geodesic deviation on this
manifold. For such a purpose, it is very convenient to
introduce the Fermi orthonormal basis,

eμ1 ¼
� ffiffiffiffiffiffiffiffiffiffiffiffi

ξ2 − 1
p

E
cos γ1ðsÞ;

sin γ1ðsÞ cos γ2ðsÞ
E

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p ;
sin γ1ðsÞ sin γ2ðsÞ cos γ3ðsÞ

E
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
sin θ

;
sin γ1ðsÞ sin γ2ðsÞ sin γ3ðsÞ

E
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
sin θ sin σ

�
;

eμ2 ¼
�
−

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
E

sin γ1ðsÞ;
cos γ1ðsÞ cos γ2ðsÞ

E
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p ;
cos γ1ðsÞ sin γ2ðsÞ cos γ3ðsÞ

E
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
sin θ

;
cos γ1ðsÞ sin γ2ðsÞ sin γ3ðsÞ

E
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
sin θ sin σ

�
;

eμ3 ¼
�
0;−

sin γ2ðsÞ
E

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p ;
cos γ2ðsÞ cos γ3ðsÞ
E

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
sin θ

;
cos γ2ðsÞ sin γ3ðsÞ

E
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
sin θ sin σ

�
;

eμ4 ¼
�
0; 0;−

sin γ3ðsÞ
E

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
sin θ

;
cos γ3ðsÞ

E
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
sin θ sin σ

�
; ð43Þ

so that gμνe
μ
i e

ν
j ¼ δij, where γ1; γ2; γ3 ∈ ½0; 2πÞ are angular

variables that depend on the curvilinear coordinate s. These
variables are then fixed by requiring the first vector
eμ1 ¼ ðdξ=ds; dθ=ds; dσ=ds; dϕ=dsÞ to be tangent to the
geodesics,

Deμ1
ds

≔
deμ1
ds

þ Γμ
νρeν1e

ρ
1 ¼ 0; ð44Þ

where Γμ
νρ are the Christoffel symbols of the metric (40),

which leads to the equations

dγ1ðsÞ
ds

¼ −
ξðsÞ sin γ1ðsÞ
E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξðsÞ2 − 1

p ;

dγ2ðsÞ
ds

¼ −
sin γ1ðsÞ sin γ2ðsÞ

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξðsÞ2 − 1

p
tan θðsÞ ;

dγ3ðsÞ
ds

¼ −
sin γ1ðsÞ sin γ2ðsÞ sin γ3ðsÞ

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξðsÞ2 − 1

p
tan σðsÞ sin θðsÞ : ð45Þ

The basis above is constructed so that all the vectors are
parallel transported along this curve and, thus,

Deμi
ds

¼ deμi
ds

þ Γμ
νρeν1e

ρ
i ¼ 0 ð46Þ

is obeyed for all i ¼ 1, 2, 3, 4.
Let us now consider the vector Zμ that connects two

nearby geodesic curves, and obeys the geodesic deviation
equation,

D2Zμ

ds2
¼ Rτρσ

μeσ1e
ρ
1Z

τ; ð47Þ

with Rτρσ
μ being the Riemann tensor (41). Decomposing

this vector in the above basis,

Zμ ¼ Ziδ
ikeμk; ð48Þ

with Zi ∈R, and taking into account the properties of the
basis vectors eμi , the geodesic deviation equation takes the
form

d2Z1

ds2
eμ1 þ

d2Z2

ds2
eμ2 þ

d2Z3

ds2
eμ3 þ

d2Z4

ds2
eμ4

¼ 1

E2
ðZ2e

μ
2 þ Z3e

μ
3 þ Z4e

μ
4Þ: ð49Þ
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Since these basis vectors are linearly independent, their
coefficients on both sides of the equation must be identical,
that is,

d2Z1

ds2
¼0;

d2Z2

ds2
¼Z2

E2
;

d2Z3

ds2
¼Z3

E2
;

d2Z4

ds2
¼Z4

E2
: ð50Þ

It is straightforward to obtain the solutions to these equations,

Z1¼C1sþD1; Z2¼C2es=EþD2e−s=E;

Z3¼C3es=EþD3e−s=E; Z4¼C4es=EþD4e−s=E; ð51Þ
with integration constants Ci andDi for i ¼ 1, 2, 3, 4. Then,
according to [19], the invariant Lyapunov exponent of this
system is given as

λ ¼ sup
i¼1;2;3;4

�
lim
s→∞

ln ½Z2
i þ ðdZi=dsÞ2�

2s

�
: ð52Þ

Substituting the above solutions (51) in this definition, the
invariant Lyapunov exponent is found to be

λ ¼ 1

E
; ð53Þ

which is strictly positive.
As already explained, since all the conditions 1–4 detailed

above are satisfied by this system, the positive value of this
Lyapunov exponent (53) implies that the dynamics under
consideration is chaotic. Since this geodesic flow is iso-
morphic to the quantum dynamics of the Mixmaster model,
we can also confirm that the latter is chaotic.

B. The fractal dimension of the repeller

If a dynamical system has a finite number of exits or
possible final outcomes (for instance, in the presence of an
attractor), the space of initial conditions can be divided into
different regions according to the final state of each point.
The boundary between these regions can be either smooth
or fractal, and the latter, as will be shown below, is a clear
indicator of chaos. Given the dimension of the boundary
D0, and the dimension of the space of initial data D, we
define its difference as

δ ≔ D −D0: ð54Þ
When the boundary is smooth, we have δ ¼ 1, while for a
fractal structure, δ is in the range 0 < δ < 1. This quantity
is known as the uncertainty exponent, since it is directly
related to the fraction of the space of initial data with
uncertain outcome [21,54]. Specifically,

fðεÞ ∼ εδ; ð55Þ

where ε is the error of the initial conditions, and fðεÞ is the
fraction of uncertain outcomes in the space of initial data.

Here, a point is classified as being of uncertain outcome for
an error ε if, taking a hypersphere of radius ε centered
around that point, it contains points with different out-
comes. Nonchaotic systems do not present an amplification
of the initial uncertainties, and, correspondingly, they show
a linear relation between fðεÞ and ε. Therefore, according
to (55), δ ¼ 1, which, in turn, implies that the boundary
between the different regions is smooth. Chaotic systems,
on the contrary, show an amplification of the initial error,
which means that 0 < δ < 1, and that the boundaries are
fractal. The lower the value of δ (and thus higher the value
of D0), the more chaotic the system is [21].
Concerning the analysis of theories with time-repara-

metrization invariance, like general relativity, the advantage
of measuring the chaos in this way, as opposed to other
dynamical techniques, is that δ is invariant. Indeed, a
reparametrization of the time variable will not change
the classification—in terms of different outcomes—of each
point on the space of initial conditions. An initial point that
has a given outcome will maintain the very same outcome
under a time reparametrization, and only reach it earlier or
later in the new time coordinate. Therefore, since δ is a
measurable quantity, it can be used to compare the level of
chaos between different systems, and this is certainly an
appropriate method to study how quantum effects modify
the chaotic behavior of the classical Mixmaster model.

1. Application to the Mixmaster model
and numerical setup

The first step in order to apply this framework to our
model, and compute the uncertainty exponent δ, is thus to
define the exits or final outcomes of the system, which will
divide the space of initial conditions into different regions.
For the classical system, the three natural outcomes are given
by the three exit trajectories. Any initial point will end up in
one of these three exits, except those that follow an infinite
sequence of bounces against the potential walls and form the
repeller set. As explained in Sec. IV, those classical exits are
closed up by quantum fluctuations. Nonetheless, our
numerical simulations show that, since the fluctuations
Bi=P2

Q are very small, the system takes a very long time
to reach those quantum walls, and therefore, in practice, we
can define the three ranges of values (30) as the final
outcomes of our quantum system. In fact, due to the
numerical nature of the analysis, it is necessary to allow
an artificial extension of the ranges that define the exits.
Something similar happens under the classical evolution:
since a typical initial point takes a very long time to reach one
of the exits, numerically one can never exactly state that a
given exit has been reached. Therefore, in order to facilitate
the process of escaping and reaching the outcomes, as done
in the classical analysis presented in Ref. [21], a small
error for the exit conditions will be allowed, as we will
explain later.

MARTIN BOJOWALD et al. PHYS. REV. D 109, 044038 (2024)

044038-12



Let us now parametrize the initial values of the variables ðβþ; β−; pþ; p−Þ as follows,

βþjα¼αini
¼ 1 − 2v0ð1þ u0Þ

2ð1þ v0 þ u0v0Þ
α0; β−jα¼αini

¼ −
α0

ffiffiffi
3

p

2ð1þ v0 þ u0v0Þ
;

pþjα¼αini
¼ ω0ffiffiffiffiffiffi

6π
p 1 − 2u0ð1þ u0Þ

1þ u0 þ u20
; p−jα¼αini

¼ ω0ffiffiffiffiffiffi
2π

p 1þ 2u0
1þ u0 þ u20

; ð56Þ

with the four real parameters α0, ω0, u0, and v0. In order to
explore the boundaries between regions with a different
outcome in the full space of initial data, already for the
classical system, one would need to perform an enormous
amount of numerical simulations. Therefore, as done in
Ref. [21], we will reduce our study to the cross section
ðu0; v0Þ of that space, by choosing a fixed value of all the
initial variables except for u0 and v0. Furthermore, to
compare more efficiently our results with Ref. [21], we will
consider the same set of initial conditions for the expect-
ation values as those considered in that reference for the
corresponding classical variables. More precisely, ω0 will
be fixed to ω0 ¼ 1

3
, while α0 ¼ αini will be the initial time,

and its value will be such that the following equation is
obeyed,

ω0 ¼
ffiffiffiffiffiffi
3π

2

r
HQjα¼α0

; ð57Þ

with the HamiltonianHQ (19), which depends on the initial
value of the quantum fluctuations that will be detailed
below. Finally, for the numerical analysis, a 300 × 300
grid in the region defined by u0 ∈ ½1.34; 1.36� and
v0 ∈ ½1.3; 1.32� will be chosen.
Concerning the initial conditions for the quantum var-

iables ðs1; s2; ps1 ; ps2 ; U1; U2Þ, instead of choosing a fixed
value for them, and in order to analyze the dimensionality
of the boundaries between regions for different cross
sections of the space of initial data, we will run a number
of numerical evolutions with different sets of values. In this
way, we will be able to check how quantum effects modify
the commented cross section ðu0; v0Þ of the space of initial
data, and compute the corresponding value of δ. In order to
fix the precise sets of values in a physically sensible way,
the initial quantum degrees of freedom will be parametrized
in terms of the Planck constant ℏ and the three numbers
k, m, and n of the order of the unity, as follows,

s1jα¼α0
¼ s2jα¼α0

¼
ffiffiffiffiffiffi
kℏ
2

r
;

ps1 jα¼α0
¼ ps2 jα¼α0

¼ n

ffiffiffiffiffi
ℏ
2k

r
;

U1jα¼α0
¼ U2jα¼α0

¼ ℏ2

4
ðmk − n2Þ; ð58Þ

with n∈f�1;�1=2;�1=
ffiffiffi
2

p
;0g, k∈f0.5;1;1.1;1.2;…;3g,

and m∈ f1; 1.1; 1.2;…; 2; 3g. Among all these sets, we
have chosen a sample of 160 specific values (k, m, n), all
satisfying the Heisenberg uncertainty relation (17), which,
within this parametrization, reads mk − n2 ≥ 1.

Moreover, for the numerical simulations the value
ℏ ¼ 10−6 has been considered for the Planck constant,
and the differential equations have been discretized and
evolved by making use of a fourth-order adaptive Runge-
Kutta method. In particular, at each instant of the evolution,
an initial time step of dα ¼ 10−5 is considered, which is
iteratively doubled until the relative error between the
corresponding evolutions with a step 2dα and dα exceeds
ρ ¼ 10−4. This method allows us to perform long numeri-
cal time evolutions during the Kasner regimes, where the
variables do not perform sudden changes and evolve very
smoothly. A decrease of the step size usually signals the
end of the Kasner regime. In fact, since the momenta p�
remain constant during this period, the numerical algorithm
periodically checks whether the system is in a Kasner
regime by testing if the inequalities jṗþj < ρ and jṗ−j < ρ
are obeyed. If these conditions are satisfied, the algorithm
verifies if the system has reached (taking into account an
error) one of the outcomes (30). More specifically, as
mentioned above and following the procedure described in
Ref. [21], we allow an error

Δnum

�
pþ

ðp2þ þ p2
−Þ1=2

�
¼ 0.2

 p−

ðp2þ þ p2
−Þ1=2

; ð59Þ

for the fraction pþ=ðp2þ þ p2
−Þ1=2, which characterizes the

outcomes (30).1 Certainly, due to this approximation, some
of the initial conditions that constitute the boundary—those
that are supposed to never reach a certain outcome—will
also escape, but only a very small percentage [21].
Therefore, introducing this error minimally changes the
division of the space of initial conditions and the sub-
sequent analysis of the uncertainty exponent.
Depending on which of the three outcomes is reached, a

specific color is assigned to that initial condition: blue, red,
or green. However, for some specific initial values, the
system takes a very long time to reach any of them, even
if the algorithm introduces an adaptive time step.

1For more information on this error, we refer the reader to the
Appendix.
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Consequently, we have introduced a maximum of 2 × 106

iterations for each initial value. Those points will not be
assigned any color and will be part of the boundaries
between regions. However, in the simulations we have
performed, we have checked that very few initial data reach
that maximum of iterations.
Once the distribution of a given cross section of the

space of initial data is performed, the fraction fðεÞ can be
computed for different values of ε (we have considered
around 8–10 values for each sets of data). Finally,
according to (55), simply by plotting ln fðεÞ in terms
of ln ε and performing a linear regression, the value of the
uncertainty exponent δ can be directly obtained from
the slope.

2. Results

Following the described methodology, in Ref. [21], the
value δ ¼ 0.14� 0.01 was obtained for the classical
system. For every simulation that we have performed for
different cross sections of the space of initial data of the
quantum model, a larger value has been obtained, though
always δ < 1. Specifically, for the sample that we have
analyzed we have computed values of δ in the range [0.42,
0.79]. Therefore, we can conclude that, while the quantum
system is still chaotic, quantum effects increase the value of
the uncertainty coefficient δ, and, thus, considerably reduce
its strength.
This can easily be seen, for instance, by comparing

Figs. 2 and 3. In the former, the distribution of the space of

1.345 1.350 1.355 1.360

1.300

1.305

1.310

1.315

1.320

FIG. 2. Division of the space of initial conditions ðu0; v0Þ depending on their final outcome, considering a 300 × 300 grid and for the
classical model.

FIG. 3. Division of the space of initial conditions ðu0; v0Þ depending on their final outcome, considering a 300 × 300 grid, for the
semiclassical model and with U1jα¼α0

¼ U2jα¼α0
¼ ℏ2=4, ps1 ¼ ps2 jα¼α0

¼ −
ffiffiffiffiffiffiffiffi
ℏ=2

p
, and s1jα¼α0

¼ s2jα¼α0
¼ ffiffiffi

ℏ
p

=2.
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initial data ðu0; v0Þ is shown for the classical model, where
each color (red, blue, and green) represents one of the
classical exits. In particular, the lack of smoothness of the
boundaries conveys its fractal dimension. In the latter, on
the contrary, the same space is shown for the quantum
model, with certain particular initial values of the moments
ðs1; s2; ps1 ; ps2 ; U1; U2Þ. It is clearly visible that in this case
the boundaries have been smoothed. This is just a particular
example, shown for illustrative purposes, but all the cross
sections present similar behaviors, i.e., smoother distribu-
tions of the different colors in the quantum version.
Furthermore, in order to show quantitatively the reduction
of the level of chaos of these two particular examples, in
Fig. 4 we display the linear regressions performed in
the plot of ln fðεÞ as a function of ln ε for each of them.
In the classical case, the value δ ¼ 0.14 is recovered, while
the quantum analysis leads to a larger value, δ ¼ 0.51 for
this particular case.
Moreover, by comparing the simulations for

different initial quantum fluctuations, we have been able
to obtain some generic conclusions about the dimension-
ality of the boundary for different cross sections. In
particular, we have found that for initial unsqueezed states,
i.e., with the same fluctuation in both conjugate variables
Δðβ2�Þjα¼α0

¼ Δðp2
�Þjα¼α0

, the value of the correlation
Δðβ�p�Þjα¼α0

has a different impact on the parameter δ.
Namely, for states with no initial or positive correlation,
Δðβ�p�Þjα¼α0

≥ 0, the larger the value of the initial
fluctuations Δðβ2�Þjα¼α0

¼ Δðp2
�Þjα¼α0

, the smaller the
value of δ. However, states with an initial negative
correlation Δðβ�p�Þjα¼α0

< 0 show the opposite behavior:
larger values of the initial fluctuations Δðβ2�Þjα¼α0

¼
Δðp2

�Þjα¼α0
, lead to larger values of δ. Other dependences

of δ on the state properties are more complicated. For
squeezed states, for instance, there is no simple pattern that
describes how the sign of the initial correlation affects the
value of δ as the different fluctuations increase.

VI. CONCLUSIONS

We have presented a semiclassical model that describes
the vacuum Bianchi IX dynamics, in order to study how the
quantum effects modify its classical chaotic behavior. The
model is semiclassical as it relies on two main assumptions,
namely, the relative fluctuations of the Hamiltonian are
supposed to be small, while the wave function is assumed to
keep a Gaussian-like shape all along evolution. We have
implemented this latter condition by a suitable parametriza-
tion of higher-order moments of the evolving state. We have
shown that, under such conditions, all the relevant physical
information of the quantum system can be encoded in the
Hamiltonian (19). In particular, the classical phase space,
described by the two anisotropy variables and their
momenta, is extended by another two degrees of freedom,
which describe the fluctuations of the anisotropies, and two
constants of motion, which contain information about the
saturation of the uncertainty relations.
Concerning the quantum evolution, our numerical res-

olution of the equations of motion (21)–(24) has shown a
similar qualitative picture as the classical dynamics. As it
approaches the singularity, the system follows a succession
of kinetically dominated periods, known as Kasner
regimes, and quick transitions, which arise when the
potential term of the Hamiltonian becomes nonnegligible.
This dynamics can be understood as a particle propagating
in the anisotropy plane and bouncing against the potential
walls shown in Fig. 1. The main novel feature of the
quantum system is the closing off of the classical exit
channels. If the velocity vector of the classical particle is
exactly parallel to one of the three symmetry axes of the
potential, its corresponding Kasner regime lasts until the
singularity is reached. For the quantum system, we have
analytically shown that quantum fluctuations widen these
classical exit channels, so that the velocity of the particle
does not need to be exactly parallel to the symmetry axis for
it to avoid the classical potential walls. However, as it
evolves, new quantum terms in the potential progressively

FIG. 4. Linear regression of the plot ln fðεÞ in terms of ln ε, for the classical model (on the left) and for a quantum state (on the right)
with initial U1jα¼α0

¼ U2jα¼α0
¼ ℏ2=4, ps1 jα¼α0

¼ ps2 jα¼α0
¼ −

ffiffiffiffiffiffiffiffi
ℏ=2

p
, and s1jα¼α0

¼ s2jα¼α0
¼ ffiffiffi

ℏ
p

=2. The value of the uncertainty
exponent δ is given by the slope of the regression.
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become more relevant until, eventually, they put an end to
the corresponding Kasner regime in all the cases, and
prevent the anisotropy parameters from reaching infinity.
Intuitively, instead of the three vertices of the classical

potential shown in Fig. 1, the quantum system presents
three wedges, which are closed off at a finite distance from
the origin. An important consequence of this effect is that
the dynamics of the system is now limited to a finite region
of the configuration space. In addition, concerning the
possible chaotic behavior of the system, this picture already
suggests that quantum effects might decrease the level of
chaos. While in the classical model all potential walls are
convex, and thus defocusing, which ensures chaos, the
closed-off of the classical exits necessarily implies the
presence of certain concave portions of the walls.
In order to perform a more systematic study of chaos of

the quantum system, we note that the present semiclassical
model is formulated as a canonical system, and thus
standard dynamical-systems techniques can be applied.
In particular, two key methods have been implemented,
which are especially well suited for systems with repar-
ametrization invariance, such as general relativity.
First, the generalized version of the Misner-Chitre

variables (31) and (32) has been constructed. In the
classical set-up these variables asymptotically define sta-
tionary potential walls on the phase space, which render the
dynamically accessible region compact. In the quantum
case, this region is not only compact, but it also shrinks as
the singularity is approached. In fact, in a strict asymptotic
limit, the region is reduced to hypersurfaces in the
configuration space that are inaccessible due to the uncer-
tainty relations. Furthermore, we have also shown that the
dynamics can be mapped to a geodesic motion on a curved
Riemannian manifold, extending in this way the classical
billiard picture. Making use of the geodesic deviation
equation, we have computed the covariant Lyapunov
exponent and found it to be strictly positive, which
characterizes the quantum system to be chaotic.
In a second step, we have numerically computed the

dimension of the boundary between regions with different
outcomes in the space of initial data. More specifically,
after numerically computing its evolution, each set of initial
data is characterized by its final state in one of the three
possible outcomes of the system, defined as the three
wedges commented above. In Figs. 2 and 3 one can see a
given cross section of the space of initial data for the
classical and quantum system, respectively, where each
color corresponds to a given outcome. In the classical plot
(Fig. 2) the fractal nature of the boundary between regions
with a different outcome is clearly visible. However, in the
quantum case (Fig. 3), the boundaries are smoothed out,
which already signals a decrease of the level of chaos. This
has been verified by numerically computing the dimension
of the mentioned boundary for a large number of initial
datasets. Our results are therefore robust and, in all the

analyzed cases, we have found out that, even if the
boundary is still fractal, its dimension is larger than that
of its classical counterpart. Therefore, although the quan-
tum system is still chaotic, quantum effects severely reduce
its level.
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APPENDIX: COMPUTATION OF THE ERROR
OF THE OUTCOMES

In this appendix, we provide the relation between the
error that we have considered in the algorithm for the
outcomes, given by (59) in terms of p�, and the one
introduced in Ref. [21], in terms of a single parameter
u ≥ 1. Following the notation of that reference, let us start
by defining the so-called Kasner exponents:

p1 ≔
1

3

�
1þ pþ

ðp2þ þ p2
−Þ1=2

þ
ffiffiffi
3

p
p−

ðp2þ þ p2
−Þ1=2

�
;

p2 ≔
1

3

�
1þ pþ

ðp2þ þ p2
−Þ1=2

−
ffiffiffi
3

p
p−

ðp2þ þ p2
−Þ1=2

�
;

p3 ≔
1

3

�
1 −

2pþ
ðp2þ þ p2

−Þ1=2
�
: ðA1Þ

These exponents satisfy the relations p1 þ p2 þ p3 ¼
p2
1 þ p2

2 þ p2
3 ¼ 1, such that we can parametrize them in

terms of a single parameter u ≥ 1. Specifically, if one
defines pmin ≔ minfp1; p2; p3g, pmax ≔ maxfp1; p2; p3g,
and pint ≔ fp1; p2; p3g − fpmin; pmaxg, the momenta can
be parametrized as follows:

pmin ¼ −
u

1þ uþ u2
; pint ¼

1þ u
1þ uþ u2

;

pmax ¼
uð1þ uÞ
1þ uþ u2

: ðA2Þ

From here, one can just compute the value of u directly,

u ¼ −
1þ pmin þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2pmin − 3p2

min

p
2pmin

: ðA3Þ
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The classical exits, fp− < 0; pþ ¼ − p−ffiffi
3

p g, fp− > 0; pþ ¼
p−ffiffi
3

p g, and fp− ¼ 0; pþ ≤ 0g, correspond to pmin ¼ 0, as can

be seen from (A1). Consequently, according to (A2), they
are characterized by u → ∞. However, if one wants to
analyze numerically whether the system verifies this con-
dition for a given time, it is not possible to obtain such
precision. Therefore, in Ref. [21], they relaxed this require-
ment and considered u > 8 as a sufficient condition for the
system to be in an exit. This can be interpreted as widening
the exits shown in Fig. 1. Even though this approximation
may seem quite extreme, only about 1% of the uncertain
points escape as proved in Ref. [21], and thus the
distribution of the space of initial data is minimally
affected.
Then, if one wants to compute this error in terms of

pþ=ðp2þ þ p2
−Þ1=2, which is the ratio we are using in our

set-up to define the exits (30), one just needs to make use
of the above definitions (A1) and (A2). First, we obtain that
u > 8 corresponds to the intervals pmin ∈ ð− 8

73
; 0�,

pint ∈ ½0; 9
73
Þ, and pmax ∈ ð72

73
; 1� for the different momenta.

Thus, we can distinguish six different cases, depending on
which of the Kasner exponents p1, p2, and p3 defines pmin,
pmax, and pint:

(i) 1st case: p1 ∈ ð− 8
73
; 0�, p2 ∈ ½0; 9

73
Þ, and p3 ∈ ð72

73
; 1�.

(ii) 2nd case: p1 ∈ ð− 8
73
; 0�, p2 ∈ ð72

73
; 1�, and p3 ∈ ½0; 9

73
Þ.

(iii) 3rd case: p1 ∈ ½0; 9
73
Þ, p2 ∈ ð− 8

73
; 0�, and p3 ∈ ð72

73
; 1�.

(iv) 4th case: p1 ∈ ½0; 9
73
Þ, p2 ∈ ð72

73
; 1�, and p3 ∈ ð− 8

73
; 0�.

(v) 5th case: p1 ∈ ð72
73
; 1�, p2 ∈ ½0; 9

73
Þ, and p3 ∈ ð− 8

73
; 0�.

(vi) 6th case: p1 ∈ ð72
73
; 1�, p2 ∈ ð− 8

73
; 0�, and p3 ∈ ½0; 9

73
Þ.

If we invert the relations (A1), we can write,

pþ
ðp2þ þ p2

−Þ1=2
¼ 1

2
ð1 − 3p3Þ;

p−

ðp2þ þ p2
−Þ1=2

¼
ffiffiffi
3

p

2
ðp1 − p2Þ: ðA4Þ

Consequently, in terms of these ratios, the intervals defined
in the six cases above read,

(i) 1st case: pþ
ðp2

þþp2
−Þ1=2 ∈ ½−1;− 143

146
Þ and p−

ðp2
þþp2

−Þ ∈
ð− 17

ffiffi
3

p
146

; 0�.
(ii) 2nd case: pþ

ðp2
þþp2

−Þ1=2 ∈ ð23
73
; 1
2
� and p−

ðp2
þþp2

−Þ ∈
ð− 40

ffiffi
3

p
73

;−
ffiffi
3

p
2
�.

(iii) 3rd case: pþ
ðp2

þþp2
−Þ1=2 ∈ ½−1;− 143

146
Þ and p−

ðp2
þþp2

−Þ ∈
½0; 17

ffiffi
3

p
146

Þ.
(iv) 4th case: pþ

ðp2
þþp2

−Þ1=2 ∈ ½1
2
; 97
146

Þ and p−
ðp2

þþp2
−Þ ∈

½−
ffiffi
3

p
2
;− 63

ffiffi
3

p
146

Þ.
(v) 5th case: pþ

ðp2
þþp2

−Þ1=2 ∈ ½1
2
; 97
146

Þ and p−
ðp2

þþp2
−Þ ∈

ð63
ffiffi
3

p
146

;
ffiffi
3

p
2
�.

(vi) 6th case: pþ
ðp2

þþp2
−Þ1=2 ∈ ð23

73
; 1
2
� and p−

ðp2
þþp2

−Þ ∈ ½
ffiffi
3

p
2
; 40

ffiffi
3

p
73

Þ.
As one can note, the intervals for both arccos½pþ=ðp2þ þ
p2
−Þ1=2� and arcsin½p−=ðp2þ þ p2

−Þ1=2� have the same length
in all the six cases, that is,

Δnum

�
arccos

�
pþ

ðp2þ þ p2
−Þ1=2

��

¼ Δnum

�
arcsin

�
p−

ðp2þ þ p2
−Þ1=2

��
≈ 0.2: ðA5Þ

Finally, from here we can estimate the length of the interval
for the ratio pþ=ðp2þ þ p2

−Þ1=2 defined by the condition
u > 8, that is, its corresponding error:

Δnum

�
pþ

ðp2þ þ p2
−Þ1=2

�

≈ Δnum

�
arccos

�
pþ

ðp2þ þ p2
−Þ1=2

�� p−

ðp2þ þ p2
−Þ1=2


≈ 0.2

 p−

ðp2þ þ p2
−Þ1=2

; ðA6Þ

where, in the first equality, we have used that
ΔnumðarccosðxÞÞ ≈ j d arccosðxÞdx jΔnumx ¼ Δnumxffiffiffiffiffiffiffiffi

1−x2
p .
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